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This paper introduces a novel intelligent control scheme for robust and precise positioning
and orientation of a class of highly non-linear 3-RRR (revolute-revolute-revolute) planar
parallel manipulator. The primary objective is to force the manipulator to track accurately
a prescribed Cartesian trajectory when the system is subjected to different types of distur-
bances in the forms of forced harmonic excitations. A two level fuzzy tuning resolved accel-
eration control (FLRAC) is first designed and implemented to the system to demonstrate
the stable response of the manipulator in performing trajectory tracking tasks in the
absence of the disturbances. In this scheme, the first level of fuzzy tuning is used to acquire
the proportional-derivative (PD) gains linearly while the second level considers non-linear
tuning for determining the other parameters of the fuzzy controller to increase its
performance. Then, the controller is added in series with an active force controller (AFC)
to create a novel two degree-of-freedom (DOF) controller known as FLRAC-AFC which is
subsequently and rigorously tested for system robustness and accuracy in tracking the pre-
scribed trajectory. The simulation study provides further insight into the potentials of the
proposed robotic system in rejecting the disturbances for the given operating conditions.
The results clearly show that the FLRAC-AFC scheme provides a much superior trajectory
tracking capability compared to the conventional linear RAC alone.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Parallel manipulator is essentially a closed-loop kinematic chain mechanism in which the end-effector is linked to the
base by several independent kinematic chains [1]. Due to the special characteristics of parallel manipulators such as high
rigidity, high accuracy and great carrying payload capability, they have attracted significant attention and interest amongst
the researchers in the past decade. After the published works on parallel mechanisms proposed by Gough and Stewart [2,3],
various types of parallel manipulators have been designed and practically utilized in industrial applications such as
assembly, packaging and machining operations. For instance, a 3-DOF parallel robot was designed to manipulate and hold
the heavy work pieces as reported in [4]. Another 3-DOF planar parallel robot in micro size was built and developed for
low-torque precision positioning tasks [5]. One of the most interesting advantages of parallel manipulators over the serial
counterparts is the possibility to locate the actuators on the base, which is suitable for fast and accurate operations. However,
the kinematics and dynamics of parallel manipulators are very complex due to their inherent closed-loop kinematic chains.

Control of parallel manipulators has only been addressed by few researchers in the literature. Nevertheless, Ghorbel
showed that the common methods used for control of serial robots can be utilized to parallel robots as well [6]. Walker
presented a robust independent joint control scheme to a high-speed parallel robot. He showed that the common
. All rights reserved.
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independent joint control method such as the proportional-integral-derivative (PID) controller is not able to achieve the de-
sired and satisfactory performance because of their low capability to reject the environment uncertainties and disturbances
[7]. Honegger et al. introduced an adaptive control method on a 6-DOF high speed milling parallel manipulator [8]. They fo-
cused on the advantage of the parallel robots over the serial counterparts which is the possibility of the former to keep the
motors fixed to the base in order to perform fast movements by the use of lightweight links. Yoo et al. applied a fuzzy con-
troller to a two-link planar robot manipulator to compensate for the unknown dynamic parameters of the system [9]. Stan
et al. applied a fuzzy control method over traditional PID control to a 3-DOF isoglide medical parallel robot, and they ob-
tained better results in the fuzzy-based controller compared to the classic PID controller [10].

In this paper, a robust motion control of a 3-RRR planar parallel manipulator is studied. In the first step, a linear RAC
scheme was applied to the system to control the trajectory tracking of the end-effector in Cartesian space in an ideal situ-
ation, i.e., in the absence of disturbances. Then a two level fuzzy controller was developed to tune the PD outer-loop gains.
For fuzzy approach, the normalizing parameters were determined according to the maximum position and orientation errors
of the end-effector for the first level of tuning which called linear tuning. In the second level of tuning, other parameters of
the fuzzy controller are determined and substituted to increase the performance of the fuzzy controller. Finally, in order to
provide a robust controller in the presence of disturbances, the fuzzy logic tuned RAC (FLRAC) scheme was embedded in an-
other novel control scheme called the active force control (AFC) to enhance the performance of the overall system for track-
ing a prescribed trajectory when the system is subjected to a number of disturbances. The robustness and effectiveness of the
FLRAC-AFC strategy as a ‘disturbance rejector’ is presented through a simulation study using MATLAB/Simulink software
package. The results clearly show that although the proposed FLRAC scheme is very useful in general operations, i.e., in
the absence of disturbances, the system performance degrades considerably when the disturbances are applied to the
manipulator. However, when the system is integrated with the AFC-based controller, the system performance significantly
improves in spite of the adverse operating and loading conditions.

2. Modelling of 3-RRR planar parallel manipulator

2.1. Inverse kinematics

A three DOF planar parallel manipulator is depicted in Fig. 1. The system has nine revolute joints, i.e., three actuated joints
fixed to the base and six unactuated joints that form three closed kinematic chains. The triangular plate, which is located in
the middle of the figure is supposed to be the end-effector of the system. The manipulator is symmetric and also each leg of
the manipulator has the same length.

The aim of solving the inverse kinematics is to obtain the angles of active joints from the position and orientation of the
end-effector, which are essential for the position control of the parallel manipulators. The inverse and direct kinematic anal-
yses of the manipulator have been derived and presented in [11].

Solving the inverse kinematics is very useful since the robot tasks are commonly formulated in terms of end-effector’s
specified position and motion.

2.2. Direct kinematics

Most of the parallel manipulators have easier inverse kinematic solutions compared to serial mechanisms, while the
direct kinematic problems are very challenging in the majority of parallel robots. In direct kinematic problem, with given
Fig. 1. General form of a planar three DOF parallel manipulator.
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position of joint angles, the position and direction of the end-effector can be obtained without regarding the forces or
masses. Unlike the serial manipulators, there is no unique solution for direct kinematics of the parallel robots. Although, sev-
eral computational methods have been proposed to determine the pose of end-effector in Cartesian space, these methods are
more often than not, very time consuming. For direct kinematics of a 3-RRR manipulator, Gosselin showed that a maximum
of six results are possible [11]. However, due to the trajectory tracking procedure, only one of the solutions is deemed the
correct solution. In this study, the previous position of the platform is used as the initial conditions which enable us to have a
better chance to find the correct solution. From Fig. 1, if the three actuated joint angles are specified, the positions of points
D, E and F can be easily computed. Furthermore, the chain D-A-B-E could be considered as a four-bar linkage as illustrated in
Fig. 2.

2.3. Velocity inversion

To map the velocities in joint space into Cartesian space, the Jacobian matrix of the manipulator is used. The Jacobian
matrix can be determined as follows:
J _x ¼ _h; ð1Þ
where _x is the vector of velocities in Cartesian space in which for a 3-RRR manipulator, it is defined by _x ¼ ½ _x; _y; _/�T and _h is
the vector of joint velocities, _h ¼ ½ _h1; _h2; _h3�T .

By differentiation of the equations of the coordinates with respect to time, the Jacobian matrix can be obtained [11].
J ¼
r1=u1 s1=u1 t1=u1

r2=u2 s2=u2 t2=u2

r3=u3 s3=u3 t3=u3

2
64

3
75; ð2Þ
where
ri ¼ x� xoi � l1cos hi � l3cos /i; ð3Þ
si ¼ y� yoi � l1sin hi � l3sin /i; ð4Þ
ti ¼ �l3 ½ðy� yoiÞcos hi � ðx� xoiÞsin /i� þ l1l3 sin ðhi � /iÞ; ð5Þ
ui ¼ �l1½ðy� yoiÞcos hi � ðx� xoiÞsin hi� þ l1l3 sin ðhi � /iÞ: ð6Þ
Note that prior to computing the Jacobian matrix, it is necessary to solve the inverse kinematic problem of the manipulator.

2.4. Acceleration Inversion

In RAC method, acceleration of the end-effector is used as the control signal. Therefore, the relationship between the joint
and Cartesian acceleration can be extracted by differentiating Eq. (1) with respect to time.
J€xþ _J _x ¼ €h; ð7Þ
where €x ¼ ½€x; €y; €/�T and €h ¼ ½€h1; €h2; €h3�T are the vectors of the acceleration in the Cartesian and joint spaces, respectively.
Fig. 2. Equivalent four bar linkage.
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Therefore, in Eq. (7), the other quantities are assumed to be known from the velocity inversion and the only matrix that
has not been defined yet is the time derivative of the Jacobian matrix denoted as _J. Differentiation of Eqs. (3)–(6) leads to:
_J ¼
R1 S1 T1

R2 S2 T2

R3 S3 T3

2
64

3
75; ð8Þ
where
Ri ¼
ui _ri � ri _ui

u2
i

; ð9Þ

Si ¼
ui _si � si _ui

u2
i

; ð10Þ

Ti ¼
ui _ti � ti _ui

u2
i

; ð11Þ
with
_ri ¼ _xþ l1
_hisinhi þ l2

_/isin/i; ð12Þ
_si ¼ _y� l1hicoshi � l2

_/icos _/i; ð13Þ
_ti ¼ l3

_/i½ðx� xoiÞcos/i þ ðy� yoiÞsin/i� þ l3½ _xsin/i � _ycos/i� þ l1l3ð _hi � _/iÞcosðhi � /iÞ; ð14Þ
_ui ¼ �l1

_hi½ðx� xoiÞcoshi þ ðy� yoiÞsinhi� þ l1½ _xsinhi � _ycoshi� þ l1l3ð _hi � _/iÞcosðhi � /iÞ; ð15Þ
2.5. Dynamics of 3-RRR parallel manipulator

Solving the dynamics of the system is necessary for studying the robot control strategies. To solve the dynamic models of
multibody systems, first the system is considered as an equivalent tree-structure, and then by using of d’Alembert principle
or Lagrange multipliers, the system constraints can be obtained [12]. Nevertheless, there are other different methods in the
literature that can be used to solve the dynamics of closed kinematic chains such as virtual work [13,14], Newton–Euler equa-
tions [15] and Hamilton principle [16]. In the study, the Natural Orthogonal Complement (NOC) method is used to solve the
dynamics of the 3-RRR robot. From the power equations of all the links using NOC of the constraint equations, a set of
Euler–Lagrange equations can be derived. To control the manipulator, the direct dynamics of the system is modelled and sim-
ulated in order to predict the motion of the manipulator, given the driving forces of the system. Using NOC method intro-
duced by Ma and Angeles, the dynamic model of the 3-RRR parallel manipulator can be expressed in the following
compact form [17]:
MðqÞ€qaðtÞ þ Cðq; _qÞ _qaðtÞ ¼ sa; ð16Þ
where qa = [q1, q2, q3]T is the generalized coordinate, with qi for 1 6 i 6 3 denotes the active joint angles and q = [q1, q2, . . .,q9]T

where qi for 4 6 i 6 9 represents the relative passive joint angles. MðqÞ 2 R3�3 is the inertia matrix, Cðq _qÞ 2 R3�3 is the coef-
ficient matrix of Coriolis and centrifugal forces and sa 2 R3�1 are the required torques of the actuated joints.

Direct dynamic problem is defined as obtaining the €qa, when the values of q; _q, and sa are given. In this study, direct
dynamics is used to simulate the manipulator, however, in simulating process we just have sa, angles of active joints (qa

i ),
and their respective angular velocities ( _qa

i ). Hence, direct kinematics should be utilized to calculate q and _q. In direct dynamic
problem Eq. (11) should be solved as a differential equation and using a suitable numerical method is necessary.

Note that further relevant kinematic and dynamic expressions applied to a 3 DOF parallel manipulator can be found in the
Appendix.

3. Robot control

3.1. Resolved acceleration control

Resolved acceleration control (RAC) was first proposed by Luh et al. as an alternative method which adopts the idea of
‘computed torque’ technique and extends the results of ‘resolved motion rate’ control [18]. The RAC scheme is based on
the convergence of the position error of the end-effector to zero. To guarantee the convergence of the position error of
the end-effector, an input torque to the manipulator is necessary for the acceleration of the end-effector to satisfy the fol-
lowing expression:
€xref ¼ €xdes þ Kpðxdes � xactÞ þ Kdð _xdes � _xactÞ; ð17Þ
where ½xact; _xact; €xact�T ; ½xdes; _xdes; €xdes�T are the vectors of the actual and desired positions, velocities and accelerations of
end-effector, respectively. The position error of the end-effector can be formulated as:
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eðtÞ ¼ xdesðtÞ � xactðtÞ: ð18Þ
To show the influence of the input torque on the tracking error, Eq. (18) is differentiated to obtain:
_eðtÞ ¼ _xdesðtÞ � _xactðtÞ; ð19Þ
€eðtÞ ¼ €xdesðtÞ � €xactðtÞ: ð20Þ
Then, Eq. (17) can be written as:
€eþ kd _eþ kpe ¼ 0: ð21Þ
Eq. (21) shows a standard form of the second-order characteristic polynomial expression. The desired performance in each
component will be gradually achieved by selecting the appropriate Kp and Kd gains. A general scheme of the RAC method is
shown in the Fig. 3.

For developing the FLRAC scheme, a linear RAC controller was first designed. Then, a two level FL tuning (as described in
the following section) was applied to compute the PD gains of the RAC scheme in order to improve the control of the end-
effector. For both approaches, the position and orientation errors of the end-effector in Cartesian space and their derivatives
are defined as follows:
ex ¼ xdes � xact; ð22Þ
_ex ¼ _xdes � _xact; ð23Þ
ey ¼ ydes � yact; ð24Þ
_ey ¼ _ydes � _yact; ð25Þ
e/ ¼ /des � /act; ð26Þ
_e/ ¼ _/des � _/act: ð27Þ
e = [ex,ey,e/] and _e ¼ ½ _ex; _ey; _e/� are position and orientation errors of the end-effector in Cartesian space and their derivatives.
The parameters e and _e are used as inputs to the fuzzy controller. Fig. 4 shows the proposed fuzzy resolved acceleration
controller.

3.2. Two level fuzzy tuning

Since most of the recent systems are innately nonlinear and complex, fuzzy logic (FL) controller can be used as an alter-
native intelligent scheme to model the complex systems using a FL concept [19]. In this paper, a controller with two inputs,
namely, the position and velocity errors of the end-effector, and one output with reference to the tuned parameters of the PD
element in the RAC scheme was developed. The inputs and output of the fuzzy controller are normalized within range of
[�1,1] and suitable scale factors have been obtained for normalization purposes based on the following conditions:
ê ¼ maxð�1;minð1; Sei
ÞÞ; ð28Þ

_̂e ¼ maxð�1;minð1; Scei
ÞÞ; ð29Þ
where i = 1, 2, 3 denotes the scale factors required for normalization of the position and orientation errors of the end-effector
in Cartesian space. Similarly, the FL control output is normalized by using the condition, û ¼ û=ûmax. Fig. 5, shows the
rule-coupled fuzzy controller implemented in RAC.
Fig. 3. Schematic diagram of the general RAC scheme.



Fig. 4. Schematic diagram of the FLRAC scheme.

Fig. 5. Rule-coupled fuzzy PD.
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For the two-input configuration used in Fig. 5, seven triangular membership functions were chosen for each input vari-
able, and a complete rule matrix of size 7 � 7 is defined as:
If ê is Ewi and _̂e is _Ewj then ûPD is Uiþj
and
uPD ¼ SuûPD;
where Ewi and _Ewj are input membership functions for the fuzzy controller where i is indicated as the number of inputs, and w
is the number of membership functions.

Mann et al. firstly introduced a two level tuning method. For the first level which called ‘linear tuning’, the input and out-
put parameters are normalized by suitable scale factors to make the fuzzy controller to act like a linear PD controller [20].
The next level of tuning is ‘nonlinear tuning’ in order to improve the performance of the controller without having to in-
crease the maximum torque to the system. In nonlinear tuning level, the parameters in Fig. 6, i.e., (S1)w, (S2)w where
w = 1,2 of the controller should be adjusted. The appropriate values of the mentioned parameters used in the study were
acquired based on those found in [20]. The membership functions representing the inputs and output of the fuzzy controller
are depicted in Figs. 6 and 7.
Fig. 6. Input membership function.



Fig. 7. Output membership function.
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3.3. Active force control

During the last decade, different methods for controlling the position and force of robot manipulators have been proposed
and implemented such as hybrid force/position control [21], active force control [22–24], impedance control [25] and expli-
cit force control [26]. The main aim of these schemes is to provide a robot system to carry out the prescribed task without
reducing the performance of the overall system when the loads or disturbances are applied to the robotic system. Majority of
adaptive controllers which are common as robust controllers in the literature need a linearized model of the system and pre-
vious knowledge about the disturbances bounds. Furthermore, it is necessary to estimate a number of parameters or gains
for the control scheme that in turn introduces more complexity to the scheme.

Active force control (AFC) method was first proposed by Hewit and Burdess in the early eighties [24]. They presented the
application of the AFC technique to a robot arm in the presence of disturbances. They showed that by using this method, the
system subjected to environment uncertainties, disturbances or any other changes in system parameters, remains stable and
robust. The effectiveness and robustness of AFC method as a disturbance rejector scheme is proven in the literature [27]. AFC
is easy to understand and very applicable because it does not need special devices to implement in real time and it only in-
volves the computation of a number of unknown parameters necessary for the AFC loop. Therefore, it does not necessitate
large computation and mathematical manipulation in order to reject the uncertainties.

From the Newton’s second law of motion for rotational bodies, the sum of all torques applied to the system is equal to the
product of the mass moment of inertia (I) and the angular acceleration (a) of the system:
Rs ¼ Ia: ð30Þ
When the disturbance is considered, Eq. (30) becomes:
sþ sd ¼ IðhÞa; ð31Þ
Fig. 8. Schematic diagram of the FLRAC-AFC scheme.
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where,
� s is the applied torque to the system
� sd is total applied disturbances
� h and €h are the joint angle and angular acceleration of the robot system, respectively

Disturbances can be approximated as follows:
s�d ¼ s� IN€h; ð32Þ
where IN is the estimated inertia matrix that can be obtained by crude approximation or other intelligent methods such as
iterative learning, fuzzy logic and others, which crude approximation was used in this paper. s is the measured applied con-
trol torque that can be obtained using a torque sensor or indirectly, through a current sensor and the measured angular
acceleration, i.e. €h using an accelerometer. From Eq. (32), it is clear that if the total applied torque to the system and angular
acceleration of each actuated joint are accurately obtained and the estimated inertial matrices (IN) appropriately approxi-
mated, then the total disturbance torque can be computed via the AFC loop without having to acquire the exact knowledge
about actual magnitude of the disturbances. A schematic diagram of the FLRAC-AFC method is depicted in Fig. 8. Note also,
that, the values of IN were obtained via a number of trial runs based on previous research [28,29].

4. Simulation and results

To validate the effectiveness of the proposed control method, a desired end-effector’s trajectory was introduced for the
trajectory tracking control problem. The desired trajectory was chosen based on a butterfly shape trajectory considering
the following time (t) dependent functions for the Cartesian coordinate:
Fig. 9. Snapshots of manipulator motion.

Fig. 10. Trajectory tracking of the end-effector using linear RAC and FLRAC in absence of disturbances.
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xp ¼ xp0 þ 0:1 cosð0:4� p� tÞ 0 6 t 66 5s; ð33Þ
yp ¼ yp0 þ 0:1 sinð0:8� p� tÞ 0 6 t 66 5s: ð34Þ
To simulate the dynamics and control of the 3-RRR parallel robot, MATLAB/Simulink software was used. The geometric
dimensions and other properties of the manipulator and the controllers’ parameters are as follows:
l1 ¼ 0:4 m; l2 ¼ 0:6 m; l03 ¼ 0:4 m

m1 ¼ m2 ¼ m3 ¼ 3 kg; I1 ¼ I2 ¼ I3 ¼ 0:04 kg m2
Fig. 11. (a)–(c) Required torques for three actuated joints using linear RAC and FLRAC.
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m4 ¼ m5 ¼ m6 ¼ 1 kg; I4 ¼ I5 ¼ I6 ¼ 0:12 kg m2

m7 ¼ 8 kg; I7 ¼ 0:0817 kg m2

RAC : Kp ¼ 60; K i ¼ 0; Kd ¼ 40

Inertia for the AFC loop IN ¼ ½0:1 0:1 0:1� kg m2
Harmonic disturbance to the first actuated joint: sh = 20 sin 50t Nm
Fig. 9 shows snapshots of a series of the manipulator’s movements in tracking the desired trajectory. From the figure, it

can be seen that the desired trajectory is within the manipulator’s workspace. Also, there is no singularity observed while the
manipulator is describing the prescribed trajectory. The whole process took approximately 5 seconds.

As mentioned earlier, first, a linear RAC scheme was implemented to the manipulator to control the Cartesian trajectory
tracking of the end-effector. The PD gains of RAC outer-loop were heuristically tuned after a number of trial runs, taking into
account the initial ideal situation, i.e. in the absence of disturbances. Then, the required parameters of the fuzzy controllers
such as normalizing scale factors and optimum linear PD gains of the RAC were obtained and substituted in Eq. (17). Results
for the linear RAC and FLRAC are depicted in Fig. 10, which demonstrates the better performance of the FLRAC compared to
linear RAC.

Fig. 11(a)–(c) show the applied torques to each actuated joint by the two controllers. From the figures, it can be seen that
the maximum required torque for each actuated joint to produce the desired trajectory are nearly the same, implying that
powers or energies required to drive the three links via the joints are comparable. There are some small fluctuations ob-
served in the fuzzy RAC scheme as depicted in Fig. 11(a) and (b) which are probably due to the fuzzy estimation and adap-
tation process when the manipulator operates to perform the trajectory tracking task. The magnitude and period of the
oscillation are however very small and transitory. This has no profound effect on the actual tracking performance of the
manipulator as the result in Fig. 10 portrays.
Fig. 12. Trajectory tracking of the end-effector using linear RAC and FLRAC in presence of disturbances.

Fig. 13. Trajectory tracking of the end-effector using linear RAC, FLRAC, and FLRAC-AFC in presence of disturbances.



Fig. 14. (a)–(c) Required torques for three actuated joints using FLRAC and FLRAC-AFC.
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Later, a known harmonic disturbance was introduced into the first actuated joint. The results obtained for both the linear
RAC and FLRAC controller were presented and compared. From Fig. 12, it is clear that the system performance is significantly



Fig. 15. Applied disturbances versus rejected disturbances using FLRAC-AFC.
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distorted in both linear RAC and FLRAC schemes. However, the latter produces a comparatively better response from the de-
sired trajectory than the former.

In order to eliminate the trajectory distortion caused by the disturbance, a second degree of freedom controller namely
active force control (AFC) loop was added in cascade form with the FLRAC scheme. The results in Fig. 13, clearly illustrate the
robustness and effectiveness of the proposed FLRAC-AFC scheme to improve the overall system dynamic performance par-
ticularly when the manipulator is subjected to the disturbances compared to the FLRAC and linear RAC alone.

In Fig. 14(a)–(c), the required torques of actuated joints for the manipulator to follow the prescribed trajectory are illus-
trated and compared for FLRAC and FLRAC-AFC schemes. From the figures, it can be concluded that, the torques applied to
each actuator by FLRAC scheme in order to reject the disturbances are relatively higher in magnitude than in FLRAC-AFC
scheme. This may eventually cause saturation in the actuators. On the other hand, FLRAC-AFC scheme is able to reject the
disturbances effectively without having to increase the torques of the actuated joints.

Fig. 15 shows the actual disturbance applied to the system and the rejected disturbance that is estimated by using the
FLRAC-AFC scheme over time.

5. Conclusion

A novel 2-DOF control scheme comprising a two level fuzzy tuning resolved acceleration control with active force control
(FLRAC-AFC) was developed and implemented to the 3-RRR manipulator to provide an excellent coordinated trajectory
tracking performance of the system in the presence of the introduced disturbances. Both the first and second level of fuzzy
tunings are found to be very effective in computing the desired parameters of the FLRAC component even while the manip-
ulator is executing its trajectory tracking task. Results clearly show that the linear RAC method, though simple and relatively
stable, could not provide satisfactory performance in the presence of introduced harmonic disturbance as system shows a
high degree of inaccuracy as can be seen through the greatly distorted tracked trajectory. This is in stark contrast with
the proposed intelligent AFC-based method, i.e., FLRAC-AFC in which the manipulator exhibits excellent and robust tracking
capability. The scheme is able to reject the disturbances without having to increase the magnitudes of the actuated torques
at the joints. Further works could include the possibility of performing comprehensive sensitivity analysis based on other
loading and operating environments to include parametric changes and uncertainties.

Appendix A

A.1. Inverse kinematic solution

A general solution of the inverse kinematic for leg i is expressed as follows [11]:
hi ¼ ai � w; i ¼ 1;2;3; ðA:1Þ
ai ¼ atan2ðx2i; y2iÞ: ðA:2Þ
wi can be obtained as follows:
wi ¼ cos�1
l2
i � l22 þ x2

2i þ y2
yi

2li

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2i þ y2
2i

q
2
64

3
75; 0 6 w 6 p: ðA:3Þ
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Coordinates x2i and y2i are defined as:
x2i ¼ x� l3 cos /i � xoi; ðA:4Þ
y2i ¼ y� l3 sin /i � yoi; ðA:5Þ
where angles f/ig
3
1 are given by:
/1 ¼ /þ p
6
; ðA:6Þ

/2 ¼ /þ 5p
6
; ðA:7Þ

/3 ¼ /� p
2
: ðA:8Þ
The Cartesian positions of centers of the motors are considered as follows:
xoi ¼ 0;1;
1
2

� �
; ðA:9Þ

yoi ¼ 0;0;

ffiffiffi
3
p

2

( )
: ðA:10Þ
A.2. Direct kinematic solution

Point C in Fig. 2 is a point of the coupler link generating a coupler curve. A solution for the closure of the whole kinematic
chain is determined via the contraction of the circle and the coupler curve with the following set of equations will be ob-
tained [11]:
x23 ¼ x11 þ l2 cosða1 þ wÞ þ
ffiffiffi
3
p

l3 cosða1 þ a2 þ hÞ; ðA:11Þ
y23 ¼ x11 þ l2 sinða1 þ wÞ þ

ffiffiffi
3
p

l3 sinða1 þ a2 þ hÞ ðA:12Þ
and
a1 ¼ atan2
y12 � y11

x12 � x11

� �
; a2 ¼

p
3
; ðA:13Þ

hð1Þ; hð2Þ ¼ 2tan�1 b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ac

p
a

" #
: ðA:14Þ
a,b,c are given as follows:
a ¼ �d2 � 3l2
3

2
ffiffiffi
3
p

l2l3
� d

l2
þ 1þ dffiffiffi

3
p

l3

� �
cos w; ðA:15Þ

b ¼ sin w; ðA:16Þ

c ¼ �d2 � 3l2
3

2
ffiffiffi
3
p

l2l3
þ d

l2
þ dffiffiffi

3
p

l3
� 1

� �
cos w; ðA:17Þ
where
d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxE � xDÞ2 þ ðyE � yDÞ

2
q

: ðA:18Þ
The coupler curve intersects the circle defined by the rotation of link FC around point F. Therefore, the nonlinear equation to
be solved is given by:
ðxC � xFÞ2 þ ðyC � yFÞ
2 ¼ l2

2 ðA:19Þ
Eq. (A.19) can be solved for angle w using a numerical procedure. Direct kinematics of manipulator is vital for the system
control objectives.

A.3. Dynamic solution

The general form of the dynamics solution can be written as follows [17]:
NT MtotalN€qþ ðNT Mtotal
_Nþ NTXMtotalNÞ _qa � NT Wg ¼ sa; ðA:20Þ
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where N is the NOC matrix, M and X are diagonal matrices defined as:
Mtotal ¼ diagðM1;M2; . . . MrÞ; ðA:21Þ
X ¼ diagðX1;X2; . . . XTÞ ðA:22Þ
and
Wg ¼

0
m1g

0
m2g
�
�
�
0

mrg

2
66666666666666664

3
77777777777777775

: ðA:23Þ
The zeroes (0) in Eq. (A.23) represent the 3-D zero vector and g is the gravity acceleration vector, respectively. mr are the
masses of the movable rigid bodies. Note also, that, r = 1,2, . . .,7 denote the number of movable rigid bodies in the system.
Eq. (A.20) can be simplified by considering the following expressions:
M ¼ MðqÞ ¼ NT MtotalN; ðA:24Þ
C ¼ Cðq; _qÞ ¼ NT Mtotal

_Nþ NTXMtotalN; ðA:25Þ
G ¼ GðqÞ ¼ �NT Wg : ðA:26Þ
Therefore the equation becomes:
M€qþ C _qa þ G ¼ sa; ðA:42Þ
where qq; _qa and €qa are the corresponding displacement, velocity and acceleration of the actuated joints, respectively.
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