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ABSTRACT 

 

 

 

The internet is a very fast evolving new technology, allowing people to 

electronically connect places that are thousands of miles apart. The internet serves 

mainly for information exchange. However since the launch of the first robots on the 

Internet in 1994, an enormous effort has been undertaken by hundreds of researchers 

to push this technology. Quite a number of designs and applications of the internet-

based telerobotic system have been implemented and launched on the internet. Some 

of the telerobotic systems are designed for blocks manipulation, paint painting and 

gardening. There has been much effort taken by UTM to be one of the main players 

in this area for the last few years. A lot of improvement has been achieved in the 

internet-based telerobotics since the first project launched in 1994. Thus, the project 

is carried out to achieve the objectives as: to study the latest finding in the internet-

based telerobotics especially the problems faced as well as the solutions; to study the 

existing project especially the problems faced; to identify the appropriate technology 

to improve the existing project; to design a new telerobotic system; and, to 

implement the new telerobotic system. Based on the findings, the task-oriented 

telerobotic system has been developed. In the system developed, the user need only 

to specify the task to be done by the robot and then the system will plan the path of 

the robot movement to complete the task. The system is found to be more user 

friendly, reliable, the safety of the working objects and the robot are well protected.  
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ABSTRAK 

 

 

 

 Internet ialah teknologi baru yang berkembang dengan cepat. Internet 

membolehkan manusia berhubung secara elektronikal dengan tempat yang terletak 

beribu-ribu meter jauh. Fungsi utama Internet adalah untuk pertukaran informasi. 

Namun sejak perlancaran robot pertama di Internet pada tahun 1994, pelbagai usaha 

telah diambil oleh ahli-ahli penyelidik untuk memajukan teknologi ini. Dengan itu, 

pelbagai rekaan dan applikasi sistem telerobot yang berasaskan Internet telah 

dimajukan dan dilancarkan di Internet. Sebahagian daripada sistem telerobot direka 

untuk blok manipulasi, mencat dan berkebun. UTM telah berusaha giat sejak 

beberapa tahun lalu untuk menjadi salah satu daripada pelopor terkemuka dalam 

bidang ini. Semenjak perlanjaran projek pertama pada tahun 1994, pelbagai 

kamajuan telah dicapai dalam bidang telerobot yang berasaskan Internet. 

Memandangkan ini, projek ini telah dilaksanakan untuk mencapai objektif-objektif 

seperti berikut: untuk mengkaji penemuan terbaru terutamanya masalah-masalah dan 

penyelesaiannya yang dihadapi dalam bidang telerobot yang berasaskan Internet; 

untuk mengkaji masalah yang dihadapi dalam projek sedia ada; untuk mengenal pasti 

teknologi bersesuaian bagi memperbaiki projek sedia ada; untuk mereka senibina 

sistem telerobot baru; dan, untuk memajukan rekaan senibina sistem telerobot baru. 

Berdasarkan maklumat yang ditemui, sistem telerobot yang berdasarkan tugas telah 

dibangunkan. Dalam sistem yang dibangunkan, pengguna hanya perlu memberitahu 

sistem tugas yang perlu dilaksanakan oleh robot dan seterusnya sistem akan 

merancangkan laluan untuk pergerakan robot bagi menyelesaikan tugas berkenaan. 

Sistem tersebut didapati lebih ramah pengguna, boleh diharap, keselamatan objek 

kerja dan robot adalah terjamin.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

The internet is a very fast evolving new technology, allowing people to 

electronically connect places that are thousands of miles apart. However, up to now, 

electronic networks serve mainly to exchange and acquire information. The first 

robot has appeared on the internet in 1994. The project, named Mercury project 

(Goldberg, K., et al., 2000), was the first system that allowed WWW users to 

remotely view and alter the real world via telerobotics. Four weeks after that, the 

second robot, ASEA IR-6 was connected to the internet at the University of Western 

Australia (Taylor, K. and Dalton, B., 1997). The later robot is still running on the 

web since the launch. Since the launch of the robots on the internet, an enormous 

effort has been undertaken by hundreds of researchers to push this technology. 

 

Telerobot is a robot that accepts instruction from a distance, generally from a 

trained human operator (Fauzi Zakaria, 2000). The technology can be applied in 

many areas. Nevertheless the current projects are largely experimental and none have 

been used to provide commercial services. Areas where this technology is thought 

likely to be useful are (Taylor, K. and Dalton, B., 1997):- 

 

i) Entertainment. It is apparent from the reaction of people to Australia's 

Telerobot, and other internet devices that many people consider 

operating them entertaining. A private company, LunaCorp Inc in 
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conjunction with Carnegie Mellon University plan to launch the first 

private lunar mission. The project involves landing a pair of 

teleoperated robotic vehicles on the Moon's surface 

(http://www.ri.cmu.edu/lri/). Intended customers for the mission 

include a theme park, television network, commercial sponsors, and 

scientists.  

 

ii) Telemanufacturing. There is a large group at University of California 

Berkeley with a grant of US$1.3 million developing an Internet 

accessible, machining service called CyberCut. 

(http://CyberCut.berkeley.edu/). 

 

iii)  Training. Providing access to robots and other expensive equipment 

for training purposes where purchasing cannot be justified.  

 

iv) Mining. Teleoperation of underground mining equipment is being 

practised at some mines and this technique could be used to operate 

the equipment from any location.  

 

v) Underwater Remotely Operated Vehicles (ROVs). ROVs are subject 

to time delays, limited bandwidth, and unstructured environments 

providing an ideal application for supervisory control. These 

constraints are in many ways similar to those experienced in internet 

telerobotics.  

 

 

 

1.2 Project Background and Motivation  

 

The prototype for the internet-based fixed arm type telerobotic system had 

been developed by Fauzi Zakaria (2000). The details of the system are discussed in 

chapter 2. Some of the problems faced in the project are as below:- 
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i) Users are limited to the button-based interface to operate the robot. 

The disadvantage of the design is that fine movement cannot be 

well supported; 

 

ii) No operation guidance for operators in both actual site and operator 

interface. Some type of guidance such as grid on the working area 

as well as in the virtual environment should be provided; 

 

iii)  The image captured and presented to the operators should be 

processed and optimized. This can be done through filtering out the 

unnecessary image as well as compressing the image before sending 

it to the operator to reduce the size; and, 

 

iv) No application defined. The system should support at least one 

application to make it practical. A good choice of application can 

make the project interesting and attractive to the internet users. 

 

Since this is UTM’s first internet-based fixed arm type telerobotic system, a 

lot of effort is still needed to improve the system to catch up with the latest 

technology in internet-based telerobotics. A lot of improvement has been achieved in 

the internet-based telerobotics since the first launch in 1994. Some of the projects 

provide the virtual environment operation as well as more complicated application.  

 

 

 

1.3 Objectives and Scope of Project 

 

The objectives of the project can be summarized as:- 

 

i) To study the latest finding in the internet-based telerobotics especially 

the problems faced as well as the solutions; 

ii) To study the existing project especially the problems faced; 

iii)  To identify the appropriate technology to improve the existing project; 

iv) To design a new telerobotic system; and, 
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v) To implement the new telerobotic system. 

 

Based on the result of the literature review, the scope of the project has been 

set to cover mainly on the 3 areas:- 

 

i) To design a task-oriented telerobotic system based on the existing 

Rhino robot; 

ii) To support visual servoing in the new telerobotic system; and, 

iii)  To support type-written natural language command from the user to 

control the new telerobotic system. 

 

 

 

1.4 Methodology of Research 

 

The methodology in this project can be divided into three stages, which are 

the theoretical work, implementation and experimental testing of the prototype of 

telerobotic system.  The research methodology is shown in the Figure 1.1. First of 

all, literature reviews are carried out as well as assessing the current project setup. 

From the literature review, the problems faced by the other researchers and the 

solutions are identified. A proper design and plan had been drawn out based on the 

existing project setup.  

 

The new telerobotic system is built based on the existing Rhino robot. The 

UTM telerobotic server program and UTM telerobotic client program are built. The 

user can choose to control the telerobot through natural language command or 

through manipulating the virtual objects in the virtual environment. The UTM 

telerobotic client program with TCP/IP messaging facilities is built to facilitate the 

debugging process of the system when an error occurred. The new telerobotic system 

is implemented on the local area network (LAN). The new telerobotic system is then 

tested. The process from implementation until testing of the UTM telerobotic system 

is simplified in the Figure 1.1. Any error discovered is corrected. The new telerobotic 

system is improved from time to time. The process of correction and improvement is 

carried out again and again until the final system is produced. 
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Experimental testing

Prototype

Implementation

Theoretical work

 
Figure 1.1: Research methodology 

 

 

 

1.5 Layout of Report 

 

The Chapter 2 reviews some of the works in telerobotics conducted by other 

institutes. The Chapter 3 describes the problems faced in the internet-based 

telerobotics as well as the possible solutions. In the Chapter 4, some of the terms 

used are discussed in details and the UTM telerobotic system architecture designed is 

briefly explained. The details of the system design on the vision sub-system, natural 

language processing, high level command to low level command translation, 

accuracy and reliability consideration are discussed respectively in Chapter 5, 6 and 

7. The result and performance analysis are provided in the Chapter 8.  Finally the 

contribution and the conclusion are given in Chapter 9. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEWS 

 

 

 

2.1 Introduction 

 

In this chapter, some of the successful internet-based telerobotic projects 

developed by the other research groups are reviewed. Since the project to be 

developed involves fixed arm type robot system, almost all of the projects reviewed 

are of this type of system except in Section 2.7, which focuses on the use of natural 

language to communicate with the robot. More studies have been put on the first 

three projects because of the similarity with the UTM telerobotic system developed. 

 

There is a comparison table given as a summary for every fixed arm type 

robot system mentioned. There are six items of information given in each of the 

table, namely institute, application, type of robot, robot/task-oriented, feedback, user 

guidance and web site. Institute and web site items provide the basic information 

where the readers can find further details about the project. Application item 

summarizes the purpose that the system was designed for. Robot/task-oriented item 

looks at the approaches used to command the robot. The robot-oriented and task-

oriented concepts are discussed in detail in the Section 4.1.6. Basically, robot-

oriented approach is the method where the user operates the robot based on the 

movement of the robot. Meanwhile task-oriented approach is the method where the 

users command the robot by specifying the task to be done by the robot and then the 

system will plan the movement for it. User guide mentioned here is not referring to 

the tutorial or help facilities provided to the users. The user guide refers to the 
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guidance, such as coordinate system, provided to assist the users to complete the 

task. Finally, feedback item refers to the type of the information provided by the 

telerobotic system to the users. 

 

 

 

2.2 Australia's Telerobot on the Web (Taylor, K. and Dalton, B., 2000) 

 

This is the longest running web robot on the internet. Perhaps there are as 

many as 500,000 people have controlled the robots since 1994. The researchers, 

Taylor, K. and Dalton, B. (2000), won 1996 JARA award for their paper entitled, 

"Australia's Telerobot on The Web". The users can manipulate wooden blocks on a 

table in front of the robot through the website.  

 

Currently, the system supports both text base command and usher interface. 

The usher interface (Friz, H., 1998) as shown in the Figure 2.4, is an augmented 

reality user interface that allows the users to manipulate the telerobot with the touch 

of the mouse. According to the paper, a clickable 2D wireframe (shown in Figure 

2.5) and clickable images were found in earlier interface. A clickable 2D wireframe 

of the workspace was used for only 4% of movement requests and 39% of the 

operators made use of an option to switch off the image of 2D wireframe. Similarly 

the clickable images are not widely used, and furthermore a more recent innovation 

of multiple moves is only used for 2.6% of robot movement requests (Taylor, K. and 

Dalton, B., 1997).  
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Table 2.1: Comparison table for the system of Australia's telerobot on the web 

 

Institute University of Western Australia, Australia.     

Application Manipulate wooden blocks on a table in front of the robot. 

Type of Robot ASEA, industrial 6-axis robot.     

Robot/Task-  Robot-oriented      

oriented   i) Text base command;     

    ii) Usher;       

    iii) Clickable images (earlier interface only); and,   

    iv) 2D wireframe (earlier interface only).       

Feedback i) Real image; and,        

    ii) Robot status.      

User guidance i) Grid on the table;      

    ii) Known size of wooden blocks; and,    

    iii) Usher.       

Web site   telerobot.mech.uwa.edu.au/      

 

 

 
 

Figure 2.1: The telerobot system for Australia's telerobot on the web 
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Figure 2.2: The actual site for Australia's telerobot on the web 

 

 

 

 

Figure 2.3: Operator interface for Australia's telerobot on the web 
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Figure 2.4: Usher - to specify a new position of the gripper, drag these lines to 

specify x, y, z, spin, and tilt of the new position. Select "move" from the pop-up 

menu to let the robot move to the new position 

  

 

 
 

Figure 2.5: Two dimensional wireframe views of the robot included in an earlier 

interface, circles indicate rotational joints. These images were clickable. 
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2.3 Carnegie Science Center (CSC) Telerobot 

 

There is not much information can be found on the official web site of the 

CSC telerobot project. As similar to the Australia's Telerobot project, there are grids 

provided on the table to guide the operators. There are two real images presented to 

the users. The user can operate the robot by entering coordinates to go, degrees to 

lean and spin. Another way to operate the robot is by clicking on the images of the 

working area presented to the user. The user must click a location on both of the 

images which represent x-coordinate and y-coordinate of the point where the gripper 

will be moved to.  

 

 

Table 2.2: Comparison table for CSC Telerobot system 

 

Institute   Carnegie Science Center, Pittsburgh.     

Application Manipulate wooden blocks on a table in front of the robot. 

Type of Robot 6-DOF robot.         

Robot/Task-  Robot-oriented      

oriented   i) Text base command; and,     

    ii) Clickable images.       

Feedback i) Real images.         

User guidance i) Grid on the table.      

Web site   www.carnegiesciencecenter.org/kids/telerobot.asp   
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Figure 2.6: Coordinate system for CSC Telerobot 

 

 

 

 

Figure 2.7: Part of the operator interface for CSC Telerobot 

 

 

 

2.4 Robotoy 

 

This is another internet-based telerobotic project from Australia. The robot 

used in this project is very similar to the robot currently being used in UTM project. 

Robotoy is a Mitsubishi Micro-Robot. It is a RM-101 model and is intended for 

educational use only. Therefore it has neither the precision nor the robustness which 
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can be provided by an industrial robot. The Figure 2.8 shows how the robotoy system 

is put together.  

 

 

Table 2.3: Comparison table for robotoy system 

 

Institute   University of Wollongong, Australia.     

Application Manipulate wooden blocks on a table in front of the robot. 

Type of Robot Mitsubishi Micro-Robot, educational 6-axis robot.   

Robot/Task-  Robot-oriented      

oriented   i) Text base command.     

Feedback i) Real image.         

User guidance Not available.       

Web site   robotoy.elec.uow.edu.au/       

 

 

 

 

Figure 2.8: Robotoy system 
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Figure 2.9: Part of operator interface for robotoy project 

 

 

 

2.5 Tele-Garden 

 

The Tele-garden project is designed to have different application from the 

projects discussed earlier. The users are allowed for watering, planting and viewing 

the garden. The users are presented with a simple interface that displays the garden 

from the top view, the garden from a global composite view, navigation and 

information view in the form of a robot schematic. Grids are provided on both of the 

images to guide the users. By clicking on any of the images, the user can command 

the robot to move to a new absolute location (left image of the Figure 2.11) or one 

relative to where they just were (right image of the Figure 2.11). The robot, upon 

completion of the move, will return a refreshed image of the garden.  

 

To water the garden users must first align the camera image over the section 

of the garden to water and then press the water button. This will command the robot 

to release a small squirt of water over the area in view. To plant a seed the user is 

first requested to find a spot that is relatively empty (there are no restrictions to 

where one can plant) and then asked to press the plant button. This will cause the 
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robot to poke a small hole in the ground, proceed to the seed bowl, suck up a seed 

and deposit it back into the previously dug hole. Nevertheless, the button plant, 

between water and options buttons, is not available at the time of preparing the 

writing (shown in the Figure 2.11). 

 

 

Table 2.4: Comparison table for tele-garden system 

 

Institute   University of Southern California, United States.   

Application Watering, planting and viewing the garden.    

Type of Robot 6 DOF robot.         

Robot/Task-  Task-oriented     

oriented   i) Text/button base; and,     

    ii) Clickable images.       

Feedback i) Real image; and,           

    ii) Virtual environment.       

User guidance i) Grid on the images.     

Web site   telegarden.aec.at/index.html       

 

 

 
 

Figure 2.10: The actual site for tele-garden project 
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Figure 2.11: Part of the operator interface for tele-garden project 

 

 

 

2.6 Painting on the World Wide Web: The PumaPaint Project (Stein, M. R., 

2000) 

 

This is a web robot that allows the users to create an original artwork on a 

World Wide Web. The site allows control of a PUMA 760 robot which is equipped 

with four paintbrushes together with respective jars of red, green, blue and yellow 

paint. A white paper is attached to a vertical easel.  

 

The interface provides two types of feedback: one immediate and virtual 

image while the other time-delayed and real image. The center portion of the 

interface as shown in the Figure 2.13 is a virtual canvas and the main area of 

interaction. By clicking, holding and dragging the mouse in this area the user can 

issues commands to the remote robot to apply paint to the real canvas. In order to 

increase the fidelity of the virtual canvas, the virtual canvas is coloured as a blob, 

rather than a shape with sharply defined edges. The blobs contain randomly 

generated gaps and streaks, and the proportion of area turned to the selected colour 

progressively decreases as the brush stroke continues. 
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Table 2.5: Comparison table for PumaPaint project 

 

Institute   Wilkes University, United States.     

Application Painting on white paper attached to a vertical easel.   

Type of Robot PUMA 760, industrial 6-axis robot.     

Robot/Task-  Task-oriented      

oriented   i) Virtual canvas.       

Feedback i) Real image; and,           

    ii) Virtual canvas.         

User guidance Not available (not important for this type of application). 

Web site   yugo.mme.wilkes.edu/~villanov/     

 

 

 
 

Figure 2.12: The actual site for PumaPaint project 
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Figure 2.13: GUI with added features to increase the fidelity of the virtual 

canvas 

 

 

 

 

Figure 2.14: Painted text and images 
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2.7 Natural Communication with Robot (Torrance, M. C., 1994) 

 

 This is not an internet-based telerobotic project. The project is highlighted for 

its effort to apply the natural language for communication with robot. The researcher, 

Torrance [9], had highlighted the other natural communication approaches as well as 

their pros and cons. Some of the natural language statements and commands 

supported are given as below:- 

 

 “You are {at|in|on|} place” 

 “You are facing direction” 

 “Place is [to the] direction of {here|you}” 

 “Go” 

 “Stop” 

 “Go as far as you can” 

 “Go until you can turn {right|left}” 

 “Go to place” 

 “What is [to the] direction of {here|you}” 

 

 The use of the natural language in this project makes the communication 

between the user and the robotic system become more convenient. The Figure 2.16 is 

showing the example of the dialogue between the user and the robotic system. This 

feature is interesting for our implementation in the UTM’s new telerobotic system. 

The UTM’s new telerobotic system is able to interpret the type-written natural 

language from the user. 
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Figure 2.15: Overview of the system 
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Figure 2.16: Example of dialogue  

 

 

 

2.8 Prototype of UTM Web-based Telerobotic System (Fauzi Zakaria, 

Shamsudin H. M. Amin and Rosbi Mamat, 2000b) 

 

This is the prototype for the Internet-based telerobotic system developed 

initially at UTM. Figure 2.17 shows the system architecture. The robot used, Rhino 

(shown in Figure 2.18), is intended for educational purpose and thus the project is 

facing accuracy and robustness problems of the robot. User can operate the robot 

through the button, which is not intended for accuracy movement. There is a real 

image feedback presented to the operator.   
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Table 2.6: Comparison table for the prototype of UTM web-based telerobotic 

system 

 

Institute   Universiti Teknologi Malaysia, Malaysia.     

Application Not available.      

Type of Robot Rhino, educational 5 DOF robot.     

Robot/Task-  Robot-oriented      

oriented  i) Button base.       

Feedback   i) Real image.         

User guidance Not available.       

Web site   Not available.           

 

 

 
 

Figure 2.17: System architecture  for the prototype of UTM web-based 

telerobotic system 

 

 

 
 

Figure 2.18: Rhino robot and the actual site 
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Figure 2.19: UTM Telerobot web-based interface 

 

 

 

2.9 Summary 

 

A lot of information is gained from the review of the successful internet-

based telerobotic projects developed by the other research groups. This is very 

helpful for our implementation of the telerobotic system since the problem faced by 

the other research groups can be avoided in our implementation. The good features 

of the other project such as the use of natural language can be implemented in our 

new telerobotic system. The importance factors in the Internet based telerobotics are 

identified and discussed in the Chapter 3. 

 



 24

 

 

 
 

CHAPTER 3 

 

 

 

IMPORTANT FACTORS IN DEVELOPMENT OF INTERNET-BASED 

TELEROBOTICS 

 

 

 

3.1 Introduction 

 

A success internet-based telerobotic project is not only attracting many users 

but also get more attention from the users to stay longer for learning and operating 

the robot. The project must be able to be accessed by the users 24 hours a day and 

365 days a year. On the other hand, a good telerobotic system requires less 

maintenance. There are some important factors which will determine the success of 

the project. These factors must be considered when designing and developing the 

telerobotic project. 

 

 

 

3.2 Easy to Operate 

 

Basically there are two ways where the internet-based telerobot can be 

operated. The first method is called robot-oriented approach, where the user can 

remotely operate the telerobot based on the movement of the robot step by step to 

perform the work. In this approach, the operation of the system can be controlled by 

the users through button/text-based interface, model-based interface (2D, 3D or 

integrated with real image) or master-slave system. However, master-slave system is 

not suitable for internet-based application since it requires a master robot to exist at 
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the local site. From the user interfaces mentioned, the user is able to specify and plan 

the movement of the robot directly. 

 

In button/text-based interface, the operator can use the button or text to 

specify the values for the movement of the motors at the robot. The Robotoy is an 

example of the project that uses this type of the interface. Some of the project such as 

the CSC telerobot extends the button/text-based interface to support the use of the 

virtual coordinate system as an alternative for the user to specify the coordinate of 

the end effector. Even so, in the CSC telerobot’s user interface most of the robot 

movement still requires the user to specify and plan step by step. 

 

Model-based telerobotics sometimes is also referred to as teleprogramming. 

Under this framework, a user interacts with a model of remote site rather than with 

the remote site directly. The clickable 2 dimensional (2D) wireframe of the robot 

supported in the earlier interface of the Australia's Telerobot is an example of the 

model-based interface. A more advanced interface is by using the real robot image 

with the virtual lines as the guidance instead of using the virtual robot to operate the 

telerobot. Usher (Friz, H., 1998) is one of the examples that allow users to operate 

the robot through real image interface.  

 

In the robot-oriented approach, the telerobotic system can be simplified by 

filtering out the extraneous complications of the system. For example, Taylor, K. and 

Dalton, B. (1997), noted that for all useful block manipulations only two orientation 

specifications were required, termed spin, and tilt, rather than roll, pitch and yaw. By 

limiting the movement, the system has become much easier to be understood and 

operated without losing any useful functionality. 

 

The second method is called task-oriented approach, where the users need 

only to specify the task to be done by the robot and then the telerobotic system will 

plan the path of the movement to complete the task. In this method, the movement of 

the robot is not controlled directly by the user. The user has no control on how the 

telerobotic system plans the movement of the robot to complete the task required by 

the user. The interfaces for task-oriented system can be text-based interface which 

accepts task-oriented command or model-based (2D, 3D or integrated with real 
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image). The internet-based mobile robot developed by Roland, S., et al. (1998) is one 

of the examples that accept task-oriented natural language command. There is 

another task-oriented system that is non internet-based which was developed by 

Torrance, M. C. (1994). The PumaPaint project (Stein, M. R., 2000) used 2D model-

based interface to implement the task-oriented concept. The user can design the task 

through the virtual working area. 

 

 

 

3.3 Reliability 

 

Reliability is the most difficult criterion for internet-based telerobotics to be 

made available for 24 hours a day and 365 days a year while requiring minimal 

maintenance. The system must be able to recover from software and hardware errors. 

Several internet-based telerobotic projects have been abandoned because of these 

problems. Some of the suggestions from Taylor, K. and Dalton, B. (1997) to 

overcome the problems are as below: 

 

i) Move to more stable and reliable operating system; 

ii) Move to more stable and reliable web-server computer; 

iii)  To use hardware and software watchdog; and, 

iv) The workspace is restricted to avoid physical limits such as joint 

limits. 

 

 

 

3.4 Response Time  

 

Response time (Taylor, K. and Dalton, B., 1997) is defined as: 

 

tc
Vl

DrDs
tptr +++= )(
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Where tp is request processing time, tc is time taken to initialize communication, Ds 

and Dr are total data submitted and returned respectively, and Vl is the transmission 

speed of the link. Since tp and tc contribute less to the value of tr, the main focus is 

put on Ds, Dr and Vl.  

 

 The transmission speed, Vl, is relying most on the medium of transmission. 

The Integrated Services Digital Network (ISDN) connection provides higher 

transmission speed than the standard copper Public Switched Telephone Network 

(PSTN) connection. Meanwhile the fiber optic connection provides higher 

transmission speed than the Integrated Services Digital Network (ISDN) connection. 

It is important for the designer to choose the right medium of transmission to be used 

in the project based on the available resources.  

 

 Another way to minimize the response time is to have minimum transmission 

of data between the server and client. One way of doing this is by minimizing the 

image size presented to the operator. Further reduction in the data size can be 

achieved by filtering out unnecessary data. For example, two of the cameras can be 

calibrated with respect to the robot. This allows automatic cropping of the image to 

the region of interest centered about the tool center point. The image presented to the 

operators must be first compressed to the JPEG file format and send only after the 

completion of the command.  

 

Model-based telerobotics has recently been proposed as a means of 

overcoming this problem (Lloyd, J.E., Beis, J.S., Pai, D.K. and Lowe, D.G., 1997). 

Under this framework, a user interacts with a model of remote site rather than with 

the remote site directly. This allows the client to pre-process the data before sending 

it to the server. If the data is invalid, the data is verified again with the user until no 

error. Thus the transmission of data can be reduced. Besides overcoming the time 

delay, model-based telerobotic system permits other advantages, such as user control 

of the view point, the ability to test and preview the actions and the introduction of 

artificial graphical aids for task specification.  

 

Almost all of the projects mentioned in Chapter 2 are using JAVA as the 

programming language. Due to the nature of the CGI mechanism a whole HTML 
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page is returned with each request, even if a portion of which does not change 

between requests. The newer internet technologies of JAVA and frames allows pages 

to be split up, so that only updated information is refreshed, reducing data 

transmission further (Taylor, K. and Dalton, B., 1997). 

 

 

 

3.5 Human Factors 

 

Most of the internet based telerobotic systems are applying the supervisory 

control scheme. In supervisory control scheme, human is the central part of the 

control loop and their behavior becomes an important consideration in the system 

design. The important information on how to improve the system can be gathered 

from the analysis of users’ behavior. In the Australia’s Telerobotic project (Taylor, 

K. and Dalton, B., 1997), there is a facility for users to register themselves besides all 

of their activities on controlling the robot is recorded. The incentive to register is the 

user will be given higher priority for robot access. Some of the important data from 

the analysis are: 

 

i) 95 percent registered users are male; 

ii) Indicating a greater interest by youth than older people; 

iii)  Less effort to register: registered users operate the robot for only 8% 

of sessions and 15% of the time; 

iv) Three quarters have given up after waiting for three minutes;  

v) 43% percent do not make any single request to the robot after having 

gained control; and, 

vi) The users are not staying long enough to learn how to use a complex 

system. 

 

Besides for new users, they might find out that it is more difficult to control a 

robot through the Internet rather than controlling the real robot directly. This is 

because the working objects and the telerobot are both 3 dimensional (3D) while the 

monitor is able to support 2 dimensional (2D) interface only. The human capabilities 

such as to estimate the distance, size and locating the objects in 3D environment are 
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restricted when switched to 2D interface. There must be some kind of guidance to 

assist the users to extend their capabilities in controlling the robot.  In Australia's 

telerobotic project (Taylor, K. and Dalton, B., 1997) and CSC telerobot project, the 

user can take advantage of the real coordinate system such as grid on the work space 

and known objects’ size. On the other hand, the virtual coordinate system can be 

applied on the virtual environment, such as in the PumaPaint project (Stein, M. R., 

2000) and the Tele-garden project. It would be more convenient for the users to 

operate the robot based on virtual coordinate system.  

 

 

 

3.6 Interface Design 

 

Interface design is very important since it is where the users interact with the 

robot and remote site. There are two important criteria to be considered when 

designing the interface: 

 

i)  Informative but simple 

 

A good interface must be informative enough to tell the users on how to 

operate the robot besides provides others relevant information. All of the information 

must be made simple and convenient to the users to search and read. For example, 

the command tilt and spin may be good to be explained by using a diagram rather 

than text. Roland, S., et al. (1998) had emphasized on interface design in his paper by 

saying that the design must be “connect and play” and any large introduction pages 

will frighten away most of the users. 

 

ii)  Customizable interface 

 

 There is no single web page in internet-based telerobotic projects that can 

be considered as the best suited to all users. The users who use modem internet 

always face with the bandwidth problems. They have to wait longer for the images to 

be refreshed. Thus speed is more important than quantity and quality of the images 

for this group of users. For the convenient of the users, some of the projects include 
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the facilities to allow the users to customize the interface, such as the resolution of 

the image, number of the camera views and the approach to control the robot. Both 

Australia's telerobotic project (Taylor, K. and Dalton, B., 1997) and Tele-garden 

project support these facilities. 

 

 

 

3.7 Summary 

 

The UTM telerobotic system is designed based on the task-oriented approach, 

where the users need only to specify the task to be done by the robot and then the 

telerobotic system will plan the path of the movement to complete the task. The task-

oriented telerobotic system is more user friendly than the robot-oriented telerobotic 

system. The overall response time of the task-oriented telerobotic system is shorter 

than the robot-oriented telerobotic system. The details about both types of the system 

are discussed in the Chapter 4, 5 and 6. 

 

The new telerobotic system designed is supporting the use of the type-written 

natural language command. Besides, the user can also plan the task by manipulating 

the objects in the virtual environment. Every user who manages to login to the UTM 

telerobotic system is limited to a period of 10 minutes to operate the telerobotic 

system. The details about the UTM telerobotic system architecture and the design of 

the user interface are discussed in the Chapter 4. 

 

Meanwhile, the reliability, safety and accuracy design of the system are 

discussed in the Chapter 7. These include the work cell design, gripper with new 

fingers design, system self-calibration, working object exception handling, client-

server exception handling, log file and error listing. 
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CHAPTER 4 

 

 

 

TERMS DEFINITION AND SPECIFICATION OF UTM TELEROBOTIC 

SYSTEM 

 

 

 

4.1 Terms Definition 

 

Before the system is described, it is necessary to understand some definitions 

that were used in previous chapters and those are used throughout the chapters and 

the discussion. The terms definition and explanation are as follow:- 

 

 

 

4.1.1 System and Sub-system 

 

A system is a set of connected things (sub-systems) that form a whole or 

work together. A system has many inputs and outputs. The output is the result of 

carrying out some process on a set of inputs. A system must have an objective or 

function. The elements of the system are separated from those things that form part 

of another system by the boundary (Richards, M., 2001). For example the nervous 

system is separated from respiratory system and each of the system has their 

respective functions. The concept of the system is shown in the Figure 4.1. 

  

Meanwhile sub-system is part of a system. Each system is composed of sub-

systems, which are themselves made up of other sub-systems. This is because 

generally every system is part of another system. In other word, a smaller system 
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which has input, output, boundary and objective but it is a part of a bigger system 

then the smaller system is called the sub-system of the bigger system. The purpose 

of the terms system and sub-system is to identify a system until we have a 

sufficiently clear understanding of the larger system. The Figure 4.2 shows the sub-

systems A, B, C, D and E that form a system.  

 

 

 
Figure 4.1: System concepts 

 

 

 

 

Figure 4.2: Sub-systems of a system 
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4.1.2 Telerobotic System 

 

The word robot originated from the Czech word robota, meaning work. A 

robot is can be defined as a reprogrammable general-purpose manipulator with 

external sensors that can perform various assembly tasks (Fu, K. S., et al., 1987). 

Meanwhile, telerobot is a robot that accepts instruction from a distance, generally 

from a trained human operator (Fauzi Zakaria, 2000). The word telerobotic system 

is used to refer to the software, telerobot and equipments used on both of the local 

and remote sites to work as a system. Human is the user who operates the 

telerobotic system and thus is excluded from the system. The example of the 

telerobotic application is the sending of telerobot by NASA to outer space for data 

collection. The telerobot is controlled from the earth. 

 

 

 

4.1.3 Local Site vs. Remote Site 

 

The terms local and remote sites used in Section 4.1.2 are referring to the 

locations of the telerobot and the operator. The local site is the location where the 

user operates the telerobot. Meanwhile the remote site is the location where the 

telerobot situated and works. 

 

On the other hand, the person who operates the UTM telerobotic system from 

the local site is call as user or operator. Meanwhile the person who setup and 

manage the system at the remote site is called system administrator. 

 

 

 

4.1.4 Client vs. Server 

 

According to the Microsoft Help and Support documentation of the Microsoft 

Windows XP, client is any computer or program connecting to, or requesting the 

services of, another computer or program. Client can also refer to the software that 

enables the computer or program to establish the connection. Meanwhile, server 
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refers to the computer or program that provides shared resources to network users of 

a local area network (LAN) or the Internet. As a conclusion, the terms client and 

server can be used to refer to both the program and the computer. For the ease of 

understanding and explanation, the terms telerobotic client program, 

telerobotic server program and FTP server are used to refer to the software. 

While the terms client and server are referring to the hardware or computers. 

 

 

 

4.1.5 Internet 

 

The Internet is a network of networks that connects computers all over the 

world. The Internet was developed from work done in the 1960s and 1970s by the 

United States Department of Defense with a project called ARPAnet (Advanced 

Research Projects Agency net), to connect the computers at some of the colleges and 

universities where military research took place. By the late 1980s, the Internet had 

shed its military and research heritage and was available for use by the general public 

(Young, M. L., et al., 1999). 

 

 

 

4.1.6 Robot-oriented System vs. Task-oriented Robotic System  

 

The task-oriented robotic system or so called “task-centric” (Lloyd, J.E., 

Beis, J.S., Pai, D.K. and Lowe, D.G., 1997) robotic system requires only the operator 

to specify the task to be done by the system and the system will then plan and carry 

out a series of actions to complete the task. The task-oriented robotic system is also 

called a task-level programming system (Craig, J. J., 1986).  In contrast, robot-

oriented system requires the operator to plan the actions step by step to get the task 

done.  

 

The robot-oriented system and the task-oriented robotic system can be 

distinguished by many aspects. The basic command unit for the robot-oriented 

system is based on the robot movement. For example the commands for arm type 
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robotic system are shoulder up 30°, elbow down 30° and gripper open. Usually, one 

basic command unit for the robot-oriented system equals to one robot instruction. 

Meanwhile, the basic command unit for the task-oriented system is based on the task 

designed for the robotic system. For example the commands for the robotic system 

which is designed for blocks manipulation can be PLACE Block3 SO THAT 

(Block_3_face1 AGAINST Table). Usually, one basic command unit for the task-

oriented system equals to a series of robot instructions. The comparison between the 

robot-oriented system and the task-oriented robotic system is summarized in the 

Table 4.1.  

 

 

Table 4.1: Comparison between robot-oriented system and task-oriented robotic 
system 

 

Robot-oriented System Task-oriented Robotic System 
Basic command unit: 
• Based on robot movement, e.g.: 

a) Arm type robotic system: shoulder 
up 30°, elbow down 30°, gripper 
open or spray start; 

b) Mobile robot: move forward 30 
cm, turn left 45°. 

• Usually, one basic command unit 
equals to one robot instruction. 

Basic command unit: 
• Based on the task designed for the 

robotic system, e.g.:  
a) Robotic goods sorting system: 

transfer objects type A to line A 
and objects type B to line B; 

b) Mobile robot: find the target such 
as heat/light source in unknown 
environment. 

• Usually, one basic command unit 
equals to a series of robot 
instructions. 

The system can directly convert the 
command given to robot instruction since 
one basic command unit equals to one 
robot instruction. 

The system need to have the ability to 
“understand” the task required by the 
user before the task can be converted to a 
series of robot instructions. 

Operator acts as path planner to complete 
the task. In other word, the operator has 
full control over how the system 
completes the task - direct control. 

The task controller does the path 
planning once “understand” the task(s) 
required to be done. In other word, the 
operator has no control over how the 
system completes the task - indirect 
control. 

Autonomy level: low. Autonomy level: higher (with certain 
limitations). 

Low efficiency in completing the work 
since every step involved must be 
manually planned or programmed. 

Higher efficiency in completing the work 
since task controller does the path 
planning. 

Image capturing system (if involved) 
usually works merely for visual 

Image capturing system (if involved) 
works not only for visual feedback but 
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feedback. also as part of the vision system. 
Less complicated to be designed and 
developed. 

Complicated to be designed and 
developed especially the task controller. 

Suitable application: usually for 
repeated/routine work especially in mass 
production. 

Suitable application: usually for the work 
that is not/less repeated or the work with 
uncertainties such as goods sorting 
where the objects may vary in size, 
shape, orientation and location. 

The robot can perform at full capability 
of the robot  

May not be able to do all the task 
(especially the complicated task) 
Solution: hybrid system 

 

 

 

4.2 UTM Telerobotic System Setup and Application Programs’ User 

Interface 

 

4.2.1 System Setup 

 

The telerobot used in the UTM telerobotic system is the Rhino robot from 

Rhino Robotics LTD. (Rhino Robot, Inc., 1989). The picture of the Rhino robot is 

shown in the Figure 4.3. Rhino robot is a 6 degrees of freedom robot. It is a revolute 

type configuration (RRR) robot arm where the base, shoulder and arm are revolute 

(R) designed. The robot resembles human arm. The robot dimension is shown in 

Figure 4.4. The Table 4.2 and Figure 4.5 are showing the motor that is controlling the 

corresponding robot joint. 

 

The robot is placed in the work cell as shown in the Figure 4.6 and the Figure 

4.7. The user can remotely control the robot to manipulate the cube blocks in front of 

the robot. The dimension of the cube is 18 mm x 18 mm x 18 mm. The cube is taken 

from the word game, Boggle. The sample of the cubes is given in the Figure 4.8. The 

cubes are placed on the working area, which is set at 110 mm from the ground.  

 

A camera, Sony X-03 is fixed on the top of the working area. The camera is 

put at 935 mm exactly on the top of the working area. This is to make sure the whole 

of the working area can be captured by the camera. The camera is linked to the 

Matrox Genesis frame grabber for image capturing. The image processing is done 
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with the Matrox Imaging Library (MIL). The details of the robot selection, the work 

cell design, the working area and the working object definition are discussed in the 

Chapter 8. 

 

The telerobot is connected to the serial port 1 of an Intel Pentium III 400 

MHz processor’s PC with 192 MB RAM. The operating system is Windows 2000 

Server with service pack 3. The telerobotic system is controlled by a program named  

UTM telerobotic server program. The user can remotely control the system from a 

program called UTM telerobotic client program. There is another version of UTM 

telerobotic client with TCP/IP messaging facilities which is developed for system 

maintenance purpose. All the programs are developed using Microsoft Visual C++ 

6.0. 

 

 

 

 

Figure 4.3: Rhino robot 
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Figure 4.4: Dimension of Rhino robot 

 

 

Table 4.2: Motor and the corresponding joint 

 

Motor Joint 

A Gripper open and close 

B Wrist 

C Hand 

D Elbow 

E Shoulder 

F Waist 
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Figure 4.5: Motor and the corresponding joint 

 

 

 
 

Figure 4.6: Front view of the robot work cell 
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Figure 4.7: Top view of the robot work cell 

 

 

 
 

Figure 4.8: Sample of working objects 
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4.2.2 Application Programs’ User Interface 

 

As mentioned in the Section 4.2.1, there are three applications programs 

developed for the UTM telerobotic system: 

 

i) UTM telerobotic server program; 

ii) UTM telerobotic client program; and, 

iii)  UTM telerobotic client program with TCP/IP messaging facilities. 

 

 The user interface of the UTM telerobotic server program is shown in the 

Figure 4.9. There are 2 real images shown on the user interface. The image on the 

left is a life video of the top view of the working area. It shows the current state of 

the working area as well as the progress of the task. From the image shown on the 

left in the Figure 4.9, there are 4 working objects on the working area. The image on 

the right is showing the progress of the image processing and the object recognition. 

The image on the right of the Figure 4.9 is displaying the 4 objects recognized from 

the image captured. 

 

There are four parts of the user interface labeled as ‘First 3 Objects 

Information’, ‘RS232’, ‘TCP/IP’ and ‘Error Code’ which are designed for system 

maintenance and troubleshooting. The part ‘First 3 Objects Information’ is 

displaying the information of the first 3 objects recognized. The parts ‘RS232’ and 

‘TCP/IP’ can be used to send the data to the serial port and UTM telerobotic client 

program manually. The part ‘Error Code’ displays the error detected from the UTM 

telerobotic system. The details about the error code are discussed in the Section 7.11. 

 

Meanwhile there are two buttons labeled as ‘HOST’ and ‘Start System’ in the 

‘System’ part. When the system is initialized, the button ‘HOST’ is first clicked to 

enable the Rhino robot to be controlled from the computer instead of teach pendant. 

After that the system can be started by a single button click at ‘Start System’ button. 

The system will first initialize the robot, vision self calibration and then make online. 

The system start is designed as a single button click for the convenience of the 

system administrator. 
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The Figure 4.10 shows the user interface of the UTM telerobotic client 

program without TCP/IP messaging facilities. There is a message list box with the 

message “… hi. you are welcome…”  for displaying the message  the user keyed in 

and the message conveyed by the program in natural language. There are two buttons 

labeled as ‘Help’ and ‘Login’. When the ‘Help’ button is clicked, the importance 

information is displayed in the message list box. If the user wishes to control the 

telerobot, he or she required to login the UTM telerobotic system by clicking on the 

‘Login’ button. Once the user is granted the permission, the image on the virtual 

environment is updated. The user can issue a command either by using the keyboard 

or through the mouse. The user can key in the natural language command through the 

keyboard. The user may also right click on the virtual environment to get the 

command menu and then manipulate the virtual object by using the mouse. On the 

other hand, the Figure 4.11 shows the user interface of the UTM telerobotic client 

program with TCP/IP messaging facilities. The system administrator can use the 

program to send the message to the UTM telerobotic program manually. 

 

 

 

 
 

Figure 4.9: User interface of the UTM telerobotic server program 
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Figure 4.10: User interface of the UTM telerobotic client program 
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Figure 4.11: User interface of the UTM telerobotic client program with TCP/IP 

messaging facilities 

 

 

 

4.3 System Architecture 

 

The Figure 4.12 shows the relationship between the client and the server of 

the UTM telerobotic system on a local area network (LAN). The server must be 

online in order for the telerobotic system to work. Once the client login and accepted 

by the server, the client is given the control right over the telerobotic system. The 

user is given 10 minutes to operate the telerobotic system. The architecture of the 

telerobotic client and server systems is shown in the Figure 4.13 and Figure 4.14. 

The connection between the client and server is maintained by the client-server 

connection manager.  
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At the local site, the telerobotic client system can accept task-oriented 

command from the operators either through mouse operation, type-written natural 

language or the combination of the both type of inputs. The command is then 

processed by the command pre-processor – either by the interpreter or the parser. 

The purpose of the command pre-processor is to remove the illegal commands such 

as spelling mistake, syntax error as well as to check the validity of the mouse 

operation.  

 

Once the system accepts the command from the operator to execute the task, 

the task is then passed to the task pre-processor. The task pre-processor will check if 

the task could be performed by the task planner. Apparently not all tasks can be 

performed by the task controller due to the limitation in the system design. The task 

is rejected for example when the objects are too close and beyond the ability of the 

robot. During the command and task pre-processing stage, the information such as 

the number of objects, location and orientation are required. If the task failed, the 

user will be informed about the error happened. 

 

On the other hand, if the task is success the client-server connection manager 

will encode the task information into a URL string. The URL string is then received 

and parsed by the client-server connection manager at the server system. The task 

requested is passed to the task controller to decide on the objects that should be 

moved and rotated. The information is then passed to the path planner to do the path 

planning as well as to transform the task into action. The progress of the task is 

feedback to the task planner through the vision sub-system. The path planner is 

stopped if any error detected. The error is recorded in the log file and error listing. 

The log file records not only the errors detected but all the system activities since the 

telerobotic server program is launched until the program is terminated. 

 

The task planner, the robotic sub-system (the robot with its controller) as well 

as the vision sub-system (combination of the camera and the image controller) can be 

simplified into a closed-loop block diagram as shown in Figure 4.15. This allows the 

server to perform self-supervised and this mechanism is called visual servoing (Peter 

I. Corke, 1996). In other word, the system is able to complete the task given without 

the supervision from the user. 
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When the task is completed, the latest top view image of the working area is 

captured. The image is kept in the directory of the FTP server. The latest 

environmental information is abstracted from the image captures. The information is 

kept as the knowledge of the task planner. The information is then passed to the 

client-server connection manager to be encoded as the URL string. The URL string 

and the latest top view image of the working area are feedback to the client. The 

client will update the virtual environment and the real image displayed. After that, 

the user can plan for the next task. 

 

 

ServerLAN

Client

Client

Client

Local Site Remote Site

TCP/IP

 
 

Figure 4.12: Local and remote sites of the UTM telerobotic system 
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Figure 4.13: UTM telerobotic client program architecture 
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Figure 4.14: UTM telerobotic server program architecture  
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Figure 4.15: Block diagram of the task control sub-system (closed-loop) 
 

 

 

4.4 Summary 

 

The important terms are defined and discussed in this chapter. The UTM 

telerobotic system setup, application programs’ user interface and the system 

architecture are briefly explained. The details of the system architecture are 

explained in the Chapter 5, 6 and 7. 
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CHAPTER 5 

 

 

 

VIRTUAL WORKING AREA CONSTRUCTION, COMMAND PRE-

PROCESSOR AND TASK PRE-PROCESSOR 

 

 

 

5.1 Introduction 

 

There are three application programs developed for the telerobotic system. In 

this report, application program based telerobotic system is developed instead of the 

web based telerobotic system. There are several advantages of using the application 

program instead of the web browser to control the telerobotic system. The 

application program allows the programmer to have better control over the program 

functions. The pre-processing function can be easily incorporated in the telerobotic 

client program, such as the natural language parser, the mouse interpreter, the task 

pre-processor, the client-server manager, the virtual working area and the virtual 

working objects. In other word, the application program allows the programmer to 

have better control over the volume of data transfer between the telerobotic client 

and server programs. 

 

The discussion in the chapters 5, 6 and 7 are limited to the theory part of the 

architecture design of the telerobotic client and server programs. The details in the 

coding are not explained due to the length and complexity of the program. The 

implementation of the theory in the programming language can be referred to the 

coding in the CD-ROM attached. The relevant comments are given to the main and 

important part of the coding. 
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5.2 Virtual Working Area and Working Objects Construction 

 

In the telerobotic client program, the user can manipulate the virtual working 

objects shown in the virtual working area through the mouse operations and type-

written natural language. The virtual working area is built on the window dialogue 

and is overlapping the working area top view image as shown in the Figure 5.1. The 

coordinate of the window dialogue starts at coordinate (0, 0) at the top-left corner. 

The virtual working area is defined from coordinate (100, 90) to coordinate (350, 

340) of the window dialogue with certain area left at the left-hand side and the top of 

the virtual working area. The origin for the virtual working area is defined at the top-

left corner for the ease of the programming. The area left is for the scale labeling to 

guide the user. The dimension of the virtual working area is defined as 250 pixels x 

250 pixels and is explained in the Section 7.5. Four grid lines are drawn vertically 

and horizontally across the virtual area. When the user move the mouse pointer over 

the virtual working area, the coordinate of the mouse pointer according to the virtual 

working area is displayed at the bottom of the virtual working area. 

 

 The URL string send from the telerobotic server program contains the 

information of the working objects, such as the orientation and centre of the objects. 

The dimension of top view of the virtual working object is defined as 25 pixels x 25 

pixels square. A mark is labeled at one corner of the square as reference corner. In 

Visual C++, the functions MoveTo( ) and LineTo( ) are used to draw the straight 

line. In order to draw a virtual working object, four of the coordinates of the object 

need to be calculated. For example, to draw a virtual object as shown in the Figure 

5.2 with the centre at coordinate (100, 100) and orientation 0o, the coordinate of point 

at the top right-hand corner is calculated as follows:- 

 

The length of the side, pixelsls 25=  

The coordinate-x of the centre, 100=ox  

The coordinate-y of the centre, 100=oy  

Angle value from the centre to the point at the top right-hand corner, °= 45θ  

The length of the diagonal, pixelslll ssd 352525 2222 =+=+= (rounded 

to nearest integer) 
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Half of The length of the diagonal, pixelsld 182/ = (rounded to nearest 

integer) 

Offset value for coordinate-x, 1345cos18cos2/ =°×=×= θdx lo  (rounded to 

nearest integer) 

Coordinate-x of the point, 113131001 =+=+= xo oxx  (1) 

Offset value for coordinate-y, 1345sin18sin2/ =°×=×= θdy lo  (rounded to 

nearest integer) 

Coordinate-y of the point, 87131001 =−=−= yo oyy  (2) 

Thus, the coordinate for the point at top right-hand corner is (113, 87). 

 

 The rest of the corners can be found by using the same working steps with the 

corresponding value for theθ . For example, the point of the top-left corner can be 

found by using °= 135θ .  The coordinate of the point at the top-left corner is (87, 

113). The virtual working object is then drawn by linking all points at the corners 

found. The telerobotic client program is able to draw up to 100 virtual working 

objects. 

 

 

 
 

Figure 5.1: Virtual working area with the image of the top view of the working 

area 
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Figure 5.2: Coordinate for the top right-hand corner 

 

 

 

5.3 Command Pre-processor 

 

Since the task of the telerobotic system is limited to two-dimension 

operations, the possible task-oriented commands need to be defined. The basic 

operations for two-dimension operation are to move the object, to rotate the object 

and to instruct the system to carry out the task. However some of the advanced 

operations are supported for the convenience of the user. Some of the advanced 

commands supported are to move the object vertically (called offsetX command), to 

move the object horizontally (called offsetY command), to move an object to the 

centre between two objects (called between command), undo and redo the 

commands. Although the virtual working area is defined from (0, 0) to (250, 250), 

the size of the actual working area allowed for the centre of the virtual working 

object is limited to (10, 10) to (240, 240). The purpose of the restriction is discussed 

in the Section 7.5. For the type-written natural language, the coordinate value of the 

coordinate (10, 10) for example, is accepted as x10y10 for the convinience of the 

user. 

 

The task-oriented command is designed to be supported both by the type-

written natural language and the mouse operation. The system is designed so that the 

user can 100% rely on the type-written natural language or 100% rely on the mouse 
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operations to perform task-oriented command. The system is also offering the 

flexibility for the user to combine the usage of both the input methods on every task-

oriented command. The details of the support for type-written natural language, the 

mouse operation and the integration of the both input methods are discussed in the 

Section 5.3.1, 5.3.2 and 5.3.3. The feedback and guidance from the command pre-

processor which are conveyed in the natural language are displayed in the message 

list box as shown in the Figure 4.10. 

 

 

 

5.3.1 Command Pre-processor: Task-oriented Natural Language 

 

5.3.1.1 Natural Language Overview 

 

The natural language is the language used by the human in their daily 

activities such as speaking and writing. A language-comprehensive program must 

have the knowledge about the structure of the language, including what the words 

are, how to combine the words into sentences and what the words mean. A language-

comprehensive program is always less intelligent than the human. The important 

aspects of what makes human intelligent are the general world knowledge and 

reasoning ability of human. There are many different forms of the knowledge (Allen, 

J., 1987) that might be incorporated into the language-comprehensive program, such 

as:- 

 

i) Phonetics and phonological knowledge: It concerns how words are realized 

as sounds. This is an important concern for automatic speech-understanding 

systems. 

 

ii) Morphological knowledge: It concerns how words are constructed out of 

more basic meaning units called morphemes. For example, the word 

“friendly” is constructed from a root form “friend” and the suffix “-ly”. 
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iii)  Syntactic knowledge: It concerns how words can be put together to form 

sentences that look correct in the language. This form of knowledge identifies 

how one word relates to another. 

 

iv) Semantic knowledge: It concerns what words mean and how these meanings 

combine in sentences to form sentence meanings. 

 

v) Pragmatic knowledge: It concerns how sentences are used in different 

contexts and how context affects the interpretation of the sentence. 

 

vi) World knowledge: It includes the general knowledge about the structure of 

the world that language user must have in order to, for example, maintain a 

conversation. 

 

In the developed UTM telerobotic client program, the syntactic knowledge, 

semantic knowledge and world knowledge are involved. The natural language parser 

realizes the syntax of the task-oriented natural language commands supported. The 

meaning of each task-oriented natural language commands allows the natural 

language parser to perform the corresponding action. The natural language parser is 

made known of the current virtual objects status in the virtual working area. The 

details of the application and relationship among the different forms of knowledge 

are discussed in the Section 5.3.1.3. 

 

 

 

5.3.1.2 Natural Language Generation 

 

Natural language generation is the process of producing a set of natural 

language sentences that realize the goal of the system (Allen, J., 1987). Based on the 

possible task-oriented operations discussed in the Section 5.3, a set of task-oriented 

natural language is defined for the developed telerobotic system. The task-oriented 

natural language defined is in the type-written natural language form. Below are the 

set of task-oriented natural language developed in this report. The part of the 

sentence that is bracketed must be replaced by the required data. 
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5.3.1.2.1 “move {coordinate xy of an object} to {coordinate xy}” 

 

This command instructs the telerobotic client program to move the object to 

the coordinates specified. The centre of the object is placed on the coordinates 

specified. The value for {coordinate xy of an object} is limited from x0y0 to 

x250y250 while the value for {coordinate xy} is limited from x10y10 to 

x240y240. For example the command “move x10y100 to x200y200” is telling the 

telerobotic client program to move the object at the coordinate x10y100 to a new 

coordinate x200y200. 

 

 

 

5.3.1.2.2 “rotate {coordinate xy of an object} {degree of rotation}” 

 

 This command instructs the telerobotic client program to rotate the object 

anti-clockwise according to the degree specified. The object is rotated with respect to 

its centre. The value for {coordinate xy of an object} is limited from x0y0 to 

x250y250 while the value for {degree of rotation} is limited from 0 to 360 

degrees. For example the command “rotate x10y100 45” is telling the telerobotic 

client program to rotate the object at the coordinate x10y100 with the angle 45 

degree anti-clockwise with respect to the centre of the object. 

 

 

 

5.3.1.2.3 “offsetX {coordinate xy of an object} to {coordinate xy}” 

 

 This command instructs the telerobotic client program to offset the object 

horizontally. The value of coordinate-y of the object is maintained. On the other 

hand, the value of coordinate-x of the object is changed according to the value of the 

coordinate-x of the mouse pointer. The value for {coordinate xy of an object} 

is limited from x0y0 to x250y250 while the value for {coordinate xy} is limited 

from x10y10 to x240y240. For example the command “offsetx x10y100 to 

x200y200” is telling the telerobotic client program to offset the object from 

coordinate-x x10 to the new coordinate-x x200. 
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5.3.1.2.4 “offsetY {coordinate xy of an object} to {coordinate xy}” 

 

 This command instructs the telerobotic client program to offset the object 

vertically. The value of coordinate-x of the object is maintained. On the other hand, 

the value of coordinate-y of the object is changed according to the value of the 

coordinate-y of the mouse pointer. The value for {coordinate xy of an object} 

is limited from x0y0 to x250y250 while the value for {coordinate xy} is limited 

from x10y10 to x240y240. For example the command “offsety x10y100 to 

x200y200” is telling the telerobotic client program to offset the object from 

coordinate-y y100 to the new coordinate-y y200. 

 

 

 

5.3.1.2.5 “between {coordinate xy of an object 1} and {coordinate xy 

of an object 2} put  {coordinate xy of an object 3}” 

 

This command instructs the telerobotic client program to move the object 3 to 

the centre between the object 1 and the object 2. The centre of the object 3 is placed 

exactly on the centre between the object 1 and the object 2. The value for 

{coordinate xy of an object 1}, {coordinate xy of an object 2} and 

{coordinate xy of an object 3} are limited from x0y0 to x250y250. Let’s 

assume that the coordinates x100y100 and x200y200 are the centre of the object 1 

and the object 2. The command “between x100y100 and x200y200  put 

x10y100” is telling the telerobotic client program to move the object 3 at the 

coordinate x10y100 to a new coordinate x150y150 where x150y150 is the centre 

between object 1 and the object 2. 

 

 

 

5.3.1.2.6 “copy coordinateX {coordinate xy of an object 1} apply to 

{coordinate xy of an object 2}” 

 

 This command instructs the telerobotic client program to offset the object 2 

horizontally to the point where the coordinate-x of the object 2 is equal to the 
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coordinate-x of the object 1. The value for {coordinate xy of an object 1} and 

{coordinate xy of an object 2} are limited from x0y0 to x250y250. Let’s 

assume that the coordinate x100y100 is the centre of the object 1. The command 

“copy coordinatex x100y100 apply to x200y200” is telling the telerobotic 

client program to move the object 2 at the coordinate x200y200 horizontally to a new 

coordinate-x of x100. 

 

 

 

5.3.1.2.7 “copy coordinateY {coordinate xy of an object 1} apply to 

{coordinate xy of an object 2}” 

 

 This command instructs the telerobotic client program to offset the object 2 

vertically to the point where the coordinate-y of the object 2 is equal to the 

coordinate-y of the object 1. The value for {coordinate xy of an object 1} and 

{coordinate xy of an object 2} are limited from x0y0 to x250y250. Let’s 

assume that the coordinate x100y100 is the centre of the object 1. The command 

“copy coordinatey x100y100 apply to x200y200” is telling the telerobotic 

client program to move the object 2 at the coordinate x200y200 vertically to a new 

coordinate-y of y100. 

 

 

 

5.3.1.2.8 “copy orientation {coordinate xy of an object 1} apply to 

{coordinate xy of an object 2}” 

 

 This command instructs the robot to rotate the object 2 until the orientation of 

the object 2 is equal to the orientation of object 1. The value for {coordinate xy of 

an object 1} and {coordinate xy of an object 2} are limited from x0y0 to 

x250y250. Let’s assume that the orientation of the object 1 at the coordinate 

x100y100 is 45o. The command “copy orientation x100y100 apply to 

x200y200” is telling the telerobotic client program to rotate the object 2 at the 

coordinate x200y200 until the orientation is 45o. 
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5.3.1.2.9 “object information {coordinate xy of an object}” 

 

 This command inquires the telerobotic client program about the centre and 

the orientation of the object specified. The value for {coordinate xy of an 

object} is limited from x0y0 to x250y250. Let’s assume that the orientation and the 

centre of an object are 45o and x100y100. The command “object information 

x110y100” is resulting the telerobotic client program to feedback the orientation and 

the centre of the object at the coordinate x110y100, which are 45o and x100y100 

respectively. 

 

 

 

5.3.1.2.10 “undo” 

 

This command cancels the last task-oriented command issued by the user. 

The virtual environment and the virtual working objects are restored to the state 

before the last task-oriented command issued and implemented. The telerobotic 

client program is able to undo up to 100 commands. Let’s assume an object is rotated 

clockwise for 45o by the user. The command “undo” is telling the telerobotic client 

program to cancel the last task-oriented command issued by the user, which is to 

rotate the object anti-clockwise for 45o to restore the telerobotic client program to the 

previous state. 

 

 

 

5.3.1.2.11 “redo” 

 

This command repeats the last task-oriented command which was undoing by 

the user. The virtual environment and the virtual working objects are restored to the 

state before the last undo command. The telerobotic client program is able to redo up 

to 100 commands. Let’s take the example discussed in the Section 5.3.1.2.10, the 

command “redo” is resulting the object “undo” to be rotated clockwise again for 

45o. 
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5.3.1.2.12 “cancel” 

 

This command terminates the last task-oriented command that is currently 

activated by the user. The virtual environment and the virtual working objects are 

restored to the state before the current task-oriented command is activated. Let’s 

assume that the user issues a command “move x100y100”. This command instructs 

the telerobotic client program to move the object at the coordinate x100y100. The 

“move” command is currently activated until the user specified the location where to 

put the object. The “cancel” command terminates the “move” command which is 

currently activated. 

 

 

 

5.3.1.2.13 “restore” 

 

 This command causes the telerobotic client program to restore all the objects 

to their previous location before any task-oriented command was issued. All records 

for the “undo” and “redo” commands are reset. The “restore” command has no 

effect once the “execute” command was issued. The “execute” command is 

discussed in the next section. Let’s assume the user has instructed the telerobotic 

client program to move and rotate all the objects in the virtual environment. The 

“restore” command is resulting all the objects to be restored to their previous state. 

 

 

 

5.3.1.2.14 “execute” 

 

 This command causes the command pre-processor to inform the task pre-

processor about the final output as required by the user in the virtual working 

environment. The details of the process done by the task pre-processor are discussed 

in the Section 5.5. At the end of the process, the telerobotic server program will 

instruct the telerobot to achieve the final output as required by the user. 
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5.3.1.3 Task-oriented Natural Language Processing 

 

The bottom-up method is used to process the task-oriented natural language 

command issued by the user. The natural language command is first undergone the 

low level processing, then the next level of processing until the highest level of 

processing. The levels of the processing are:- 

 

i) Character filtering 

 

The characters used by the system are limited to the alphabets and numbers. 

The unsupported characters such as the symbols +, =, ? and @ are removed 

automatically during the character filtering. Thus the user needs not to re-key in 

again the task-oriented natural language. 

 

ii) Capital to small letter conversion 

 

The “move” command, for example, might be keyed in as “Move”, “mOve”, 

“moVe" and “MOVE” by the user. This will cause the difficulty in the supported word 

filtering which is done in the next level of processing. Thus all the capital letters 

keyed in by the user are converted to the small letters. 

 

iii)  Word filtering 

 

At this level, the words in the natural language command keyed in are 

checked word by word. The natural language parser checks the word with the library 

of the supported words. All the possible formats for the coordinate value are 

supported. If the user key in the coordinate value x1y200 as x01y200 or x001y200, 

the natural language parser treats it as x1y200. The user is prompted of the 

unsupported word keyed in if found in the task-oriented natural language command.  
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iv) Sentence structure conversion 

 

The next level of the processing is the sentence parsing. It is inconvenient to 

process the sentence in their original format. The sentence structure is converted to 

the corresponding symbols according to the value given in the Table 5.1. For 

example, the natural language command “move x10y10 to x100y100” is converted 

into two strings “v+n+p+n” and “1+7+2+7”. The symbols v stands for verb, n stands 

for nouns and p stands for preposition. 

 

v) Parsing 

 

Parsing is the process of analyzing a sentence to determine its structure 

according to the grammar (Allen, J., 1987). The process of the parsing is now 

simplified since the sentence structure was converted to the corresponding symbols 

and values. The combination of the symbols and values is compared with the 

supported syntax. The user is prompted of the unsupported syntax if found in the 

task-oriented natural language command. 

 

vi) Semantic interpretation  

 

The meaning of the sentence is interpreted at this level. The corresponding 

action according to the command is carried out. For example the meaning of the 

natural language command “move x10y10 to x100y100” is to move the virtual 

working object at coordinate x10y10 to the coordinate x100y100. Once the meaning 

of the sentence is interpreted, the natural language parser checks if the virtual object 

exists at the coordinate specified (world knowledge). If the virtual working object is 

found, the new virtual working object is redrawn at the coordinate specified while 

the previous virtual working object is deleted. On the other hand, if the virtual 

working object cannot be found, the user is prompted about the error by the 

intelligent parser. 
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Table 5.1: Words to symbols and values conversion 

 

Supported Words Symbols Values 

Move v 1 

Rotate v 2 

OffsetX v 3 

OffsetY v 4 

Copy v 5 

Execute v 6 

Put v 7 

Undo v 8 

Redo v 9 

Cancel v 10 

Restore v 11 

Apply v 12 

CoordinateX n 1 

CoordinateY n 2 

Orientation n 3 

Object n 4 

Information n 5 

Degree value, e.g. 45 n 6 

Coordinate value, e.g. x1y1 n 7 

Between p 1 

To p 2 

And c 1 

 

 

 

5.3.2 Command Pre-processor: Mouse Operation 

 

Task-oriented natural language is easy to understand. The task-oriented 

natural language allows the value of the coordinate and the rotation angle to be 

specified exactly. However the drawback is that the user might feel inconvenient to 
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key in the whole sentence of the task-oriented natural language. In view of this, the 

task-oriented command is designed to be supported by mouse operation and type-

written natural language. The input method is easy to be learnt and used. However it 

might be a bit time consuming and inconvenient for specifying the exact value for 

the coordinate and the rotation angle. 

 

It is assumed that the user has been connected to the server. First of all, the 

user has to right click on the virtual working area. A popup menu is displayed as 

shown in the Figure 5.3. The user can choose any task-oriented command from the 

menu. The intelligent parser will guide the user through the rest of the process. When 

the command is activated, for example if the user chose the “move” command from 

the menu, the intelligent parser does provide the opportunity for the user to cancel 

the activated command. The user can right click on the virtual working area. Another 

popup menu is displayed. The menu is shown in the Figure 5.4. Note that, the 

“continue” command is available only for the mouse operation and is not available 

in type-written natural language. If the user chose the “cancel” command, the 

activated command is canceled. If the user then right clicks again on the virtual 

working area, the popup menu showing the task-oriented command is displayed. 

 

The mouse operation is handled by the mouse interpreter. The processing of 

the mouse operation is much easier than the natural language processing. In 

Windows programming, every operation of the mouse such as right click is 

considered as an event. The corresponding function is activated. For the example 

given, the right click will activate the OnRButtonDown( ) function in the VC++ and 

the value of the point of the right click can be accessed from the function. Let’s take 

a comparison between the task-oriented natural language command “move 

{coordinate xy of an object} to {coordinate xy}” as implemented by the 

mouse operation.  

 

When the user chooses the “move” command from the popup menu, the 

Boolean value for the variable bMove is set to TRUE. The intelligent parser will 

guide the user to left click on the virtual working object to be moved. The left click 

from the user will activate the OnLButtonDown( ) function in the VC++. The 
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coordinate of the left click is checked if the virtual working object is chosen. The 

sides of the virtual working object can be transformed into four linear equations. The 

four linear equations of the virtual working object with the centre at the coordinate 

(100, 100) and orientation 0o are given in the Figure 5.5. If the coordinate of the left 

click is fulfilling all the inequalities 87≥x , 113≤x , 87≥y  and 113≤y , the object 

with the centre at the coordinate (100, 100) and orientation 0o is left clicked by the 

user. The Boolean value for the bObjClk is set to TRUE. 

 

When the Boolean values of bMove and bObjClk are set to TRUE, the 

function OnMouseMove( ) which is activated by the mouse movement event will 

cause the virtual working object being move according to the location of the mouse 

pointer. The intelligent parser will guide the user to left click on the location of the 

virtual working area where the virtual working object is placed. The second left click 

on the virtual working area will cause the object to be dropped and the “move” 

command is terminated. 

 

 

 

 
 

Figure 5.3: Popup menu 1 
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Figure 5.4: Popup menu 2 

 

 

(100, 100)

°= 45θ

(113, 87)

(113, 113)(87, 113)

(87, 87)

113=x87=x

113=y

87=y

 
 

Figure 5.5: Linear equations for the sides 

 

 

 

5.3.3 Integration of Natural Language Parser And Mouse Events Interpreter  

 

The telerobotic client program offers the integration of both of the command 

input methods discussed above. The ease of the task-oriented command input 

through mouse operation and the ease of the exact value specification through type-

written natural language can be achieved at the same time. The user can activate the 

task-oriented command through the mouse operation and then use the type-written 
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natural language to specify the exact value. In order to achieve the integration of the 

both command input methods, the ability of the natural language parser and the 

mouse interpreter are extended to be able to understand the every sub-command in 

the task-oriented command supported. For example, the natural language parser must 

be able to understand the meaning of the sub-commands such as “move”, “move 

x20y20”, “move x20y20 to”, “x20y20” and “move x20y20 to x200y100”. 

 

Let’s take the example discussed in the Section 5.3.2 where the user is 

moving the virtual working object by using the mouse operation. After the “move” 

command was activated and the virtual working object was clicked, the Boolean 

values of bMove and bObjClk are set to TRUE. The intelligent parser will guide the 

user to left click on the location of the virtual working area where the virtual working 

object is placed. The intelligent parser will also inform the user about the support of 

the coordinate value specification through the type-written natural language. If the 

user decided to specify the coordinate value through type-written natural language, 

the input is processed by the natural language parser. The action is then carried out 

by the natural language parser since the last sub-command of the task-oriented 

command is a type-written natural language. 

 

 

 

5.4 Intelligent Parser 

 

In the process of operating the system, the intelligent parser will guide the 

user to operate the system. The intelligent parser is called "intelligent" because it can 

guide the user to operate the system as well as to detect the error done by the user. 

The intelligent parser is able to detect the spelling error, the syntax error and logical 

error in the task-oriented natural language command. The intelligent parser is 

conveying in natural language. This makes the system become more user friendly. 

The symbol placed in front of the message is indicating the type of messages. The 

symbols used are:- 
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>> the message keyed in by the user or the message send from 

the server 

!!! Error message 

... Feedback from the intelligent parser (if no error 

detected) 

 

 In the message listing, the latest message is placed on the top of the message 

list. For the example as shown in the Figure 5.6, the line numbering is purposely 

labeled for the explanation. The first message is started at line 4 and ended at line 1. 

The next message is at line 5 which is indicating the user tries to login to the server. 

The line 8 is telling the user that he or she is now connected to the server. The 

following messages are given at line 9, 10, 11 and 13. 

  

 
 13 ... which object to be moved? 

 12     you may click on the object or key in the coordinate value. 

 11 >> move 

 10 ... you may choose any command from the menu. 

 9 >> command menu 

 8 ... you are now connected to the server. 

 7     you can start to operate the utm telerobot. 

 6     right click on the virtual environment to get the command menu. 

 5 >> login 

 4 ... hi...you are welcome to operate the utm telerobot. 

 3     i'm intelligent parser. i'll guide you to operate the robot. 

 2     click the "login" button to connect to the server. 

 1     or click the "help" button to get some important information. 

 

Figure 5.6: Natural language listing 

 

 

 

5.5 Task Pre-Processor 

 

The objective of the task pre-processor is to check if the task can be carried 

out by the telerobotic system. When the user issuing the “execute” command, the 

environmental information of the virtual working area is passed to the task pre-

processor. There might be some cases where the task issued by the user is not able to 

be performed by the telerobotic system. For example, the telerobotic system is not 
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being able to grip or to place the working objects too close to each other due to the 

physical design of the gripper. In certain cases, the user might try to overlap the 

virtual working objects in hoping that the telerobotic system will stack the working 

object one on the other. 

 

In order to avoid the objects are being too close or being overlapped by the 

user, the distance between the virtual working objects must be checked. The distance 

allowed between the objects is limited to 65 pixels. Let‘s assume that there are two 

virtual working objects located at the coordinate ),( 11 yx and ),( 22 yx respectively. 

The formula for the distance between two virtual working objects is given as below:- 

 

Distance, 2
21

2
21 )()( yyxxd −+−=  

 

If there are five virtual working objects labeled as 1, 2, 3, 4 and 5, it is not 

necessary to check the distance between all the combinations. The combinations 

needed to be checked are 5-4, 5-3, 5-2, 5-1, 4-3, 4-2, 4-1, 3-2, 3-1 and 2-1. The 

combinations such as 4-5, 3-5 and 2-5 are the same as the combinations 5-4, 5-3 and 

5-2 and thus can be ignored. The number of combinations is given by the formula as 

below:- 

 

The number of combinations, rnCq=  

where n is the number of objects to be arranged in the combination of r 

objects. 

 

For the example given, there are 5 objects arranged in the combination of 2 

objects. Thus the number of combinations, 1025 == Cq . This can avoid the 

redundancy in the distance between two objects checking. If the distance between the 

centres of the object is less than 65 pixels, the user is informed about the location of 

the combination which is too close. 

 

On the other hand, there is no limitation on the number of the rotation 

allowed for the virtual working object manipulated through mouse operation. 

However, in the type-written natural language the virtual working object is allowed 
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to be rotated from 0o to 359o. Since the virtual working object is a square from the 

top view, the rotation at the value 90o, 180o and 270o make no difference from the 

original top view. This is shown in the Figure 5.7 where the original orientation of 

the cube is 0o. Thus the effective working angle is limited from 0o to 89o. The 

rotation angle of the virtual working objects are converted by the task pre-processor 

to the corresponding value. 

 

 

Reference
corner

0o Rotated
90o

Rotated
180o

Rotated
270o

 

 

Figure 5.7: Object rotated 90o, 180o and 270o 

 

 

 

5.6 Client-server Connection Manager 

 

There are two client-server connection managers. The client-server 

connection manager at the telerobotic server program is responsible for listening to 

the request from the client-server connection manager at the telerobotic client 

program. The connection process is simplified and shown in the Figure 5.8. The 

client-server connection manager at the telerobotic server program is designed so that 

one user can login and control the system at a single time.  

 

When the server is online and there is no other user connected to the server, 

the request from the telerobotic client program is accepted. The user is allocated for 

10 minute to operate the system. This is to avoid a single user from occupying the 

whole system for a long period of time. The telerobotic client program will receive 

an image of the top view of the working area in JPEG file format and the working 

objects information contained in the URL string.  
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The working objects information is encoded in URL string by using the URL 

encoding scheme specified by MIME. A small modification has been made to 

simplify the encoding and parsing process. The semicolon sign (;) at the ending of 

the message is omitted. Every working object is represented by the values of the 

coordinate-x, coordinate-y and the orientation. The working objects are labeled from 

the integer number 1 and so on for the identification. If an object is labeled with 

number 1 and the coordinate-x, the coordinate-y and the orientation are 10, 20 and 30 

respectively then in the URL string the values of the object are separated with a plus 

sign (+) as 10+20+30. The working object’s identifier is separated from the values 

with an equal sign (=) as 1=10+20+30. If there is another working abject labeled 

with number 2, the identifier-values pairs of both of the working objects are 

separated with an ampersand (&) as 1=10+20+30&2=100+200+60.  

 

After the user complete the task assignment and command the system to 

execute the task, the information of the virtual working objects is encoded to the 

URL string by the client-server connection manager at the telerobotic client program 

before send out. The other URL strings that might be sent by the telerobotic server 

program to the telerobotic client program are listed in the Table 5.2.  

 

When the time is out, the user is automatically logged out by the server. The 

client-server connection manager is also able to accept the manual logout from the 

user before the time is out. If there is another user trying to login to the server while 

the server is currently having a client connected to it, the user is able to receive only 

the top view of the working area in JPEG file format before automatically logout by 

the server. The client-server connection manager is also responsible for the client-

server exception handling. The types of the client-server exception handling are 

discussed in the Section 7.10. 
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Figure 5.8: Client-server connection process 

 

 

Table 5.2: URL strings 

 

URL Strings Explanation 

1=10+20+30&2=100+200+60 Information of the working objects or the 

virtual working objects. 

e=1 Error code 1: Working object exception. 

e=2 Error code 2: Vision calibration failed 

because of modelfind. 

e=3 Error code 3: Vision calibration failed 

because of out of range. 

e=4&t=9 Error code 4: Login attempt while server 

is busy. The remaining time for the 

current user is about 9 to 10 minute.  

e=5 Error code 5: Time out. 

e=6 Error code 6: Login attempt while task in 

progress. 

e=7 Error code 7: Log file cannot be opened. 

 

 

 

5.8 FTP Server 

 

The objective of the FTP server is to serve the FTP request from the 

telerobotic client program. The FTP server is set by using the Internet Information 

Services (IIS) program come with the Windows 2000 Server. The FTP directory is 

set at the c:\Inetpub\ftproot\. The working area top view image captured is 
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compressed by using the ActiveMIL command Save( ). The compressed file is 

using the JPEG format. When the user login to the client-server connection manager, 

either accepted or rejected, a copy of the image is send to the telerobotic client 

program. 

 

 

 

5.8 Summary 

 

This chapter is mainly focusing on the process of interpreting the task-

oriented command from the user. The user can manipulate the virtual working object 

through the mouse operation and type-written natural language. The details on the 

virtual working area and working objects construction are covered. The mouse 

operation on the virtual working area and working objects are discussed in details. 

Next, the construction and processing of the task-oriented natural language are 

explained. The intelligent parser is then introduced. The intelligent parser can guide 

the user to operate the UTM telerobotic system through the mix usage of the mouse 

operation and the type-written natural language discussed. Finally, the client-server 

connection manager and FTP server are discussed. Both the client-server connection 

manager and FTP server are playing an important role in maintaining the connection 

between the client and server. 
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CHAPTER 6 

 

 

 

HIGH LEVEL COMMAND TO LOW LEVEL COMMAND TRANSLATION 

 

 

 

6.1 Introduction 

 

As mentioned in the Section 4.3, the robotic sub-system (the robot with its 

controller) and the vision sub-system (combination of the camera and the image 

controller) is equivalent to a closed-loop system. The details of the process in the 

task conversion to a series of robot command and the robot command execution are 

discussed in this chapter. The architecture of the UTM telerobotic system is given in 

the Section 4.3. 

 

 

 

6.2 Task Planner 

 

The task planner consists of a task controller and the knowledge defined to 

support the operation of the task controller. In the knowledge of the task controller, it 

knows that the working objects can be manipulated within the area defined from 

x10y10 to x240y240. As compared with command pre-processor, the task controller 

knows only the basic operations that are move and rotate commands. The working 

object can be either moved within the area from x10y10 to x240y240 or rotated for 

0o to 89o. The smallest unit for the working object movement is 1 pixel while the 

smallest unit for the working object rotation is 1o. The information of the working 

objects is kept in a 2 dimensional matrix defined as Coordinate[3][100]. The 
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matrix is capable to store information up to 100 working objects. The information 

stored for each object is the coordinate-x of the centre, the coordinate-y of the centre 

and the orientation of the working object. There are another two 2 dimensional 

matrices defined as CoordinateClient[3][100] and PathPlan[3][200]. The 

matrix CoordinateClient[3][100] is used to keep the information of the virtual 

working object that is being send by the telerobotic client program. While the matrix 

PathPlan[3][200] is used to keep the details of the task planned for the robot path 

planner.  

 

The task of the telerobotic system is to manipulate the cube blocks placed in 

front of the telerobot. So the main objective of the task controller is to identify the 

sub-task from the task send by the telerobotic client program. In the task send, it 

might contain more than one virtual working objects being manipulated by the user. 

The task controller has to identify each of the objects being manipulated as well as 

the information of how the virtual working object is being manipulated. 

 

For example, let’s assumed there are five working objects in the working area 

at the remote site. The details of the working objects are given in the Table 6.1. The 

information is stored in the 2 dimensional matrix Coordinate[3][100] and 5 out of 

100 records available are used. Let’s assumed that the virtual working objects labeled 

as 3, 4 and 5 are being manipulated by the user. The details of the virtual working 

objects after manipulation are given in the Table 6.2. The information is stored in the 

2 dimensional matrix CoordinateClient[3][100] and 5 out of 100 records 

available are used. The task controller will then make a comparison between the 

information kept in both of the 2 dimensional matrices. The differences between the 

information kept in both of the 2 dimensional matrices are shown in the Table 6.3. 

The pair of the records, for example the first and second records are referring to the 

same working object. The first record is indicating the original state of the working 

object while the second record is indicating the final state of the working object 

requested by the user. The information shown in the Table 6.3 is stored in the 2 

dimensional matrix PathPlan[3][200] and 6 out of 200 records available are used. 

The 2 dimensional matrix PathPlan[3][200] is used by the robot path planner. 
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Besides identifying the sub-task from the task send by the telerobotic client 

program, there are some other objectives defined for the task planner. The task 

planner is in charged for system initialization when the “system start” button is 

clicked by the system administrator. The task planner will first initialize the robot, 

vision self-calibration and then make the system online. Furthermore, the task 

planner must supervise the progress of the task. An appropriate action is taken if any 

system error is detected during the system initialization and task progress. 

 

 

Table 6.1: Details of the working objects at the remote site 

 

Object number Coordinate-x of 

the centre  

Coordinate-y of 

the centre  

Orientation 

1 104 138 10 o 

2 10 187 20 o 

3 217 189 30 o 

4 10 10 40 o 

5 230 10 50 o 

 

 

Table 6.2: Details of the virtual working objects send by the telerobotic client 

program 

 

Object number Coordinate-x of 

the centre  

Coordinate-y of 

the centre  

Orientation 

1 104 138 10 o 

2 10 187 20 o 

3 164 232 50 o 

4 10 10 10 o 

5 120 20 50 o 
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Table 6.3: Differences between the information kept in the Table 6.1 and Table 

6.2 

 

Sub-task number Coordinate-x of 

the centre  

Coordinate-y of 

the centre  

Orientation 

1 217 189 30 o 

2 164 232 50 o 

3 10 10 40 o 

4 10 10 10 o 

5 230 10 50 o 

6 120 20 50 o 

 

 

 

6.3 Robot Path Planner 

 

The Rhino robot is supporting both the joint coordinate system and the xyz 

coordinate system (Rhino Robots, INC., 1989). In the joint coordinate system, the 

motors are given distances to move in units of encoder count. In the xyz coordinate 

system, the motors are given distances to move in units of millimeters or degrees. 

The xyz coordinate system is easier to be used since it requires the programmer to 

specify only the final coordinate and orientation of the end effector. The end effector 

can be controlled directly to the coordinate of the object to be griped. However, in 

this report the joint coordinate system is chosen instead of xyz coordinate system. 

This is because in the xyz coordinate system the details of motors movement cannot 

be controlled directly and this has caused the objects being collided by the end 

effector. To avoid this from happening, the joint coordinate is used in UTM 

telerobotic system. 

 

Once the coordinate is known, the next step is to define the behavior for the 

robot arm to grip and to place the working object. The Rhino robot is a revolute type 

configuration (RRR) robot arm. The details of the revolute type configuration were 

discussed in the Section 4.2.1. Since the process of the object gripping and placing is 
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better done with the opening of the gripper 90o pointing downward. It will take less 

space if compared with the other orientation of the gripper. Thus in the arm behavior 

definition, the motor C can be ignored since the gripper is already 90o pointing 

downward after initialization. 

 

During the process of the working object gripping and placing, one motor is 

moved at a single time. This is decided after the testing to move more than one motor 

at a single time. The robot arm becomes shaky and not stable when more than one 

motor is moved at a single time. Besides by moving one motor at a single time, it 

will simplify the process of the robot path prediction. There are many possible 

combination of the different motors movement to grip the same object. The best 

combination is chosen after the testing. It is assumed that the robot has been 

initialized. The motor F is first moved to align the robot arm with the working object 

to be gripped. The motor F is first moved before the arm is extended so that the 

inertia can be reduced. Then the motor E is moved and followed by the motor D to 

extend the robot arm to the coordinate of the working object to be gripped. The 

motor E is moved before the motor D to avoid the physical limit being reached by 

the motor D. After that, the motor B is moved according to the orientation of the 

working object. The motor A is moved to grip the working object. Then the motor D 

is moved and followed by motor E to move the arm to the soft home defined in the 

Table 6.4. The working object is now gripped on the gripper waiting for the object to 

be placed on the working area. 

 

During the process of object placing, the motor F is first moved to align the 

robot arm with the coordinate of the working object to be placed. Then the motor E is 

moved. After that, the motor B is moved according to the orientation of the working 

object as required by the user. Next the motor D is moved. Now the motor A is 

moved to release the working object at the desired coordinate. The motor B is moved 

again so that the opening of the gripper is aligned with the path of the robot hand to 

avoid the collision with the working object being placed. Then the motor D is moved 

and followed by motor E to move the arm to the soft home defined. The real pictures 

for the process of working object gripping and placing are shown and discussed in 

the Chapter 8. 
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In the end of the working object gripping and placing cycles, the robot arm is 

moved to the soft home defined. The unit encoder count for the motor D and E at the 

soft home are -200 and 500 respectively. At the soft home, the robot arm is totally 

out of the area viewable by the camera. The robot configuration at soft home is 

shown in the Figure 6.1. An image is then captured and processed. The working 

object exception is checked in case the working object is failed to be gripped. The 

details of the working object exception handling are discussed in the Section 7.9. 

 

The next step is to find the angle value for the motors rotation so that the 

working object can be gripped. First of all, the coordinate systems for the robot and 

the working area have to be defined. The coordinate systems for the working area 

and the robot are shown in the Figure 6.2. The coordinate system for the working 

area is 110 mm higher than the coordinate system for the robot. The direction of the 

x-axis is defined opposite of the standard direction so that the coordinate system for 

the real working area is exactly similar to the coordinate system used in the virtual 

working area as discussed in the Section 5.2. The transformation matrices for both 

the coordinate systems are given below:- 

 

Transformation matrix refer to robot-based coordinate system (xyz0), 
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Transformation matrix refer to working area coordinate system (xyz1), 
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Let say, there is a point axyz1 = (0, 0, 0)T , which is referred to working area 

coordinate system. The calculation shown below shows the way to find the point 

axyz0 referred to robot-based coordinate system. 
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 Thus, axyz1 = (-92.5, 228, 110)T  when expressed with respect to the robot-

based coordinate system. 

 

During the process of the working object gripping and placing, the motor F, 

E, D, B and A are involved. The geometric approach is used to solve the inverse 

kinematics problem of the robot to find the angle value for each of the motor during 

the process of gripping and placing of a working object. The angle value for the 

motor A can be ignored since it controls only either to open or close the gripper. The 

Figure 6.3 and Figure 6.4 are showing the top and side views of the robot. The 

gripper of the robot is located at the coordinate ),,( zyx PPP  refer to robot-based 

coordinate system. The value for the angles Bα , Dα , Eα , Fα  and the top view 

distance between the origin and the point ),,( zyx PPP , d , can be found as follows:- 

  

22
yx PPd +=  (3) 

( )[ ] ( )2.457/cos6.228/2/cos 11 ddE
−− ==α  (4) 

( )2.457/cos 1 dED
−== αα  (Isosceles triangle) (5) 

( )yxF PP /tan 1−=α  (6) 

( )yxFB PP /tan9090 1−+°=+°= αα  (7) 

 

Next the angle values found have to be converted to the unit of encoder count 

which is required in the robot command. Unfortunately, the conversion is not given 

in the manual or the Rhino official website. A lot of testing is carried out to find the 
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approximate unit of encoder count for the corresponding angle value at each of the 

motor. The Table 6.4 is giving the approximate value for the conversion from angle 

value to the unit of encoder count and the relationship between the distance in the 

working area with respect to the distance in the image captured. A reference unit 

encoder count for each of the motor with respect to the physical position has to be 

defined. The unit encoder count for each of the motor at the reference point is given 

in the Table 6.5. At the reference point, the robot shoulder and the elbow as well as 

the robot elbow and the hand are perpendicular to each other. The robot 

configuration is shown in the Figure 6.5. 

 

When implemented in the programming, the direction of the motor rotation 

has to be considered. For example if the robot arm is turned to right-hand side, the 

motor F unit encoder count is in negative value. The initial value of the motor at the 

soft home has to be considered.  Let’s assumed there is a working object placed at 

the coordinate ),( yx  with the orientationθ . The equations given below are showing 

the corresponding unit encoder count for the motors to reach the working object 

mentioned.  

 
T
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0T  is from equation (1) 
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From the equation (3), the distance (top view) between the origin and the 

point ),( yx ,  

( ) ( )22 2285.92 ++−= yxd  (8) 
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By combining the equations (4) to (7) and the data from the Table 6.4 and 

Table 6.5, the unit encoder count for the motors B, D, E and F can be found as 

follows:- 

 

 Motor B (unit encoder count), 

[ ] ( ) ( )°×







−








+
−

+°=°×−= − 90/1165
228

5.92
tan9090/1165 1 θθα

y
x

B B  (9) 

 

Motor D (unit encoder count), 

( ) ( ) ( )°×−−=°×−−= − 90/32002.457/cos7290/320072 1 dD Dα  (10) 

 

Motor E (unit encoder count), 

[ ] ( )°×−°+= 90/3200901120 EE α
( )[ ] ( )°×−°+= − 90/32002.457/cos901120 1 dE  (11) 

 

Motor F (unit encoder count),  

( ) ( )°×





+
−=°×= − 90/1590

228
5.92

tan90/1590 1

y
x

F Fα  (12) 

 

With the equations given above, all the sub-tasks passed from the task 

planner, which is contained in the 2 dimensional matrix PathPlan[3][200] can now 

be transformed into the corresponding robot commands. The coordinate value given 

in the equations is based on the millimeter while the unit used in the virtual working 

area is in pixel. The first two records in the 2 dimensional matrix PathPlan[3][200] 

are used for the discussion. Based on the conversion data from the Table 6.4, the unit 

for the coordinate values of the first two records to move the object at the coordinate 

(217, 189) to coordinate (164, 232) is converted to the millimeter as shown below:- 

 

mmpixel 160
476
350217217 =





×=  

mmpixel 139
476
350189189 =





×=  
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mmpixel 121
476
350164164 =





×=  

mmpixel 171
476
350232232 =





×=  

∴The new coordinates are (160, 139) and (121, 171). 

 

The first two records can now be transformed into the equivalent robot 

commands as shown in the Figure 6.6. The numbering is purposely labeled for every 

line for the ease of explanation. A comment is given for every command. The 

command given at the line number 1 is telling the robot controller the unit encoder 

count for the motor F is 184. The value 184 is calculated from the equation (12). The 

command at the line 2 is instructing the robot controller to move the motor F. The 

command at the line 9 is to turn on the auxiliary port 1 to drive the motor A. The 

auxiliary port 1 is used instead of the port A due to the sensor at the motor A is 

damaged and cannot be driven by the port A. The robot command is send through the 

serial port 1. The serial port 1 is set at the baud rate 9600 bps, 7 data bits, 2 stop bits 

and 1 odd parity bit. The robot command to move the motor is send after the prior 

motor command is completely carried out. The system is set at the maximum system 

velocity for faster task completion. 

 

 

 
 

Figure 6.1: Robot soft home 
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Table 6.4: Motors’ unit encoder count at soft home 

 

Motor Unit encoder count 

A Gripper opened (Robot command: xs, 1, -40) 

B 1165 

C 0 

D -200 

E 500 

F Depending on the previous state 

 

 

Y0

X0
Z0

X1

Y1

Z1

185 mm

228 mm

 
 

Figure 6.2: Working area and robot-based coordinate systems 
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Figure 6.3: Top view of the robot 
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Figure 6.4: Side view of the robot 

 

 

Table 6.4: Conversion table 

 

Unit 1 Unit 2 

90o (motor B) 1165 unit encoder count 

90o (motor D, E) 3200 unit encoder count 

90o (motor F) 1590 unit encoder count 

350 mm 476 pixel 

 

 

Table 6.5: Motors’ unit encoder count at reference point 

 

Motor Unit encoder count 

A Gripper opened (Robot command: xs, 1, -40) 

B 1165 

C 0 

D -72 

E 1120 

F 0 
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Figure 6.5: Robot physical configuration at reference point 

 

 
28 ms, e  //Start motor E 

27 pd, e, 500 //Set motor E destination position (Soft home) 

26 ms, d  //Start motor D 

25 pd, d, -200 //Set motor D destination position (Soft home) 

24 ms, b  //Start motor B 

23 pd, b, 1165 //Set motor B destination position (Soft home) 

22 xs, 1, -40 //Set auxiliary port level (open gripper) 

21 ms, d  //Start motor D 

20 pd, d, -103 //Set motor D destination position 

19 ms, b  //Start motor B 

18 pd, b, 571 //Set motor B destination position 

17 ms, e  //Start motor E 

16 pd, e, 3290 //Set motor E destination position 

15 ms, f  //Start motor F 

14 pd, f, 72 //Set motor F destination position 

13 ms, e  //Start motor E 

12 pd, e, 500 //Set motor E destination position (Soft home) 

11 ms, d  //Start motor D 

10 pd, d, -200 //Set motor D destination position (Soft home) 

9 xs, 1, 40 //Set auxiliary port level (close gripper) 

8 ms, b  //Start motor B 

7 pd, b, 912 //Set motor B destination position 

6 ms, d  //Start motor D 

5 pd, d, -1328 //Set motor D destination position 

4 ms, e  //Start motor E 

3 pd, e, 3064 //Set motor E destination position 

2 ms, f  //Start motor F 

1 pd, f, 184 //Set motor F destination position 

 

Figure 6.6: Robot commands 
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6.4 Vision Sub-system 

 

The camera is put at 935 mm exactly on the top of the working area. This is 

to make sure the whole of the working area can be captured by the camera. There is 

no extra lighting required since the white color of the working object and dark color 

of the working area are giving enough contrast in image processing. The vision sub-

system is playing an important role in the translation of the high level command to 

the low level command. The vision sub-system is the “eye” of the telerobotic system 

that help the telerobotic system to “see” the objects specified by the user in the task. 

In other word, the objective of the vision sub-system is to abstract the information of 

the working objects from the image captured. The vision sub-system is also used in 

the system self-calibration. 

 

 

 

6.4.1 Working Object Recognition 

 

The steps involved in the working object recognition are as below:- 

 

i) Image capturing 

 

This is the process to capture an interested image from the continuing image 

captured by the camera. For example, after the soft home the working area top view 

image is captured for the image processing. The ActiveMIL function Grab( ) is 

used to capture the image. A sample of the image captured is shown in the Figure 

6.7. 

 

ii) Segmentation 

 

Segmentation is the process that partitions an image into objects of interest. 

Since the size of the image captured is bigger than the actual size required, only the 

interested part of the image is segmented. The ActiveMIL function CopyRegion( ) 

is used to perform the segmentation. A sample of the image segmented is shown in 

the Figure 6.8. 
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iii) Pre-processing 

 

Pre-processing deals with the techniques such as noise reduction and 

enhancement of details. First of all, the image segmented is smoothed by using the 

ActiveMIL function Smooth( ). Smoothing is the process for reducing noise that 

may be present in an image as a result of sampling and transmission. The result is 

shown in the Figure 6.9. Then the image is binarized by using the ActiveMIL 

function Binarize( ). A binarizing operation reduces an image to two grayscale 

values: 0 (black) and 255 (white). The result is shown in the Figure 6.10. After that, 

the image is pre-processed by using the ActiveMIL functions Open( ) and Close( 

). The opening operation is to remove small particles in the image while the closing 

operation is to remove holes from the blobs. The result is shown in the Figure 6.11 

and Figure 6.12. 

 

iv) ModelFinder 

 

The ActiveMIL ModelFinder control is used to find the working objects in 

the image captured. A model of the working object is first defined in the ActiveMIL 

ModelFinder as shown in the Figure 6.13. Then the working objects are searched 

from the image pre-processed by using the ActiveMIL function Find( ). The result 

of the processing is kept in the 2 dimensional matrix Coordinate[3][100] 

mentioned in the Section 6.2. 

 

v) Object identifying 

 

The boxes are drawn to identify the working objects found from the previous 

process. The ActiveMIL function Draw( ) is used to draw the boxes. The result is 

shown in the Figure 6.14. 
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Figure 6.7: Image captured 

 

 

 
 

Figure 6.8: Image segmented 
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Figure 6.9: Image smoothed 

 

 

 
 

Figure 6.10: Image binarized 
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Figure 6.11: Image opened 

 

 

 
 

Figure 6.12: Image closed 
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Figure 6.13: Model defined in the ModelFinderer Control 

 

 

 
 

Figure 6.14: Boxes are drawn at the working objects recognized 
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6.4.2 System Self-calibration 

 

The details of the system self-calibration are discussed in the Section 7.8. The 

discussion here is limited to the image processing to identify the reference point in 

the image captured. The image processing involved is exactly as the same as 

discussed in the Section 6.4.1 except the steps (ii) and (iii) are skipped. The pre-

processing is not required to enhance the image captured since the model defined in 

the ModelFinder control is big enough to overcome the noise in the image captured. 

 

 

 
 

Figure 6.15: Model defined in the ModelFinder Control 
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Figure 6.16: A box is drawn at the part of the gripper recognized 

 

 

 

6.5 Summary 

 

This Chapter explains the process of translating the task required by the user 

to the robot command. The task planner will process the task required by the user to 

the sub-task level. Meanwhile the robot path planner will then convert every sub-task 

to a series of the robot command. The conversion of the sub-task to a series of the 

robot command is based on the robot arm behavior defined in the Section 6.3. After 

that, the robot command is executed by the robot path planner one by one. On the 

other hand, the role of the vision sub-system in the translating the high level 

command to low level command are also discussed. 
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CHAPTER 7 

 

 

 

SAFETY, RELIABILITY AND ACCURACY DESIGN OF THE 

TELEROBOTIC SYSTEM 

 

 

 

7.1 Introduction 

 

 Safety, reliability and accuracy are some of the importance factors needed to 

be considered when designing the telerobotic system. Among three of the factors, the 

safety design is first considered since a bad safety design will make the system 

costly. The telerobotic system design must take consider the safety of the human, 

robot and others such as working objects, working area and the equipments. Among 

three of the factors, human safety must be given the first priority. Since the 

telerobotic system is remotely control thus the safety of the remote user can be 

ignored. However the safety of the people who might do the system maintenance, 

system setup and the visitors must be considered. A work cell with the fence has 

been setup to prevent the people from accidentally entering the work area of the 

robot. The dimension of the work cell design is discussed in Section 7.4. 

 

Second priority is given to the safety of the robot. The system is built based 

on the task-oriented concept and thus the user has no direct control on the robot. The 

term “no direct control” is referring to the ability of the UTM telerobotic client 

program to issue a command that can instruct the UTM telerobotic server program to 

control the movement of the robot as desired by the user. On the other hand, the task 

assigned by the user is processed by the UTM telerobotic server program to perform 

the path planning. During the path planning, the safety of the robot and others such 
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as working objects and the equipments are taken into consideration. Indirectly the 

safety of the working objects, working area and the equipments are taken care. 

Furthermore the UTM telerobotic system is self-supervised, any abnormal events can 

be recovered without causing damage to the robot and others.  

 

The reliability of the telerobotic system will determine the period between the 

first system start and the next system restart is required. A reliable telerobotic system 

seldom hangs or required system restarts during the 24 hour per day 365 days per 

year operation. The UTM telerobotic system is able to function under various 

conditions especially during abnormal events. The UTM telerobotic system is able to 

cope with the abnormal events by carrying out some special activities to compensate 

the abnormal events. For certain critical and complicated abnormal events, the UTM 

telerobotic system is not able to perform the error recovery activities. However the 

UTM telerobotic system will stop the system from the following system activities 

that might cause damage to the system. The client will be informed about the UTM 

telerobotic system error and a record of the abnormal event will be made by the UTM 

telerobotic server program for further system investigation. 

 

The UTM telerobotic server program is running on the Windows 2000 server 

with the service pack installed. The operating system is chosen to host the UTM 

telerobotic server program for its stability and reliability. On the other hand, 

reliability criterion is also one of the factors considered when choosing the hardware 

and developing tools for the vision sub-system. Some of the other facilities designed 

in the UTM telerobotic system to increase the reliability of the system are discussed 

in the subtopics below.  

 

As mentioned above, a reliable telerobotic system will have longer period 

between the first system start and the next system restart is required. So in the UTM 

telerobotic system developed, the system is halted only for the critical abnormal 

events which can not be recovered by the system automatically. This situation has to 

be kept to the minimum. The UTM telerobotic system is halted under the conditions: 

 

i) System calibration failed caused by the reference point is out of the range 

or the model of gripper can not be found in the image captured. This type 
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of system failure will affect the accuracy and functionality of the UTM 

telerobotic system and thus the system has to be halted. The failure 

happen only during the system initialization and the person in charged can 

detect the error spontaneously. The error can be fixed before the UTM 

telerobotic system is online. In another word, the error will not affect the 

continuity of the UTM telerobotic system since it can be detected and 

fixed before system is online. 

 

ii) Log file failed to be opened. This happen when the log file is write 

protected where the record can not be made. This type of error can be 

detected during UTM telerobotic system initialization. Under normal 

system operation the chance of the error happen is almost zero unless the 

system is infected by the virus, hacked by someone or the log file is 

intentionally set to ‘read only’. The UTM telerobotic system is halted for 

safety purpose. In the case the log file is missing either before system is 

initialized or during the operation the log file will be recreated 

automatically. 

 

iii)  The working objects are too close and make it impossible for the gripper 

to grip either of the working objects. The error can be detected during 

UTM telerobotic system initialization. The chance of the error happen 

during the operation is kept to the minimum.  The minimum distance 

required is discussed in the Section 7.6. If the error is detected, the system 

is halted for the safety of robot, working objects and working area. 

 

The next factor to be considered is the accuracy factor. Accuracy refers to the 

error between the measured and commanded position of the robot. Errors is 

introduced if the assumed kinematic structure differs from that of the actual 

manipulator. Such errors may be due to manufacturing tolerances in link length or 

link deformation due to load (Fu, K. S., et. al, 1987). 

 

The term accuracy can be used to refer to the accuracy of the input, system 

and the accuracy of the output. The accuracy of the output will rely on the accuracy 

of the input and the system. An inaccurate input and processing will give the 
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inaccurate output as what is called Garbage In Garbage Out (GIGO). The accuracy of 

the input from the vision system is acceptable since the system is widely used and 

recommended in industrial application. In the telerobotic system developed, the 

accuracy of the output is affected mostly by the accuracy and the repeatability of the 

robot. The Rhino robot is an educational robot. The accuracy and repeatability 

problems of the robot have to be considered. Thus the size and shape of the working 

objects (discussed in Section 7.3) and the gripper with new fingers (discussed in 

Section 7.7) are designed to achieve the optimum accuracy of the UTM telerobotic 

system.  

 

 

 

7.2 Robot Selection and Task Definition 

 

In the real application, the robot with the appropriate end effector is chosen 

based on the task assigned for the system. However this is a research project, the 

existing resources have to be optimized. So the task of the system is defined based on 

the robot chosen. The robot chosen for the telerobotic system is the Rhino robot from 

Rhino Robotics LTD.. There are three robot of the same type available. Two of the 

robot can be used as standby robot. The component of the robot can be interchanged 

within a short time if the component was damaged. This will reduce the system 

downtime once the system is launched on the Internet. The robot comes with a 

gripper. Thus the most suited task for the robot is object picked and placed. 

 

 

 

7.3 Working Object Definition 

 

The task of the robot was defined. The next step is to define the dimension of 

the working object that is best suited the robot gripper and reliable. The original 

finger of the robot is made by a rectangle metal. The surface of the touch area of the 

finger is flat and both of the touch area of the fingers is parallel. Thus the possible 

shape of the working objects is either cuboid or cube. The cube is the best choice 

since the length of the four of the sides are equal.  
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The next question is the dimension of the working object. From the design of 

the gripper, the maximum dimension of the object that can be gripped safely is about 

28 mm. The dimension of the gripper opening is shown in the Figure 7.1. 

Theoretically the dimension of the cube must be equal or less than 28 mm. A bigger 

cube will give a better result than a small cube during object recognition which is 

discussed in the Section 6.4. However a smaller cube has less chance to be hit by the 

gripper during gripping attempt. The collision happened due to the accuracy and the 

repeatability problem of the Rhino robot. From the try and error testing, the optimum 

dimension for the cube is about 20 mm.  

 

The consistency of the object dimension is another importance factor to be 

considered. During the object recognition as discussed in the Section 6.4, the object 

from the image captured is compared with the model defined. The consistency in the 

object size will improve the result of the object recognition. It is cost effective if the 

cube can be found directly from the market. Luckily the cube from the word game, 

Boggle fulfills all the conditions mentioned. The dimension of the cube is 18 mm x 

18 mm x 18 mm and the size is quite consistent. The sample of the cube with the 

gripper is shown in the Figure 7.2.   

 

 

��

� �

 

 

Figure 7.1: Dimension of gripper opening 
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Figure 7.2: Gripper and cube  

 

 

 

7.4 Work Cell Design 

 

When designing the robot work cell, the safety of the human, robot, working 

objects, working area and equipment have to be considered. The work cell has to be 

able to cover all the work volume of the robot. The robot work envelope is shown in 

Figure 7.3. The maximum high of the robot is 895.4 mm as calculated from the 

dimension given in the Figure 4.4 (Chapter 4). The work cell is also designed with 

consideration of the ease of the system setup and maintenance. For example, the 

robot and camera fixture are integrated with the work cell. The work cell is easy for 

entering and does provide enough space for the person entered.  

 

The details of the work cell dimension are given in the Appendix A while the 

Figure 7.4 is showing the real work cell. The centre of the robot work volume is 

fixed at the centre of the work cell. The work cell does provide the robot fixture. On 

the other hand, the camera is fixed on the top of the working area. The location of the 

camera is set to be out of the robot work volume for the safety consideration. The 

work cell is designed with the camera fixture. Meanwhile the working area of the 

robot is fixed in front of the robot. The dimension of the working area is discussed in 

the Section 7.5. 
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Figure 7.3: Robot work envelope  

 

 

 
 

Figure 7.4: Robot work cell 

 

 

 

7.5 Working Area Definition 

 

As the working object definition, the shape of the working area has to be first 

determined. The image captured by the camera is in rectangle shape. Thus for ease of 

image processing, real and virtual area presentation, the shape of the working area is 

set to be square. 
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The working area is placed in front of the robot and parallel with the ground 

surface. As mentioned in Section 6.3, the gripper is always pointing downward and 

perpendicular with the ground surface. Certain gap has to be reserved between the 

gripper and the working area during the object gripping and placing process. From 

the experiment, the working area is optimum if the level of the working area is set at 

110 mm from the ground. The explanation diagram is given in Figure 7.5.  

 

The next step is to define the dimension of the working area. From the 

experiment, the minimum acceptable radius for the robot is about 180 mm while the 

maximum radius is about 460 mm. The experiment is based on the assumption that 

the working area is at 110 mm from the ground. Based on the experiment result, the 

dimension of the working area is defined as 250 pixels x 250 pixels, or 185 mm x 

185 mm. The details of the calculation are given in the Figure 7.6 and the virtual 

working area is given in the Figure 7.7. 

 

Although the working area is set to 250 pixels x 250 pixels, the real image 

presented in the UTM telerobotic client program is 280 pixels x 280 pixels for the 

convenience of the user. The client actual workable area in the UTM telerobotic 

client program is set to 230 pixels x 230 pixels. The client actual workable area in 

the UTM telerobotic client program refers to the area where the centre of the object 

is valid for moving. The size of the image used in image processing is 280 pixels x 

280 pixels. The robot workable area in the remote site is greater than 280 pixels x 

280 pixels for reliability consideration. The robot workable area refers to the 

achievable area for the telerobot gripper to grip and place the working object. The 

area where the vision can recognize must be larger than the client actual workable 

area where the user can work on while the robot workable area must bigger than the 

area where the vision can recognize. The same concept applied for the client 

viewable in the UTM telerobotic client program which must be larger than the client 

workable area. The areas are shown in the Figure 7.8. 

 

 



 102 

 
 

Figure 7.5: Optimum height of the working area 

 

 

 
 

Figure 7.6: Working area dimension calculation 
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Figure 7.7: Virtual working area 
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Figure 7.8: Workable, viewable areas comparison 
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7.6 Distance Between Objects Definition 

 

Due to the robot architecture and the gripper design, certain area from the 

object to be gripped must be cleared from obstacle. As discussed in Section 6.3, the 

gripper is opened and then the opening is aligned with the path before move inward 

and downward to the location of the object to be gripped. The gripper is rotated with 

respect to the orientation of the object, gripping the working object then moved 

outward and upward. The path for the object placing is slightly different but the size 

of the area must be cleared is the same as in the object gripping.  

 

When the gripper is opened as shown in Figure 7.9, the maximum outer 

length of the finger is 56 mm. The area of a circle with radius of 34.7 mm and 

centered at the centre of the object to be gripped must be cleared from other obstacle. 

This is to give enough space for the gripper to be rotated around the object. The 

details are shown in the Figure 7.10.  Thus the minimum distance between the 

working objects required is 43.7 mm. The explanation is shown in the Figure 7.11.  

During the system operation, the actual distance allowed is set to be 48 mm or 65 

pixels. The purpose of this is to compensate the accuracy and repeatability problems 

of the Rhino robot. 

 

 

 

 

Figure 7.9: The maximum outer length of the robot finger 
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Figure 7.10: The area cleared for the gripper rotation 

 

 

 

 

Figure 7.11: The minimum distance between the working objects required 

 

 

 

7.7 Gripper with New Fingers Design 

 

Rhino Robotics LTD. is supplying a wide range of the end effectors for the 

robot sold, such as triple fingers, narrow fingers, long fingers and vacuum fingers as 

shown in Figure 7.12. The best option for the application is vacuum fingers. 

Although some modification has to be done on the surface of the working object, it 

would allow the gripper to do some complicated operation such as to place the 

working objects side by side. Due to some technical problem of getting a better end 

effector, the plan had to be given up. The focus is put on the existing gripper. The 

fingers of the gripper are redesigned as shown in Figure 7.13. The design is done 

based on the study of the application of the telerobotic system. The advantages of the 

new fingers are:- 
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i) The inner distance between fingers is maximized. This reduces the chance 

that the fingers might hit the top of the object. The safety of the robot, 

working objects and the working area are improved. 

ii) Object gripped is centralized automatically by the new fingers design. 

Thus the accuracy of the output is improved. 

iii)  The friction and sticky problem with the surface of the fingers that touch 

with the object are minimized. The object can be released spontaneously 

when the gripper is opened. This can increase the accuracy of the system 

output. 

 

 

 
 

Figure 7.12: Types of gripper available for Rhino robot 

 

 

 
 

Figure 7.13: New fingers design 
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7.8 System Self-calibration 

 

In the Section 7.4, the design of the work cell has been discussed. The 

dimension for the work cell is optimized for the current system setup. However when 

the work cell was build, there might be some tolerance occurred. This will affect the 

inverse kinematic equations derived in the Section 6.3. The term “self-calibration” 

referred here means the coordinate systems checking and calibration. The calibration 

is done in term of the software compensation. The hardware calibration, especially 

the Rhino robot can be done only by the manufacturer.  

 

 In the Section 6.4.2, the ActiveMIL ModelFinder Control is used to search 

the model defined during the system self-calibration. In order to define the model, 

first of all a working object is placed at the centre of the virtual working area. The 

gripper is moved to the top of the working object. The unit encoder count of the 

motors are recorded in the Table 7.1. An image is then captured and cropped until the 

part interested. A reference axis of the model is defined as shown in the Figure 6.15. 

The coordinate of the axis is overlapping the centre of the virtual working area. 

  

 When the system is initialized, the motors on the robot arm are moved 

according to the unit encoder count recorded in the Table 7.1. An image is captured. 

After the ActiveMIL ModelFind process, the coordinate of the gripper is identified. 

If the position of the robot is changed, it will affect the coordinate of the gripper 

found. Due to the design of the robot base holder at the work cell, the robot can be 

shifted backward only. If the robot is moved 10 mm backward so will be the gripper. 

The distance of the gripper offset is recorded. In order to compensate the error, the 

client workable area is offset with the same distance. Although the position of the 

camera and the physical working area are fixed, the position of the client workable 

area in the image captured can be offset in term of the image processing. This is 

shown in the Figure 7.14. Since the image size captured is 768 pixels x 576 pixels 

and the size of the image required for processing is 280 pixels x 280 pixels, the 

coordinate of the gripper found is valid provided it is still within the rectangle form 

by coordinates (140, 140) and (628, 436). 
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Table 7.1: Motors position for the gripper model defined 

 

Motor Unit Encoder Count 

A Gripper opened (xs, 1, -40) 

B 1165 

C 0 

D -1399 

E 2710 

F 0 

 

 

,PDJH�FDSWXUHG�SL[ HOV�[ � SL[ HOV

,PDJH�XVHG�LQ�SURFHVVLQJ�SL[ HOV�[ � SL[ HOV
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EDFNZDUG

 

 

Figure 7.14: Image offset to calibration the system 

 

 

 

7.9 Working Object Exception Handling 

 

During the process of object gripping and placing, the object exception might 

be happening. The object exception is the event where the object is not properly 

gripped or placed according to the procedure defined. For example, the object might 

be failed to be gripped because of the coordinate systems calibrated during the 
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system was initialized is no longer valid after the system is being used for a long 

period of time. 

 

At the end of the system initialization, the number of the working objects is 

recorded. As mentioned in the Section 6.3, in the working object gripping and 

placing cycles, the robot arm is moved to the soft home defined to allow for the 

image capturing. The number of the working objects after gripping and placing 

cycles are recorded and compared with the number of the working objects after 

system initialization. For example, if the number of the working objects after placing 

is not equal to the number of the working objects after system initialization, the 

system is halted. The logic of the working object exception handling is given in the 

Table 7.2.   

 

 

Table 7.2: Working object exception handling 

 

Condition Possible events and 

cause 

Error recovery 

activities 

Number of objects after placing 

? Number of objects after 

initialization 

? The object dropped 

? The object placed out 

of working area 

The system is halted. 

Number of objects after gripping 

+ 1 ? Number of objects after 

initialization 

? Failed to grip the 

object 

 

The system is halted. 

 

 

 

7.10 Client-server Exception Handling 

 

The data transfer between the telerobotic server and client programs are kept 

to minimum. The data transferred is limited to the important data such as the image 

of the top view of the working area and the working objects information encoded in 

the URL string. Thus, the connection between the client and the server is not checked 
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from time to time. Therefore the user may not be able to realize if some exception 

has happened to the connection. The actual connection between the server and client 

might lose but are not made realize by the other side, such as when the illegal 

operation is detected in the telerobotic client program and caused the operating 

system to terminate the program before the logout message is send. 

 

 When the user login to the telerobotic system, he or she is allocated for 10 

minute to operate the system. Both of the telerobotic server and client programs will 

start the timer respectively. If the telerobotic program is terminated due to the illegal 

operation mentioned, the server will automatically logout the user when the time is 

out so that the other user can operate the system. On the other hand, if the telerobotic 

server program is terminated due to the illegal operation, the telerobotic client 

program is able to terminate the connection by itself. 

 

The data send through the network is delayed. When the user is trying to 

login to the server, the request will take a certain time to reach the server and the 

delay will also happen to the message feedback from the server. Thus when the user 

login to the telerobotic system, 10 second is allocated for the telerobotic client 

program to wait for the reply from the server before the request is terminated. 

 

As mentioned in the Section 5.6, the telerobotic server program is designed to 

handle a client at a single time. When there is a client connected to the telerobotic 

server, any other user might try to login to the telerobotic server. In order to avoid 

the current user being interrupted by the other user, the telerobotic server will reject 

the rest of the users. By the way, a working area top view image and the remaining 

time for the current user is send to the user who is trying to login. 

 

From the experiment, the system will take about 30 to 40 second to move a 

working object. When the task is still in progress but the remaining time of the 

current user is out, the current user is automatically logout by the server. The server 

will not accept any user until the current task is completed. 

 

Meanwhile, the telerobotic system is halted when there is working object 

exception or system calibration error detected. The user who is currently connected 
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to the UTM telerobotic system is automatically logout and informed about the 

working object exception detected. Any other user who is trying to login after the 

exception was detected will receive the same error message. For the system 

calibration error, the client-server connection manager will not make the system 

online after the system initialization. 

 

 

 

7.11 Log File and Error Listing 

 

Testing is a process of checking by means of actual execution whether a 

system behaves as expected. It is an effort of finding error in the system. A good 

testing is able to remove almost all the errors from the system. However it is 

impossible to make the system 100% error free. The purpose of the log file in the 

UTM telerobotic system is to record the activities of the UTM telerobotic server 

program. The information recorded in the log file must be sufficient enough for 

system trace back during system investigation. The log file is stored in the telerobotic 

server. The Figure 4.9 in the Chapter 4 might help to understand the explanation 

below. The types of the events recorded in the log file are as below: 

 

i) Application launched: When the telerobotic server program is launched. 

 

ii) Application terminated: When the telerobotic server program is 

terminated. 

 

iii)  System start: When the telerobotic server system is being started. The 

system can be started by a single click on the “system start” button of the 

telerobotic server program. The system will first initialize the robot, system 

self-calibration and then make the system online. The system start button can 

also be used as the system restart function when the error happen. 

 

iv) System online: When the telerobotic server system is online and ready for 

the client remote control. The system is automatically online during the 

system start. After the system being started, the user can manually make 
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the system online by clicking on the online button (provided that the system 

is offline) of the telerobotic server program. When the system is online the 

label of the online button is changed to offline so that the system 

administrator can offline the system by clicking on the offline button. 

 

v) System offline: When the telerobotic server system is manually made 

offline by clicking on the offline button (provided that the system is online) 

of the telerobotic server program. When the system is offline the label of the 

offline button is changed to online so that the system administrator can online 

the system by clicking on the online button. 

 

vi) Robot initialization: During the start of the robot initialization. The 

robot is automatically initialized during the system start. 

 

vii) System calibration: During the start of the vision self calibration. The 

vision sub-system is automatically calibrated during the system start. 

 

viii)  Login: When there is a client successfully login to the telerobotic system. 

 

ix) Logout: When the client manually logout from the telerobotic system before 

time out. 

 

x) RefPoint> …: When the reference point is identified during the vision self 

calibration. For example, RefPoint> x180y142 means the reference point is 

at the coordinate (180, 142) of the full vision area 756 pixels x 482 pixels. 

 

xi) Env> …: When the environment information is being abstracted from the 

image captured. For example, Env>  

1=123+20+302&2=54+60+55&3=189+83+168 means there are 3 objects where 

the first object is at coordinate (123, 20) of the working area and the 

orientation is 302 degree. 
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xii) TCPIn> …: When the message is received from the client. For example, 

TCPIn>  1=123+20+302&2=54+60+55&3=189+83+168. 

 

xiii)  TCPOut> …: When the message is send to the client. For example, TCPOut>  

1=123+20+302&2=54+60+55&3=189+83+168. 

 

xiv) SerialOut> …: When the message is send to the robot through the serial port. 

For example, SerialOut> pd,f,-5. 

 

xv) Err> …: When an error is being detected. There are various types of error that 

can be detected and recorded in the log file, such as:- 

 

Err> Code 1: Objects x57y130 and x18y131 are too close 

Err> Code 1: Object number error after placing 

Err> Code 1: Object number error after gripping 

Err> Code 1: Login attempt while objects error 

Err> Code 2: System calibration failed because of modelfind 

Err> Code 2: Login attempt while system calibration failed 

Err> Code 3: System calibration failed because of out of range  

Err> Code 3: Login attempt while system calibration failed 

Err> Code 4: Login attempt while server is busy 

Err> Code 5: Time out 

Err> Code 6: Login attempt while task in progress 

Err> Code 8: Logout (System offline) 

 

There is a special type of error that cannot be recorded in the log file. This 

type of error happened due to the log file error where the file exists but cannot be 

opened for event recoding. Normally this happened when the log file is write 

protected. Since the error cannot be recorded and it is still needed to be informed to 

the system administrator, the error listing on the UTM telerobotic server program is 

designed to solve this problem. All the errors mentioned above are also listed in the 

error listing for the convenience of the system administrator. The log file error is 

listed as below:- 

 
Err> Code 7: Log file cannot be opened 

 



 114 

The example of the events recorded in the log file and the error listing are 

shown in the Figure 7.15 and 7.16 respectively. Besides the types of event, the date 

and the time of the events happened are also being recorded. The log file is a text file 

and the name of the file is based on the date of the system for the convenience of the 

system administrator. The name of the log file is based on the format YYYY-MM-

DD.txt, for example 2002-12-20.txt. The size of the log file will not be a problem 

since the size of the hard disk can be found in the market is quite huge. Besides log 

file and error listing facilities, the information recorded in the Event Viewer of the 

Windows 2000 Server can also be used as a source to trace the events of the 

telerobotic server program. 

 

 
2002/12/20 14:16:34 Application launched 

2002/12/20 14:16:48 System start 

2002/12/20 14:16:48 Robot initialization 

2002/12/20 14:17:8  SerialOut> xs,1,-40 

2002/12/20 14:17:11 System calibration 

2002/12/20 14:17:14 SerialOut> pd,e,2710 

2002/12/20 14:17:14 SerialOut> ms,e 

2002/12/20 14:17:17 SerialOut> pd,b,1165 

2002/12/20 14:17:17 SerialOut> ms,b 

2002/12/20 14:17:20 SerialOut> pd,d,-1399 

2002/12/20 14:17:20 SerialOut> ms,d 

2002/12/20 14:17:23 RefPoint> 181,142 

2002/12/20 14:17:26 Robot initialization 

2002/12/20 14:17:50 System online 

2002/12/20 14:17:51 Env> 1=119+24+27&2=53+60+56&3=189+91+82 

2002/12/20 14:17:59 Login 

2002/12/20 14:18:0  Env> 1=119+24+27&2=53+60+56&3=189+91+81 

2002/12/20 14:18:0  TCPOut> 1=119+24+27&2=53+60+56&3=189+91+82 

 

Figure 7.15: Example of the events recorded in the log file 
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Figure 7.16: Events recorded in the error listing 

 

 

 

7.12 Summary 

 

In this chapter, some of the measures are taken to cope with the safety, 

reliability and accuracy issues of the UTM telerobotic system. The robot, task and 

working object selection as well as the work cell and working area design have been 

thoroughly carried out. The new fingers design and system self-calibration can 

increase the accuracy of the UTM telerobotic system. Meanwhile, the working object 

exception handling, client-server exception handling, log file and error listing will 

enhance the reliability of the UTM telerobotic system. 

 



 116 

 

 

 
 

CHAPTER 8 

 

 

 

SYSTEM TESTING, RESULT ANALYSIS AND SYSTEM ARCHITECTURE 

COMPARISON 

 

 

 

8.1 Introduction 

 

After the UTM telerobotic system being developed, the functionality of the 

UTM telerobotic system has been tested. In order to make the explanation easy to 

understand, some of the pictures are captured and attached. The testing and analysis 

discussed below represent a small number of the total testing. Only the importance 

testing and analysis are discussed. For example, the discussion about the tasks is 

limited to the cases:- 

 

i) one object moved; 

ii) one object moved and rotated; and, 

iii)  two objects moved and rotated.  

 

This is because the tasks mentioned above cover enough movements in order 

to test the ability of robot arm behavior discussed in the Section 6.3 to handle 

different tasks. The tests carried out below include the functionality test, accuracy 

analysis and platform testing. Finally, the UTM telerobotic system is compared with 

the other similar telerobotic system. A CD-ROM contains the video clips for the 

importance testing is attached with the report.  
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8.2 Command Pre-processor Testing 

 

The command pre-processor is designed to support the use of the type-written 

natural language, the mouse operation and the integration of both of the input 

methods. The system has been tested to support all the commands with only the 

mouse operation. The test includes the logic testing. For example when the working 

object is required for the move command, the mouse is clicked on the area without 

any working object.  

 

The system has also been tested to support all the commands with only the 

use of the natural language. The natural language has been tested in full sentence and 

partially. For example the move command has been tested as “move”, “move 

x100y100”, “move x100y100 to” and “move x100y100 to x200y200”. The logic 

of the command such as to move a working object to a point that is out of the virtual 

working area has been tested. 

 

 The integration of both of the input methods has been tested. For example the 

move command, the user can first entered the command in natural language “move 

x100y100” and followed by the mouse operation to move the object to the coordinate 

desired. The user can also activate the move command by using the mouse operation 

and then followed by the use of the natural language “x100y100” and “x200y200”. 

All the possible combinations of both the input methods have been tested. 

 

 

 

8.3 Task Analysis: Single Object Moved 

 

The progress of the task to move a single working object is observed. The 

Figure 8.1 is showing a virtual working object is being moved from the coordinate 

x100y140 to x210y40. As discussed in the Section 6.3, the robot path planning for 

the cycle to grip a working object is as below:- 
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i) The motor F is first moved to align the robot arm with the working object to 

be gripped. This is shown in the Figure 8.2 (left). 

ii) Then the motor E is moved and followed by the motor D to extend the robot 

arm to the coordinate of the working object to be gripped. These are shown in 

the Figure 8.2 (right) and Figure 8.3 (left). 

iii)  After that, the motor B is moved according to the orientation of the working 

object. This is shown in the Figure 8.3 (right). 

iv) The motor A is moved to grip the working object. This is shown in the Figure 

8.4 (left). 

v) Then the motor D is moved and followed by motor E to move the arm to the 

soft home defined. These are shown in the Figure 8.4 (right) and Figure 8.5 

(left). 

 

The working object is now gripped on the gripper waiting for the object to be 

placed on the working area. The robot path planning for the cycle to place a working 

object is as below:- 

 

i) During the process of object placing, the motor F is first moved to align the 

robot arm with the coordinate of the working object to be placed. This is 

shown in the Figure 8.5 (right). 

ii) Then the motor E is moved. This is shown in the Figure 8.6 (left). 

iii)  After that, the motor B is moved according to the orientation of the working 

object as required by the user. This is shown in the Figure 8.6 (right). 

iv) Next the motor D is moved. This is shown in the Figure 8.7 (left). 

v) Now the motor A is moved to release the working object at the desired 

coordinate. This is shown in the Figure 8.7 (right). 

vi) The motor B is moved again so that the opening of the gripper is aligned with 

the path of the robot hand to avoid the collision with the working object being 

placed. This is shown in the Figure 8.8 (left). 

vii) Then the motor D is moved and followed by motor E to move the arm to the 

soft home defined. These are shown in the Figure 8.8 (right) and Figure 8.9 

(left). 
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The Figure 8.10 is showing the updated image of the top view of the working 

area after the task is done. This testing shows the ability of the UTM telerobotic 

system to move any working object in the task. 

 

 

 
 

Figure 8.1: Task planned 

 

 

 

 

Figure 8.2: Motor F is moved (left) followed motor E (right) 

 

 



 120

 
 

Figure 8.3: Motor D is moved (left) followed by motor B (right) 

 

 

 
 

Figure 8.4: Motor A is moved (left) followed by motor D (right) 

 

 

 
 

Figure 8.5: Motor E is moved (left) followed by motor F (right) 
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Figure 8.6: Motor E is moved (left) followed by motor B (right) 

 

 

 
 

Figure 8.7: Motor D is moved (left) followed by motor A (right) 

 

 

 
 

Figure 8.8: Motor B is moved (left) followed by motor D (right) 
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Figure 8.9: Motor E is moved 

 

 

 
 

Figure 8.10: Task completed 

 

 

 

8.4 Task Analysis: Single Object Moved and Rotated 

 

The Figure 8.11 is showing a virtual working object is being rotated and 

moved from the coordinate x50y130 to x70y70. As discussed in the Section 6.3, the 

robot path planning for the cycle to grip a working object is as below:- 
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i) The motor F is first moved to align the robot arm with the working object to 

be gripped. This is shown in the Figure 8.12 (left). 

ii) Then the motor E is moved and followed by the motor D to extend the robot 

arm to the coordinate of the working object to be gripped. These are shown in 

the Figure 8.12 (right) and Figure 8.13 (left). 

iii)  After that, the motor B is moved according to the orientation of the working 

object. This is shown in the Figure 8.13 (right). 

iv) The motor A is moved to grip the working object. This is shown in the Figure 

8.14 (left). 

v) Then the motor D is moved and followed by motor E to move the arm to the 

soft home defined. These are shown in the Figure 8.14 (right) and Figure 8.15 

(left). 

 

The working object is now gripped on the gripper waiting for the object to be 

placed on the working area. The robot path planning for the cycle to place a working 

object is as below:- 

 

i) During the process of object placing, the motor F is first moved to align the 

robot arm with the coordinate of the working object to be placed. This is 

shown in the Figure 8.15 (right). 

ii) Then the motor E is moved. This is shown in the Figure 8.16. 

iii)  After that, the motor B is moved according to the orientation of the working 

object as required by the user. This is shown in the Figure 8.17. 

iv) Next the motor D is moved. This is shown in the Figure 8.18 (left). 

v) Now the motor A is moved to release the working object at the desired 

coordinate. This is shown in the Figure 8.18 (right). 

vi) The motor B is moved again so that the opening of the gripper is aligned with 

the path of the robot hand to avoid the collision with the working object being 

placed. This is shown in the Figure 8.19 (left). 

vii) Then the motor D is moved and followed by motor E to move the arm to the 

soft home defined. These are shown in the Figure 8.19 (right) and Figure 

8.20. 
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The Figure 8.21 is showing the updated image of the top view of the working 

area after the task is done. The robot path planning is exactly the same as discussed 

in the Section 6.3. The working object is rotated to the orientation specified by the 

user at the step (iii) during the working object placing cycle. Thus the move and 

rotate operations for the same working object can be done in the same cycle to 

reduce the working time. This testing shows the ability of the UTM telerobotic 

system to move and rotate any working object in the same cycle in the task. 

  

 

 
 

Figure 8.11: Task planned 

 

 

 
 

Figure 8.12: Motor F is moved (left) followed by motor E (right) 
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Figure 8.13: Motor D is moved (left) followed by motor B (right) 

 

 

 

 

Figure 8.14: Motor A is moved (left) followed by motor D (right) 

 

 

 
 

Figure 8.15: Motor E is moved (left) followed by motor F (right) 
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Figure 8.16: Motor E is moved 

 

 

 
 

Figure 8.17: Motor B is moved 

 

 

 

 

Figure 8.18: Motor D is moved (left) followed by motor A (right) 
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Figure 8.19: Motor B is moved (left) followed by motor D (right) 

 

 

 

 

Figure 8.20: Motor E is moved 
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Figure 8.21: Task completed 

 

 

 

8.5 Task Analysis: Two Objects Moved and Rotated 

 

The Figure 8.22 is showing the virtual working objects are being moved from 

the coordinate x210y40 to x180y130 and from the coordinate x20y80 to x40y210 As 

discussed in the Section 6.3, the robot path planning for the cycle to grip a working 

object is as below:- 

 

i) The motor F is first moved to align the robot arm with the working object to 

be gripped. This is shown in the Figure 8.23 (left). 

ii) Then the motor E is moved and followed by the motor D to extend the robot 

arm to the coordinate of the working object to be gripped. These are shown in 

the Figure 8.23 (right) and Figure 8.24 (left). 

iii)  After that, the motor B is moved according to the orientation of the working 

object. This is shown in the Figure 8.24 (right). 

iv) The motor A is moved to grip the working object. This is shown in the Figure 

8.25 (left). 
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v) Then the motor D is moved and followed by motor E to move the arm to the 

soft home defined. These are shown in the Figure 8.25 (right) and Figure 8.26 

(left). 

 

The working object is now gripped on the gripper waiting for the object to be 

placed on the working area. The robot path planning for the cycle to place a working 

object is as below:- 

 

i) During the process of object placing, the motor F is first moved to align the 

robot arm with the coordinate of the working object to be placed. This is 

shown in the Figure 8.26 (right). 

ii) Then the motor E is moved. This is shown in the Figure 8.27 (left). 

iii)  After that, the motor B is moved according to the orientation of the working 

object as required by the user. This is shown in the Figure 8.27 (right). 

iv) Next the motor D is moved. This is shown in the Figure 8.28 (left). 

v) Now the motor A is moved to release the working object at the desired 

coordinate. This is shown in the Figure 8.28 (right). 

vi) The motor B is moved again so that the opening of the gripper is aligned with 

the path of the robot hand to avoid the collision with the working object being 

placed. This is shown in the Figure 8.29 (left). 

vii) Then the motor D is moved and followed by motor E to move the arm to the 

soft home defined. These are shown in the Figure 8.29 (right) and Figure 8.30 

(left). 

 

The cycle for the working object gripping and placing is repeated for the next 

working object. The robot path planning for the cycle to grip a working object is as 

below:- 

 

i) The motor F is first moved to align the robot arm with the working object to 

be gripped. This is shown in the Figure 8.30 (right). 

ii) Then the motor E is moved and followed by the motor D to extend the robot 

arm to the coordinate of the working object to be gripped. These are shown in 

the Figure 8.31 (left) and Figure 8.31 (right). 
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iii)  After that, the motor B is moved according to the orientation of the working 

object. This is shown in the Figure 8.32 (left). 

iv) The motor A is moved to grip the working object. This is shown in the Figure 

8.32 (right). 

v) Then the motor D is moved and followed by motor E to move the arm to the 

soft home defined. These are shown in the Figure 8.33 (left) and Figure 8.33 

(right). 

 

The working object is now gripped on the gripper waiting for the object to be 

placed on the working area. The robot path planning for the cycle to place a working 

object is as below:- 

 

i) During the process of object placing, the motor F is first moved to align the 

robot arm with the coordinate of the working object to be placed. This is 

shown in the Figure 8.34 (left). 

ii) Then the motor E is moved. This is shown in the Figure 8.34 (right). 

iii)  After that, the motor B is moved according to the orientation of the working 

object as required by the user. This is shown in the Figure 8.35 (left). 

iv) Next the motor D is moved. This is shown in the Figure 8.35 (right). 

v) Now the motor A is moved to release the working object at the desired 

coordinate. This is shown in the Figure 8.36 (left). 

vi) The motor B is moved again so that the opening of the gripper is aligned with 

the path of the robot hand to avoid the collision with the working object being 

placed. This is shown in the Figure 8.36 (right). 

vii) Then the motor D is moved and followed by motor E to move the arm to the 

soft home defined. These are shown in the Figure 8.37 (left) and Figure 8.37 

(right). 

 

The Figure 8.38 is showing the updated image of the top view of the working 

area after the task is done. This testing shows the ability of the UTM telerobotic 

system to handle more than one working objects in the task. Regardless the number 

of the working objects being manipulated in the task, the same path planning 

discussed in the Section 6.3 is followed until all the sub-tasks are done. 
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Figure 8.22: Task planned 

 

 

 

 

Figure 8.23: Motor F is moved (left) followed by motor E (right) 
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Figure 8.24: Motor D is moved (left) followed by motor B (right) 

 

 

 
 

Figure 8.25: Motor A is moved (left) followed by motor D (right) 

 

 

 
 

Figure 8.26: Motor E is moved (left) followed by motor F (right) 
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Figure 8.27: Motor E is moved (left) followed by motor B (right) 

 

 

 

 

Figure 8.28: Motor D is moved (left) followed by motor A (right) 

 

 

 

 

Figure 8.29: Motor B is moved (left) followed by motor D (right) 
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Figure 8.30: Motor E is moved (left) followed by motor F (right) 

 

 

 

 

Figure 8.31: Motor E is moved (left) followed by motor D (right) 

 

 

 

 

Figure 8.32: Motor B is moved (left) followed by motor A (right) 
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Figure 8.33: Motor D is moved (left) followed by motor E (right) 

 

 

 

 

Figure 8.34: Motor F is moved (left) followed by motor E (right) 

 

 

 
 

Figure 8.35: Motor B is moved (left) followed by motor D (right) 
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Figure 8.36: Motor A is moved (left) followed by motor B (right) 

 

 

 
 

Figure 8.37: Motor D is moved (left) followed by motor E (right) 

 

 

 
 

Figure 8.38: Task completed 
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8.6 Output Accuracy Analysis 

 

The telerobotic system is designed to manipulate with the cube blocks. The 

accuracy of the output is analyzed. The accuracy of the output referred is the error 

between the measured and commanded position of the cube block. It is hard to 

measure the position and the orientation of the cube block. The reading of the 

position and the orientation of the cube block is based on the value obtained from the 

vision sub-system. The command “object information” is used to abstract the 

information of the working object. Five sets of the reading are taken for the system 

using the standard gripper and the gripper with new fingers design.  The Table 8.1 

and Table 8.2 are showing the readings taken. By comparing the reading from the 

tables, it shows the accuracy of the system with new fingers design has been 

improved. 

 

 

Table 8.1: Output analysis for standard gripper 

 

Commanded position Actual position Difference (Absolute 

value) 
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121 126 0 116 125 1 5 1 1 

226 25 37 225 23 37 1 2 0 

24 26 1 16 20 4 8 6 3 

24 224 12 17 219 11 7 5 1 

222 226 32 216 228 33 6 2 1 

Average 5.4 3.2 1.2 
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Table 8.2: Output analysis for new fingers design 

 

Commanded position Actual position Difference (Absolute 

value) 
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130 143 0 134 140 1 4 3 1 

25 200 15 23 205 15 3 5 0 

30 60 10 25 61 11 5 1 1 

30 190 23 31 188 21 1 2 2 

0 250 40 3 252 39 3 2 1 

Average 3.2 2.6 1 

 

 

 

8.7 Exception Handling 

 

The working object exception handling has been tested. The number of the 

working object is purposely increased and reduced while the task is in progress to 

test the ability of the system to detect and react according to the object exception 

detected. Meanwhile the ability of the system to handle the client-server connection 

exception is also tested. For example the other user has tried to login the server while 

there is a user connected to the server. 

 

 

 

8.8 Platform Testing 

 

The telerobotic client and server programs are developed by using Microsoft 

Visual C++ 6.0. The advantage of using the Microsoft Visual C++ is the software 

developed is well supported by the Microsoft operating system. The telerobotic 



 139 

server program is installed on the Windows 2000 Server. However the operating 

system for the telerobotic client program is depending on the operating system used 

by the user, thus the compatibility of the telerobotic client program with the most 

commonly used operating systems is tested. The telerobotic client program has been 

installed and tested on the Windows operating systems such as Windows 98, 

Windows 98 Second Edition, Windows Millennium Edition, Windows 2000 and 

Windows XP. 

 

 

 

8.9 Local Area Network (LAN) Testing 

 

The telerobotic system has been tested on the local area network. The system 

is controlled from the different computers at different building. Only the computers 

that are connected to the Gateway 10.5.0.1 can be used to control the telerobotic 

system. This is due to the local area network setting and configuration. However this 

will not stop the system being accessed and controlled from the public once the fixed 

IP address is obtained from the Internet Service Provider (ISP). 

 

 

 

8.10 System Architecture Comparison 

 

System architecture developed is compared with the systems developed by 

other institutes and the prototype of UTM web-based telerobotic system. There are 

three of the systems that are designed to manipulate with the blocks, namely 

Australia's telerobotic system, CSC telerobot system and robotoy system. The 

advantages of the UTM telerobotic system architecture developed as compared with 

the other systems with the same application are as below:- 

 

i) Task-oriented where the system developed requires only the user to focus 

on the task, i.e. the blocks manipulation instead of the robot movement. 

For three of the telerobotic system mentioned above, the user is required 

to control the system based on the robot joint value. 
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ii) Intelligent parser is used to guide the user to operate the system. The 

concept of the intelligent parser is not used in any other of the telerobotic 

system. 

iii)  The natural language command is supported in UTM telerobotic system. 

iv) Virtual grid instead of real grid is provided. This allows the system to 

perform system self-calibration. The Australia's telerobotic system and 

CSC telerobot system are using real grid on the working area in the 

remote site. 

v) The complexity of the system in hidden thus no robotic knowledge is 

required to operate the UTM telerobotic system. For example, the 

knowledge about the part of the robot such as elbow and shoulder is not 

required as compared with three of the projects mentioned. 

vi) The safety of the robot and the working objects are protected. For 

example, it is almost impossible to control the robot to purposely hit on 

the working object. For the other telerobotic system mentioned, there is 

the possibility for the robot gripper to hit on the working object. 

vii) The system is developed using Microsoft Visual C++ instead of Java. 

This is because at the time of the telerobotic system development, 

Microsoft is planning not to support Java language in the Microsoft 

Windows XP and the future operating system.  

 

There are some limitations on the system developed such as:- 

 

i) The block manipulation is limited to 2 dimensional operations. The 

working object stacking is not allowed. This is due to the single camera 

used on the top of the working area in the UTM telerobotic system 

compared with the other telerobotic system. 

ii) The distance required between the working objects is too far as compared 

with the other projects mentioned. The distance is required in UTM 

telerobotic system to avoid the possibility that the gripper will hit on the 

working object during robot path planning. 

iii)  The requirement to download the application program whereas the other 

projects are using web-based telerobotic system.  
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iv) The telerobotic client software is not supported by the Linux and Mac 

operating system. The UTM telerobotic application program is designed 

specifically for the Windows operating system. 

 

 

 

8.11 Summary 

 

The UTM telerobotic system is first tested on its functionality such as 

command pre-processor testing and the variety task handling. The accuracy of the 

UTM telerobotic system is studied. The ability of the UTM telerobotic system on 

exception handling is also analyzed. After that, the UTM telerobotic client program 

is tested on different Windows operating system and on the local area network 

(LAN). Finally, the UTM telerobotic system architecture is compared with the other 

similar telerobotic systems. 
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CHAPTER 9 

 

 

 

CONCLUSION 

 

 

 

9.1 Introduction 

 

During the development and implementation of the system, various 

disciplines of the knowledge are involved. This has made the project quite 

challenging. The major knowledge is from the disciplines as below:- 

 

i) Robotics 

 

In order to be able to control the robot movement efficiently, the 

inverse kinematics of the robot has been derived. The lack of the information 

about the encoder rotation unit and the degree of the robot physical rotation 

has made the situation more complicated. Many experiments, try and error 

had been carried out to find the relationship between the two of the units. 

Meanwhile, the construction of the virtual environment, working object and 

mouse events processing such as object moving and rotation involve a lot of 

calculation and mathematics equations derivation. 
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ii) Natural language 

 

A study on the natural language processing has been carried out to 

develop a suitable method of natural language processing to be used. In the 

project developed, the natural language is integrated with the mouse 

operation and thus the natural language processing is more complicated. 

 

iii)  Vision system 

 

Although the vision system is developed based on ActiveMIL from 

Matrox Imaging Library (MIL), it is impossible to rely only on the high level 

ActiveMIL command to complete the object recognition. The knowledge of 

low level image processing is required. The low level ActiveMIL commands 

are used to filter out the noise at background of the objects to increase the 

accuracy of the output. Furthermore the hardware was not properly installed 

by the supplier and a lot of effort had been carried out to solve the hardware 

problems. 

 

iv) Information technology 

 

The application programs in the UTM telerobotic system are 

developed based on C++ language by using Object-oriented Programming 

(OOP) method. The ActiveMIL from Matrox Imaging Library (MIL) can be 

supported only by either C++ or Visual Basic. Thus the skills in the 

programming are very importance in determining the successful of the 

project. 

 

 Furthermore, the protocol used in the data transfer between the 

telerobotic server program and client program is a result of the study from the 

encoding scheme call URL (specified by the MIME). The study of the FTP 

server of the Windows 2000 Server has enabled the telerobotic client program 

to download the image file from the server. 
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In the telerobotic programs produced, most of the coding is self-developed by 

referring to the Microsoft Foundation Classes (MFC) documentation and the relevant 

books. The functions of image processing are called from Matrox Imaging Library 

(MIL). Due to the fact that the Matrox Imaging Library (MIL) requires a run-time 

license, the JPEG file displaying function can not be incorporated in the telerobotic 

client program. Thus the JPEG file displaying function is called from a downloaded 

library for the ease of programming. 

 

 

 

9.2 Objectives Achievement 

 

As mentioned in the Section 1.3, the objectives of the project is to study the 

latest finding in the internet-based telerobotics, develop and implement a new system 

architecture design for use in the Internet-based telerobotic application. The system 

designed must take the consideration of the problems faced in the Internet-based 

telerobotic application, such as time delay, safety and reliability factors. 

 

This project is successfully developed and implemented by considering the 

importance factors that will determine the success of the telerobotic system. The 

importance factors are learnt from the experience of the other projects developed. 

The system developed, as compared with the other systems developed, has achieved 

a lot of improvement form the perspective of:- 

 

i) User friendly of GUI 

 

The client program is providing the options for the user whether to 

use the mouse, type-written natural language or the combination of mouse 

and type-written natural language to issue a task-oriented command. The 

buttons at the telerobotic client program are kept to as minimum as possible. 

On the other hand, the telerobotic server system is designed so that the 

system can be initialized by single click on the “start system” button.  
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ii) User friendly of system architecture 

 

The architecture of the system is designed so that the user needs only 

to specify the final output required and then the system will carry out the task. 

Every user is allowed to control the system for 10 minute only to avoid the 

other user to keep waiting. The remaining time of the current user will be 

informed so that the other user can estimate the time to login again. 

 

iii)  Reliability 

 

The application of the system is designed for 24 hour per day 365 

days per year operation, many of the designs are aiming for system reliability, 

such as the log file, error listing, object size definition and the operating 

system selection. However, it is almost impossible to achieve the target for 24 

hour per day 365 days per year operation with the existing hardware. There 

are still some factors that affect the continuity of the system such as the use of 

PC as server and the type of the robot chosen. By the way, it is obvious that 

the system has been optimized to make it as reliable as possible.  

 

iv) Safety 

 

The system is designed based on the task-oriented concept. The robot 

can be safely protected from the damage caused by the client and the 

abnormal events. Furthermore the robot is isolated from the people in the 

work cell and thus the robot and the people are safely protected. 

 

v) Time delay 

 

The data transfer between the telerobotic client and server programs 

are kept to as minimum as possible. The data are limited to the image of the 

top view of the working area in JPEG file format and the URL strings as 

discussed in the Section 5.6. The content of the data transferred can be 

controlled easily when the system is build by using the application program.  
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In the web-based telerobotic project, some other data will be added to 

the original data automatically by the web server and this will increase the 

size of the data transferred. For example it need only 1 second to transferred 5 

kb of original data at transfer rate of 5 kbps. If the size of the original data is 

increased by the web server from 5 kb to 10 kb then the time required will be 

increased to 2 second. The response time of the system will become longer. 

In UTM telerobotic system, the application programs are developed so that 

the volume of data transferred between the client and server can be controlled 

and kept to minimum. 

 

vi) Accuracy 

 

The accuracy of the output is enhanced by the gripper with new 

fingers design. The tolerance achieved by the gripper with new fingers design 

as compared with the use of standard gripper are compared and discussed in 

the Section 8.6. Even though, the application of the UTM telerobotic system 

is still limited to education and entertainment application. 

 

 The system designed and developed had been tested on the local area network 

(LAN). The communication protocol is based on TCP/IP as the protocol used on the 

Internet. Thus the system can be directly connected to the Internet once a fixed IP 

address and direct Internet connection are obtained from the Internet service provider 

(ISP). 

 

 

 

9.3 Contribution 

 

As a conclusion, this report has successfully developed and implemented a 

task-oriented telerobotic system for use in Internet-based telerobotic application. In 

some of the aspects as discussed in the Section 8.8, the UTM telerobotic system 

manages to surpass the telerobotic system developed by the other research groups. 

The system has been tested from various aspects. Although the application of the 

telerobotic system developed is limited to education and entertainment application, 
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the knowledge and the experience gained from the project is valuable and useful for 

the future project. 

 

The UTM telerobotic system developed and implemented in this report 

involves a wide discipline of knowledge. Thus the contribution of the project can be 

viewed from various aspects as below:- 

 

i) Command pre-processor 

 

The command pre-processor is well designed to support mouse 

events, type-written natural language and the integration of the both types of 

command inputs. The command pre-processor can be easily expanded to 

support spoken natural language since both of the spoken and type-written 

natural language can use the similar command list and the difference is 

limited only with the form of input. The command pre-processor can also be 

easily expanded to support gesture recognition on the remote site. The object 

specification for move operation as well as the location to be placed can be 

specified by using the finger pointing. 

 

ii) Task-oriented concept for telerobotic application 

 

This project has successfully implemented a task-oriented robotic 

system for Internet-based telerobotic application. Various aspect of the design 

such as reliability, safety and accuracy consideration has been widely covered 

in the Chapter 8. The knowledge and experience can be used for the future 

project. 

 

iii)  Robot arm behavior 

 

The robot, Rhino has been optimized for the object pick and place. 

The behavior of the robot arm is specifically optimized for the cube gripping 

with the cube dimension about 2 cm x 2 cm x 2 cm. In the Chapter 8, the 

robot arm behavior has been tested for complicated task such as moves and 

rotates an object in a single task. The robot arm behavior is also tested for 
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manipulating two objects in a single task. A new behavior for different 

application can be derived from the data given in the Section 6.3. 

 

iv) Tested communication protocol for tele-application 

 

The message transfer between telerobotic server and client programs 

is based on the URL encoding scheme specified by the MIME which is used 

on Internet form application. A small modification has been made to simplify 

the encoding and parsing process. The semicolon sign (;) at the ending of the 

message is omitted. The data transferred by using the protocol is easy to 

understand and to be parsed. The data is identified by the name and value in 

pair, for example the message used in the system 7?e  means error with the 

type 7. The protocol enables the sending of many pairs of data by separating 

each pair of data by an ampersand (&). For example the message 

1=100+100+0&2=100+200+45 means there are two objects with the 

attributes given after equal sign (=). The protocol has been tested for 

telerobotic application and it can also be used in wireless applications. 

 

v) New fingers design for the Gripper 

 

The new fingers design in this report brings some improvement to the 

UTM telerobotic system. For example, the safety of the robot, working 

objects and the working area are improved. The details of the improvement 

have been discussed in the Section 7.7. 

 

 

 

9.4 Recommendations and Future Work 

 

Due to the limitation and the constraint, many of the new proposals and 

designs that were discovered and identified during the development and 

implementation of the project are not be able to be implemented in the current 

project. The proposals for the future work are as below:- 
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i) Change the robot from the revolute type configuration (RRR) arm to SCARA 

type configuration which is more suitable for object pick and place from the 

top. 

 

ii) Change the end effector from gripper type to vacuum finger type. Thus the 

size of the area required to be cleared from the obstacle around the object to 

be picked and placed can be reduced. 

 

iii)  Support more cameras to allow 3 dimensional operations such as object 

stacking. 

 

iv) The camera that supports zoom operation can be fixed on the robot end 

effector. This allows the objects to be view from various better perspectives. 

The accuracy for object gripping can be improved. 

 

v) Better users interactive where more than one user can be connected to the 

telerobotic server program for chatting. 

 

vi) Better system application such as allowing the user to manipulate with 

different shape and size of objects. 

 

vii) Voice recognition facility for spoken natural language. 

 

viii)  Gesture recognition facility for object and coordinate specification on remote 

site. 

 

ix) User registration and feed back for data collection and analysis. 

 

x) Security precaution steps for the Internet connection such as by using the 

firewall, password login and the data encryption. 

 

From the knowledge and experience gained, it is possible to extend from the 

current project to a totally new project to build a self-supervised task-oriented system 

such as Aibo from Sony Company and Asimo from Honda Company. New features 
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can be added to the command pre-processor to support voice and gesture recognition. 

The natural language conveyed by the system can be realized as sound. A new design 

of the gripper is required for more flexible and advanced arm behavior for different 

object gripping and placing. The knowledge of the system can be expended to make 

the system more intelligent such as the system can choose the best object picking 

behavior among behavior 1, 2 and 3 that are supported for the object of type A under 

various situation. The new system must be designed to work in a dynamic 

environment. 
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Abstract ?  One of the most important components 
of any telerobotics system is the user interface, as it 
determines the extent to which the user can sense the 
remote environment and consequently control the robot. 
The display in the user interface should be designed so 
that the user receives sufficient information about the 
remote environment. The controller part in the user 
interface has to be designed such that the user can 
effectively control the robot. This paper presents ways 
to design the user interface for controlling the robot via 
internet by defining the user operator, task and 
environment requirement. Besides, the problem in the 
internet also need to be considered before the user 
interface system is developed. Lastly, this paper also 
describe the implementation of development of user 
interface in Universiti Teknologi Malaysia (UTM) 
Telerobot.   

 
Keywords : Internet-based telerobotics, user interface, 
user operator. 
 

I. INTRODUCTION 
 
Internet-based Telerobotics is a system that accepts 
instructions from a distance at anywhere in the world, 
generally from a trained user operator. The user 
operator thus performs live actions in a distant 
environment and through sensors can gauge the 
consequences [1]. The basic telerobotic system to be 
launched in the Internet normally has a robot system, a 
camera and a personal computer [2]. System 
architecture of this telerobotic system is shown below: 

          

 
Fig. 1: System Architecture Design 

II. DESIGN APPROACH 
 

User interface design is a very difficult business. It 
combines two awkward disciplines [3]: psychology and 
computer science. These disciplines have very different 
cultural backgrounds: psychology is concerned with 
people; computer science with computer machinery. 
Psychologists are supposedly sympathetic and 
understanding; computer scientists are supposedly 
mathematical and precise. Psychologists have enough 
trouble understanding people even when they are not 
using computers; computer scientists have enough 
trouble getting programs to work even when they are 
not being used by people. Good user interface design 
requires these two perspectives to be united. 
 
Defining Requirement 
 
Before designing any telerobotic system, it is crucial to 
define several functional requirements. Those are: 

? Who are the users of the specific application 
and what are their experiences, aptitudes, 
motivations, and needs? 

? What is the task  for the system and what is 
required to do it? 

? What is the environment in which the 
application will be used, and what is the 
context in which the task will be done? 
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Defining the  user, task, and environment is essential in 
specifying appropriate technology for user operator 
interaction in general and in creating usable systems [4].  
 
User experience is divided to novice or expert. In 
teleoperation, the concern for novices is generally ease 
of first time use, clarity of what the user can and can’t 
do, and recoverability from error. For the expert user, 
more  focus tends to be on the “power” the system 
provides: high functionality, speed which users can 
accomplish routine tasks, and flexibility of the systems 
to accommodate the needs of expert users (e.g., to let 
users customise the way an interaction is accomplished). 
In addition, expert users might spend a great deal of 
time with a system or use it for very demanding tasks. 
In order to develop the teleoperation system, we should 
identify the goals of the application, the tasks that will 
be required to achieve those goals, and how the tasks 
will be accomplished in the teleoperation. Telerobotics 
devices are typically developed for situations or 
environments that are too dangerous, uncomfortable, 
limiting, repetitive or costly for humans to perform [5]. 
Some applications or tasks are listed below in different 
of environments: 

? Underwater: inspection, maintenance, 
construction, mining, exploration, search and 
recovery, science, surveying. 

? Space: assembly, maintenance, exploration, 
manufacturing, science. 

? Resource industry: forestry, farming, mining, 
power line maintenance. 

? Process control plants: nuclear, chemical etc., 
involving operation, maintenance, 
decommissioning, and emergency. 

? Military: operation in the air, undersea and on 
land. 

? Medical: patient transport, disability aids, 
surgery, monitoring, remote treatment. 

? Construction: earth moving, building 
construction, building and structure inspection, 
cleaning and maintenance. 

? Civil security: protection and security, fire 
fighting, police work, bomb disposal.  

? Education and entertainment. 
 
Design Consideration 
 
Based on the experiences in accessing telerobotics 
websites and literature review, there are two problems 
that affect the internet-based telerobotics performance 
that should be solved. These problems are related to 
time delay response and operator’s skill or behaviour. 
The time delay response occurs when transmitting real 
time visual feedback and control command to the client-
server. To solve these problems, the size of visual image 
has to be reduced by choosing the compressed JPEG 
(Joint Photographic Experts Group) file [6][7] and the 
part of the software that controls the hardware should be 
created as a plug-in component package [8].  
 

Whereas, to solve the user operator’s problem who is 
unfamiliar (inexperienced) with the system, there is a 
need to create a security (safety) system in user 
interface. This is especially to limit the robot workspace 
so that the damage to the manipulator or other objects in 
the task space may be avoided. Another problem that 
will occur is when many users try to access the site at 
the same time. In that case a database system may be 
used to arrange the user list that only one should be 
allowed to control the system on the particular time.  
 

III.  WEB AND APPLICATION INTERFACE 
 
There are two ways the user interface can be launched 
in the internet by using a web or application interface.  
The web is designed as a hyper-text distributed 
information storage system for technical documentation 
[9]. Data is stored at many servers, and can be accessed 
by many clients, seemingly simultaneously. The client 
programs used by people are usually referred to as Web 
browsers because they allow a user to explore inter-
related data on different topics. Whereas, application 
interface is using client-server model. The client-server 
model provides a convenient way to interconnect 
programs that are distributed efficiently across different 
locations.   
 
Web-based interface 
 
A web-based interface is usually a platform independent 
hypertext mark-up language (HTML) form that is 
coordinated with a server side common gateway 
interface (CGI) program [10]. The CGI program, in 
turn, controls the robot.  Web browser forms allow the 
designer to distribute the interface in a platform 
independent manner with little or no programming on 
the interface side.  The HTML language contains 
several different window system components that mimic 
some standard user interface components.  The interface 
is designed in a manner easily understood by users 
familiar with such environments. 
 
The bulk of the processing behind an HTML interface is 
handled by the CGI program on the server side.  These 
programs can involve sophisticated access control 
subsystems and routines, which will decode the 
interface input (motion and other commands) and 
generally pass them on to the actual control programs 
for the robot. 
 
This method is currently a popular choice for existing 
Internet-based robotics because interfaces can be 
created easily and because there are multiple platforms 
to which it can be distributed.  However, it suffers from 
the "set-submit" cycle, it has potentially wide security 
loopholes, and it raises the challenge of controlling 
concurrent users accessing multiple copies of the CGI 
server programs. The example of web-based interface is 
shown in Fig. 2. 
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Application Interface 
 
With an application interface (for example please refer 
to Fig. 3), the user interacts directly to an executing 
program.  The program is written and compiled to a 
specific hardware platform and utilises the 
communications capabilities of the platform to connect 
to a server program.  The interface program can then be 

released to users having the same hardware and 
operating system platform.  This approach, therefore, 
only benefits those users with the same platform. 
 
Applications generally require a greater effort to design 
and code the interface when compared to HTML forms, 
but they benefit from the ability to be more complex,

 
 

Fig. 2: UTM Telerobot web-based interface 
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Fig. 3: UTM Telerobot application-based interface 
 
supporting interactive tasks in a decidedly improved 
fashion.  Applications have the added benefit of 
distributing the processing.  The client-side application 
deals with the interface and interaction with the user, 
and the server-side controls the robot.  Many of the 
range checking and manipulation limits can be 
implemented in the interface application, relinquishing 
the server program from these duties. 
 
 

IV. IMPLEMENTATION 
 

The UTM Telerobot system basically consists of three 
main hardware systems that must be integrated. These 
systems are robot system, camera  system and host 
computer system. Robot system includes robot 
controller and its arm. The robot is a fixed base Rhino 
XR-4 robot that has five degree of freedom (5 DOF) and 
a gripper. The camera system is a webcam (Logitech 
Quickcam Pro) type that is used to capture the entire 
robot environment. These systems must be integrated 
together before being launched to Internet by 
programming in host computer. System architecture of 
this telerobotic system is shown in Fig. 1. Actually this 
system is built to perform simple tasks such as to move 
a small plate of steel. The target of application is in 
education and training sectors. Many research and 
educational institutions cannot afford to purchase 
industrial robots, mainly because they are very 

expensive. By introducing Internet-based Telerobotics 
system, it is a chance to expose to any users especially 
students in Malaysia on robotics area.   
 
UTM Telerobot User Interface  

 
User interface system in UTM telerobot basically 
consists of three basic services as shown in Fig. 4. 
These three services are login service, robot guidance 
(control) service and visual feedback service. The login 
service, provides communication with the other 
services, and allows the system manager to get 
information about established connection. This part is 
important to enable the system manager to arrange the 
priority user to control the robot by following the 
database system. The second service, robot guidance 
(control) service allows the user to send high-level 
commands to the server, where a Common Gateway 
Interface (CGI) script decodes and builds the 
corresponding order for the robot. The CGI is a standard 
way for the Web server (HTTPD etc) to run and talk to 
other programs on the remote computer. The last one is 
video feedback service is a part to allow feedback from 
different video cameras. The users can view the status 
of robot image.  
 
 
 
 
 
 
 
 
 

 
Fig. 4: Schematics of the User Interface 

 
 
Robot Guidance 
 
Actually, this telerobot system is using the point-to-
point controller type. So, the program should be 
designed following the controller specifications. In this 
system, C++ programming language was used to 
program the robot control system. In order for Host PC 
to talk with the robot controller, the communication link 
and protocol must be established. This must be done 
each time a program run. An open serial communication 
program is shown below [11][12]. 

 
  DCB dcbCommPort; 
  hComm = CreateFile("COM1", 
                      GENERIC_READ | GENERIC_WRITE, 
                      0,     // exclusive access 
                      NULL, // no security 
                      OPEN_EXISTING, 
                      0,     // no overlapped I/O 
                      NULL);  //null template 
 
  SetupComm(hComm, 128, 128); 
 
  GetCommTimeouts(hComm,&ctmoOld); 
  ctmoNew.ReadTotalTimeoutConstant = 100; 

 
Robot Guidance 

Visual Feedback 

Login Service 

Client 

Client 

Client 

Control 
Server 

Image 
Server 
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  ctmoNew.ReadTotalTimeoutMultiplier = 0; 
  ctmoNew.WriteTotalTimeoutMultiplier = 0; 
  ctmoNew.WriteTotalTimeoutConstant = 0; 
  SetCommTim eouts(hComm, &ctmoNew); 
 
  dcbCommPort.DCBlength = sizeof(DCB); 
  GetCommState(hComm, &dcbCommPort); 
  BuildCommDCB("9600,N,8,1",         &dcbCommPort); 
  SetCommState(hComm, &dcbCommPort); 

 
To send data or commands to the serial port the 
WriteFile call is  used. For example, the following call 
sends  “GO” (open gripper) command to the controller: 
 
 WriteFile(hComm, “GO\r”, 3, &IpNumber, NULL); 
 
If a command sent to the controller is a responsive 
command, that is, one that results in data being sent 
back to the host, the data is retrieved using the ReadFile 
call. 
 
Camera Image Programming 
 
Live image from camera (webcam) is a robot movement 
feedback. Therefore the programming of camera is very 
important to capture a live image. Normally, the web 
cam camera can capture the image up to 30 frames per 
second (fps) based on image size, resolution and 
computer system. This image feedback was developed 
using the AVICap window class that is programmed in 
C++. AVICap provides applications with a simple, to 
view a live incoming video signal by using the overlay 
or preview methods. 
 
The Robot  Control Step 
 
To control the robot, a user needs to follow the control 
flow shown in Fig. 5. Firstly, the user needs to go to the 
UTM Telerobot website at http://161.139.116.98 . He or 
she must understand the condition and rules given by 
the Webmaster and then must register before being 
allowed to control the robot. Second step, the user must 
enter the password into the Password Form and then the 
password will be processed. After that, the user operator 
will get the result either he will be able to control and 
view the system or just view only the system handled by 
system manager (software). To control the system, only 
one user is accepted and the others just view the status 
and image until the first user quit or reach maximum 
limit time (10 minutes). After that, the second user will 
substitute as first user. If there is only one user 
accessing the telerobot web, the system manager will 
give permission to that user to control a robot, as he or 
she likes until other users come in. 
 
Result 
 
UTM Telerobot Graphics User Interface (GUI) was 
developed using Hyper Text Mark-up Language 
(HTML) and C++ Builder. The C++ builder 4 Web 
Broker Technology allows developer to build CGI Web 
server applications without having to worry about too 

many low-level details. The Robot Control Panel was 
launched to web page (internet) after it is programmed 
in CGI Web Broker. HTML was used to integrate CGI – 
Robot Control and Camera Live Image page to one web 
page by using FRAME and IFRAME technology. The 
GUI for this basic telerobot is shown in Fig. 2 and is 
working successfully. 
 

 
V. CONCLUSION 

 
The aims of internet-based telerobotics are to control the 
robot at a distance, at any time and to allow for a good 
feedback response. So, the user interface design is an 
important part to implement in an internet-based  
telerobotics system. This paper has described the  
methodology in design of user interface system and 
development of basic telerobotics system. The user 
interface system has been developed by using C++ 
programming language to  program the robot guidance 
(control) and visual feedback. Both of these systems are 
combined together and produced in World Wide Web 
(WWW) by using HTML technology.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5: Steps to Control the Telerobotics System 
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Abstract 

 

 

This paper reports on the development of the Universiti 
Teknologi Malaysia’s (UTM) Internet telerobotics 
systems. The design can be categorised into three 
phases. In the first phase, the leg of a mobile are tested 
and controlled through local internet connection. The 
task is called robot-oriented control system. The second 
phase of the project is the implemention of the web-
based robot using Rhino robot and the last phase is 
future works on task-oriented of Rhino robot through 
the Internet. 

 
Keywords : Internet-based telerobotics, robot-oriented, 
task-oriented. 
 
 
1. Introduction 
 
The goal of our project in the telerobotics area is to 
discover and develop the system by combining network 
technology with capabilities of robots. Using Internet 
technology for telerobotic application offers the 
advantage of low-cost deployment. There is no longer a 
requirement for expensive purpose built equipment at 
each operator’s location. Almost every computer 
connected to the Internet can be used to control a 
teleoperable device. The downside is the limitation of 
varying bandwidth and unpredictable time delays [1]. 
These Internet features should be defined and 
considered before designing an efficient telerobotic 
system. Besides that, several functional requirements 
should also be defined before designing any telerobotic 
system: 

? Who are the users of the specific application 
and what are their experiences, aptitudes, 
motivations, and needs? 

? What is the task  for the system and what is 
required to do it? 

? What is the environment in which the 
application will be used, and what is the 
context in which the task will be done? 

Defining the  user, task, and environment is essential in 
specifying appropriate technology for user operator 
interaction in general and in creating usable systems [2].  
 
In this paper we focus mainly on the overview of our 
past and recent projects and present some preliminary 
results.  
 
 
2. UTM Telerobotics Project 
 
The user interface of telerobot has two ways to be 
launched in the internet either by using an application or 
a web interface.  Interface using an application usually 
used a client-server model. The client-server model 
provides a convenient way to interconnect programs that 
are distributed efficiently across different locations.  
Whereas, web is designed as a hyper-text distributed 
information storage system for technical documentation 
[3]. Data is stored in many servers, and can be accessed 
by many clients, seemingly simultaneously. The client 
programs used are usually referred to as Web browsers 
because they allow a user to explore inter-related data 
on different topics. 
 
2.1 Non-web-based Telerobotics System 
 
Our early telerobotics system used an application 
interface which is based on client-server model [4]. We 
call this non-web-based telerobotics system. This basic 
interface is designed using Borland C++ Builder, an 
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object-oriented programming environment which 
provides a Visual Component Library which is needed 
to generate the graphical user interface for this interface. 
Data is transfer using windows sockets element. 
 
System overview 
 
The architecture of the basic system is shown in Fig. 1. 
The hardware set-up consists of a leg of a mobile robot, 
which has three joints that move in three degrees of 
freedom. The leg is controlled by a PC which also acts  
as a local server. The motor drivers and interfacing 
electronics are connected to the PC through the parallel 
port. Every single command that is send to the server 
interface will invoke the server to perform a certain task 
to the robot. That is why we call this task as robot-
oriented.  
 
The computer is also connected to a main server which 
has many computers connected to it. Other computers 
can act as clients and can download the interface and 
control the motion of the leg of the mobile robot 
through the local area network. When the system goes 
to the public network, other users from anywhere can 
control the robot.  Windows sockets provide 
connections based on the TCP/IP protocol.  
 
 
 
Technically, sockets are easy-to-use and flexible and are 
the ideal solution when building distributed 
applications. This technology is built on TCP/IP and it 
should appeal to people who want to work across very 
large distances using the Internet. The executable 
interface is generated from Borland C++ Builder 
compiler. The application is written based on client 
server model application concept where one server is 
activated and awaits client request. The client and the 
server react as a standalone where the client has to 
download and execute the program from the server and 
start connecting to the server by calling the server’s IP 
address [5]. 
 
 
 
 
 
 
 
 
 
 

Fig1. : System Architecture for non-web-based 
 
 
 
 

Graphical user interface  
 

One of the most important components of any 
telerobotics system is the user interface. The display in 
the user interface should be designed sufficiently so that 
the user receives enough information about the remote 
environment. The preliminary basic design of the  
graphical user interface (GUI) is shown in Fig. 2. This 
GUI consists of a few panels including motor drive 
controller panel, speed control panel, selection of either 
to be a client or a server and indicator panel.  Image 
feedback is shown in Fig. 3. 
 

 
 

Fig 2: Graphical User Interface for Non-web-based 
Telerobotics System 

 

 
 

Fig. 3: Image Feedback 
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System achievement 
 

The client can control the robot through the graphical 
interface and the movement of the robot can be seen 
through the digital camera that is focused on the robot, 
which is provided by Microsoft NetMeeting software. In 
the real situation the client cannot see the robot 
movement directly because of the delay that always 
occurs in the Internet application. The system is a robot-
oriented system where the client and server will behave 
like a standalone application. The user must download 
and execute the application program from the server. 
The user will be allowed to control the robot after 
obtaining permission from the server. The interface has 
been tested locally but is not yet freely available on the 
Internet yet.  

 
 

2.2 Web-based Telerobotics System 
 
Our current telerobotics project are based on web 
interface. A web-based interface is usually a platform 
independent hypertext mark-up language (HTML) form 
that is coordinated with a server side common gateway 
interface (CGI) program [5]. Web browser forms allow 
the designer to distribute the interface in a platform 
independent manner with little or no programming 
application on the interface side.  The HTML language 
contains several different window system components 
that mimic some standard user interface components.  
This method is chosen since interfaces can be accessed 
easily in the web browser and there are multiple 
platforms in which it can be distributed .   

 
 

2.2.1 Robots Oriented Interface 
 

Robot-oriented telerobotic is a system that requires the 
operator to control the robot step by step in 
implementing a task. In UTM, robot-oriented 
telerobotics system was built to perform simple tasks 
such as to move a small plate of steel, which is used in 
education and entertainment (edutainment) purposes. 

 
System overview 

 
The UTM robot-oriented telerobot system basically 
consists of three main hardware components that must 
be integrated. These comsystems are robot system, 
camera  system and host computer system [6]. The robot 
system includes robot controller and its arm. The robot 
is a fixed base Rhino XR-4 robot that has five degree of 
freedom and a gripper. The camera system has two 
cameras, they are a Sony EVI-D31 pan/tilt/zoom camera  
type that is used to capture the entire robot environment 
and a webcam that is attached on the gripper. These 
systems must be integrated together before being 

launched to the Internet by programming in the host 
computer server. System architecture of this telerobot is 
shown in Fig. 4 and its explanation is given below: 

 
? Control server 
 
The Control Server handles instructions and feedbacks 
to/from robot controller. The instructions command 
should be sent to controller via serial communication 
port if we want to move the arm and know the position 
of robot. 
 
? Image server 
 
Visual feedback server that controls the camera images 
feedback before launching Internet server. The actual 
image of robot depends on type of camera used.  
 
? Web server  
 
The web server system provides three basic services. 
These three services are login service, system manager 
service and Common Gateway Interface (CGI) script 
service. The login service provides communication with 
the telerobot system by requesting a password and 
allows the system manager to get information on 
established connection. This part is important to allow 
system manager to schedule the user to control the 
telerobot system by following the database. The CGI 
script is used to integrate the control and visual 
feedback server before launching to the client site 
through GUI.  
 

 
 

Fig. 4: Web-based Telerobotic System Architecture 
 
 
Graphical user interface  

 
Robot-oriented GUI shown in Fig. 5 is developed using 
HTML and C++ Builder. The Robot Control Panel is 
launched to the web after it is programmed in CGI. 
HTML was used to integrate CGI – Robot Control and 
Cameras Live Image page to one web page by using 
FRAME and IFRAME technologies [7]. 
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System achievement 
 

 
 

Fig. 5: UTM Telerobot web-based interface 
 
The GUI for this robot-oriented telerobotic system 
shown in Fig. 5 has been successfully tested on Internet 
explorer and Netscape navigator web browser. There are 
some problems especially in internet response time and 
difficulties to achieve the task target are to be overcome.  

 
 

2.2.2 Task Oriented Interface 
 

Task-oriented robotic system or so called “task-centric” 
robotics system requires only the operator to specify the 
tasks to be done by the system and the system will then 
plan and carries out a series of action to complete the 
tasks. In contrast, robot-oriented system will require the 
operator to plan the actions step by step to get the tasks 
done. Compared to a robot-oriented system, task-
oriented robotic system has higher degree of autonomy. 
Table 1 shows the comparison between both of the 
systems. 
 
Advantages of the task-oriented system  
 
The task-oriented internet-based telerobotic system 
provides better solution to the problems mentioned in 
previous discussion. 
 
i) Easy to operate 

Basically task-oriented robotic system is easier 
to be operated than robot-oriented system since 
one task in task-oriented robotic system may 
equal to a set of commands in robot-oriented 
system. For example the task to move a cube 
from one location to another which may 
require the operator to specify a set of 
commands to move the various motors in 
robot-oriented system. 
 

ii) Response time 
Certain processes such as command and task 
pre-processing will be carried out on the client 
site thus reduce the waiting time for the 
response from the server. Furthermore the 
system may carry out the steps in completing 
the task without delay between the steps 
compared with robot-oriented system where 
each step followed must be specified upon 
completion of the latest command. 

 
 

Table 1: Comparison between robot-oriented system and task-oriented robotic system 
Robot-oriented System Task-oriented Robotic System 

Basic command unit: 
? Based on robot movement, e.g.: 

a) Arm type robotic system: shoulder up 30°, 
elbow down 30°, gripper open or spray start; 

b) Mobile robot: move forward 30 cm, turn left 
45°. 

? Usually, 1 basic command unit equals to 1 robot 
instruction. 

Basic command unit: 
? Based on the task designed for the robotic system, 

e.g.:  
a) Welding/spray painting system:  spot, 

straight, arc or follows certain marks/pattern; 
b) Robotic goods sort ing system: transfer 

objects type A to line A and objects type B 
to line B; 

c) Mobile robot: find the target such as 
heat/light source in unknown environment. 

? Usually, 1 basic command unit equals to a series of 
robot instruction. 
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The system can directly convert the command given to 
robot instruction since 1 basic command unit equals to 
1 robot instruction. 

The systems need to have the ability to “understand” the 
task given (requires task specified method) before the 
task can be converted to a series of robot instruction. 

Human will act as path planner to complete the task 
such as welding and spray painting. 

The task controller will do the path planning once 
“understand” the task(s) required to be done. 

Autonomy level: low. Autonomy level: higher (with certain limitations). 
Low efficiency in completing the work since every 
steps involved must be manually planned/programmed. 

Higher efficiency in completing the work since task 
controller will do the path planning. 

Image capturing system (if involved) usually works 
merely for visual feedback. 

Image capturing system (if involved) works not only for 
visual feedback but also as part of the vision system. 

Less complicated to be designed and developed. Complicated to be designed and developed especially the 
task controller. 

Suitable application: usually for repeated/routine work 
especially in mass production. 

Suitable application: usually for the work that is not/less 
repeated or the work with uncertainties such as goods 
sorting where the objects may vary in size, shape, 
orientation and location. 
 
 

 
  System architecture  
 
The system is built based on the task-oriented robotic 
system concept. The task of the system is to manipulate 
the cubes in front of the robot. The operator only needs 
to tell the system what to be done (task) rather than 
how to do it. The operator can tell the system to move 
some of the blocks to certain locations as well as the 
pattern of arrangement. Then the system will plan the 
path on which cube is to be best moved first than the 
other as well as how the gripper will move the cube. 

 
Fig. 6 shows the system architecture without providing 
the web service. The preliminary GUIs design is shown 
in Fig.9. The system can accept task-oriented 
command from the operators either through mouse 
operation or natural language. The command will then 
be processed by the command preprocessor – either 
interpreter or parser. The purpose of the command 
preprocessor is to remove the illegal commands such as 
spelling mistake, syntax error as well as to limit the 
mouse operation. Information such as the number of 
objects as well as the location and orientation of 
respective object are required by the command 
preprocessor. 
 
Once the system accepts the command from the 
operator to complete the task, the task will then be 
passed to the task preprocessor. The task preprocessor 

will do the simulation if the task could be performed by 
the task controller. This is very important since the 
system is designed based on task-oriented approach. 
Apparently not all tasks can be performed by the task 
controller due to the limitations in the design and the 
task-oriented robotic system itself. The complicated 
task may need to divided into sub-tasks with the 
assistance from the operator 
The task will then be passed to the task controller to do 
the path planning as well as the transformation to 
action. The combination of the task controller, the 
robotic system (the robot controller and the robot) as 
well as the sensory system (sensors and the sensory 
sub-system) will form a closed-loop task control sub-
system as shown in Fig. 7. In other word, the system 
will be able to carry out the task autonomously. 

 
At the end of the project, the system must be able to 
provide the web service. Web-based and non-web-
based system will be developed for comp arison. The 
non-web-based system architecture is shown in Fig. 8. 
The task control sub-system mentioned will be kept on 
the server. An application program will be developed 
to provide the command and task pre-processing. The 
application program will run on the client site. With the 
pre-processing carried out on the client site, this 
absolutely will reduce the data transferred and waiting 
time for the response from the server. 
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Fig. 6: Task-oriented robotic system architecture (without web service) 
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Fig. 7: Block diagram of the task control sub-system (closed-loop) 
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Fig. 8: Internet-based telerobotics system architecture
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Fig. 9: Preliminary GUIs design (without web service) 
 
 
3. Future Work 
 
There have been many internet-based telerobotic 
projects developed since the first robot launched on 
Internet in 1994. Some of the projects are designed for 
critical applications such as telesurgery and 
telemanufacturing. Nevertheless, these applications are 
too risky and not practical for the current technologies 
available for the Internet. Unless in the future there are 
some break through technologies introduced and are low 
cost and publicly available or the system mu st be 
developed based on better quality connection but higher 
cost such as leased line and fibre optic. In a nutshell, our 
future direction of internet-based telerobotic projects 
will tend toward edutainment which is in line with the 
nature of today’s Internet – publicly available, low cost 
as well as vulnerable and suffered from time delay. 
 
 
4. Conclusion 

 
We have successfully developed the internet-based 
telerobotic system for the leg of a mobile robot as well 
as the fixed type robot. The systems are designed based 
on robot-oriented and task-oriented concept. The project 
for fixed robot is expected to be available on the 
Internet in July. Currently we are developing the 
internet-based telerobotic system for the mobile robot 
and the fixed robot based on task-oriented concept. A 
comparison will be later made between robot-oriented 
and task-oriented systems. 
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Abstract 
 

Task-oriented robotic system or so called 
“task-centric” [1] robotic system requires only 
the operator to specify the task to be done by the 
system and the system will then plan and carry out 
a series of actions to complete the task. In 
contrast, robot-oriented system requires the 
operator to plan the actions step by step to get the 
task done. Compared to a robot-oriented system, 
task-oriented robotic system has higher degree of 
autonomy. In this paper our decisions and 
approaches used in designing our task-oriented 
telerobotic system will be discussed and 
presented.  
 
Keywords : Task-oriented robotic system, task-
centric robotic system, robot-oriented system, 
robot-centric system, internet-based telerobotic  
system.  
 
1  Robot-oriented System vs. Task-

oriented Robotic System  
 

The robot-oriented system and the task-
oriented robotic system can be distinguished by 

many aspects. The basic command unit for the 
robot-oriented system is based on the robot 
movement. For example the commands for arm 
type robotic system are shoulder up 30°, elbow 
down 30°, gripper open or spray start. Usually, 1 
basic command unit for the robot-oriented system 
equals to 1 robot instruction. Meanwhile, the basic 
command unit for the task-oriented system is 
based on the task designed for the robotic system. 
For example the commands for the robotic goods 
sorting system are transferring objects type A to 
line A and objects type B to line B. Usually, 1 
basic command unit for the task-oriented system 
equals to a series of robot instructions. The 
comparison between the robot-oriented system 
and the task-oriented robotic system is 
summarized in Table 1. It is important to 
understand that no matter which type the robotic 
system design is, in practical application both of 
the systems will have their own specific task such 
as welding, spray painting and goods sorting. The 
main different is on how the systems carry out the 
task. 

 

 
Table 1: Comparison between robot-oriented system and task-oriented robotic system 

Robot-oriented System Task-oriented Robotic System 
Basic command unit: 
? Based on robot movement, e.g.: 

a) Arm type robotic system: shoulder up 
30°, elbow down 30°, gripper open or 

Basic command unit: 
? Based on the task designed for the robotic 

system, e.g.:  
a) Robotic goods sorting system: transfer 
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spray start; 
b) Mobile robot: move forward 30 cm, 

turn left 45°. 
? Usually, 1 basic command unit equals to 1 

robot instruction. 

objects type A to line A and objects type 
B to line B; 

b) Mobile robot: find the target such as 
heat/light source in unknown 
environment. 

? Usually, 1 basic command unit equals to a 
series of robot instructions. 

The system can directly convert the command 
given to robot instruction since 1 basic 
command unit equals to 1 robot instruction. 

The system need to have the ability to 
“understand” the task given (requires task 
specified method) before the task can be 
converted to a series of robot instructions. 

Operator will act as path planner to complete 
the task. In other word, the operator has full 
control over how the system will complete the 
task - direct control. 

The task controller will do the path planning 
once “understand” the task(s) required to be 
done. In other word, the operator has no control 
over how the system will complete the task - 
indirect control. 

Autonomy level: low. Autonomy level: higher (with certain 
limitations). 

Low efficiency in completing the work since 
every step involved must be manually 
planned/programmed. 

Higher efficiency in completing the work since 
task controller will do the path planning. 

Image capturing system (if involved) usually 
works merely for visual feedback. 

Image capturing system (if involved) works not 
only for visual feedback but also as part of the 
vision system. 

Less complicated to be designed and 
developed. 

Complicated to be designed and developed 
especially the task controller. 

Suitable application: usually for 
repeated/routine work especially in mass 
production. 

Suitable application: usually for the work that 
is not/less repeated or the work with 
uncertainties such as goods sorting where the 
objects may vary in size, shape, orientation and 
location. 

 
2 Designing the Task-oriented Robotic 

System 

The first stage in designing a task-oriented 
robot system is to define the task required to be 
performed by the system as well as the methods to 
specify the task. For a wooden plank cutting 
machine, the task required is to produce a certain 
shape and size of plank based on the soft copy of 
the drawing or lines made on the surface of the 
plank. On the other hand, the task for a welding 
robotic system is to perform welding based on the 
joint of two or more metal plates. The tasks 
mentioned must be understood by the robotic 
system so that a series of actions can be planned 
and carried out. A proper task specified methods 
must be defined. For example the wooden plank 
cutting machine mentioned must be able to 

interpret the  soft copy of the drawing (task) 
provided to the system. 

Since the task definition and specified 
methods have been determined, the feasibility and 
cost of designing and developing the robotic 
system must be considered before proceed to the 
next stage. A robotic system with 2D operation is 
easier to be designed and developed compared to 
a robotic system with 3D operation. This is also 
true for a fixed robot arm system compared to a 
mobile robot equipped with robot arm, and 
similarly for robotic system working in structured 
environment compared to robotic systems 
working in unstructured environment. 

The second stage involved the design of 
the sensory sub-system. The main purpose of the 
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sensory sub-system is to ensure the capability of 
the robotic system to identify the working target 
as well as miscellaneous purposes such as 
environmental information feedback and 
uncertainties occurrence detection. A vision 
system can be equipped to a welding robotic 
system to identify the length, shape, position and 
orientation of the joints of two or more metal 
plates.  From the sensory feedback, the operator 
can decide on required task. The same kind of 
vision system can be incorporated to the wooden 
plank cutting machine so that it can “see” the 
“shape” to be cut out. As a conclusion, sensory 
feedback is very important in supporting the task-
oriented robotic system to complete the task. 

In stage three, the knowledge about the 
robot, the working area, the working target as 
well as the sensory sub-system must be modelled. 
This knowledge is required by the task-oriented 
controller before it can plan and carry out a series 
of actions which will be discussed in stage four. 
For the robot, its inverse kinematics equations 
must be derived. A proper working area must be 
developed and set up based on the dimension of 
the robot, the working objects, the task and the 
sensory sub-system requirement such as lightning 
for vision system. The relationship among the 
robot, the working area, the working target and 
the sensory sub-system can be formed through 
transformation matrices. 

In stage four, the task which tells the task-
oriented robotic system what to be done must be 
transformed into action, step by step how to get 
the task done. This is called as path planning and 
it is one of the functions of task-oriented 
controller. A well designed path planner will be 
managed to handle complicated tasks and requires 
shorter working time to get the task done without 
scarifying the output quality. 

Finally, it involved the design of the user 
interface for the task-oriented robotic system. 
Although the system is easier to be operated 
compared to robot-oriented system, effort is still 
needed in designing the user interface since it is 
the medium where human and machine interact to 
each other.  

3 The Design of the UTM’s Task-oriented 
Internet-based Telerobotic System: 
Fixed Arm Type Robot 

 
A robot can be broadly defined as a system 

where a mechanism is controlled by a computer. 
In telerobotics, the mechanism is remote. It sends 
back data and is generally controlled by a human 
at the other end [2]. The first robot has appeared 
on the internet in 1994. The project, named 
Mercury project [3], was the first system that 
allowed WWW users to remotely view and alter 
the real world via telerobotics. Since the launch of 
the robots on the internet, an enormous effort has 
been undertaken by hundreds of researchers to 
push this technology. 

 
Below describes the stages involved in the 

designing the UTM’s task-oriented internet-based 
telerobotic system. 
 
3.1 First Stage: Defining the Task and the 

Task Specified Methods 
 

The telerobotic system is built to work in 
structured environment where the system learns 
about its working environment as well as the 
working object. The working object is limited to 
the wooden cube of the size 50 mm x 50 mm. The 
task defined for the telerobotic system is to 
manipulate the wooden blocks in front of the 
robot. The task is limited to 2 dimension operation 
or in other word the users are not allowed to stack 
the blocks. The users can tell the system about the 
task by manipulating the blocks in the virtual 
environment. This can be done either through 
mouse operation or by using natural language. 
The details about the task and the methods used to 
tell the telerobotic system will be discussed in 
Section 4. 

 
3.2 Second Stage: Sensory Sub-system 
 

The telerobotic system is equipped with a 
vision system. The vision system allows the 
telerobotic system to “see” the working objects 
and the progress of the task. Besides, the vision 
system can detect the occurrence of the 
uncertainties so that the telerobotic system can 
take the recovery action. The vision system 
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consists of a colour CCD camera, Sony XC-003, 
and a frame grabber, Matrox Genesis-LC (PCI bus 
version). The camera is put at the top of the 
working area. The captured image is processed by 
using Matrox Imaging Library (MIL).  

 
3.3 Third Stage: Knowledge Development 
 

The knowledge about the robot, the 
working area as well as the working object have 
been modelled and made known to the telerobotic 
system through the inverse kinematic equations 
and the transformation matrices derived. The 
RT100 robot has been chosen to be the candidate 
for the project because of its high accuracy and 
repeatability. Figure 1 shows the relationship 
between the working area and the position of the 
RT100 robot. 

 

300 mm

300 mm

160 mm

Center of the
RT100 shoulder spindle

Y0

X0
0

Figure 1: Working area and the position of 
RT100 robot 

 
3.4 Fourth Stage: Path Planning and 

Transformation into Action 
 

Since there are too many possible paths for 
the robot to move even just a block of cube from a 
point to another, certain criteria has been set. The 
path preferred is the path that requires minimum 
working time without hitting the other objects as 

well as easy to be transformed into a series of 
actions. Below are the rules laid down for the path 
planning and the transformation into action: 
 

i) Lift the cube at optimum height that 
allows the cube to be moved across the 
other cubes. It will take longer time if 
the cube was lifted too high. On the 
other hand the cube might hit the other 
cubes if the height was not enough. In 
order to simplify the path planning, 
this rule is obeyed even there is no 
obstacle along the path; 

ii) All the motors rotate simultaneously to 
move and open/close the gripper; 

iii)  Rotate and move operations for the 
same cube will be performed 
simultaneously; 

iv) The time needed by the gripper to 
travel from point to point is not 
depending on the distance between the 
points but the time taken by the motors 
to complete the degrees of rotation 
calculated through inverse kinematic  
equations ; 

v) The time needed by the gripper to 
travel from point to point equals to the 
maximum time required by the motors 
to complete the rotation since all the 
motors rotate simultaneously; 

vi) The number of possible sequences to 
move the N cubes equals to N factorial 
(N!); and, 

vii) The time required by the gripper to 
travel from the set point to the first 
cube will be considered. 

 
3.5 Fifth Stage: User Interface Design 
 

Figure 2 shows the user interface of the 
client application. First of all, the user has to click 
the connect button to get connected to the server. 
If the robot was free from other user, then the user 
is allowed to manipulate the blocks in the virtual 
environment either through mouse operation or by 
using natural language. These input methods have 
been chosen for their ease of use. A pop-up menu 
will appear if the user clicked on the square in the 
virtual environment. There are four options listed 
in the menu: move, rotate, cancel and execute. 
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The user can choose the operation he or she 
wished to. The image will be updated upon the 
completion of the task. 

 
On the other hand, the user will be 

restricted to receive image feedback and the chat 

room if the robot was controlled by the other user. 
The purpose of these is to attract the users to 
remain connected to the server until their turn. 
Besides, the users can exchange their opinions 
about the project. 

 

 
Figure 2: Preliminary GUIs design for client application 

 
4  Task-oriented Robotic System 

Architecture  
 
Figure 3 shows the architecture of the task-

oriented robotic system. The system can accept 
task-oriented command from the operators either 
through mouse operation or natural language. The 
command will be then processed by the command 
pre-processor – either by the interpreter or the 
parser. The purpose of the command pre-
processor is to remove the illegal commands such 
as spelling mistake, syntax error as well as to 
check the validity of the mouse operation. Once 
the command gets passed from the command pre-
processor, the command will be then passed to the 
task pre-processor. The task pre-processor will do 
the simulation if the task could be performed by 
the task controller. Apparently not all tasks can be 
performed by the task controller due to the 

limitation in the system design. The simulation is 
hidden from the user and if the process succeeded 
the virtual environment will be updated. During 
the command and task pre-processing stage, 
information such as the number of objects, 
location and orientation are made available to the 
command pre-processor. 

 
Once the system accepts the command from 

the operator to execute the task, the task will be 
then passed to the task controller to do the path 
planning as well as to transform into action. The 
task controller, the robotic system (the robot with 
its controller) as well as the sensory system 
(combination of the sensors and the sensory sub-
system) can be simplified into a closed- loop block 
diagram as shown in Figure 4. This is what called 
as visual servoing [8]. In other word, the system 
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will be able to complete the task given without the 
supervision from the operator. 

 
At the end of the project, the telerobotic 

system will be incorporated with the Internet 
service. The system architecture is shown in 
Figure 5. An application program will be 
developed to provide the command and task pre-

processing (shown in Figure 2). On the other 
hand, the task control sub-system (shown in 
Figure 4) will be kept remain on the server. The 
application program will run on the client site. 
With the pre-processing be carried out on the 
client site, this absolutely will reduce the data 
transferred and waiting time for the response from 
the server. 
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Figure 3: Task-oriented robotic system architecture (without Internet service) 
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Figure 4: Block diagram of the task control 

sub-system (closed-loop) 
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Figure 5: Internet-based telerobotic system 

architecture  
 
 
 
 

5 Advantages of the System Architecture  
 

The task-oriented system architecture 
provides better solution to the certain problems 
faced in internet-based telerobotic application 
which had been discussed by Taylor and Dalton 
[4]. The advantages of the system architecture are 
as below: 
 
5.1 Task-oriented Robotic System: Easy to 

Operate 
 
Basically the task-oriented robotic system 

is easier to be operated than robot-oriented system 
since one task in the task-oriented robotic system 
equals to a set of commands in the robot-oriented 
system. For example a simple  task to move a cube 
from one location to another in the task-oriented 
robotic system requires the operator to specify a 
set of commands to move the various motors in 
the robot-oriented system. Furthermore, the 
complexity of the robotic system is hidden from 
the users where the robotics knowledge is not 
required any more. The users just have to 
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concentrate on the task designed for the robotic 
system without learning what the elbow, shoulder, 
gripper, tilt and spin mean. 
 
5.2 Interface Design: Easy to Use 
 

The option of mouse operation as one of the 
task specified methods makes the application 
program easy to use. The users who learnt how to 
use the computer definitely understand the 
operation of the mouse. The mouse right click will 
pop up a menu and the users can then left click to 
select the command wished. On the other hand, 
even though natural language is a bit more 
difficult to be learnt compared with mouse 
operation, it does provide higher accuracy 
operation. Natural language is chosen to be one of 
the task specified methods because it is more 
human-oriented and thus easier to be learnt 
compared with the command used in robot-
oriented system which is tend toward robot-
oriented such as rotate shoulder 30°. 

 
5.3 Response Time 

 
A client application program is developed 

for the users to download. The size of the program 
is maintained as small as possible. Certain 
processes such as command and task pre-
processing will be carried out on the client site 
thus reduce the waiting time for the response from 
the server. Furthermore the robotic system does 
the path planning and supervises the progress of 
the task at the  remote site thus the  delay between 
the steps can be minimized. In contrast, the robot-
oriented system requires the user to specify each 
step followed upon completion of the latest step. 
 
5.4 Human Factor 
 

In order to attract more users to operate the 
robot, the users who fail to gain control over the 
telerobotic system will be restricted to receive 
image feedback and the chat room. These make 
the users feel they are not alone and still involved 
in the project even though they are still waiting for 
their turn. From the statistics done by Taylor and 
Dalton [4], three quarters of the users have given 
up after waiting for three minutes. Furthermore, 
the use of mouse operation as one of the task 

specified methods will be able to attract the users 
who are not keen to learn how to operate a 
complex system. 

 
5.5 Safety and Reliability 

 
Since the system is designed based on task-

oriented concept, the system architecture is hidden 
from the users and thus the users are not 
controlling the robot directly. The problems that 
the users might cause damages to the robot, 
working area and working objects have overcame. 
Furthermore, any uncertainties that happen on the 
remote site can be detected by the vision system 
and the appropriate recovery action will be taken.  

 
6 Conclusion 

 
This paper has described our decisions and 

approaches in designing the task-oriented robotic 
system for use in Internet-based application. The 
capabilities of the system architecture in solving 
the certain problems faced in Internet-based 
telerobotic application have been highlighted. The 
objective of the project is intended for 
edutainment purpose after taking consideration of 
the nature of today Internet – publicly available, 
low cost as well as vulnerable and suffered from 
time delay. 
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INTRODUCTION 
 
A robot can be broadly defined as a system where a 
mechanism is controlled by a computer. In telerobotics, the 
mechanism is remote. It sends back data and is generally 
controlled by a human at the other end (Bobak R. Farzin  
et.al., 1998). The first robot has appeared on the internet in 
1994. The project, named Mercury project (K. Goldberg  
et.al., 2000), was the first system that allowed WWW users 
to remotely view and alter the real world via telerobotics. 
Since the launch of the robots on the internet, an enormous 
effort has been undertaken by hundreds of researchers to 
push this technology. 

 
Our internet-based telerobotic system is developed based on 
task-oriented concept for the convenient of the operators. The 
system is more user friendly than robot-oriented system since 
the operators focus more on the task completion rather than 
robot movement planning. As a result, natural language has 
been chosen to be one of the methods for user to operate the 
system. Natural language is human-oriented thus it is easier 
to be learnt and used. The natural language designed for the 
system is a typewritten English like language. 
 
THE UTM’S TASK-ORIENTED INTERNET-BASED 
TELEROBOTIC SYSTEM: FIXED ARM TYPE 
ROBOT 
 
The telerobotic system is built to work in structured 
environment where the system learns about its working 
environment as well as the working object. The working 
object is limited to the wooden cube of the size 50 mm x 50 
mm. The task defined for the telerobotic system is to 
manipulate the wooden blocks in front of the robot. The task 
is limited to 2 dimension operation or in other word the users 
are not allowed to stack the blocks. Figure 1 shows the 
relationship between the working area and the position of the 
RT100 robot, which is chosen for the project because of its 
high accuracy and repeatability. 
 
The telerobotic system is equipped with a vision system. The 
vision system allows the telerobotic system to “see” the 
working objects and the progress of the task. Besides, the 
vision system can detect the occurrence of the uncertainties 
so that the telerobotic system can take the recovery action. 
The vision system consists of a colour CCD camera, Sony 
XC-003, and a frame grabber, Matrox Genesis -LC (PCI bus 
version). The camera is put at the top of the working area. 

The captured image is processed by using Matrox Imaging 
Library (MIL).  

 

300 mm

300 mm

160 mm

Center of the
RT100 shoulder spindle

Y0

X0
0

Figure 1: Working area and the position of RT100 robot 
 
TASK-ORIENTED ROBOTIC SYSTEM 
ARCHITECTURE 
 
Figure 2 shows the architecture of the task-oriented robotic 
system. The system can accept task-oriented command from 
the operators either through mouse operation or natural 
language. The command will be then processed by the 
command pre-processor – either by the interpreter or the 
parser. The purpose of the command pre-processor is to 
remove the illegal commands such as spelling mistake, 
syntax error as well as to check the validity of the mouse 
operation. Once the command gets passed from the command 
pre-processor, the command will be then passed to the task 
pre-processor. The task pre-processor will do the simulation 
if the task could be performed by the task controller. 
Apparently not all tasks can be performed by the task 
controller due to the limitation in the system design. The 
simu lation is hidden from the user and if the process 
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succeeded the virtual environment will be updated. During 
the command and task pre-processing stage, information such 
as the number of objects, location and orientation are made 
available to the command pre-processor. 

 
Once the system accepts the command from the operator to 
execute the task, the task will be then passed to the task 
controller to do the path planning as well as to transform the 
task into action. The task controller, the robotic system (the 
robot with its controller) as well as the sensory system 
(combination of the sensors and the sensory sub-system) can 
be simplified into a closed-loop block diagram as shown in 
Figure 4. This is what called as visual servoing (Peter I. 
Corke, 1996). In other word, the system will be able to 

complete the task given without the supervision from the 
operator. 

 
At the end of the project, the telerobotic system will be 
incorporated with the Internet service. The system 
architecture is shown in Figure 5. The task control sub-
system (shown in Figure 4) will be kept remain on the server. 
A client application program will be developed to provide the 
command and task pre-processing (shown in Figure 3). The 
application program will run on the client site. With the pre-
processing be carried out on the client site, this absolutely 
will reduce the data transferred and waiting time for the 
response from the server.
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Figure 2: Task-oriented robotic system architecture (without Internet service) 

 

 
Figure 3: Preliminary GUIs design for client application 



 

  

212 
 
 

Task
Controller

Control
Instruction

Robotic
System

Sensory
System

+ -

ErrorTask
Task

Progress

 
Figure 4: Block diagram of the task control sub-system 

(closed-loop) 
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Figure 5: Internet-based telerobotic system architecture 

 
APPLICATION OF NATURAL LANGUAGE 
 
Since the task of the telerobotic system is limited to 2 
dimension operation, a limited variety of English sentence 
constructions is needed to support all the possible operations. 
Thus, a very constrained grammar will suffice. Below are the 
set of the language supported by the system:- 
 
“{coordinate xy of an object} is {name given to the object}” 
 
This informs the telerobotic system that the object with the 
coordinate mentioned is given a name. The command can 
also be used to rename the name of the object. The name 
given to the object must be in single word. Besides, the 
coordinate mentioned must be any point that falls within the 
area covered by the object. 
 
“{coordinate xy of an object}” 
 
This command is used to inquire the telerobotic system about 
the name given to the object (if any). 
 
“{object’s  name}” 
 
This command is used to inquire the telerobotic system about 
the coordinate of the object specified (if any). 
 
“Place {object’s  name|coordinate xy of an object} to 
{coordinate xy}”  
 
This will instruct the telerobotic system to move the object to 
the coordinate specified. 
 
“Place {object’s  name|coordinate xy of an object} to 
{coordinate x|coordinate y}”  
 
This will instruct the telerobotic system to move the object to 
a new coordinate where the value of coordinate x or y will be 
changed. 
 

“Place {object’s  name|coordinate xy of an object} to 
{left|right|front|back} {distance in milimeter}” 
 
This command will instruct the robot to offset the object to 
left/right/front/back of the current coordinate with the 
distance specified. 
 
“Rotate {object’s  name|coordinate xy of an object} {degree 
of rotation}” 
 
This command will instruct the robot to rotate the object 
according to the degree specified. 
 
“{command 1} then {command 2}”  
 
This command allows the operator to issue two commands in 
one statement. 
 
“execute” 
 
This command instructs the telerobotic system to carry out 
all the commands required by the operator. 
 
“undo” 
 
This command will cause the telerobotic system to restore all 
the objects to their previous position before the “execute” 
command. 
 
The application of the natural language will be more 
effective if the telerobotic system would be able to 
communicate with the operator through natural language. 
Intelligent parser that will be able  to guide the operator by 
communicating in natural language is still under 
construction. For example the parser will be able to point out 
the error in the command by replying “unknown {error} in 
{command}”. 
 
CONCLUSION 

 
This paper has described the application of natural language 
in designing the task-oriented robotic system for use in 
Internet-based application. Even though natural language is 
more difficult to be learnt compared with mouse operation, it 
does provide higher accuracy for objects manipulation. 
Furthermore, natural language is human-oriented and thus is 
easier to be learnt compared with the command used in 
robot-oriented system which is tend toward robot-oriented. 
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