

SUB-MICRON TECHNOLOGY DEVELOPMENT AND SYSTEM-ON-CHIP

(SoC) DESIGN - DATA COMPRESSION CORE

NASIR SHAIKH HUSIN

Final Report for IRPA Vot 72319

Fakulti Kejuruteraan Elektrik

Universiti Teknologi Malaysia

DECEMBER 2002

 ii

ABSTRACT

 Data compression removes redundancy from the source data and thereby

increases storage capacity of a storage medium or efficiency of data transmission in a

communication link. Although several data compression techniques have been

implemented in hardware, they are not flexible enough to be embedded in more

complex applications. Data compression software meanwhile cannot support the

demand of high-speed computing applications. Due to these deficiencies, in this

project we develop a parameterized lossless universal data compression IP core for

high-speed applications. The design of the core is based on the combination of

Lempel-Ziv-Storer-Szymanski (LZSS) compression algorithm and Huffman coding.

The resulting IP core offers a data-independent throughput that can process a symbol

in every clock cycle. The design is described in parameterized VHDL code to enable

a user to make a suitable compromise between resource constraints, operation speed

and compression saving, so that it can be adapted for any target application. In

implementation on Altera FLEX10KE FPGA device, the design offers a performance

of 800 Mbps with an operating frequency of 50 MHz. This IP core is suitable for

high-speed computing applications or for storage systems.

 iii

ABSTRAK

 Pemampatan data menyingkirkan lelebihan dari sumber data dan dengan itu

meningkatkan keupayaan simpanan sesuatu bahantara storan atau kecekapan

penghantaran data dalam sesuatu kait perhubungan. Walaupun beberapa teknik

pemampatan data telah dilaksanakan dalam perkakasan, mereka tidak mudah diubah

suai untuk digunakan di dalam aplikasi yang lebih kompleks. Perisian pemampatan

data pula tidak boleh menyokong keperluan aplikasi perkomputeran kelajuan tinggi.

Oleh kerana kekurangan tersebut, dalam projek ini kami membina satu teras IP

pemampatan data tanpa-kehilangan berparameter yang semesta untuk aplikasi

kelajuan tinggi. Rekabentuk teras adalah berdasarkan gabungan algoritma

pemampatan Lempel-Ziv-Storer-Szymanski (LZSS) dan pengekodan Huffman. Teras

IP yang dihasilkan mempunyai celusan yang tidak bergantung pada data dan boleh

memproses satu simbol dalam setiap kitar jam. Rekabentuk teras ditulis dalam kod

VHDL berparameter untuk membolehkan pengguna membuat kompromi yang sesuai

diantara kekangan komponen, kelajuan operasi dan penjimatan pemampatan, supaya

ia dapat disesuaikan untuk sebarang aplikasi sasaran. Berdasarkan pelaksanan dalam

peranti FPGA FLEX10KE Altera, rekabentuk ini mempunyai prestasi 800 Mbps

dengan frekuensi pengendalian 50 MHz. Teras IP ini adalah sesuai untuk aplikasi

perkomputeran kelajuan tinggi atau untuk sistem storan.

 iv

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 ABSTRACT ii

 ABSTRAK iii

 TABLE OF CONTENTS iv

 LIST OF TABLES vii

 LIST OF FIGURES viii

 LIST OF ABBREVIATIONS ix

CHAPTER I INTRODUCTION 1

 1.1 Problem Statement

1.2 Objectives

1.3 Scope of Work

1.4 Contributions of the Research

1.5 Organization of Report

1.6 Summary

2

3

3

4

5

6

CHAPTER II LITERATURE REVIEW 7

 2.1 Data Compression Background

2.2 Data Compression Algorithms

2.3 Previous work on Implementations of Data

Compression

2.4 Reconfigurability and Reusability

2.5 Systolic Architecture for LZ77/LZSS

2.6 Discussion and Summary

7

8

9

10

11

12

 v

CHAPTER III METHODOLOGIES AND TOOLS 14

 3.1 Research Procedure

3.2 Timing Simulation in Design Verification

3.3 Hardware Evaluation System for Test and

Performance Analysis

3.4 Hardware and Software Tools

3.5 Discussion and Summary

14

15

15

17

18

CHAPTER IV DESIGN OF DATA COMPRESSION

HARDWARE

19

 4.1 Overview of Compression Hardware System

4.2 Design of Compression Core

4.3 Compression Interface Controller

4.4 Design of Decompression Core

4.5 Decompression Interface Controller

4.6 Summary

19

21

22

23

24

24

CHAPTER V DESIGN VERIFICATION AND PERFORMANCE

ANALYSIS

25

5.1 Design Verification

5.1.1 Results of Timing Simulation

5.1.2 Results of Hardware Test

5.2 Performance Analysis

5.2.1 Performance Metrics Applied

5.2.2 Performance Analysis – Clock Speed

and Area

5.2.3 Performance Analysis – Compression

Ratio

25

26

26

27

28

29

30

 vi

5.2.4 Performance Analysis – Comparison

with Other Implementations

5.3 Summary

32

33

CHAPTER VI CONCLUSIONS 34

 6.1 Concluding Remarks

6.2 Future Work

34

35

 REFERENCES 37

CHAPTER I

INTRODUCTION

 This project is a collaboration project between MIMOS, which acted as the

Project Leader, and Universiti Teknologi Malaysia, Universiti Putra Malaysia,

Universiti Sains Malaysia and Universiti Malaya. The main objective of the project is

to develop a 0.35-micron integrated circuit (IC) fabrication technology. MIMOS can

already fabricate ICs using 0.8-micron technology. However, this technology is

several generations behind state of the art fabrication process. With this project, the

gap can be reduced. The current state of the art fabrication technology is 0.15-micron

process. All current processes are called sub-micron processes because the smallest

feature that can be fabricated is less than 1 micron.

 When the fabrication process is successfully upgraded, local research

institutions or companies can contract with MIMOS to fabricate their designs. To

help these clients, MIMOS must have many sub-system designs, ready to be

embedded by clients into their applications. These sub-systems should be in the form

of IP (intellectual property) cores, where the design is described in a hardware design

language like VHDL, and must be parameterizable so that customers can easily

modify the cores to suit their applications. For organizations that do not want to

fabricate their design, they can also use FPGA (Field Programmable Gate Array.)

The FPGA devices nowadays can accommodate really large designs, integrating

many sub-systems into a single device. These new FPGA devices give rise to so-

called SoC (Silicon-on-Chip) design methodology, where sub-system integration and

software interfacing have to be given serious consideration. The entire project is

distributed as follows:

 2

MIMOS (Project Leader) is responsible for sub-micron process development

and device design.

UTM is responsible for IP core design and SoC design methodology.

UPM is responsible for sub-micron process and device simulations.

USM is responsible for process development test and characterization.

UM is also responsible for core design.

UTM chose to develop data compression IP core. The objective is to produce

a reusable data compression core such that a user can choose to compromise between

resource constraints, speed and compression level to suit a variety of high-speed

applications. The design is based on Lempel-Ziv-Storer-Szymanski (LZSS)

compression algorithm combined with Huffman coding. The rest of this report

describes the development of this data compression core. In this chapter, the

challenge of data compression implementation is discussed. The objective and scope

of this work is also presented.

1.1 Problem Statement

Data compression is a cost-effective way to increase the effective

communication bandwidth or the effective storage capacity without significant

increment in cost. It removes redundant information inherent in the source data,

thereby enabling a communication link to transmit the same amount of data in fewer

bits. For storage systems, fewer bits are actually stored thus increasing the effective

storage capacity.

The compression core must be able to handle any kind of source data so that

it can be used in real-world applications. The implementation has to be fast enough

to satisfy high-speed applications. Finally, the design must not be too complicated

such that hardware requirements are too excessive.

Several data compression techniques have been implemented in either

software or hardware. Data compression software, which runs on a personal

 3

computer (PC), is generally slow and thus not suitable for high-speed computing

applications. Dedicated, stand-alone compression ICs are also available, (e.g. IBM

ALDC1-40S and STAC Electronics Hi/fn 9600.) These ICs are fixed hardware and

cannot be customized or embedded into a larger system. Therefore, the core design

must be parameterizable and must take into account resource constraints, speed of

operation and compression ratio.

1.2 Objectives

The objectives of the research are:

1. To design an embedded data compression core for high-speed applications.

The design is parameterizable to facilitate reusability for future applications.

2. To develop a PC-based hardware evaluation system that integrates host PC to

the compression core through a PCI-based communication bus. This

evaluation system is used to verify the functionality of the compression core.

1.3 Scope of Work

 The project can be divided into two phases. The first phase is to design a data

compression core, where parameterized VHDL is used as design entry. This core

should have a speed of at least 100 Mbits per second and a comparable compression

ratio with other reported implementations. The second phase is to develop a PC-

based hardware evaluation system. The system consists of a GUI software running

on a host PC and an evaluation platform. This platform employs a commercial PCI

controller to handle the complex PCI bus communication protocol. An integration

module consisting various basic interface blocks is then developed and used to

handle data transfer protocol between the PCI controller and the compression

hardware. The evaluation system is shown in Figure 1.1.

 4

Figure 1.1: Evaluation System

The implementation for this project is limited to Altera devices only. This is

because of the usage of Altera LPM modules to instantiate RAM and FIFO. For

implementations other than Altera devices, all the LPM modules should be replaced

with equivalent modules in the particular chosen device.

1.4 Contributions of the Research

 This research work has led to the following outcomes:

1. The development of a parameterizable data compression embedded core with

a competitive performance, compared to other high-performance ASIC or

FPGA data compression hardware. It can process a symbol with a clock

speed of 50 MHz and offer a data-independent throughput of 50 Msymbols

per second. Since the design is parameterizable, it can be easily interfaced

Host PC

PCI Driver

GUI

Program

PCI Plug-In Card

EVALUATION PLATFORM

PCI Controller

Compression

Core

Integration

Module

PCI BUS

 5

with any system and enable a user to choose a suitable compromise between

resource constraints, speed and compression ratio.

2. The development of a PC-based hardware evaluation system that allows a

host PC to access the hardware resources in the compression coprocessor via

the PCI communication bus interface. This evaluation system facilitates

verification of the coprocessor design.

3. With a suitable arrangement of compression and decompression units in an

embedded core environment, we can obtain a real-time data compression

system that can work in either half-duplex or full-duplex processing.

1.5 Organization of Report

This report is organized into six chapters. The first chapter introduces the

motivation of this research. Chapter II contains the literature review to support the

rationale behind this work and also to search for the solutions to the research

problem.

Chapter III describes the methodologies for this project where design

verification methods, tools and techniques used in this project are described. Chapter

IV presents the hardware design of the data compression core. Chapter V reports the

results obtained after testing the designed core. The results are analyzed to validate

the compression core design. The performance analysis of the core is also included in

this chapter. Finally, the last chapter summarizes the research findings and suggests

potential future work.

 6

1.6 Summary

This chapter provides an overview of the project. The challenge of the data

compression implementation is discussed, and the objectives for the project are

identified.

SUB-MICRON TECHNOLOGY DEVELOPMENT AND SYSTEM-ON-CHIP

(SoC) DESIGN - DATA COMPRESSION CORE

NASIR SHAIKH HUSIN

Final Report for IRPA Vot 72319

Fakulti Kejuruteraan Elektrik

Universiti Teknologi Malaysia

DECEMBER 2002

 ii

ABSTRACT

 Data compression removes redundancy from the source data and thereby

increases storage capacity of a storage medium or efficiency of data transmission in a

communication link. Although several data compression techniques have been

implemented in hardware, they are not flexible enough to be embedded in more

complex applications. Data compression software meanwhile cannot support the

demand of high-speed computing applications. Due to these deficiencies, in this

project we develop a parameterized lossless universal data compression IP core for

high-speed applications. The design of the core is based on the combination of

Lempel-Ziv-Storer-Szymanski (LZSS) compression algorithm and Huffman coding.

The resulting IP core offers a data-independent throughput that can process a symbol

in every clock cycle. The design is described in parameterized VHDL code to enable

a user to make a suitable compromise between resource constraints, operation speed

and compression saving, so that it can be adapted for any target application. In

implementation on Altera FLEX10KE FPGA device, the design offers a performance

of 800 Mbps with an operating frequency of 50 MHz. This IP core is suitable for

high-speed computing applications or for storage systems.

 iii

ABSTRAK

 Pemampatan data menyingkirkan lelebihan dari sumber data dan dengan itu

meningkatkan keupayaan simpanan sesuatu bahantara storan atau kecekapan

penghantaran data dalam sesuatu kait perhubungan. Walaupun beberapa teknik

pemampatan data telah dilaksanakan dalam perkakasan, mereka tidak mudah diubah

suai untuk digunakan di dalam aplikasi yang lebih kompleks. Perisian pemampatan

data pula tidak boleh menyokong keperluan aplikasi perkomputeran kelajuan tinggi.

Oleh kerana kekurangan tersebut, dalam projek ini kami membina satu teras IP

pemampatan data tanpa-kehilangan berparameter yang semesta untuk aplikasi

kelajuan tinggi. Rekabentuk teras adalah berdasarkan gabungan algoritma

pemampatan Lempel-Ziv-Storer-Szymanski (LZSS) dan pengekodan Huffman. Teras

IP yang dihasilkan mempunyai celusan yang tidak bergantung pada data dan boleh

memproses satu simbol dalam setiap kitar jam. Rekabentuk teras ditulis dalam kod

VHDL berparameter untuk membolehkan pengguna membuat kompromi yang sesuai

diantara kekangan komponen, kelajuan operasi dan penjimatan pemampatan, supaya

ia dapat disesuaikan untuk sebarang aplikasi sasaran. Berdasarkan pelaksanan dalam

peranti FPGA FLEX10KE Altera, rekabentuk ini mempunyai prestasi 800 Mbps

dengan frekuensi pengendalian 50 MHz. Teras IP ini adalah sesuai untuk aplikasi

perkomputeran kelajuan tinggi atau untuk system storan.

 iv

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 ABSTRACT ii

 ABSTRAK iii

 TABLE OF CONTENTS iv

 LIST OF TABLES vii

 LIST OF FIGURES viii

 LIST OF ABBREVIATIONS ix

CHAPTER I INTRODUCTION 1

 1.1 Problem Statement

1.2 Objectives

1.3 Scope of Work

1.4 Contributions of the Research

1.5 Organization of Report

1.6 Summary

2

3

3

4

5

6

CHAPTER II LITERATURE REVIEW 7

 2.1 Data Compression Background

2.2 Data Compression Algorithms

2.3 Previous work on Implementations of Data

Compression

2.4 Reconfigurability and Reusability

2.5 Systolic Architecture for LZ77/LZSS

2.6 Discussion and Summary

7

8

9

10

11

12

 v

CHAPTER III METHODOLOGIES AND TOOLS 14

 3.1 Research Procedure

3.2 Timing Simulation in Design Verification

3.3 Hardware Evaluation System for Test and

Performance Analysis

3.4 Hardware and Software Tools

3.5 Discussion and Summary

14

15

15

17

18

CHAPTER IV DESIGN OF DATA COMPRESSION

HARDWARE

19

 4.1 Overview of Compression Hardware System

4.2 Design of Compression Core

4.3 Compression Interface Controller

4.4 Design of Decompression Core

4.5 Decompression Interface Controller

4.6 Summary

19

21

22

23

24

24

CHAPTER V DESIGN VERIFICATION AND PERFORMANCE

ANALYSIS

25

5.1 Design Verification

5.1.1 Results of Timing Simulation

5.1.2 Results of Hardware Test

5.2 Performance Analysis

5.2.1 Performance Metrics Applied

5.2.2 Performance Analysis – Clock Speed

and Area

5.2.3 Performance Analysis – Compression

Ratio

25

26

26

27

28

29

30

 vi

5.2.4 Performance Analysis – Comparison

with Other Implementations

5.3 Summary

32

33

CHAPTER VI CONCLUSIONS 34

 6.1 Concluding Remarks

6.2 Future Work

34

35

 REFERENCES 37

 vii

LIST OF TABLES

TABLE NO TITLE PAGE

3.1 Compression Benchmark Data Set 16

5.1 Parameter Configuration of the PCI-Based Data

Compression Hardware Core

26

5.2 Standard Data Compression Benchmark Data

Sets

27

5.3 Latency of Compression Core 28

5.4 Latency of Decompression Core 29

5.5 Area and Speed Evaluation Results 30

5.6 Compression Ratio 31

5.7 Computation Time for Compression 31

5.8 Computation Time for Decompression 32

5.9 Comparison of Data Compression Hardware

using Text Data

33

6.1 Specifications of the Data Compression

Embedded Core

35

 viii

LIST OF FIGURES

FIGURE NO TITLE PAGE

1.1 Evaluation System 4

2.1 Broadcast/Reduce Systolic Architecture 12

4.1 Compression System 20

4.2 Functional Block Diagram of the Compression

Subsystem

20

4.3 Functional Block Diagram of the

Decompression Subsystem

21

4.4 Block Diagram of Compression_Unit 21

4.5 Block Diagram of Compression_Interface 22

4.6 Block Diagram of Decompression_Unit 23

4.7 Block Diagram of Decompression_Interface 24

 ix

LIST OF ABBREVIATIONS

API - Application Programming Interface

ASIC - Application Specific Integrated Circuit

CMOS - Complementary Metal Oxide Semiconductor

EAB - Embedded Array Block

FIFO - First In First Out

FLEX - Flexible Logic Element MatriX

FPGA - Field Programmable Gate Array

GUI - Graphic User Interface

I/O - Input/Output

IC - Integrated Circuit

IP - Intellectual Property

JTAG - Joint Action Test Group

LC - Logic Cell

LE - Logic Element

LPM - Library of Parameterized Modules

LZ - Lempel-Ziv

LZ77 - Lempel-Ziv-77

LZSS - Lempel-Ziv-Storer-Szymanski

OS - Operating System

PC - Personal Computer

PCI - Peripheral Component Interconnect

PE - Processing Element

RAM - Random Access Memory

SoC - System on Chip

UTM - Universiti Teknologi Malaysia

VHDL - Very high speed integrated circuit Hardware Description Language

VLSI - Very Large Scale Integration

CHAPTER I

INTRODUCTION

 This project is a collaboration project between MIMOS, which acted as the

Project Leader, and Universiti Teknologi Malaysia, Universiti Putra Malaysia,

Universiti Sains Malaysia and Universiti Malaya. The main objective of the project is

to develop a 0.35-micron integrated circuit (IC) fabrication technology. MIMOS can

already fabricate ICs using 0.8-micron technology. However, this technology is

several generations behind state of the art fabrication process. With this project, the

gap can be reduced. The current state of the art fabrication technology is 0.15-micron

process. All current processes are called sub-micron processes because the smallest

feature that can be fabricated is less than 1 micron.

 When the fabrication process is successfully upgraded, local research

institutions or companies can contract with MIMOS to fabricate their designs. To

help these clients, MIMOS must have many sub-system designs, ready to be

embedded by clients into their applications. These sub-systems should be in the form

of IP (intellectual property) cores, where the design is described in a hardware design

language like VHDL, and must be parameterizable so that customers can easily

modify the cores to suit their applications. For organizations that do not want to

fabricate their design, they can also use FPGA (Field Programmable Gate Array.)

The FPGA devices nowadays can accommodate really large designs, integrating

many sub-systems into a single device. These new FPGA devices give rise to so-

called SoC (Silicon-on-Chip) design methodology, where sub-system integration and

software interfacing have to be given serious consideration. The entire project is

distributed as follows:

2

MIMOS (Project Leader) is responsible for sub-micron process development

and device design.

UTM is responsible for IP core design and SoC design methodology.

UPM is responsible for sub-micron process and device simulations.

USM is responsible for process development test and characterization.

UM is also responsible for core design.

UTM chose to develop data compression IP core. The objective is to produce

a reusable data compression core such that a user can choose to compromise between

resource constraints, speed and compression level to suit a variety of high-speed

applications. The design is based on Lempel-Ziv-Storer-Szymanski (LZSS)

compression algorithm combined with Huffman coding. The rest of this report

describes the development of this data compression core. In this chapter, the

challenge of data compression implementation is discussed. The objective and scope

of this work is also presented.

1.1 Problem Statement

Data compression is a cost-effective way to increase the effective

communication bandwidth or the effective storage capacity without significant

increment in cost. It removes redundant information inherent in the source data,

thereby enabling a communication link to transmit the same amount of data in fewer

bits. For storage systems, fewer bits are actually stored thus increasing the effective

storage capacity.

The compression core must be able to handle any kind of source data so that

it can be used in real-world applications. The implementation has to be fast enough

to satisfy high-speed applications. Finally, the design must not be too complicated

such that hardware requirements are too excessive.

Several data compression techniques have been implemented in either

software or hardware. Data compression software, which runs on a personal

3

computer (PC), is generally slow and thus not suitable for high-speed computing

applications. Dedicated, stand-alone compression ICs are also available, (e.g. IBM

ALDC1-40S and STAC Electronics Hi/fn 9600.) These ICs are fixed hardware and

cannot be customized or embedded into a larger system. Therefore, the core design

must be parameterizable and must take into account resource constraints, speed of

operation and compression ratio.

1.2 Objectives

The objectives of the research are:

1. To design an embedded data compression core for high-speed applications.

The design is parameterizable to facilitate reusability for future applications.

2. To develop a PC-based hardware evaluation system that integrates host PC to

the compression core through a PCI-based communication bus. This

evaluation system is used to verify the functionality of the compression core.

1.3 Scope of Work

 The project can be divided into two phases. The first phase is to design a data

compression core, where parameterized VHDL is used as design entry. This core

should have a speed of at least 100 Mbits per second and a comparable compression

ratio with other reported implementations. The second phase is to develop a PC-

based hardware evaluation system. The system consists of a GUI software running

on a host PC and an evaluation platform. This platform employs a commercial PCI

controller to handle the complex PCI bus communication protocol. An integration

module consisting various basic interface blocks is then developed and used to

handle data transfer protocol between the PCI controller and the compression

hardware. The evaluation system is shown in Figure 1.1.

4

Figure 1.1: Evaluation System

The implementation for this project is limited to Altera devices only. This is

because of the usage of Altera LPM modules to instantiate RAM and FIFO. For

implementations other than Altera devices, all the LPM modules should be replaced

with equivalent modules in the particular chosen device.

1.4 Contributions of the Research

 This research work has led to the following outcomes:

1. The development of a parameterizable data compression embedded core with

a competitive performance, compared to other high-performance ASIC or

FPGA data compression hardware. It can process a symbol with a clock

speed of 50 MHz and offer a data-independent throughput of 50 Msymbols

per second. Since the design is parameterizable, it can be easily interfaced

Host PC

PCI Driver

GUI

Program

PCI Plug-In Card

EVALUATION PLATFORM

PCI Controller

Compression

Core

Integration

Module

PCI BUS

5

with any system and enable a user to choose a suitable compromise between

resource constraints, speed and compression ratio.

2. The development of a PC-based hardware evaluation system that allows a

host PC to access the hardware resources in the compression coprocessor via

the PCI communication bus interface. This evaluation system facilitates

verification of the coprocessor design.

3. With a suitable arrangement of compression and decompression units in an

embedded core environment, we can obtain a real-time data compression

system that can work in either half-duplex or full-duplex processing.

1.5 Organization of Report

This report is organized into six chapters. The first chapter introduces the

motivation of this research. Chapter II contains the literature review to support the

rationale behind this work and also to search for the solutions to the research

problem.

Chapter III describes the methodologies for this project where design

verification methods, tools and techniques used in this project are described. Chapter

IV presents the hardware design of the data compression core. Chapter V reports the

results obtained after testing the designed core. The results are analyzed to validate

the compression core design. The performance analysis of the core is also included in

this chapter. Finally, the last chapter summarizes the research findings and suggests

potential future work.

6

1.6 Summary

This chapter provides an overview of the project. The challenge of the data

compression implementation is discussed, and the objectives for the project are

identified.

CHAPTER II

LITERATURE REVIEW

In this chapter we present reviews regarding data compression technique and

its algorithms. The hardware implementation of data compression and

reconfigurability and reusability issues are also discussed.

2.1 Data Compression Background

Data compression is the science and the art of massaging data from a given

source data in such a way as to obtain a simple representation with at most a

tolerable loss of fidelity [Nelson 1996]. Such simplification may be necessitated by

storage constraints, bandwidth limitations, or communications channel capacity.

Depending on the tolerability of loss, data compression technique can be classified as

either lossless or lossy. A lossless technique means that the restored data is identical

to the original. It is necessary for many types of data, such as executable code, where

nobody can afford to misplace even a single bit of information. A lossy technique

means that the restored data approximates the original. This technique might be

suitable for data that represent images or voice, where the changes made to the

original data resemble a small amount of additional noise. Therefore a lossy

technique can produce more saving compared to the lossless techniques.

Data compression techniques are widely used to reduce the data to be stored

or transmitted. In addition, when the amount of data to be transmitted is reduced, the

8

communication channel is effectively increased, resulting in a higher data transfer

rate [Hifn 1999].

 Data compression can also be applied in the field of cryptography [Lim

2001], due to some similarities between data compression and encryption techniques.

2.2 Data Compression Algorithms

Most of the widely used data compression algorithms are based on Lempel-

Ziv (LZ) compression [Lempel and Ziv 1977, 1978]. In LZ compression, the

previous seen symbols in the source data are used to build a dictionary (or encoding

table) adaptively. This dictionary is then used to detect the repeating symbols in the

incoming source data. When the repeating symbols are detected, the symbols are

replaced with a form whose length is as small as possible. This replacement method

is well known as textual substitution. Since the dictionary is adaptively generated

from the source data, a prior knowledge of the source properties is no longer

required. Therefore, LZ compression and its variants are the universal type of data

compression algorithm. Lempel-Ziv-77 (LZ77) algorithm proposed by Abraham

Lempel and Jacob Ziv in 1977 is the first LZ compression algorithm [Lempel and

Ziv 1977]. LZ77 is a lossless compression algorithm.

LZ77 algorithm achieves a very good compression ratio for many types of

data, but it involves a computation-intensive comparison during the matching

process. Furthermore, the LZ77 codeword is not optimal and it contains redundancy.

To overcome this redundancy problem, a more efficient encoding has been provided

in Lempel-Ziv-Storer-Szymanski (LZSS) algorithm [Storer and Szymanski 1982].

Unlike the LZ77, which produces fixed-length codeword, the LZSS produces

variable-length codeword. The LZSS codeword is a position-length pair when the

length is not zero. Otherwise, it outputs the explicit symbols (only the extension

symbol). This modification results in a better compression ratio than that of the LZ77

algorithm.

9

In general, the length in the LZ77/LZSS codeword is not uniform. A smaller

length occurs more frequently, and this suggests that Huffman coding [Huffman

1952] can be used to encode further the codeword to yield additional saving in the

compression. The general strategy in the Huffman coding is to construct a code table

that is optimized for known characteristics of source data. It allows codeword length

to vary from symbol to symbol, where fewer bits are assigned to the frequently

occurring symbols and more bits to the seldom-used symbols. In many practical

applications, Huffman coding is usually applied after an encoding process that

produce non-uniformly distributed codeword. With this strategy, a better

compression savings can be achieved.

2.3 Previous Work on Implementations of Data Compression

Software implementations can be divided into two types. The first type is

software that emphasizes on the compression ratio, sacrificing speed. These include

software like gzip, LZH and LZEXE, in which the compression is achieved based on

the combination of the LZ77/LZSS and Huffman coding algorithm. The second type

is software that emphasizes on the speed rather than on compression ratio. These

include Stac’s Stacker and Microsoft’s DoubleSpace, software compression

programs in which, data read or written to hard disk is compressed based on the

LZ77 algorithm or its variants.

To achieve high performance in both the speed and compression ratio, data

compression need to be implemented on hardware. Several parallel processing

hardware architectures that provide high throughput has been proposed. [Gonzalez-

Smith and Storer 1985, Storer 1992] introduced several systolic-array-based

architectures, differing in the manner the comparison output is transmitted. [Stauffer

and Hirshberg 1993] evaluated the performances of these systolic-array-based

architecture, including: Match Tree, Broadcast/Reduce, and Wrap architecture

[Gonzalez-Smith and Storer 1985, Zito-Wolf 1990, Storer 1992]. These systolic

array hardware architectures would be further elaborated in Section 2.5.

10

In 1995, the LZ77 algorithm with a dictionary size of 512-2048 bytes has

been made into a commercial product by IBM’s ALDC [Craft 1995]. In 1997,

[Benchop 1997] implemented the combination of LZSS and Huffman coding with a

dictionary size of up to 8192 bytes in VLSI circuit using a 0.35 µm process

technology. VLSI implementations are application-specific, hence they need to be

replaced when the target application change. On the other hand, FPGA-based

implementations provide an advantage over these custom VLSI implementations in

that they are reconfigurable, and therefore flexible and reusable. These

reconfigurability and reusability issues are discussed further in the next section.

FPGA-based hardware implementation of compression grows rapidly in the

late 1990s. [Huang 2000] from Stanford University has implemented the LZ77

algorithm on four Xilinx 4036XLA FPGA chips in 2000, with a throughput of 100

Mbits per second. In the same year, System Design Group from Loughborough

University [Nunez and Jones 2000] introduced their FPGA-based hardware

implementation, where they implement their X-MatchPRO algorithm into 0.25 µm

FLASH-CMOS FPGA Actel A500K ProASIC device and offer a throughput of 100

Mbytes per second at 25 MHz clock.

2.4 Reconfigurability and Reusability

Reusability promotes the use of the existing design (product) without

significant modifications of the original design. This helps to speed the production

line design and lower the cost of implementation. Reconfigurability promotes a

possibility to re-architect entire design in the existing component (product).

In reconfigurable hardware, designs are implemented in Field Programmable

Gate Array (FPGA) device. An FPGA is a type of user programmable gate array that

can provide the functionality of custom VLSI circuit. It is ideal for rapid-prototyping,

where the chip-level design can be implemented without having to fabricate the

microchip.

11

2.5 Systolic Architecture for LZ77/LZSS

A systolic array is composed of a collection of linearly connected processing

elements (PEs), where each processing element contains local units for processing

control and storage. Total processing time for a complete task is partitioned into

steps by a global clock so that the entire array operates synchronously.

 Several VLSI implementations of systolic array architecture for the

LZ77/LZSS proposed by [Gonzalez-Smith and Storer 1985, Storer 1992] are

reviewed. For a fixed-sized dictionary of N symbols, the first systolic architecture,

called Match Tree architecture, employs 4N – 1 processors. The first 2N processors

are configured as a systolic array and the remaining 2N – 1 processors are arranged

as a binary tree (the match tree) attached to the systolic array. It is able to process a

new symbol in a given clock cycle (a step) but the drawback is that the data rate

(throughput) is dependant on the size of the dictionary.

 Broadcast/Reduce is the second architecture, which is also built from a

systolic array and binary tree of processors. For a dictionary of size N, it consists of

3N – 2 processors. N processors are arranged in a systolic array and the remaining

processors are configured as two binary trees (called broadcast tree and reduce tree,

and each containing N – 1 processors) synchronized with the systolic array (as shown

in Figure 2.1). It is also able to process a new symbol in every clock cycle, and the

data rate is independent to the size of dictionary.

 The third architecture is called Wrap architecture. It consists of a bi-

directional systolic array, where the trees in the previous two architectures are

removed. For a dictionary of size N, the systolic array consists of N/2 PEs connected

by a two-way communication channel. It allows a new input to be processed on

every cycle, but the PEs and data paths of this architecture are more complicated and

increase the processing time for each cycle.

12

Figure 2.1: Broadcast/Reduce Systolic Architecture

2.6 Discussion and Summary

Data compression techniques are widely used in a variety of applications,

especially in data storage and high-speed communications. It can be classified as

either lossless or lossy.

For many real-world applications, universal data compression is needed

because it provides an optimized compression performance to source data with

unknown characteristics. LZ77 and LZSS are two such universal data compression

techniques. The LZSS algorithm offers a better compression saving than the LZ77.

To achieve high-speed operation, a systolic architecture is proposed in the LZSS

hardware design.

Match

Result

Input

Symbol

Broadcast

Tree

Systolic

Array

Reduce

Tree

13

As the state-of-art digital design is moving to SoC technology, it is desirable

that a design is made reusable and reconfigurable, in order to support rapid

integration of new and existing technologies. Hence, this work uses a platform-based

approach to develop a library of parameterized components supplemented by the

verification support and documentation. For design implementation, an FPGA-based

hardware is chosen.

CHAPTER III

METHODOLOGIES AND TOOLS

This chapter describes the design methodology used in this research project.

Research procedure, design verification methods, and tools used will be discussed.

3.1 Research Procedure

The digital design is carried out by using top-down approach. This involves a

hierarchical and modular design methodology that divides a module into sub-

modules and then repeating this operation on the sub-modules until the complexity of

the sub-modules is at an appropriately comprehensible level of detail [Weste 1993].

The design is completely described in parameterized VHDL code using UTM

VHDLmg [Khalil and Koay 1999]. Leonardo Spectrum is used to synthesize the

VHDL code to produce a netlist, and this netlist is compiled using Altera MAX+plus

II. For implementation in an Altera FPGA device, the MegaWizard Plug-In Manager

from the MAX+plus II is used to infer the predefined component in VHDL code

(such as RAM, FIFO buffer and pci_mt64). A black box is then specified in the

VHDLmg to represent the predefined module.

While the hardware core is being produced, a software implementation of the

algorithm is also developed using Microsoft Visual C++. Testbench for the hardware

core is generated from the developed software, and it is used to verify the

functionality of the hardware core during design verification stage. In application

15

development stage, a real-time data compression platform is developed using the

Microsoft Visual C++. It serves as the test application to test the feasibility of the

hardware core in handling real-time applications, and the performance of the

resulting design is benchmarked.

3.2 Timing Simulation in Design Verification

A testbench for data compression hardware would consists of inputting

source data and output would be compressed data. At the timing simulation, the

testbench has to be translated into a form that is equivalent to the I/O format in the

MAX+plus II simulator, where both of the source data and the compressed data is

translated into a series of byte codes. The translation of the testbench is done using a

GUI program written in the Microsoft Visual C++.

Based on the translated testbench, test vectors for timing simulation are

created using Microsoft Excel, and are then exported to the MAX+plus II simulator.

After simulation, the design is verified by comparing the simulation result to the

translated output testbench.

Because of the difficulty to obtain the most suitable test vector, the timing

simulation is very time-consuming, especially when simulating a large testbench that

involved a lot of handshaking. Therefore, it is more practical to conduct the design

verification by using hardware evaluation system.

3.3 Hardware Evaluation System for Test and Performance Analysis

In hardware evaluation system, the design is programmed into FPGA-based

hardware. By connecting the FPGA to a host PC, the design can be interfaced to

software, which can concurrently generate the required test vectors. Compared to the

timing simulation method, this method reduces the time required in the design

verification. In this work, Peripheral Component Interconnect (PCI) bus is employed

16

to connect the FPGA to the host PC, due to its higher bandwidth in data transfer. The

PCI bus is able to transfer 32-bit data via 33 MHz clock, resulting in a throughput of

1.056 Gbps [PCI 1998].

A PCI controller is required to interface the design to the PCI bus. Altera

pci_mt64 MegaCore [Altera 2001] is the PCI controller that can be used as a master

or target on the PCI bus. The pci_mt64 provides flexible general-purpose PCI

interfaces that can be customized for specific peripheral requirements. To access the

design from the software, a PCI device driver is needed. NuMega DriverAgent

[Compuware 1999] is used to develop the PCI device driver. The DriverAgent is a

program used as an aid to write Windows-based device drivers. It provides a set of

Application Programming Interface (API) functions to directly access and control

hardware via the interface on various bus standards (such as PCI and ISA).

For the performance analysis of the compression core, three types of data sets

are used to evaluate the compression ratio achieved in the design. Table 3.1 lists the

types of the compression benchmark data, together with their sources. Those data

sets are chosen to assess the viability of the selected universal data compression

algorithms in handling different types of data. The first data set is commonly used to

test the text data compression, while the second data set is used to evaluate the

selected algorithms with different probabilities of data. The third data is the standard

image data used to test the feasibility of the design in image applications.

Table 3.1: Compression Benchmark Data Set

No Data Type Source

1 Text
Calgary corpus

(ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/)

2 Binary

UNIX drand48 () pseudorandom number generator

(http://www.dcs.warwick.ac.uk/~nasir/work/fp/datasets/binary-

iid.tar.gz)

3 Image
CCITT Fax Standard Image

(ftp://ftp.funet.fi/pub/graphics/misc/test-images/)

17

3.4 Hardware and Software Tools

To carry out this project, several tools are required. Following is a list of

software and hardware tools that are used in this work.

1. PCI-based Hardware Development Board – A configurable computing

FLEX10KE PCI card from Altera, with EPF10K200SFC672-1 FPGA

onboard to be used for verification and test of the design. The design is

programmed into the FPGA through JTAG chain.

2. PCI Controller Core – A master/target PCI controller core, pci_mt64, from

Altera to be used to interface our design to the PCI bus.

3. VHDLmg – A graphical VHDL design entry tool, developed by UTM, to be

used for hierarchical and modular VHDL code development.

4. Leonardo Spectrum 2001_1a_28_OEM_Altera – A VHDL synthesis tool.

5. Altera MAX+plus II 10.1 – A design entry, compilation, simulation and

implementation software tool.

6. Microsoft Visual C++ Version 6.0 – A window based C++ compiler for

creating the GUI test program.

7. NuMega DriverAgent – A device driver application development tool used to

create the PCI device driver, and to provide a set of API to the GUI test

program for accessing and controlling the hardware under test.

8. Microsoft Excel 2000 – A spreadsheet program to create the test vector for

timing simulation.

18

3.5 Discussion and Summary

The research procedure and design verification method, and the tools used are

presented. Timing simulation and hardware evaluation are the two methods used to

verify the design. Since design verification process using timing simulation is very

time-consuming, especially in handling a large testbench, the hardware evaluation is

mainly used for design verification, and performance analysis as well.

CHAPTER IV

DESIGN OF DATA COMPRESSION HARDWARE

In this chapter, the design of the proposed compression core is presented.

These include the design of the compression and decompression subsystems, with

their specific interfacing modules. The designs are described completely in

parameterized VHDL code, so that they can be easily modified to meet any design

requirements in a specific target application.

4.1 Overview of Compression Hardware System

Figure 4.1 gives a diagram of the proposed compression system. The general

operation of compression subsystem is as follows:

1. when compression is ready to receive data, it collects source data from the

host system

2. when the host system is ready to receive data, the compression subsystem

sends the compressed data to the host system

3. the status is monitored to determine the availability of this compression

system.

The decompression subsystem works similarly to that of compression subsystem.

The functional block diagram of the compression subsystem is shown in

Figure 4.2. Compression_Interface is the controller to interface the compression

core, labeled Compression_Unit, to the host system. The compression core is the

kernel of the design, where the combination of LZSS and Huffman encoding is

20

implemented. Figure 4.3 shows the functional block diagram of the decompression

subsystem. It consists of a decompression core and an interface controller.

Figure 4.1: Compression System

Figure 4.2: Functional Block Diagram of the Compression Subsystem

The design of these modules are presented in the following sections. Section

4.2 explains the design of the Compression_Unit, and Section 4.3 describes the

Compression_Interface. Sections 4.4 to 4.5 describe the design of the decompression

subsystem.

Source Data

Handshaking

Signal

Handshaking

Signal

Compressed

Data

Interface Controller

Compression Core

HOST

SYSTEM

(PC)

Input

Data

Compression

SYSTEM

Output

Data

Status

Compression

Subsystem

Decompression

Subsystem

21

Figure 4.3: Functional Block Diagram of the Decompression Subsystem

4.2 Design of Compression Core (Compression_Unit)

Figure 4.4 shows the block diagram of the Compression_Unit. It consists of

three hierarchical blocks, which are LZSS Coder, Fixed Huffman Coder and Data

Packer. All the modules are synchronously clocked. The LZSS Coder performs the

LZSS encoding of source data, which is obtained from the Compression_Interface,

and the Fixed Huffman Coder re-encodes the LZSS codeword to achieve a better

compression ratio. Finally, the Data Packer packs the unary codes from the Fixed

Huffman Coder into a fixed-length output packet and sends it to the

Compression_Interface.

Figure 4.4: Block Diagram of Compression_Unit

The LZSS Coder is designed to perform the LZSS encoding at high speed.

The algorithm of LZSS encoding is mapped into a systolic architecture to obtain a

LZSS

Coder

Fixed

Huffman

Coder

Data

Packer

Handshaking

Signal

Compressed

Data

Handshaking

Signal

Restored

Data

Interface Controller

Decompression Core

22

data-independent throughput. The Fixed Huffman Coder uses a table-lookup

procedure on a predefined code table to perform the Huffman encoding. Beside the

task of Huffman encoding, the Fixed Huffman Coder also computes the length of its

codeword. This information would be used in the Data Packer to pack all the

variable-length Huffman codeword into a fixed-length output packet. The Data

Packer consists of two registers and a queue. It allows only one fixed-length data to

be sent to the Compression_Interface in every cycle.

4.3 Compression Interface Controller (Compression_Interface)

The architecture of the Compression_Interface is shown in Figure 4.5. The

controllers are the main unit in this module. A controller is grouped together with

two FIFO buffers. Input Controller extracts input to the Compression_Unit, while the

Output Controller collects the output from the Compression_Unit.

Figure 4.5: Block Diagram of Compression_Interface

Interface_Data_In FIFO

Poll_Amount_In FIFO

Input

Controller

Interface_Data_Out FIFO

Poll_Amount_Out FIFO

Output

Controller

Connect to

Host System

Connect to

Compression Core

23

4.4 Design of Decompression Core (Decompression_Unit)

Figure 4.6 shows the block diagram of the Decompression_Unit. It consists of

a Data Unpacker, a Fixed Huffman Decoder, a LZSS codeword FIFO buffer, and a

LZSS Expander. All the modules are synchronously clocked. The Data Unpacker

unpacks the fixed-length compressed input packets from the

Decompression_Interface, and the unpacked data would be decoded in Fixed

Huffman Decoder to restore the LZSS codeword. The FIFO buffer stores the LZSS

codeword and supplies it to the LZSS Expander. Finally, the LZSS Expander restores

the symbols corresponding to the LZSS codeword and sends it to the

Decompression_Interface.

Figure 4.6: Block Diagram of Decompression_Unit

The Data Unpacker consists of a register and a queue. Fixed Huffman

Decoder is designed to perform Huffman decoding using a predefined code table.

During the decoding process, a Huffman codeword would be extracted from the

unpacked data, and the validity of the extracted Huffman codeword is evaluated. If a

valid Huffman codeword is detected, the decoder restores the corresponding LZSS

codeword from the predefined code table. In addition, the decoder also determines

the length of the extracted Huffman codeword. The LZSS Expander is designed to

perform the LZSS decoding procedure. It consists of a codeword analyzer, a

dictionary, a delay tree, and a symbol generator.

Data

Unpacker

Fixed

Huffman

Decoder

LZSS

Expander

LZSS

Codeword

FIFO

24

4.5 Decompression Interface Controller (Decompression_Interface)

Figure 4.7 shows the block diagram of the Decompression_Interface, which

is similar to the Compression_Interface. The design consists of three FIFO buffers

and two controllers. The Input Controller determines whether the decompression

hardware is ready to receive a new series of compressed input packets from the host

system. The Interface_Data_In FIFO stores the compressed input packets and

supplies it to the Decompression_Unit. The Output Controller is grouped together

with the Interface_Data_Out FIFO and the Poll_Amount_Out FIFO, and is used to

collect output from the Decompression_Unit.

Figure 4.7: Block Diagram of Decompression_Interface

4.6 Summary

The hierarchical hardware design of the compression core, the decompression

core, and their specific interfacing modules have been described. The designed cores

are accessible from any host system through proper interfacing procedures.

Interface_Data_In FIFO

Input

Controller

Interface_Data_Out FIFO

Poll_Amount_Out FIFO

Output

Controller

Connect to Host

system

Connect to

Decompression Core

CHAPTER V

DESIGN VERIFICATION AND PERFORMANCE ANALYSIS

This chapter reports the results obtained on testing the data compression

hardware design using the hardware evaluation system. It starts with design

verification, followed by the performance analysis.

5.1 Design Verification

In the following sub-sections, design verification results using timing

simulation and hardware test are presented. Section 5.1.1 describes the timing

simulation results and Section 5.1.2 presents the results obtained from hardware test.

Taking into account factors such as resource limitation on the FPGA device

and the 32-bit communication interface supported by the PCI device driver, the PCI-

based data compression hardware core (labeled as PCI_Chip) is configured

according to the parameters as listed in Table 5.1 for hardware implementation. The

actual hardware is the EPF10K200SFC672-1 FPGA device. This is the device

available on the Altera PCI development board. The device has 9984 logic cells

(LCs) grouped into 1248 logic array blocks (LABs) for complex logic functions, and

98304 memory bits grouped into 24 embedded array blocks (EABs) for memory

functions [Altera 1999].

26

Table 5.1: Parameter Configuration of the

PCI-based Data Compression Hardware Core

PARAMETER VALUE

SymbolWIDTH 16

DicLEVEL 7

MAXWIDTH 5

IniDicValue 0

InterfaceWIDTH 5

PollAmount 64

5.1.1 Results of Timing Simulation

For timing simulation, the design parameters are also set according to the

parameter configuration as listed in Table 5.1. Several simple source data are

encoded by the compression core. These encoded data (the compressed data) are then

decoded using the decompression core. The restored output is found to be identical to

the original source data. This timing simulation results prove that the decompression

core is able to restore the original source data, which are compressed by the

compression core.

Since timing simulation is very time-consuming, only one test vector from

the standard data set, “paper4.txt” (the benchmark data set obtained from Calgary

text compression corpus), is chosen for the timing simulation. This test vector is

successfully applied, proving correct operation of both compression and

decompression cores.

5.1.2 Results of Hardware Test

The complete compression and decompression design is further verified

through a PC-based compression hardware evaluation system. All the compression

27

data sets as listed in Table 5.2 are tested using this hardware evaluation system.

Table 5.2: Standard Data Compression Benchmark Data Sets

No Data Set
Data Size

(Bytes)

Data

Type
Source

1 Paper4.txt 13286

2 Bib.txt 111261

3 E.coli 4638690

Text Data Calgary corpus

4 B7-100k 102400

5 B9-100k 102400

6 B97-100k 102400

Binary

Data

UNIX drand48() pseudorandom

number generator

7 Ccitt1.pbm 513229

8 Ccitt2.pbm 513229

9 Ccitt3.pbm 513229

Image

Data
CCITT Fax Standard Image

The mechanism of design verification process in the hardware evaluation

system is similar to that in the timing simulation. By comparing the results with that

obtained from software compression and decompression, the compression and

decompression operations performed by the hardware are proven to be correct.

5.2 Performance Analysis

This section describes the performance metrics chosen to evaluate the data

compression core, and the corresponding performance data are reported. Section

5.2.1 describes the performance metrics, and Sections 5.2.2 to 5.2.3 report the results

of the performance analysis.

28

5.2.1 Performance Metrics Applied

The performance of the data compression core is analyzed using three main

performance metrics. The first metric is the area evaluation, where the amount of

logic cells (LC) and memory bits in the EPF10K200SFC672-1 device used to

implement the design is determined. It provides a measure of the required hardware

cost when fabricating the design. The second metric is compression saving, which

represents the efficiency of the compression algorithm. This is normally given as

compression ratio, and the formula used is

Compression Ratio (CR) = SCD / SSD (1)

where SCD is the size of compressed data and SSD is the size of source data. When

compressing several source data, the compression saving is measured using the

weighted average compression ratio, and the formula used is

Weighted Average CR = ���� SCD / ���� SSD (2)

The third metric is operation speed. Speed performance measures the time

required to compress source data or to restore a compressed data. It is related to

throughput, defined as

Throughput (TP) = SSD / T (3)

where T is the time to compress data or to restore the source data. The throughput

value is affected by the latency of the pipelined implementation. Tables 5.3 and 5.4

summarize the latency of our design.

Table 5.3: Latency of Compression Core

Function Pipelined Component Latency (clock cycle)

Systolic Array 1

Reduce Tree DicLEVEL LZSS Coding

Codeword Generator 1

Fixed Huffman Coding Fixed Huffman Coder 1

Pack Data Data Packer 1

Total Latency 4 + DicLEVEL

29

Table 5.4: Latency of Decompression Core

Function Pipelined Component Latency (clock cycle)

Unpack Data Data Unpacker 1

Fixed Huffman Decoding Fixed Huffman Decoder 1

Store LZSS Codeword LZSS Codeword FIFO 1

Codeword Analyzer 1

Dictionary 1 LZSS Decoding

Symbol Generator 1

Total Latency 6

Since our design processes a symbol every clock cycle, the formula for

calculating throughput is

TP = f * SymbolWIDTH (4)

where f is clock frequency and SymbolWIDTH is the length of the symbol.

From equations (3) and (4), the formula for calculating the time to compress

or decompress data is

T ≈≈≈≈ NoOfSymbol / f (5)

where NoOfSymbol = (SSD / SymbolWIDTH). Since typically the value of

NoOfSymbol >> total latency, the latency effect on throughput, and thus on time T

can be neglected.

5.2.2 Performance Analysis – Clock Speed and Area

The maximum clock speed can be obtained from the timing analyzer in

MAX+plus II. For the design configured according to the parameters listed in Table

5.1, the area and speed results are summarized in Table 5.5.

30

Table 5.5: Area and Speed Evaluation Results

Evaluation
Compression

Core

Decompression

Core
PCI_Chip

LE 7644 1145 9362

Area Memory

Bit
23040 26112 54528

Frequency 54.34 MHz 53.76 MHz 46.51 MHz
Speed

Throughput 869.44 Mbps 860.16 Mbps 744.16 Mbps

5.2.3 Performance Analysis – Compression Ratio

In order to evaluate the compression ratio and computation time, the

hardware evaluation system is clocked at the PCI clock frequency, which is 33 MHz,

thus resulting in a throughput of 528 Mbps [calculated using equation (4)]. The

compression ratio achieved is shown in Table 5.6. A better compression ratio could

be achieved if the design is implemented in a larger device (because it can

accommodate a larger dictionary size).

The time taken to execute compression and decompression operations are

shown in Tables 5.7 and 5.8. The hardware evaluation system executes the

compression operation faster than that through software running on a 1 GHz PIII

CPU with 1 GB RDRAM. The computation time for the evaluation system is longer

than the actual compression time for the compression core calculated using equation

(5). This is because the whole operation performed by the evaluation system involves

a lot of software overhead. These software overheads include:

1. division of processor time among many tasks by the OS

2. data transfer between host PC and the PCI_Chip.

31

Table 5.6: Compression Ratio

Data Set Compression Ratio
Weighted Average

Compression Ratio

Paper4.txt 0.760

Bib.txt 0.811 Text Data

E.coli 0.416

0.426

B7-100k 0.197

B9-100k 0.122 Binary Data

B97-100k 0.062

0.127

Ccitt1.pbm 0.104

Ccitt2.pbm 0.091 Image Data

Ccitt3.pbm 0.152

0.116

Table 5.7: Computation Time for Compression

Compression Time (ms)

Data Set
No. of

Symbols
Compression

Core (33 MHz)

PC-Based

Evaluation System

(33 MHz)

Software (1

GHz PIII

CPU)

Paper4.txt 6643 0.2 8 16

Bib.txt 55631 1.7 48 141

E.coli 2319345 70.3 2110 6140

B7-100k 51200 1.6 39 156

B9-100k 51200 1.6 39 156

B97-100k 51200 1.6 41 140

Ccitt1.pbm 256615 7.8 224 610

Ccitt2.pbm 256615 7.8 223 656

Ccitt3.pbm 256615 7.8 221 687

Total Computation

Time
100.1 2951 8702

32

Data transfer time for the PCI bus, system memory and hard disk varies

according to the mode of operation, that is whether read or write operation. Since the

size of a compressed data is smaller than the size of a source data, time for data

transfer for compression and decompression is not equal. Table 5.8 shows that the

PC-based evaluation system takes a longer time to execute decompression operation.

Table 5.8: Computation Time for Decompression

Decompression Time (ms)

Data Set
No of

Symbol

Decompression

Core

(33MHz)

PC-Based Evaluation

System

(33MHz)

Software

(1GHz PIII

CPU)

Paper4.txt 6643 0.2 8 16

Bib.txt 55631 1.7 79 47

E.coli 2319345 70.3 3381 2562

B7-100k 51200 1.6 56 31

B9-100k 51200 1.6 53 32

B97-100k 51200 1.6 56 31

Ccitt1.pbm 256615 7.8 279 204

Ccitt2.pbm 256615 7.8 278 188

Ccitt3.pbm 256615 7.8 286 188

Total Computation

Time
100.1 4476 3299

5.2.4 Performance Analysis – Comparison with Other Implementations

The performance of our compression core, compared to other data

compression implementations is presented in this section. The comparisons are made

in terms of speed and compression ratio. The area comparison is not done due to

different process technology in implementing each design.

33

Table 5.9 compares the designed hardware against several popular high-

performance ASIC or FPGA lossless data compression hardware. It is found that our

data compression core offers a competitive performance to currently available ASIC

or FPGA data compression hardware. In addition, it is parameterizable to

accomodate reusability for future applications.

Table 5.9: Comparison of Data Compression Hardware Using Text Data

DEVELOPER

Technische

Universiteit

Eindhoven

[Benchop

1997]

System Design

Group

Loughborough

University

[Nunez 2000]

Universiti Teknologi

Malaysia

PROCESS

TECHNOLOGY

0.35 micron

gate array

0.25 micron

FLASH-CMOS

FPGA Actel

A500K ProASIC

EPF10K200SFC672-

1

ALGORITHM LZH X-MatchPRO LZSS + Huffman

THROUGHPUT 100 Mbps 800 Mbps 869.44 Mbps

PARAMETERIZABLE No No Yes

COMPRESSION

RATIO
0.358 0.58 0.426

5.3 Summary

The results of design verification and performance analysis are reported in

this chapter. With the results obtained from timing simulation and hardware

evaluation, the functionality of our design is proved. We also report the performance

metrics of our design, and compare the results with other data compression

implementations.

CHAPTER VI

CONCLUSIONS

This chapter summarizes the research findings, followed by suggestions for

potential future work.

6.1 Concluding Remarks

This project describes the design of a data compression embedded core based

on the combination of LZSS data compression algorithm and fixed Huffman coding.

By using the industry standard language VHDL, the hardware design is

parameterizable so that it can meet any requirement in a specific application. The

data compression core achieves a throughput of at least 100 Mbps and a high

compression ratio.

The embedded core offers a data-independent throughput that can process a

symbol on every clock cycle. Through its implementation in an Altera FLEX10KE

device, the design offers a performance of up to 869.44 Mbps throughput with an

operating frequency of 54.34 MHz, making it suitable for high-speed and real-time

computing applications. Table 6.1 summarizes the general specifications of the data

compression embedded core. The data compression embedded core can also be used

as a reusable IP core that promotes reusability for future applications. It can integrate

with other IP cores (such as a cryptography core) to achieve a more complex

application (such as network security system).

35

Table 6.1: Specifications of the Data Compression Embedded Core

Function A real-time data compression and decompression engine

Algorithm
Combination of Lempel-Ziv-Storer-Szymanski (LZSS) and

Huffman Coding

Architecture Systolic Array, Parallel, Pipelined

Feature
Parameterizable - Compromise between speed, compression ratio

and resource

Other

Features

Data-independent throughput

Suitable for real-time and high-speed applications

Performance
For the parameter configuration as listed in Table 5.1, a throughput

of 869.44 Mbps and a compression ratio of 0.426 is achieved

A PC-based hardware evaluation system for the data compression core was

also developed. This system integrates a host PC with the embedded core through

PCI communication bus. It has a user-friendly GUI program to facilitate the

verification of the data compression hardware core. The GUI program can be used to

evaluate the efficiency of a chosen configuration. It helps to evaluate the effect of

design parameters on the compression ratio. A customized version of the data

compression core can be generated using this GUI program.

6.2 Future Work

Further enhancements can be done based on the work in this project.

Adaptive Huffman coding can be implemented instead of the fixed Huffman

coder in the design. The adaptive Huffman coding proposed by [Vitter 1987] can

achieve a better compression saving than that of the fixed Huffman coding. A prior

knowledge of source data characteristics is not necessary in the adaptive Huffman

coding. It can estimate the source data characteristics during compression process,

36

and then modifies the code table that it currently uses to generate an adaptive

codeword that remains optimal for the current estimates.

The Wrap architecture proposed by [Gonzalez-Smith 1982, Storer 1992] is

worth studying. The resource utilization in this architecture is reduced. However, the

datapaths for this architecture are more complicated, resulting in a lower throughput.

The interface block in hardware evaluation platform can be enhanced to

suit hardware under test that has different types of I/O. This allows the PC-based

hardware evaluation system to test many other cores, not just the compression core.

REFERENCES

Altera Corporation (1999). Altera Device Data Book. Altera Corporation.

Altera Corporation (2001). PCI MegaCore Function – User Guide. Altera

Corporation.

Benchop, L.C. (1997). “Lossless Data Compression in VLSI”. Technische

Universiteit Eindhoven: PhD’s Thesis.

Compuware Corporation (1999). “NuMega DriverAgent Help”. Compuware

Corporation.

Craft, D.J. (1995). “ALDC and a Pre-Processor Extension, BLDC, Provide Ultra Fast

Compression for General-Purpose and Bit-Mapped Image Data”. Data Compression

Conference in California. 440.

Gonzalez-Smith, M.E. and Storer, J.A. (1985). “Parallel Algorithms for Data

Compression”. Journal of the ACM. 32.

Hifn (1999). “9600 Data Compression Processor”. Hi/fn Inc.

Huang, W.J. (2000). “A Reliable LZ Data Compressor on Reconfigurable

Coprocessors”. IEEE Trans. Field-Programmable Custom Computing Machines.

249-258.

Huffman, D.A. (1952). “A Method for the Construction of Minimum Redundancy

Codes”. Proceedings IRE. Vol 40. 1098-1102.

Khalil, M. and Koay, K.H. (1999). “VHDL Module Generator: A Rapid-prototyping

Design Entry Tool for Digital ASICs”. Jurnal Teknologi 31. 45-61.

38

Lempel, A. and Ziv, J. (1977). “A Universal Algorithm for Sequential Data

Compression”. IEEE Trans. Information Theory. Vol IT-23. 337-343.

Lempel, A. and Ziv, J. (1978). “Compression of Individual Sequence via Variable-

Rate Coding”. IEEE Trans. Information Theory. Vol IT-24. 530-536.

Lim, H. (2001). “Compression as the Best Way to Encrypt Data”. HMaxF Ultimate

Recursive Lossless Compression Research.

Nelson, M. (1996). The Data Compression Book. Hungry Minds. 11-23.

Nunez, J.L. and Jones, S. (2000). “X-MatchPRO 100 Mbyte/second FPGA-Based

Lossless Data Compressor”. Proceedings of Design, Automation and Test in Europe.

139-142.

PCI Special Interest Group. (1998) “PCI Local Bus Specification Revision 2.2”.

Stauffer, L.M. and Hirschberg, D.S. (1993). “Parallel Text Compression”. University

of California.

Storer, J.A. and Szymanski, T.G. (1982). “Data Compression in Textual

Substitutaion”. Journal of ACM 29. Vol 4. 928-951.

Storer, J. A. (1992). Image and Text Compression. Kluwer Academic Publishers.

Weste, N.H.E. (1993). Principles of CMOS VLSI Design. Addison-Wesley. 385-423.

Vitter, J.S. (1987). “Design and Analysis of Dynamic Huffman Codes”. Journal of

the ACM 34. Vol 4. 385-423.

Zito-Wolf, R.J. (1990). “A Broadcast/Reduce Architecture for High-Speed Data

Compression”. Proc. Second IEEE Symp. on Parallel and Distributed Processing.

174-181.

