
 VOT 72147

DEVELOPMENT OF INTERNET-BASED TELEROBOTICS

(PEMBANGUNAN TELEROBOTIK BERASASKAN INTERNET)

ASSOC. PROF. DR. ROSBI MAMAT

PROF. DR. SHAMSUDIN H.M.AMIN

ASSOC. PROF. ZAMANI ZAIN

DR. ZAHARUDIN MOHAMED

LIM CHENG SIONG

MD. FAUZI ZAKARIA

NORHAYATI A. MAJID

PUSAT PENGURUSAN PENYELIDIKAN

UNIVERSITI TEKNOLOGI MALAYSIA

2003

 ii

ABSTRACT

The internet is a very fast evolving new technology, allowing people to

electronically connect places that are thousands of miles apart. The internet serves

mainly for information exchange. However since the launch of the first robots on the

Internet in 1994, an enormous effort has been undertaken by hundreds of researchers

to push this technology. Quite a number of designs and applications of the internet-

based telerobotic system have been implemented and launched on the internet. Some

of the telerobotic systems are designed for blocks manipulation, paint painting and

gardening. There has been much effort taken by UTM to be one of the main players

in this area for the last few years. A lot of improvement has been achieved in the

internet-based telerobotics since the first project launched in 1994. Thus, the project

is carried out to achieve the objectives as: to study the latest finding in the internet-

based telerobotics especially the problems faced as well as the solutions; to study the

existing project especially the problems faced; to identify the appropriate technology

to improve the existing project; to design a new telerobotic system; and, to

implement the new telerobotic system. Based on the findings, the task-oriented

telerobotic system has been developed. In the system developed, the user need only

to specify the task to be done by the robot and then the system will plan the path of

the robot movement to complete the task. The system is found to be more user

friendly, reliable, the safety of the working objects and the robot are well protected.

 iii

ABSTRAK

 Internet ialah teknologi baru yang berkembang dengan cepat. Internet

membolehkan manusia berhubung secara elektronikal dengan tempat yang terletak

beribu-ribu meter jauh. Fungsi utama Internet adalah untuk pertukaran informasi.

Namun sejak perlancaran robot pertama di Internet pada tahun 1994, pelbagai usaha

telah diambil oleh ahli-ahli penyelidik untuk memajukan teknologi ini. Dengan itu,

pelbagai rekaan dan applikasi sistem telerobot yang berasaskan Internet telah

dimajukan dan dilancarkan di Internet. Sebahagian daripada sistem telerobot direka

untuk blok manipulasi, mencat dan berkebun. UTM telah berusaha giat sejak

beberapa tahun lalu untuk menjadi salah satu daripada pelopor terkemuka dalam

bidang ini. Semenjak perlanjaran projek pertama pada tahun 1994, pelbagai

kamajuan telah dicapai dalam bidang telerobot yang berasaskan Internet.

Memandangkan ini, projek ini telah dilaksanakan untuk mencapai objektif-objektif

seperti berikut: untuk mengkaji penemuan terbaru terutamanya masalah-masalah dan

penyelesaiannya yang dihadapi dalam bidang telerobot yang berasaskan Internet;

untuk mengkaji masalah yang dihadapi dalam projek sedia ada; untuk mengenal pasti

teknologi bersesuaian bagi memperbaiki projek sedia ada; untuk mereka senibina

sistem telerobot baru; dan, untuk memajukan rekaan senibina sistem telerobot baru.

Berdasarkan maklumat yang ditemui, sistem telerobot yang berdasarkan tugas telah

dibangunkan. Dalam sistem yang dibangunkan, pengguna hanya perlu memberitahu

sistem tugas yang perlu dilaksanakan oleh robot dan seterusnya sistem akan

merancangkan laluan untuk pergerakan robot bagi menyelesaikan tugas berkenaan.

Sistem tersebut didapati lebih ramah pengguna, boleh diharap, keselamatan objek

kerja dan robot adalah terjamin.

 iv

CONTENTS

CHAPTER SUBJECT PAGE

 TITLE PAGE i

 ABSTRACT ii

 ABSTRAK iii

 CONTENTS iv

 LIST OF TABLES ix

 LIST OF FIGURES xi

 LIST OF SYMBOLS AND

ABBREVIATIONS

xvii

 LIST OF APPENDIXES xviii

CHAPTER 1 INTRODUCTION 1

 1.1 Introduction 1

 1.2 Project Background and Motivation 2

 1.3 Objectives and Scope of Project 3

 1.4 Research Methodology 4

 1.5 Layout of Report 5

CHAPTER 2 LITERATURE REVIEWS 6

 2.1 Introduction 6

 v

 2.2 Australia's Telerobot on the Web 7

 2.3 Carnegie Science Center (CSC)

Telerobot

11

 2.4 Robotoy 12

 2.5 Tele-Garden 14

 2.6 Painting on the World Wide Web:

The PumaPaint Project

16

 2.7 Natural Communication with Robot 19

 2.8 Prototype of UTM Web-based

Telerobotic System

21

 3.7 Summary 23

CHAPTER 3 IMPORTANT FACTORS IN

DEVELOPMENT OF INTERNET-

BASED TELEROBOTICS

24

 3.1 Introduction 24

 3.2 Easy to Operate 24

 3.3 Reliability 26

 3.4 Response Time 26

 3.5 Human Factors 28

 3.6 Interface Design 29

 3.7 Summary 30

CHAPTER 4 TERMS DEFINITION AND

SPECIFICATION OF UTM

TELEROBOTIC SYSTEM

31

 4.1 Terms Definition 31

 4.2 UTM Telerobotic System Setup and

Application Programs’ User

Interface

36

 vi

 4.3 System Architecture 44

 4.4 Summary 48

CHAPTER 5 VIRTUAL WORKING AREA

CONSTRUCTION, COMMAND PRE-

PROCESSOR AND TASK PRE-

PROCESSOR

49

 5.1 Introduction 49

 5.2 Virtual Working Area and Working

Objects Construction

50

 5.3 Command Pre-processor 52

 5.4 Intelligent Parser 66

 5.5 Task Pre-Processor 67

 5.6 Client-server Connection Manager 69

 5.7 FTP Server 71

 5.8 Summary 72

CHAPTER 6 HIGH LEVEL COMMAND TO LOW

LEVEL COMMAND TRANSLATION

73

 6.1 Introduction 73

 6.2 Task Planner 73

 6.3 Robot Path Planner 76

 6.4 Vision Sub-system 86

 6.5 Summary 93

CHAPTER 7 SAFETY, RELIABILITY AND

ACCURACY DESIGN OF THE

TELEROBOTIC SYSTEM

94

 vii

 7.1 Introduction 94

 7.2 Robot Selection and Task

Definition

97

 7.3 Working Object Definition 97

 7.4 Work Cell Design 99

 7.5 Working Area Definition 100

 7.6 Distance Between Objects

Definition

104

 7.7 Gripper with New Fingers Design 105

 7.8 System Self-calibration 107

 7.9 Working Object Exception

Handling

108

 7.10 Client-server Exception Handling 109

 7.11 Log File and Error Listing 111

 7.12 Summary 115

CHAPTER 8 SYSTEM TESTING, RESULT

ANALYSIS AND SYSTEM

ARCHITECTURE COMPARISON

116

 8.1 Introduction 116

 8.2 Command Pre-processor Testing 117

 8.3 Task Analysis: Single Object

Moved

117

 8.4 Task Analysis: Single Object

Moved and Rotated

122

 8.5 Task Analysis: Two Objects Moved

and Rotated

128

 8.6 Output Accuracy Analysis 137

 8.7 Exception Handling 138

 8.8 Platform Testing 138

 8.9 Local Area Network (LAN) Testing 139

 viii

 8.10 System Architecture Comparison 139

 8.11 Summary 141

CHAPTER 9 CONCLUSION 142

 9.1 Introduction 142

 9.2 Objectives Achievement 144

 9.3 Contribution 146

 9.4 Recommendations and Future

Work

148

 REFERENCES

 APPENDIXES

 APPENDIX A 157-

161

 APPENDIX B 162-

213

 ix

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1: Comparison table for the system of Australia's

telerobot on the web

8

Table 2.2: Comparison table for CSC Telerobot system 11

Table 2.3: Comparison table for robotoy system 13

Table 2.4: Comparison table for tele-garden system 15

Table 2.5: Comparison table for PumaPaint project 17

Table 2.6: Comparison table for the prototype of UTM web-

based telerobotic system

22

Table 4.1: Comparison between robot-oriented system and

task-oriented robotic system

 35

Table 4.2: Motor and the corresponding joint 38

Table 5.1: Words to symbols and values conversion 62

Table 5.2: URL strings 71

Table 6.1: Details of the working objects at the remote site 75

Table 6.2: Details of the virtual working objects send by the

telerobotic client program

75

Table 6.3: Differences between the information kept in the

Table 6.1 and Table 6.2

76

Table 6.4: Motors’ unit encoder count at soft home 83

Table 6.5: Conversion table 84

Table 6.6: Motors’ unit encoder count at reference point 84

Table 7.1: Motors position for the gripper model defined 108

Table 7.2: Working object exception handling 109

Table 8.1: Output analysis for standard gripper 137

 x

Table 8.2: Output analysis for new fingers design 138

 xi

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 1.1: Research methodology 5

Figure 2.1: The telerobot system for Australia's telerobot on

the web

8

Figure 2.2: The actual site for Australia's telerobot on the

web

9

Figure 2.3: Operator interface for Australia's telerobot on the

web

9

Figure 2.4: Usher - to specify a new position of the gripper,

drag these lines to specify x, y, z, spin, and tilt of

the new position. Select "move" from the pop-up

menu to let the robot move to the new position

10

Figure 2.5: Two dimensional wireframe views of the robot

included in an earlier interface, circles indicate

rotational joints. These images were clickable.

10
Figure 2.6: Coordinate system for CSC Telerobot 12

Figure 2.7: Part of the operator interface for CSC Telerobot 12

Figure 2.8: Robotoy system 13

Figure 2.9: Part of operator interface for robotoy project 14

Figure 2.10: The actual site for tele-garden project 15

Figure 2.11: Part of the operator interface for tele-garden

project

 16

Figure 2.12: The actual site for PumaPaint project 17

Figure 2.13: GUI with added features to increase the fidelity

of the virtual canvas

18

 xii

Figure 2.14: Painted text and images 18

Figure 2.15: Overview of the system 20

Figure 2.16: Example of dialogue 21

Figure 2.17: System architecture for the prototype of UTM

web-based telerobotic system

22

Figure 2.18: Rhino robot and the actual site 22

Figure 2.19: UTM Telerobot web-based interface 23

Figure 4.1: System concepts 32

Figure 4.2: Sub-systems of a system 32

Figure 4.3: Rhino robot 37

Figure 4.4: Dimension of Rhino robot 38

Figure 4.5: Motor and the corresponding joint 39

Figure 4.6: Front view of the robot work cell 39

Figure 4.7: Top view of the robot work cell 40

Figure 4.8: Sample of working objects 40

Figure 4.9: User interface of the UTM telerobotic server

program

42

Figure 4.10: User interface of the UTM telerobotic client

program

43

Figure 4.11: User interface of the UTM telerobotic client

program with TCP/IP messaging facilities

44

Figure 4.12: Local and remote sites of the UTM telerobotic

system

46

Figure 4.13: UTM telerobotic client program architecture 47

Figure 4.14: UTM telerobotic server program architecture 47

Figure 4.15: Block diagram of the task control sub-system

(closed- loop)

48

Figure 5.1: Virtual working area with the image of the top

view of the working area

 51

Figure 5.2: Coordinate for the top right-hand corner 52

Figure 5.3: Popup menu 1 64

Figure 5.4: Popup menu 2 65

Figure 5.5: Linear equations for the sides 65

 xiii

Figure 5.6: Natural language listing 67

Figure 5.7: Object rotated 90o, 180o and 270o 69

Figure 5.8: Client-server connection process 71

Figure 6.1: Robot soft home 82

Figure 6.2: Working area and robot-based coordinate systems 83

Figure 6.3: Top view of the robot 83

Figure 6.4: Side view of the robot 84

Figure 6.5: Robot physical configuration at reference point 85

Figure 6.6: Robot commands 85

Figure 6.7: Image captured 88

Figure 6.8: Image segmented 88

Figure 6.9: Image smoothed 89

Figure 6.10: Image binarized 89

Figure 6.11: Image opened 90

Figure 6.12: Image closed 90

Figure 6.13: Model defined in the ModelFinderer Control 91

Figure 6.14: Boxes are drawn at the working objects

recognized

91

Figure 6.15: Model defined in the ModelFinder Control 92

Figure 6.16: A box is drawn at the part of the gripper

recognized

93

Figure 7.1: Dimension of gripper opening 98

Figure 7.2: Gripper and cube 99

Figure 7.3: Robot work envelope 100

Figure 7.4: Robot work cell 100

Figure 7.5: Optimum height of the working area 102

Figure 7.6: Working area dimension calculation 102

Figure 7.7: Virtual working area 103

Figure 7.8: Workable, viewable areas comparison 103

Figure 7.9: The maximum outer length of the robot finger 104

Figure 7.10: The area cleared for the gripper rotation 105

Figure 7.11: The minimum distance between the working

objects required

105

 xiv

Figure 7.12: Types of gripper available for Rhino robot 106

Figure 7.13: New fingers design 106

Figure 7.14: Image offset to calibration the system 108

Figure 7.15: Example of the events recorded in the log file 114

Figure 7.16: Events recorded in the error listing 115

Figure 8.1: Task planned 119

Figure 8.2: Motor F is moved (left) followed motor E (right) 119

Figure 8.3: Motor D is moved (left) followed by motor B

(right)

120

Figure 8.4: Motor A is moved (left) followed by motor D

(right)

120

Figure 8.5: Motor E is moved (left) followed by motor F

(right)

120

Figure 8.6: Motor E is moved (left) followed by motor B

(right)

121

Figure 8.7: Motor D is moved (left) followed by motor A

(right)

121

Figure 8.8: Motor B is moved (left) followed by motor D

(right)

121

Figure 8.9: Motor E is moved 122

Figure 8.10: Task completed 122

Figure 8.11: Task planned 124

Figure 8.12: Motor F is moved (left) followed by motor E

(right)

124

Figure 8.13: Motor D is moved (left) followed by motor B

(right)

125

Figure 8.14: Motor A is moved (left) followed by motor D

(right)

125

Figure 8.15: Motor E is moved (left) followed by motor F

(right)

125

Figure 8.16: Motor E is moved 126

Figure 8.17: Motor B is moved 126

 xv

Figure 8.18: Motor D is moved (left) followed by motor A

(right)

126

Figure 8.19: Motor B is moved (left) followed by motor D

(right)

127

Figure 8.20: Motor E is moved 127

Figure 8.21: Task completed 128

Figure 8.22: Task planned 131

Figure 8.23: Motor F is moved (left) followed by motor E

(right)

131

Figure 8.24: Motor D is moved (left) followed by motor B

(right)

132

Figure 8.25: Motor A is moved (left) followed by motor D

(right)

132

Figure 8.26: Motor E is moved (left) followed by motor F

(right)

132

Figure 8.27: Motor E is moved (left) followed by motor B

(right)

133

Figure 8.28: Motor D is moved (left) followed by motor A

(right)

133

Figure 8.29: Motor B is moved (left) followed by motor D

(right)

133

Figure 8.30: Motor E is moved (left) followed by motor F

(right)

134

Figure 8.31: Motor E is moved (left) followed by motor D

(right)

134

Figure 8.32: Motor B is moved (left) followed by motor A

(right)

134

Figure 8.33: Motor D is moved (left) followed by motor E

(right)

135

Figure 8.34: Motor F is moved (left) followed by motor E

(right)

135

Figure 8.35: Motor B is moved (left) followed by motor D

(right)

135

 xvi

Figure 8.36: Motor A is moved (left) followed by motor B

(right)

136

Figure 8.37: Motor D is moved (left) followed by motor E

(right)

136

Figure 8.38: Task completed 136

 xvii

LIST OF SYMBOLS AND ABBREVIATIONS

2D - Two dimensional

3D - Three dimensional

CD-ROM - Compact Disc-Read Only Memory

CSC - Carnegie Science Center

DOF - Degree of freedom

GUI - Graphical User Interface

IP - Internet Protocol

ISDN - Integrated Services Digital Network

ISP - Internet Service Provider

JARA Award - Japan Robot Association Award

JPEG - Joint Photographic Experts Group

kb - Kilobit

kbps - kilobits per second

MIL - Matrox Imaging Library

MIME - Multipurpose Internet Mail Extensions

NASA - National Aeronautics and Space Administration

PC - Personal computer

PSTN - Public Switched Telephone Network

RAM - Random access memory

ROVs Remotely Operated Vehicles

URL - Uniform Resource Locator

UTM - Universiti Teknologi Malaysia

VC++ - Visual C++

WWW World Wide Web

 xviii

LIST OF APPENDIXES

APPENDIX TITLE PAGE

A Work Cell Dimension 157

 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The internet is a very fast evolving new technology, allowing people to

electronically connect places that are thousands of miles apart. However, up to now,

electronic networks serve mainly to exchange and acquire information. The first

robot has appeared on the internet in 1994. The project, named Mercury project

(Goldberg, K., et al., 2000), was the first system that allowed WWW users to

remotely view and alter the real world via telerobotics. Four weeks after that, the

second robot, ASEA IR-6 was connected to the internet at the University of Western

Australia (Taylor, K. and Dalton, B., 1997). The later robot is still running on the

web since the launch. Since the launch of the robots on the internet, an enormous

effort has been undertaken by hundreds of researchers to push this technology.

Telerobot is a robot that accepts instruction from a distance, generally from a

trained human operator (Fauzi Zakaria, 2000). The technology can be applied in

many areas. Nevertheless the current projects are largely experimental and none have

been used to provide commercial services. Areas where this technology is thought

likely to be useful are (Taylor, K. and Dalton, B., 1997):-

i) Entertainment. It is apparent from the reaction of people to Australia's

Telerobot, and other internet devices that many people consider

operating them entertaining. A private company, LunaCorp Inc in

 2

conjunction with Carnegie Mellon University plan to launch the first

private lunar mission. The project involves landing a pair of

teleoperated robotic vehicles on the Moon's surface

(http://www.ri.cmu.edu/lri/). Intended customers for the mission

include a theme park, television network, commercial sponsors, and

scientists.

ii) Telemanufacturing. There is a large group at University of California

Berkeley with a grant of US$1.3 million developing an Internet

accessible, machining service called CyberCut.

(http://CyberCut.berkeley.edu/).

iii) Training. Providing access to robots and other expensive equipment

for training purposes where purchasing cannot be justified.

iv) Mining. Teleoperation of underground mining equipment is being

practised at some mines and this technique could be used to operate

the equipment from any location.

v) Underwater Remotely Operated Vehicles (ROVs). ROVs are subject

to time delays, limited bandwidth, and unstructured environments

providing an ideal application for supervisory control. These

constraints are in many ways similar to those experienced in internet

telerobotics.

1.2 Project Background and Motivation

The prototype for the internet-based fixed arm type telerobotic system had

been developed by Fauzi Zakaria (2000). The details of the system are discussed in

chapter 2. Some of the problems faced in the project are as below:-

 3

i) Users are limited to the button-based interface to operate the robot.

The disadvantage of the design is that fine movement cannot be

well supported;

ii) No operation guidance for operators in both actual site and operator

interface. Some type of guidance such as grid on the working area

as well as in the virtual environment should be provided;

iii) The image captured and presented to the operators should be

processed and optimized. This can be done through filtering out the

unnecessary image as well as compressing the image before sending

it to the operator to reduce the size; and,

iv) No application defined. The system should support at least one

application to make it practical. A good choice of application can

make the project interesting and attractive to the internet users.

Since this is UTM’s first internet-based fixed arm type telerobotic system, a

lot of effort is still needed to improve the system to catch up with the latest

technology in internet-based telerobotics. A lot of improvement has been achieved in

the internet-based telerobotics since the first launch in 1994. Some of the projects

provide the virtual environment operation as well as more complicated application.

1.3 Objectives and Scope of Project

The objectives of the project can be summarized as:-

i) To study the latest finding in the internet-based telerobotics especially

the problems faced as well as the solutions;

ii) To study the existing project especially the problems faced;

iii) To identify the appropriate technology to improve the existing project;

iv) To design a new telerobotic system; and,

 4

v) To implement the new telerobotic system.

Based on the result of the literature review, the scope of the project has been

set to cover mainly on the 3 areas:-

i) To design a task-oriented telerobotic system based on the existing

Rhino robot;

ii) To support visual servoing in the new telerobotic system; and,

iii) To support type-written natural language command from the user to

control the new telerobotic system.

1.4 Methodology of Research

The methodology in this project can be divided into three stages, which are

the theoretical work, implementation and experimental testing of the prototype of

telerobotic system. The research methodology is shown in the Figure 1.1. First of

all, literature reviews are carried out as well as assessing the current project setup.

From the literature review, the problems faced by the other researchers and the

solutions are identified. A proper design and plan had been drawn out based on the

existing project setup.

The new telerobotic system is built based on the existing Rhino robot. The

UTM telerobotic server program and UTM telerobotic client program are built. The

user can choose to control the telerobot through natural language command or

through manipulating the virtual objects in the virtual environment. The UTM

telerobotic client program with TCP/IP messaging facilities is built to facilitate the

debugging process of the system when an error occurred. The new telerobotic system

is implemented on the local area network (LAN). The new telerobotic system is then

tested. The process from implementation until testing of the UTM telerobotic system

is simplified in the Figure 1.1. Any error discovered is corrected. The new telerobotic

system is improved from time to time. The process of correction and improvement is

carried out again and again until the final system is produced.

 5

Experimental testing

Prototype

Implementation

Theoretical work

Figure 1.1: Research methodology

1.5 Layout of Report

The Chapter 2 reviews some of the works in telerobotics conducted by other

institutes. The Chapter 3 describes the problems faced in the internet-based

telerobotics as well as the possible solutions. In the Chapter 4, some of the terms

used are discussed in details and the UTM telerobotic system architecture designed is

briefly explained. The details of the system design on the vision sub-system, natural

language processing, high level command to low level command translation,

accuracy and reliability consideration are discussed respectively in Chapter 5, 6 and

7. The result and performance analysis are provided in the Chapter 8. Finally the

contribution and the conclusion are given in Chapter 9.

 6

CHAPTER 2

LITERATURE REVIEWS

2.1 Introduction

In this chapter, some of the successful internet-based telerobotic projects

developed by the other research groups are reviewed. Since the project to be

developed involves fixed arm type robot system, almost all of the projects reviewed

are of this type of system except in Section 2.7, which focuses on the use of natural

language to communicate with the robot. More studies have been put on the first

three projects because of the similarity with the UTM telerobotic system developed.

There is a comparison table given as a summary for every fixed arm type

robot system mentioned. There are six items of information given in each of the

table, namely institute, application, type of robot, robot/task-oriented, feedback, user

guidance and web site. Institute and web site items provide the basic information

where the readers can find further details about the project. Application item

summarizes the purpose that the system was designed for. Robot/task-oriented item

looks at the approaches used to command the robot. The robot-oriented and task-

oriented concepts are discussed in detail in the Section 4.1.6. Basically, robot-

oriented approach is the method where the user operates the robot based on the

movement of the robot. Meanwhile task-oriented approach is the method where the

users command the robot by specifying the task to be done by the robot and then the

system will plan the movement for it. User guide mentioned here is not referring to

the tutorial or help facilities provided to the users. The user guide refers to the

 7

guidance, such as coordinate system, provided to assist the users to complete the

task. Finally, feedback item refers to the type of the information provided by the

telerobotic system to the users.

2.2 Australia's Telerobot on the Web (Taylor, K. and Dalton, B., 2000)

This is the longest running web robot on the internet. Perhaps there are as

many as 500,000 people have controlled the robots since 1994. The researchers,

Taylor, K. and Dalton, B. (2000), won 1996 JARA award for their paper entitled,

"Australia's Telerobot on The Web". The users can manipulate wooden blocks on a

table in front of the robot through the website.

Currently, the system supports both text base command and usher interface.

The usher interface (Friz, H., 1998) as shown in the Figure 2.4, is an augmented

reality user interface that allows the users to manipulate the telerobot with the touch

of the mouse. According to the paper, a clickable 2D wireframe (shown in Figure

2.5) and clickable images were found in earlier interface. A clickable 2D wireframe

of the workspace was used for only 4% of movement requests and 39% of the

operators made use of an option to switch off the image of 2D wireframe. Similarly

the clickable images are not widely used, and furthermore a more recent innovation

of multiple moves is only used for 2.6% of robot movement requests (Taylor, K. and

Dalton, B., 1997).

 8

Table 2.1: Comparison table for the system of Australia's telerobot on the web

Institute University of Western Australia, Australia.

Application Manipulate wooden blocks on a table in front of the robot.

Type of Robot ASEA, industrial 6-axis robot.

Robot/Task- Robot-oriented

oriented i) Text base command;

 ii) Usher;

 iii) Clickable images (earlier interface only); and,

 iv) 2D wireframe (earlier interface only).

Feedback i) Real image; and,

 ii) Robot status.

User guidance i) Grid on the table;

 ii) Known size of wooden blocks; and,

 iii) Usher.

Web site telerobot.mech.uwa.edu.au/

Figure 2.1: The telerobot system for Australia's telerobot on the web

 9

Figure 2.2: The actual site for Australia's telerobot on the web

Figure 2.3: Operator interface for Australia's telerobot on the web

 10

Figure 2.4: Usher - to specify a new position of the gripper, drag these lines to

specify x, y, z, spin, and tilt of the new position. Select "move" from the pop-up

menu to let the robot move to the new position

Figure 2.5: Two dimensional wireframe views of the robot included in an earlier

interface, circles indicate rotational joints. These images were clickable.

 11

2.3 Carnegie Science Center (CSC) Telerobot

There is not much information can be found on the official web site of the

CSC telerobot project. As similar to the Australia's Telerobot project, there are grids

provided on the table to guide the operators. There are two real images presented to

the users. The user can operate the robot by entering coordinates to go, degrees to

lean and spin. Another way to operate the robot is by clicking on the images of the

working area presented to the user. The user must click a location on both of the

images which represent x-coordinate and y-coordinate of the point where the gripper

will be moved to.

Table 2.2: Comparison table for CSC Telerobot system

Institute Carnegie Science Center, Pittsburgh.

Application Manipulate wooden blocks on a table in front of the robot.

Type of Robot 6-DOF robot.

Robot/Task- Robot-oriented

oriented i) Text base command; and,

 ii) Clickable images.

Feedback i) Real images.

User guidance i) Grid on the table.

Web site www.carnegiesciencecenter.org/kids/telerobot.asp

 12

Figure 2.6: Coordinate system for CSC Telerobot

Figure 2.7: Part of the operator interface for CSC Telerobot

2.4 Robotoy

This is another internet-based telerobotic project from Australia. The robot

used in this project is very similar to the robot currently being used in UTM project.

Robotoy is a Mitsubishi Micro-Robot. It is a RM-101 model and is intended for

educational use only. Therefore it has neither the precision nor the robustness which

 13

can be provided by an industrial robot. The Figure 2.8 shows how the robotoy system

is put together.

Table 2.3: Comparison table for robotoy system

Institute University of Wollongong, Australia.

Application Manipulate wooden blocks on a table in front of the robot.

Type of Robot Mitsubishi Micro-Robot, educational 6-axis robot.

Robot/Task- Robot-oriented

oriented i) Text base command.

Feedback i) Real image.

User guidance Not available.

Web site robotoy.elec.uow.edu.au/

Figure 2.8: Robotoy system

 14

Figure 2.9: Part of operator interface for robotoy project

2.5 Tele-Garden

The Tele-garden project is designed to have different application from the

projects discussed earlier. The users are allowed for watering, planting and viewing

the garden. The users are presented with a simple interface that displays the garden

from the top view, the garden from a global composite view, navigation and

information view in the form of a robot schematic. Grids are provided on both of the

images to guide the users. By clicking on any of the images, the user can command

the robot to move to a new absolute location (left image of the Figure 2.11) or one

relative to where they just were (right image of the Figure 2.11). The robot, upon

completion of the move, will return a refreshed image of the garden.

To water the garden users must first align the camera image over the section

of the garden to water and then press the water button. This will command the robot

to release a small squirt of water over the area in view. To plant a seed the user is

first requested to find a spot that is relatively empty (there are no restrictions to

where one can plant) and then asked to press the plant button. This will cause the

 15

robot to poke a small hole in the ground, proceed to the seed bowl, suck up a seed

and deposit it back into the previously dug hole. Nevertheless, the button plant,

between water and options buttons, is not available at the time of preparing the

writing (shown in the Figure 2.11).

Table 2.4: Comparison table for tele-garden system

Institute University of Southern California, United States.

Application Watering, planting and viewing the garden.

Type of Robot 6 DOF robot.

Robot/Task- Task-oriented

oriented i) Text/button base; and,

 ii) Clickable images.

Feedback i) Real image; and,

 ii) Virtual environment.

User guidance i) Grid on the images.

Web site telegarden.aec.at/index.html

Figure 2.10: The actual site for tele-garden project

 16

Figure 2.11: Part of the operator interface for tele-garden project

2.6 Painting on the World Wide Web: The PumaPaint Project (Stein, M. R.,

2000)

This is a web robot that allows the users to create an original artwork on a

World Wide Web. The site allows control of a PUMA 760 robot which is equipped

with four paintbrushes together with respective jars of red, green, blue and yellow

paint. A white paper is attached to a vertical easel.

The interface provides two types of feedback: one immediate and virtual

image while the other time-delayed and real image. The center portion of the

interface as shown in the Figure 2.13 is a virtual canvas and the main area of

interaction. By clicking, holding and dragging the mouse in this area the user can

issues commands to the remote robot to apply paint to the real canvas. In order to

increase the fidelity of the virtual canvas, the virtual canvas is coloured as a blob,

rather than a shape with sharply defined edges. The blobs contain randomly

generated gaps and streaks, and the proportion of area turned to the selected colour

progressively decreases as the brush stroke continues.

 17

Table 2.5: Comparison table for PumaPaint project

Institute Wilkes University, United States.

Application Painting on white paper attached to a vertical easel.

Type of Robot PUMA 760, industrial 6-axis robot.

Robot/Task- Task-oriented

oriented i) Virtual canvas.

Feedback i) Real image; and,

 ii) Virtual canvas.

User guidance Not available (not important for this type of application).

Web site yugo.mme.wilkes.edu/~villanov/

Figure 2.12: The actual site for PumaPaint project

 18

Figure 2.13: GUI with added features to increase the fidelity of the virtual

canvas

Figure 2.14: Painted text and images

 19

2.7 Natural Communication with Robot (Torrance, M. C., 1994)

 This is not an internet-based telerobotic project. The project is highlighted for

its effort to apply the natural language for communication with robot. The researcher,

Torrance [9], had highlighted the other natural communication approaches as well as

their pros and cons. Some of the natural language statements and commands

supported are given as below:-

 “You are {at|in|on|} place”

 “You are facing direction”

 “Place is [to the] direction of {here|you}”

 “Go”

 “Stop”

 “Go as far as you can”

 “Go until you can turn {right|left}”

 “Go to place”

 “What is [to the] direction of {here|you}”

 The use of the natural language in this project makes the communication

between the user and the robotic system become more convenient. The Figure 2.16 is

showing the example of the dialogue between the user and the robotic system. This

feature is interesting for our implementation in the UTM’s new telerobotic system.

The UTM’s new telerobotic system is able to interpret the type-written natural

language from the user.

 20

Figure 2.15: Overview of the system

 21

Figure 2.16: Example of dialogue

2.8 Prototype of UTM Web-based Telerobotic System (Fauzi Zakaria,

Shamsudin H. M. Amin and Rosbi Mamat, 2000b)

This is the prototype for the Internet-based telerobotic system developed

initially at UTM. Figure 2.17 shows the system architecture. The robot used, Rhino

(shown in Figure 2.18), is intended for educational purpose and thus the project is

facing accuracy and robustness problems of the robot. User can operate the robot

through the button, which is not intended for accuracy movement. There is a real

image feedback presented to the operator.

 22

Table 2.6: Comparison table for the prototype of UTM web-based telerobotic

system

Institute Universiti Teknologi Malaysia, Malaysia.

Application Not available.

Type of Robot Rhino, educational 5 DOF robot.

Robot/Task- Robot-oriented

oriented i) Button base.

Feedback i) Real image.

User guidance Not available.

Web site Not available.

Figure 2.17: System architecture for the prototype of UTM web-based

telerobotic system

Figure 2.18: Rhino robot and the actual site

 23

Figure 2.19: UTM Telerobot web-based interface

2.9 Summary

A lot of information is gained from the review of the successful internet-

based telerobotic projects developed by the other research groups. This is very

helpful for our implementation of the telerobotic system since the problem faced by

the other research groups can be avoided in our implementation. The good features

of the other project such as the use of natural language can be implemented in our

new telerobotic system. The importance factors in the Internet based telerobotics are

identified and discussed in the Chapter 3.

 24

CHAPTER 3

IMPORTANT FACTORS IN DEVELOPMENT OF INTERNET-BASED

TELEROBOTICS

3.1 Introduction

A success internet-based telerobotic project is not only attracting many users

but also get more attention from the users to stay longer for learning and operating

the robot. The project must be able to be accessed by the users 24 hours a day and

365 days a year. On the other hand, a good telerobotic system requires less

maintenance. There are some important factors which will determine the success of

the project. These factors must be considered when designing and developing the

telerobotic project.

3.2 Easy to Operate

Basically there are two ways where the internet-based telerobot can be

operated. The first method is called robot-oriented approach, where the user can

remotely operate the telerobot based on the movement of the robot step by step to

perform the work. In this approach, the operation of the system can be controlled by

the users through button/text-based interface, model-based interface (2D, 3D or

integrated with real image) or master-slave system. However, master-slave system is

not suitable for internet-based application since it requires a master robot to exist at

 25

the local site. From the user interfaces mentioned, the user is able to specify and plan

the movement of the robot directly.

In button/text-based interface, the operator can use the button or text to

specify the values for the movement of the motors at the robot. The Robotoy is an

example of the project that uses this type of the interface. Some of the project such as

the CSC telerobot extends the button/text-based interface to support the use of the

virtual coordinate system as an alternative for the user to specify the coordinate of

the end effector. Even so, in the CSC telerobot’s user interface most of the robot

movement still requires the user to specify and plan step by step.

Model-based telerobotics sometimes is also referred to as teleprogramming.

Under this framework, a user interacts with a model of remote site rather than with

the remote site directly. The clickable 2 dimensional (2D) wireframe of the robot

supported in the earlier interface of the Australia's Telerobot is an example of the

model-based interface. A more advanced interface is by using the real robot image

with the virtual lines as the guidance instead of using the virtual robot to operate the

telerobot. Usher (Friz, H., 1998) is one of the examples that allow users to operate

the robot through real image interface.

In the robot-oriented approach, the telerobotic system can be simplified by

filtering out the extraneous complications of the system. For example, Taylor, K. and

Dalton, B. (1997), noted that for all useful block manipulations only two orientation

specifications were required, termed spin, and tilt, rather than roll, pitch and yaw. By

limiting the movement, the system has become much easier to be understood and

operated without losing any useful functionality.

The second method is called task-oriented approach, where the users need

only to specify the task to be done by the robot and then the telerobotic system will

plan the path of the movement to complete the task. In this method, the movement of

the robot is not controlled directly by the user. The user has no control on how the

telerobotic system plans the movement of the robot to complete the task required by

the user. The interfaces for task-oriented system can be text-based interface which

accepts task-oriented command or model-based (2D, 3D or integrated with real

 26

image). The internet-based mobile robot developed by Roland, S., et al. (1998) is one

of the examples that accept task-oriented natural language command. There is

another task-oriented system that is non internet-based which was developed by

Torrance, M. C. (1994). The PumaPaint project (Stein, M. R., 2000) used 2D model-

based interface to implement the task-oriented concept. The user can design the task

through the virtual working area.

3.3 Reliability

Reliability is the most difficult criterion for internet-based telerobotics to be

made available for 24 hours a day and 365 days a year while requiring minimal

maintenance. The system must be able to recover from software and hardware errors.

Several internet-based telerobotic projects have been abandoned because of these

problems. Some of the suggestions from Taylor, K. and Dalton, B. (1997) to

overcome the problems are as below:

i) Move to more stable and reliable operating system;

ii) Move to more stable and reliable web-server computer;

iii) To use hardware and software watchdog; and,

iv) The workspace is restricted to avoid physical limits such as joint

limits.

3.4 Response Time

Response time (Taylor, K. and Dalton, B., 1997) is defined as:

tc
Vl

DrDs
tptr +++=)(

 27

Where tp is request processing time, tc is time taken to initialize communication, Ds

and Dr are total data submitted and returned respectively, and Vl is the transmission

speed of the link. Since tp and tc contribute less to the value of tr, the main focus is

put on Ds, Dr and Vl.

 The transmission speed, Vl, is relying most on the medium of transmission.

The Integrated Services Digital Network (ISDN) connection provides higher

transmission speed than the standard copper Public Switched Telephone Network

(PSTN) connection. Meanwhile the fiber optic connection provides higher

transmission speed than the Integrated Services Digital Network (ISDN) connection.

It is important for the designer to choose the right medium of transmission to be used

in the project based on the available resources.

 Another way to minimize the response time is to have minimum transmission

of data between the server and client. One way of doing this is by minimizing the

image size presented to the operator. Further reduction in the data size can be

achieved by filtering out unnecessary data. For example, two of the cameras can be

calibrated with respect to the robot. This allows automatic cropping of the image to

the region of interest centered about the tool center point. The image presented to the

operators must be first compressed to the JPEG file format and send only after the

completion of the command.

Model-based telerobotics has recently been proposed as a means of

overcoming this problem (Lloyd, J.E., Beis, J.S., Pai, D.K. and Lowe, D.G., 1997).

Under this framework, a user interacts with a model of remote site rather than with

the remote site directly. This allows the client to pre-process the data before sending

it to the server. If the data is invalid, the data is verified again with the user until no

error. Thus the transmission of data can be reduced. Besides overcoming the time

delay, model-based telerobotic system permits other advantages, such as user control

of the view point, the ability to test and preview the actions and the introduction of

artificial graphical aids for task specification.

Almost all of the projects mentioned in Chapter 2 are using JAVA as the

programming language. Due to the nature of the CGI mechanism a whole HTML

 28

page is returned with each request, even if a portion of which does not change

between requests. The newer internet technologies of JAVA and frames allows pages

to be split up, so that only updated information is refreshed, reducing data

transmission further (Taylor, K. and Dalton, B., 1997).

3.5 Human Factors

Most of the internet based telerobotic systems are applying the supervisory

control scheme. In supervisory control scheme, human is the central part of the

control loop and their behavior becomes an important consideration in the system

design. The important information on how to improve the system can be gathered

from the analysis of users’ behavior. In the Australia’s Telerobotic project (Taylor,

K. and Dalton, B., 1997), there is a facility for users to register themselves besides all

of their activities on controlling the robot is recorded. The incentive to register is the

user will be given higher priority for robot access. Some of the important data from

the analysis are:

i) 95 percent registered users are male;

ii) Indicating a greater interest by youth than older people;

iii) Less effort to register: registered users operate the robot for only 8%

of sessions and 15% of the time;

iv) Three quarters have given up after waiting for three minutes;

v) 43% percent do not make any single request to the robot after having

gained control; and,

vi) The users are not staying long enough to learn how to use a complex

system.

Besides for new users, they might find out that it is more difficult to control a

robot through the Internet rather than controlling the real robot directly. This is

because the working objects and the telerobot are both 3 dimensional (3D) while the

monitor is able to support 2 dimensional (2D) interface only. The human capabilities

such as to estimate the distance, size and locating the objects in 3D environment are

 29

restricted when switched to 2D interface. There must be some kind of guidance to

assist the users to extend their capabilities in controlling the robot. In Australia's

telerobotic project (Taylor, K. and Dalton, B., 1997) and CSC telerobot project, the

user can take advantage of the real coordinate system such as grid on the work space

and known objects’ size. On the other hand, the virtual coordinate system can be

applied on the virtual environment, such as in the PumaPaint project (Stein, M. R.,

2000) and the Tele-garden project. It would be more convenient for the users to

operate the robot based on virtual coordinate system.

3.6 Interface Design

Interface design is very important since it is where the users interact with the

robot and remote site. There are two important criteria to be considered when

designing the interface:

i) Informative but simple

A good interface must be informative enough to tell the users on how to

operate the robot besides provides others relevant information. All of the information

must be made simple and convenient to the users to search and read. For example,

the command tilt and spin may be good to be explained by using a diagram rather

than text. Roland, S., et al. (1998) had emphasized on interface design in his paper by

saying that the design must be “connect and play” and any large introduction pages

will frighten away most of the users.

ii) Customizable interface

 There is no single web page in internet-based telerobotic projects that can

be considered as the best suited to all users. The users who use modem internet

always face with the bandwidth problems. They have to wait longer for the images to

be refreshed. Thus speed is more important than quantity and quality of the images

for this group of users. For the convenient of the users, some of the projects include

 30

the facilities to allow the users to customize the interface, such as the resolution of

the image, number of the camera views and the approach to control the robot. Both

Australia's telerobotic project (Taylor, K. and Dalton, B., 1997) and Tele-garden

project support these facilities.

3.7 Summary

The UTM telerobotic system is designed based on the task-oriented approach,

where the users need only to specify the task to be done by the robot and then the

telerobotic system will plan the path of the movement to complete the task. The task-

oriented telerobotic system is more user friendly than the robot-oriented telerobotic

system. The overall response time of the task-oriented telerobotic system is shorter

than the robot-oriented telerobotic system. The details about both types of the system

are discussed in the Chapter 4, 5 and 6.

The new telerobotic system designed is supporting the use of the type-written

natural language command. Besides, the user can also plan the task by manipulating

the objects in the virtual environment. Every user who manages to login to the UTM

telerobotic system is limited to a period of 10 minutes to operate the telerobotic

system. The details about the UTM telerobotic system architecture and the design of

the user interface are discussed in the Chapter 4.

Meanwhile, the reliability, safety and accuracy design of the system are

discussed in the Chapter 7. These include the work cell design, gripper with new

fingers design, system self-calibration, working object exception handling, client-

server exception handling, log file and error listing.

 31

CHAPTER 4

TERMS DEFINITION AND SPECIFICATION OF UTM TELEROBOTIC

SYSTEM

4.1 Terms Definition

Before the system is described, it is necessary to understand some definitions

that were used in previous chapters and those are used throughout the chapters and

the discussion. The terms definition and explanation are as follow:-

4.1.1 System and Sub-system

A system is a set of connected things (sub-systems) that form a whole or

work together. A system has many inputs and outputs. The output is the result of

carrying out some process on a set of inputs. A system must have an objective or

function. The elements of the system are separated from those things that form part

of another system by the boundary (Richards, M., 2001). For example the nervous

system is separated from respiratory system and each of the system has their

respective functions. The concept of the system is shown in the Figure 4.1.

Meanwhile sub-system is part of a system. Each system is composed of sub-

systems, which are themselves made up of other sub-systems. This is because

generally every system is part of another system. In other word, a smaller system

 32

which has input, output, boundary and objective but it is a part of a bigger system

then the smaller system is called the sub-system of the bigger system. The purpose

of the terms system and sub-system is to identify a system until we have a

sufficiently clear understanding of the larger system. The Figure 4.2 shows the sub-

systems A, B, C, D and E that form a system.

Figure 4.1: System concepts

Figure 4.2: Sub-systems of a system

 33

4.1.2 Telerobotic System

The word robot originated from the Czech word robota, meaning work. A

robot is can be defined as a reprogrammable general-purpose manipulator with

external sensors that can perform various assembly tasks (Fu, K. S., et al., 1987).

Meanwhile, telerobot is a robot that accepts instruction from a distance, generally

from a trained human operator (Fauzi Zakaria, 2000). The word telerobotic system

is used to refer to the software, telerobot and equipments used on both of the local

and remote sites to work as a system. Human is the user who operates the

telerobotic system and thus is excluded from the system. The example of the

telerobotic application is the sending of telerobot by NASA to outer space for data

collection. The telerobot is controlled from the earth.

4.1.3 Local Site vs. Remote Site

The terms local and remote sites used in Section 4.1.2 are referring to the

locations of the telerobot and the operator. The local site is the location where the

user operates the telerobot. Meanwhile the remote site is the location where the

telerobot situated and works.

On the other hand, the person who operates the UTM telerobotic system from

the local site is call as user or operator. Meanwhile the person who setup and

manage the system at the remote site is called system administrator.

4.1.4 Client vs. Server

According to the Microsoft Help and Support documentation of the Microsoft

Windows XP, client is any computer or program connecting to, or requesting the

services of, another computer or program. Client can also refer to the software that

enables the computer or program to establish the connection. Meanwhile, server

 34

refers to the computer or program that provides shared resources to network users of

a local area network (LAN) or the Internet. As a conclusion, the terms client and

server can be used to refer to both the program and the computer. For the ease of

understanding and explanation, the terms telerobotic client program,

telerobotic server program and FTP server are used to refer to the software.

While the terms client and server are referring to the hardware or computers.

4.1.5 Internet

The Internet is a network of networks that connects computers all over the

world. The Internet was developed from work done in the 1960s and 1970s by the

United States Department of Defense with a project called ARPAnet (Advanced

Research Projects Agency net), to connect the computers at some of the colleges and

universities where military research took place. By the late 1980s, the Internet had

shed its military and research heritage and was available for use by the general public

(Young, M. L., et al., 1999).

4.1.6 Robot-oriented System vs. Task-oriented Robotic System

The task-oriented robotic system or so called “task-centric” (Lloyd, J.E.,

Beis, J.S., Pai, D.K. and Lowe, D.G., 1997) robotic system requires only the operator

to specify the task to be done by the system and the system will then plan and carry

out a series of actions to complete the task. The task-oriented robotic system is also

called a task-level programming system (Craig, J. J., 1986). In contrast, robot-

oriented system requires the operator to plan the actions step by step to get the task

done.

The robot-oriented system and the task-oriented robotic system can be

distinguished by many aspects. The basic command unit for the robot-oriented

system is based on the robot movement. For example the commands for arm type

 35

robotic system are shoulder up 30°, elbow down 30° and gripper open. Usually, one

basic command unit for the robot-oriented system equals to one robot instruction.

Meanwhile, the basic command unit for the task-oriented system is based on the task

designed for the robotic system. For example the commands for the robotic system

which is designed for blocks manipulation can be PLACE Block3 SO THAT

(Block_3_face1 AGAINST Table). Usually, one basic command unit for the task-

oriented system equals to a series of robot instructions. The comparison between the

robot-oriented system and the task-oriented robotic system is summarized in the

Table 4.1.

Table 4.1: Comparison between robot-oriented system and task-oriented robotic
system

Robot-oriented System Task-oriented Robotic System
Basic command unit:
• Based on robot movement, e.g.:

a) Arm type robotic system: shoulder
up 30°, elbow down 30°, gripper
open or spray start;

b) Mobile robot: move forward 30
cm, turn left 45°.

• Usually, one basic command unit
equals to one robot instruction.

Basic command unit:
• Based on the task designed for the

robotic system, e.g.:
a) Robotic goods sorting system:

transfer objects type A to line A
and objects type B to line B;

b) Mobile robot: find the target such
as heat/light source in unknown
environment.

• Usually, one basic command unit
equals to a series of robot
instructions.

The system can directly convert the
command given to robot instruction since
one basic command unit equals to one
robot instruction.

The system need to have the ability to
“understand” the task required by the
user before the task can be converted to a
series of robot instructions.

Operator acts as path planner to complete
the task. In other word, the operator has
full control over how the system
completes the task - direct control.

The task controller does the path
planning once “understand” the task(s)
required to be done. In other word, the
operator has no control over how the
system completes the task - indirect
control.

Autonomy level: low. Autonomy level: higher (with certain
limitations).

Low efficiency in completing the work
since every step involved must be
manually planned or programmed.

Higher efficiency in completing the work
since task controller does the path
planning.

Image capturing system (if involved)
usually works merely for visual

Image capturing system (if involved)
works not only for visual feedback but

 36

feedback. also as part of the vision system.
Less complicated to be designed and
developed.

Complicated to be designed and
developed especially the task controller.

Suitable application: usually for
repeated/routine work especially in mass
production.

Suitable application: usually for the work
that is not/less repeated or the work with
uncertainties such as goods sorting
where the objects may vary in size,
shape, orientation and location.

The robot can perform at full capability
of the robot

May not be able to do all the task
(especially the complicated task)
Solution: hybrid system

4.2 UTM Telerobotic System Setup and Application Programs’ User

Interface

4.2.1 System Setup

The telerobot used in the UTM telerobotic system is the Rhino robot from

Rhino Robotics LTD. (Rhino Robot, Inc., 1989). The picture of the Rhino robot is

shown in the Figure 4.3. Rhino robot is a 6 degrees of freedom robot. It is a revolute

type configuration (RRR) robot arm where the base, shoulder and arm are revolute

(R) designed. The robot resembles human arm. The robot dimension is shown in

Figure 4.4. The Table 4.2 and Figure 4.5 are showing the motor that is controlling the

corresponding robot joint.

The robot is placed in the work cell as shown in the Figure 4.6 and the Figure

4.7. The user can remotely control the robot to manipulate the cube blocks in front of

the robot. The dimension of the cube is 18 mm x 18 mm x 18 mm. The cube is taken

from the word game, Boggle. The sample of the cubes is given in the Figure 4.8. The

cubes are placed on the working area, which is set at 110 mm from the ground.

A camera, Sony X-03 is fixed on the top of the working area. The camera is

put at 935 mm exactly on the top of the working area. This is to make sure the whole

of the working area can be captured by the camera. The camera is linked to the

Matrox Genesis frame grabber for image capturing. The image processing is done

 37

with the Matrox Imaging Library (MIL). The details of the robot selection, the work

cell design, the working area and the working object definition are discussed in the

Chapter 8.

The telerobot is connected to the serial port 1 of an Intel Pentium III 400

MHz processor’s PC with 192 MB RAM. The operating system is Windows 2000

Server with service pack 3. The telerobotic system is controlled by a program named

UTM telerobotic server program. The user can remotely control the system from a

program called UTM telerobotic client program. There is another version of UTM

telerobotic client with TCP/IP messaging facilities which is developed for system

maintenance purpose. All the programs are developed using Microsoft Visual C++

6.0.

Figure 4.3: Rhino robot

 38

Figure 4.4: Dimension of Rhino robot

Table 4.2: Motor and the corresponding joint

Motor Joint

A Gripper open and close

B Wrist

C Hand

D Elbow

E Shoulder

F Waist

 39

Figure 4.5: Motor and the corresponding joint

Figure 4.6: Front view of the robot work cell

 40

Figure 4.7: Top view of the robot work cell

Figure 4.8: Sample of working objects

 41

4.2.2 Application Programs’ User Interface

As mentioned in the Section 4.2.1, there are three applications programs

developed for the UTM telerobotic system:

i) UTM telerobotic server program;

ii) UTM telerobotic client program; and,

iii) UTM telerobotic client program with TCP/IP messaging facilities.

 The user interface of the UTM telerobotic server program is shown in the

Figure 4.9. There are 2 real images shown on the user interface. The image on the

left is a life video of the top view of the working area. It shows the current state of

the working area as well as the progress of the task. From the image shown on the

left in the Figure 4.9, there are 4 working objects on the working area. The image on

the right is showing the progress of the image processing and the object recognition.

The image on the right of the Figure 4.9 is displaying the 4 objects recognized from

the image captured.

There are four parts of the user interface labeled as ‘First 3 Objects

Information’, ‘RS232’, ‘TCP/IP’ and ‘Error Code’ which are designed for system

maintenance and troubleshooting. The part ‘First 3 Objects Information’ is

displaying the information of the first 3 objects recognized. The parts ‘RS232’ and

‘TCP/IP’ can be used to send the data to the serial port and UTM telerobotic client

program manually. The part ‘Error Code’ displays the error detected from the UTM

telerobotic system. The details about the error code are discussed in the Section 7.11.

Meanwhile there are two buttons labeled as ‘HOST’ and ‘Start System’ in the

‘System’ part. When the system is initialized, the button ‘HOST’ is first clicked to

enable the Rhino robot to be controlled from the computer instead of teach pendant.

After that the system can be started by a single button click at ‘Start System’ button.

The system will first initialize the robot, vision self calibration and then make online.

The system start is designed as a single button click for the convenience of the

system administrator.

 42

The Figure 4.10 shows the user interface of the UTM telerobotic client

program without TCP/IP messaging facilities. There is a message list box with the

message “… hi. you are welcome…” for displaying the message the user keyed in

and the message conveyed by the program in natural language. There are two buttons

labeled as ‘Help’ and ‘Login’. When the ‘Help’ button is clicked, the importance

information is displayed in the message list box. If the user wishes to control the

telerobot, he or she required to login the UTM telerobotic system by clicking on the

‘Login’ button. Once the user is granted the permission, the image on the virtual

environment is updated. The user can issue a command either by using the keyboard

or through the mouse. The user can key in the natural language command through the

keyboard. The user may also right click on the virtual environment to get the

command menu and then manipulate the virtual object by using the mouse. On the

other hand, the Figure 4.11 shows the user interface of the UTM telerobotic client

program with TCP/IP messaging facilities. The system administrator can use the

program to send the message to the UTM telerobotic program manually.

Figure 4.9: User interface of the UTM telerobotic server program

 43

Figure 4.10: User interface of the UTM telerobotic client program

 44

Figure 4.11: User interface of the UTM telerobotic client program with TCP/IP

messaging facilities

4.3 System Architecture

The Figure 4.12 shows the relationship between the client and the server of

the UTM telerobotic system on a local area network (LAN). The server must be

online in order for the telerobotic system to work. Once the client login and accepted

by the server, the client is given the control right over the telerobotic system. The

user is given 10 minutes to operate the telerobotic system. The architecture of the

telerobotic client and server systems is shown in the Figure 4.13 and Figure 4.14.

The connection between the client and server is maintained by the client-server

connection manager.

 45

At the local site, the telerobotic client system can accept task-oriented

command from the operators either through mouse operation, type-written natural

language or the combination of the both type of inputs. The command is then

processed by the command pre-processor – either by the interpreter or the parser.

The purpose of the command pre-processor is to remove the illegal commands such

as spelling mistake, syntax error as well as to check the validity of the mouse

operation.

Once the system accepts the command from the operator to execute the task,

the task is then passed to the task pre-processor. The task pre-processor will check if

the task could be performed by the task planner. Apparently not all tasks can be

performed by the task controller due to the limitation in the system design. The task

is rejected for example when the objects are too close and beyond the ability of the

robot. During the command and task pre-processing stage, the information such as

the number of objects, location and orientation are required. If the task failed, the

user will be informed about the error happened.

On the other hand, if the task is success the client-server connection manager

will encode the task information into a URL string. The URL string is then received

and parsed by the client-server connection manager at the server system. The task

requested is passed to the task controller to decide on the objects that should be

moved and rotated. The information is then passed to the path planner to do the path

planning as well as to transform the task into action. The progress of the task is

feedback to the task planner through the vision sub-system. The path planner is

stopped if any error detected. The error is recorded in the log file and error listing.

The log file records not only the errors detected but all the system activities since the

telerobotic server program is launched until the program is terminated.

The task planner, the robotic sub-system (the robot with its controller) as well

as the vision sub-system (combination of the camera and the image controller) can be

simplified into a closed-loop block diagram as shown in Figure 4.15. This allows the

server to perform self-supervised and this mechanism is called visual servoing (Peter

I. Corke, 1996). In other word, the system is able to complete the task given without

the supervision from the user.

 46

When the task is completed, the latest top view image of the working area is

captured. The image is kept in the directory of the FTP server. The latest

environmental information is abstracted from the image captures. The information is

kept as the knowledge of the task planner. The information is then passed to the

client-server connection manager to be encoded as the URL string. The URL string

and the latest top view image of the working area are feedback to the client. The

client will update the virtual environment and the real image displayed. After that,

the user can plan for the next task.

ServerLAN

Client

Client

Client

Local Site Remote Site

TCP/IP

Figure 4.12: Local and remote sites of the UTM telerobotic system

 47

Interpreter

Parser

Command Pre-processor

Task
(Code

Listing)

Feedback Information
(E.g. Virtual Environment, Real

Image, Natural Language)

Update
Feedback

Information

Client

Task-oriented
Command

(Mouse
Operation)

Task-oriented
Command
(Natural

Language)

Operator

Client-Server
Connection
Manager

GUIs

Task Pre-
processor

Login / Logout
Button click

(Mouse
Operation)

Help
Button click

(Mouse
Operation)

UTM
Telerobotic

server
program
(Through

LAN)

Figure 4.13: UTM telerobotic client program architecture

Task
(Code

Listing)

Robot
Path
Planner

Robot
Instructions

Queue

Knowledge

Image
Processor

Update Current Status
FTP Server

Update
Real Image

Robot
Controller

Camera
Image capturing

Task Planner

Robot

Client-Server
Connection

Manager

UTM
Telerobotic

client program
(Through

LAN)

Task
Controller

Start System
System Information

(Log File, Error
Listing etc.)

Button click
(Mouse

Operation)
System

Administrator

Figure 4.14: UTM telerobotic server program architecture

 48

Task Planner Control
Instruction

Robotic Sub-
system

Sensory Sub-
system

+ -

ErrorTask
Task

Progress

Figure 4.15: Block diagram of the task control sub-system (closed-loop)

4.4 Summary

The important terms are defined and discussed in this chapter. The UTM

telerobotic system setup, application programs’ user interface and the system

architecture are briefly explained. The details of the system architecture are

explained in the Chapter 5, 6 and 7.

 49

CHAPTER 5

VIRTUAL WORKING AREA CONSTRUCTION, COMMAND PRE-

PROCESSOR AND TASK PRE-PROCESSOR

5.1 Introduction

There are three application programs developed for the telerobotic system. In

this report, application program based telerobotic system is developed instead of the

web based telerobotic system. There are several advantages of using the application

program instead of the web browser to control the telerobotic system. The

application program allows the programmer to have better control over the program

functions. The pre-processing function can be easily incorporated in the telerobotic

client program, such as the natural language parser, the mouse interpreter, the task

pre-processor, the client-server manager, the virtual working area and the virtual

working objects. In other word, the application program allows the programmer to

have better control over the volume of data transfer between the telerobotic client

and server programs.

The discussion in the chapters 5, 6 and 7 are limited to the theory part of the

architecture design of the telerobotic client and server programs. The details in the

coding are not explained due to the length and complexity of the program. The

implementation of the theory in the programming language can be referred to the

coding in the CD-ROM attached. The relevant comments are given to the main and

important part of the coding.

 50

5.2 Virtual Working Area and Working Objects Construction

In the telerobotic client program, the user can manipulate the virtual working

objects shown in the virtual working area through the mouse operations and type-

written natural language. The virtual working area is built on the window dialogue

and is overlapping the working area top view image as shown in the Figure 5.1. The

coordinate of the window dialogue starts at coordinate (0, 0) at the top-left corner.

The virtual working area is defined from coordinate (100, 90) to coordinate (350,

340) of the window dialogue with certain area left at the left-hand side and the top of

the virtual working area. The origin for the virtual working area is defined at the top-

left corner for the ease of the programming. The area left is for the scale labeling to

guide the user. The dimension of the virtual working area is defined as 250 pixels x

250 pixels and is explained in the Section 7.5. Four grid lines are drawn vertically

and horizontally across the virtual area. When the user move the mouse pointer over

the virtual working area, the coordinate of the mouse pointer according to the virtual

working area is displayed at the bottom of the virtual working area.

 The URL string send from the telerobotic server program contains the

information of the working objects, such as the orientation and centre of the objects.

The dimension of top view of the virtual working object is defined as 25 pixels x 25

pixels square. A mark is labeled at one corner of the square as reference corner. In

Visual C++, the functions MoveTo() and LineTo() are used to draw the straight

line. In order to draw a virtual working object, four of the coordinates of the object

need to be calculated. For example, to draw a virtual object as shown in the Figure

5.2 with the centre at coordinate (100, 100) and orientation 0o, the coordinate of point

at the top right-hand corner is calculated as follows:-

The length of the side, pixelsls 25=

The coordinate-x of the centre, 100=ox

The coordinate-y of the centre, 100=oy

Angle value from the centre to the point at the top right-hand corner, °= 45θ

The length of the diagonal, pixelslll ssd 352525 2222 =+=+= (rounded

to nearest integer)

 51

Half of The length of the diagonal, pixelsld 182/ = (rounded to nearest

integer)

Offset value for coordinate-x, 1345cos18cos2/ =°×=×= θdx lo (rounded to

nearest integer)

Coordinate-x of the point, 113131001 =+=+= xo oxx (1)

Offset value for coordinate-y, 1345sin18sin2/ =°×=×= θdy lo (rounded to

nearest integer)

Coordinate-y of the point, 87131001 =−=−= yo oyy (2)

Thus, the coordinate for the point at top right-hand corner is (113, 87).

 The rest of the corners can be found by using the same working steps with the

corresponding value for theθ . For example, the point of the top-left corner can be

found by using °= 135θ . The coordinate of the point at the top-left corner is (87,

113). The virtual working object is then drawn by linking all points at the corners

found. The telerobotic client program is able to draw up to 100 virtual working

objects.

Figure 5.1: Virtual working area with the image of the top view of the working

area

 52

Top-right
corner

Orientation: 0o

(100, 100)

°= 45θ

2/dl

25=sl

yo

xo

),(11 yx

Figure 5.2: Coordinate for the top right-hand corner

5.3 Command Pre-processor

Since the task of the telerobotic system is limited to two-dimension

operations, the possible task-oriented commands need to be defined. The basic

operations for two-dimension operation are to move the object, to rotate the object

and to instruct the system to carry out the task. However some of the advanced

operations are supported for the convenience of the user. Some of the advanced

commands supported are to move the object vertically (called offsetX command), to

move the object horizontally (called offsetY command), to move an object to the

centre between two objects (called between command), undo and redo the

commands. Although the virtual working area is defined from (0, 0) to (250, 250),

the size of the actual working area allowed for the centre of the virtual working

object is limited to (10, 10) to (240, 240). The purpose of the restriction is discussed

in the Section 7.5. For the type-written natural language, the coordinate value of the

coordinate (10, 10) for example, is accepted as x10y10 for the convinience of the

user.

The task-oriented command is designed to be supported both by the type-

written natural language and the mouse operation. The system is designed so that the

user can 100% rely on the type-written natural language or 100% rely on the mouse

 53

operations to perform task-oriented command. The system is also offering the

flexibility for the user to combine the usage of both the input methods on every task-

oriented command. The details of the support for type-written natural language, the

mouse operation and the integration of the both input methods are discussed in the

Section 5.3.1, 5.3.2 and 5.3.3. The feedback and guidance from the command pre-

processor which are conveyed in the natural language are displayed in the message

list box as shown in the Figure 4.10.

5.3.1 Command Pre-processor: Task-oriented Natural Language

5.3.1.1 Natural Language Overview

The natural language is the language used by the human in their daily

activities such as speaking and writing. A language-comprehensive program must

have the knowledge about the structure of the language, including what the words

are, how to combine the words into sentences and what the words mean. A language-

comprehensive program is always less intelligent than the human. The important

aspects of what makes human intelligent are the general world knowledge and

reasoning ability of human. There are many different forms of the knowledge (Allen,

J., 1987) that might be incorporated into the language-comprehensive program, such

as:-

i) Phonetics and phonological knowledge: It concerns how words are realized

as sounds. This is an important concern for automatic speech-understanding

systems.

ii) Morphological knowledge: It concerns how words are constructed out of

more basic meaning units called morphemes. For example, the word

“friendly” is constructed from a root form “friend” and the suffix “-ly”.

 54

iii) Syntactic knowledge: It concerns how words can be put together to form

sentences that look correct in the language. This form of knowledge identifies

how one word relates to another.

iv) Semantic knowledge: It concerns what words mean and how these meanings

combine in sentences to form sentence meanings.

v) Pragmatic knowledge: It concerns how sentences are used in different

contexts and how context affects the interpretation of the sentence.

vi) World knowledge: It includes the general knowledge about the structure of

the world that language user must have in order to, for example, maintain a

conversation.

In the developed UTM telerobotic client program, the syntactic knowledge,

semantic knowledge and world knowledge are involved. The natural language parser

realizes the syntax of the task-oriented natural language commands supported. The

meaning of each task-oriented natural language commands allows the natural

language parser to perform the corresponding action. The natural language parser is

made known of the current virtual objects status in the virtual working area. The

details of the application and relationship among the different forms of knowledge

are discussed in the Section 5.3.1.3.

5.3.1.2 Natural Language Generation

Natural language generation is the process of producing a set of natural

language sentences that realize the goal of the system (Allen, J., 1987). Based on the

possible task-oriented operations discussed in the Section 5.3, a set of task-oriented

natural language is defined for the developed telerobotic system. The task-oriented

natural language defined is in the type-written natural language form. Below are the

set of task-oriented natural language developed in this report. The part of the

sentence that is bracketed must be replaced by the required data.

 55

5.3.1.2.1 “move {coordinate xy of an object} to {coordinate xy}”

This command instructs the telerobotic client program to move the object to

the coordinates specified. The centre of the object is placed on the coordinates

specified. The value for {coordinate xy of an object} is limited from x0y0 to

x250y250 while the value for {coordinate xy} is limited from x10y10 to

x240y240. For example the command “move x10y100 to x200y200” is telling the

telerobotic client program to move the object at the coordinate x10y100 to a new

coordinate x200y200.

5.3.1.2.2 “rotate {coordinate xy of an object} {degree of rotation}”

 This command instructs the telerobotic client program to rotate the object

anti-clockwise according to the degree specified. The object is rotated with respect to

its centre. The value for {coordinate xy of an object} is limited from x0y0 to

x250y250 while the value for {degree of rotation} is limited from 0 to 360

degrees. For example the command “rotate x10y100 45” is telling the telerobotic

client program to rotate the object at the coordinate x10y100 with the angle 45

degree anti-clockwise with respect to the centre of the object.

5.3.1.2.3 “offsetX {coordinate xy of an object} to {coordinate xy}”

 This command instructs the telerobotic client program to offset the object

horizontally. The value of coordinate-y of the object is maintained. On the other

hand, the value of coordinate-x of the object is changed according to the value of the

coordinate-x of the mouse pointer. The value for {coordinate xy of an object}

is limited from x0y0 to x250y250 while the value for {coordinate xy} is limited

from x10y10 to x240y240. For example the command “offsetx x10y100 to

x200y200” is telling the telerobotic client program to offset the object from

coordinate-x x10 to the new coordinate-x x200.

 56

5.3.1.2.4 “offsetY {coordinate xy of an object} to {coordinate xy}”

 This command instructs the telerobotic client program to offset the object

vertically. The value of coordinate-x of the object is maintained. On the other hand,

the value of coordinate-y of the object is changed according to the value of the

coordinate-y of the mouse pointer. The value for {coordinate xy of an object}

is limited from x0y0 to x250y250 while the value for {coordinate xy} is limited

from x10y10 to x240y240. For example the command “offsety x10y100 to

x200y200” is telling the telerobotic client program to offset the object from

coordinate-y y100 to the new coordinate-y y200.

5.3.1.2.5 “between {coordinate xy of an object 1} and {coordinate xy

of an object 2} put {coordinate xy of an object 3}”

This command instructs the telerobotic client program to move the object 3 to

the centre between the object 1 and the object 2. The centre of the object 3 is placed

exactly on the centre between the object 1 and the object 2. The value for

{coordinate xy of an object 1}, {coordinate xy of an object 2} and

{coordinate xy of an object 3} are limited from x0y0 to x250y250. Let’s

assume that the coordinates x100y100 and x200y200 are the centre of the object 1

and the object 2. The command “between x100y100 and x200y200 put

x10y100” is telling the telerobotic client program to move the object 3 at the

coordinate x10y100 to a new coordinate x150y150 where x150y150 is the centre

between object 1 and the object 2.

5.3.1.2.6 “copy coordinateX {coordinate xy of an object 1} apply to

{coordinate xy of an object 2}”

 This command instructs the telerobotic client program to offset the object 2

horizontally to the point where the coordinate-x of the object 2 is equal to the

 57

coordinate-x of the object 1. The value for {coordinate xy of an object 1} and

{coordinate xy of an object 2} are limited from x0y0 to x250y250. Let’s

assume that the coordinate x100y100 is the centre of the object 1. The command

“copy coordinatex x100y100 apply to x200y200” is telling the telerobotic

client program to move the object 2 at the coordinate x200y200 horizontally to a new

coordinate-x of x100.

5.3.1.2.7 “copy coordinateY {coordinate xy of an object 1} apply to

{coordinate xy of an object 2}”

 This command instructs the telerobotic client program to offset the object 2

vertically to the point where the coordinate-y of the object 2 is equal to the

coordinate-y of the object 1. The value for {coordinate xy of an object 1} and

{coordinate xy of an object 2} are limited from x0y0 to x250y250. Let’s

assume that the coordinate x100y100 is the centre of the object 1. The command

“copy coordinatey x100y100 apply to x200y200” is telling the telerobotic

client program to move the object 2 at the coordinate x200y200 vertically to a new

coordinate-y of y100.

5.3.1.2.8 “copy orientation {coordinate xy of an object 1} apply to

{coordinate xy of an object 2}”

 This command instructs the robot to rotate the object 2 until the orientation of

the object 2 is equal to the orientation of object 1. The value for {coordinate xy of

an object 1} and {coordinate xy of an object 2} are limited from x0y0 to

x250y250. Let’s assume that the orientation of the object 1 at the coordinate

x100y100 is 45o. The command “copy orientation x100y100 apply to

x200y200” is telling the telerobotic client program to rotate the object 2 at the

coordinate x200y200 until the orientation is 45o.

 58

5.3.1.2.9 “object information {coordinate xy of an object}”

 This command inquires the telerobotic client program about the centre and

the orientation of the object specified. The value for {coordinate xy of an

object} is limited from x0y0 to x250y250. Let’s assume that the orientation and the

centre of an object are 45o and x100y100. The command “object information

x110y100” is resulting the telerobotic client program to feedback the orientation and

the centre of the object at the coordinate x110y100, which are 45o and x100y100

respectively.

5.3.1.2.10 “undo”

This command cancels the last task-oriented command issued by the user.

The virtual environment and the virtual working objects are restored to the state

before the last task-oriented command issued and implemented. The telerobotic

client program is able to undo up to 100 commands. Let’s assume an object is rotated

clockwise for 45o by the user. The command “undo” is telling the telerobotic client

program to cancel the last task-oriented command issued by the user, which is to

rotate the object anti-clockwise for 45o to restore the telerobotic client program to the

previous state.

5.3.1.2.11 “redo”

This command repeats the last task-oriented command which was undoing by

the user. The virtual environment and the virtual working objects are restored to the

state before the last undo command. The telerobotic client program is able to redo up

to 100 commands. Let’s take the example discussed in the Section 5.3.1.2.10, the

command “redo” is resulting the object “undo” to be rotated clockwise again for

45o.

 59

5.3.1.2.12 “cancel”

This command terminates the last task-oriented command that is currently

activated by the user. The virtual environment and the virtual working objects are

restored to the state before the current task-oriented command is activated. Let’s

assume that the user issues a command “move x100y100”. This command instructs

the telerobotic client program to move the object at the coordinate x100y100. The

“move” command is currently activated until the user specified the location where to

put the object. The “cancel” command terminates the “move” command which is

currently activated.

5.3.1.2.13 “restore”

 This command causes the telerobotic client program to restore all the objects

to their previous location before any task-oriented command was issued. All records

for the “undo” and “redo” commands are reset. The “restore” command has no

effect once the “execute” command was issued. The “execute” command is

discussed in the next section. Let’s assume the user has instructed the telerobotic

client program to move and rotate all the objects in the virtual environment. The

“restore” command is resulting all the objects to be restored to their previous state.

5.3.1.2.14 “execute”

 This command causes the command pre-processor to inform the task pre-

processor about the final output as required by the user in the virtual working

environment. The details of the process done by the task pre-processor are discussed

in the Section 5.5. At the end of the process, the telerobotic server program will

instruct the telerobot to achieve the final output as required by the user.

 60

5.3.1.3 Task-oriented Natural Language Processing

The bottom-up method is used to process the task-oriented natural language

command issued by the user. The natural language command is first undergone the

low level processing, then the next level of processing until the highest level of

processing. The levels of the processing are:-

i) Character filtering

The characters used by the system are limited to the alphabets and numbers.

The unsupported characters such as the symbols +, =, ? and @ are removed

automatically during the character filtering. Thus the user needs not to re-key in

again the task-oriented natural language.

ii) Capital to small letter conversion

The “move” command, for example, might be keyed in as “Move”, “mOve”,

“moVe" and “MOVE” by the user. This will cause the difficulty in the supported word

filtering which is done in the next level of processing. Thus all the capital letters

keyed in by the user are converted to the small letters.

iii) Word filtering

At this level, the words in the natural language command keyed in are

checked word by word. The natural language parser checks the word with the library

of the supported words. All the possible formats for the coordinate value are

supported. If the user key in the coordinate value x1y200 as x01y200 or x001y200,

the natural language parser treats it as x1y200. The user is prompted of the

unsupported word keyed in if found in the task-oriented natural language command.

 61

iv) Sentence structure conversion

The next level of the processing is the sentence parsing. It is inconvenient to

process the sentence in their original format. The sentence structure is converted to

the corresponding symbols according to the value given in the Table 5.1. For

example, the natural language command “move x10y10 to x100y100” is converted

into two strings “v+n+p+n” and “1+7+2+7”. The symbols v stands for verb, n stands

for nouns and p stands for preposition.

v) Parsing

Parsing is the process of analyzing a sentence to determine its structure

according to the grammar (Allen, J., 1987). The process of the parsing is now

simplified since the sentence structure was converted to the corresponding symbols

and values. The combination of the symbols and values is compared with the

supported syntax. The user is prompted of the unsupported syntax if found in the

task-oriented natural language command.

vi) Semantic interpretation

The meaning of the sentence is interpreted at this level. The corresponding

action according to the command is carried out. For example the meaning of the

natural language command “move x10y10 to x100y100” is to move the virtual

working object at coordinate x10y10 to the coordinate x100y100. Once the meaning

of the sentence is interpreted, the natural language parser checks if the virtual object

exists at the coordinate specified (world knowledge). If the virtual working object is

found, the new virtual working object is redrawn at the coordinate specified while

the previous virtual working object is deleted. On the other hand, if the virtual

working object cannot be found, the user is prompted about the error by the

intelligent parser.

 62

Table 5.1: Words to symbols and values conversion

Supported Words Symbols Values

Move v 1

Rotate v 2

OffsetX v 3

OffsetY v 4

Copy v 5

Execute v 6

Put v 7

Undo v 8

Redo v 9

Cancel v 10

Restore v 11

Apply v 12

CoordinateX n 1

CoordinateY n 2

Orientation n 3

Object n 4

Information n 5

Degree value, e.g. 45 n 6

Coordinate value, e.g. x1y1 n 7

Between p 1

To p 2

And c 1

5.3.2 Command Pre-processor: Mouse Operation

Task-oriented natural language is easy to understand. The task-oriented

natural language allows the value of the coordinate and the rotation angle to be

specified exactly. However the drawback is that the user might feel inconvenient to

 63

key in the whole sentence of the task-oriented natural language. In view of this, the

task-oriented command is designed to be supported by mouse operation and type-

written natural language. The input method is easy to be learnt and used. However it

might be a bit time consuming and inconvenient for specifying the exact value for

the coordinate and the rotation angle.

It is assumed that the user has been connected to the server. First of all, the

user has to right click on the virtual working area. A popup menu is displayed as

shown in the Figure 5.3. The user can choose any task-oriented command from the

menu. The intelligent parser will guide the user through the rest of the process. When

the command is activated, for example if the user chose the “move” command from

the menu, the intelligent parser does provide the opportunity for the user to cancel

the activated command. The user can right click on the virtual working area. Another

popup menu is displayed. The menu is shown in the Figure 5.4. Note that, the

“continue” command is available only for the mouse operation and is not available

in type-written natural language. If the user chose the “cancel” command, the

activated command is canceled. If the user then right clicks again on the virtual

working area, the popup menu showing the task-oriented command is displayed.

The mouse operation is handled by the mouse interpreter. The processing of

the mouse operation is much easier than the natural language processing. In

Windows programming, every operation of the mouse such as right click is

considered as an event. The corresponding function is activated. For the example

given, the right click will activate the OnRButtonDown() function in the VC++ and

the value of the point of the right click can be accessed from the function. Let’s take

a comparison between the task-oriented natural language command “move

{coordinate xy of an object} to {coordinate xy}” as implemented by the

mouse operation.

When the user chooses the “move” command from the popup menu, the

Boolean value for the variable bMove is set to TRUE. The intelligent parser will

guide the user to left click on the virtual working object to be moved. The left click

from the user will activate the OnLButtonDown() function in the VC++. The

 64

coordinate of the left click is checked if the virtual working object is chosen. The

sides of the virtual working object can be transformed into four linear equations. The

four linear equations of the virtual working object with the centre at the coordinate

(100, 100) and orientation 0o are given in the Figure 5.5. If the coordinate of the left

click is fulfilling all the inequalities 87≥x , 113≤x , 87≥y and 113≤y , the object

with the centre at the coordinate (100, 100) and orientation 0o is left clicked by the

user. The Boolean value for the bObjClk is set to TRUE.

When the Boolean values of bMove and bObjClk are set to TRUE, the

function OnMouseMove() which is activated by the mouse movement event will

cause the virtual working object being move according to the location of the mouse

pointer. The intelligent parser will guide the user to left click on the location of the

virtual working area where the virtual working object is placed. The second left click

on the virtual working area will cause the object to be dropped and the “move”

command is terminated.

Figure 5.3: Popup menu 1

 65

Figure 5.4: Popup menu 2

(100, 100)

°= 45θ

(113, 87)

(113, 113)(87, 113)

(87, 87)

113=x87=x

113=y

87=y

Figure 5.5: Linear equations for the sides

5.3.3 Integration of Natural Language Parser And Mouse Events Interpreter

The telerobotic client program offers the integration of both of the command

input methods discussed above. The ease of the task-oriented command input

through mouse operation and the ease of the exact value specification through type-

written natural language can be achieved at the same time. The user can activate the

task-oriented command through the mouse operation and then use the type-written

 66

natural language to specify the exact value. In order to achieve the integration of the

both command input methods, the ability of the natural language parser and the

mouse interpreter are extended to be able to understand the every sub-command in

the task-oriented command supported. For example, the natural language parser must

be able to understand the meaning of the sub-commands such as “move”, “move

x20y20”, “move x20y20 to”, “x20y20” and “move x20y20 to x200y100”.

Let’s take the example discussed in the Section 5.3.2 where the user is

moving the virtual working object by using the mouse operation. After the “move”

command was activated and the virtual working object was clicked, the Boolean

values of bMove and bObjClk are set to TRUE. The intelligent parser will guide the

user to left click on the location of the virtual working area where the virtual working

object is placed. The intelligent parser will also inform the user about the support of

the coordinate value specification through the type-written natural language. If the

user decided to specify the coordinate value through type-written natural language,

the input is processed by the natural language parser. The action is then carried out

by the natural language parser since the last sub-command of the task-oriented

command is a type-written natural language.

5.4 Intelligent Parser

In the process of operating the system, the intelligent parser will guide the

user to operate the system. The intelligent parser is called "intelligent" because it can

guide the user to operate the system as well as to detect the error done by the user.

The intelligent parser is able to detect the spelling error, the syntax error and logical

error in the task-oriented natural language command. The intelligent parser is

conveying in natural language. This makes the system become more user friendly.

The symbol placed in front of the message is indicating the type of messages. The

symbols used are:-

 67

>> the message keyed in by the user or the message send from

the server

!!! Error message

... Feedback from the intelligent parser (if no error

detected)

 In the message listing, the latest message is placed on the top of the message

list. For the example as shown in the Figure 5.6, the line numbering is purposely

labeled for the explanation. The first message is started at line 4 and ended at line 1.

The next message is at line 5 which is indicating the user tries to login to the server.

The line 8 is telling the user that he or she is now connected to the server. The

following messages are given at line 9, 10, 11 and 13.

 13 ... which object to be moved?

 12 you may click on the object or key in the coordinate value.

 11 >> move

 10 ... you may choose any command from the menu.

 9 >> command menu

 8 ... you are now connected to the server.

 7 you can start to operate the utm telerobot.

 6 right click on the virtual environment to get the command menu.

 5 >> login

 4 ... hi...you are welcome to operate the utm telerobot.

 3 i'm intelligent parser. i'll guide you to operate the robot.

 2 click the "login" button to connect to the server.

 1 or click the "help" button to get some important information.

Figure 5.6: Natural language listing

5.5 Task Pre-Processor

The objective of the task pre-processor is to check if the task can be carried

out by the telerobotic system. When the user issuing the “execute” command, the

environmental information of the virtual working area is passed to the task pre-

processor. There might be some cases where the task issued by the user is not able to

be performed by the telerobotic system. For example, the telerobotic system is not

 68

being able to grip or to place the working objects too close to each other due to the

physical design of the gripper. In certain cases, the user might try to overlap the

virtual working objects in hoping that the telerobotic system will stack the working

object one on the other.

In order to avoid the objects are being too close or being overlapped by the

user, the distance between the virtual working objects must be checked. The distance

allowed between the objects is limited to 65 pixels. Let‘s assume that there are two

virtual working objects located at the coordinate),(11 yx and),(22 yx respectively.

The formula for the distance between two virtual working objects is given as below:-

Distance, 2
21

2
21)()(yyxxd −+−=

If there are five virtual working objects labeled as 1, 2, 3, 4 and 5, it is not

necessary to check the distance between all the combinations. The combinations

needed to be checked are 5-4, 5-3, 5-2, 5-1, 4-3, 4-2, 4-1, 3-2, 3-1 and 2-1. The

combinations such as 4-5, 3-5 and 2-5 are the same as the combinations 5-4, 5-3 and

5-2 and thus can be ignored. The number of combinations is given by the formula as

below:-

The number of combinations, rnCq=

where n is the number of objects to be arranged in the combination of r

objects.

For the example given, there are 5 objects arranged in the combination of 2

objects. Thus the number of combinations, 1025 == Cq . This can avoid the

redundancy in the distance between two objects checking. If the distance between the

centres of the object is less than 65 pixels, the user is informed about the location of

the combination which is too close.

On the other hand, there is no limitation on the number of the rotation

allowed for the virtual working object manipulated through mouse operation.

However, in the type-written natural language the virtual working object is allowed

 69

to be rotated from 0o to 359o. Since the virtual working object is a square from the

top view, the rotation at the value 90o, 180o and 270o make no difference from the

original top view. This is shown in the Figure 5.7 where the original orientation of

the cube is 0o. Thus the effective working angle is limited from 0o to 89o. The

rotation angle of the virtual working objects are converted by the task pre-processor

to the corresponding value.

Reference
corner

0o Rotated
90o

Rotated
180o

Rotated
270o

Figure 5.7: Object rotated 90o, 180o and 270o

5.6 Client-server Connection Manager

There are two client-server connection managers. The client-server

connection manager at the telerobotic server program is responsible for listening to

the request from the client-server connection manager at the telerobotic client

program. The connection process is simplified and shown in the Figure 5.8. The

client-server connection manager at the telerobotic server program is designed so that

one user can login and control the system at a single time.

When the server is online and there is no other user connected to the server,

the request from the telerobotic client program is accepted. The user is allocated for

10 minute to operate the system. This is to avoid a single user from occupying the

whole system for a long period of time. The telerobotic client program will receive

an image of the top view of the working area in JPEG file format and the working

objects information contained in the URL string.

 70

The working objects information is encoded in URL string by using the URL

encoding scheme specified by MIME. A small modification has been made to

simplify the encoding and parsing process. The semicolon sign (;) at the ending of

the message is omitted. Every working object is represented by the values of the

coordinate-x, coordinate-y and the orientation. The working objects are labeled from

the integer number 1 and so on for the identification. If an object is labeled with

number 1 and the coordinate-x, the coordinate-y and the orientation are 10, 20 and 30

respectively then in the URL string the values of the object are separated with a plus

sign (+) as 10+20+30. The working object’s identifier is separated from the values

with an equal sign (=) as 1=10+20+30. If there is another working abject labeled

with number 2, the identifier-values pairs of both of the working objects are

separated with an ampersand (&) as 1=10+20+30&2=100+200+60.

After the user complete the task assignment and command the system to

execute the task, the information of the virtual working objects is encoded to the

URL string by the client-server connection manager at the telerobotic client program

before send out. The other URL strings that might be sent by the telerobotic server

program to the telerobotic client program are listed in the Table 5.2.

When the time is out, the user is automatically logged out by the server. The

client-server connection manager is also able to accept the manual logout from the

user before the time is out. If there is another user trying to login to the server while

the server is currently having a client connected to it, the user is able to receive only

the top view of the working area in JPEG file format before automatically logout by

the server. The client-server connection manager is also responsible for the client-

server exception handling. The types of the client-server exception handling are

discussed in the Section 7.10.

 71

Figure 5.8: Client-server connection process

Table 5.2: URL strings

URL Strings Explanation

1=10+20+30&2=100+200+60 Information of the working objects or the

virtual working objects.

e=1 Error code 1: Working object exception.

e=2 Error code 2: Vision calibration failed

because of modelfind.

e=3 Error code 3: Vision calibration failed

because of out of range.

e=4&t=9 Error code 4: Login attempt while server

is busy. The remaining time for the

current user is about 9 to 10 minute.

e=5 Error code 5: Time out.

e=6 Error code 6: Login attempt while task in

progress.

e=7 Error code 7: Log file cannot be opened.

5.8 FTP Server

The objective of the FTP server is to serve the FTP request from the

telerobotic client program. The FTP server is set by using the Internet Information

Services (IIS) program come with the Windows 2000 Server. The FTP directory is

set at the c:\Inetpub\ftproot\. The working area top view image captured is

 72

compressed by using the ActiveMIL command Save(). The compressed file is

using the JPEG format. When the user login to the client-server connection manager,

either accepted or rejected, a copy of the image is send to the telerobotic client

program.

5.8 Summary

This chapter is mainly focusing on the process of interpreting the task-

oriented command from the user. The user can manipulate the virtual working object

through the mouse operation and type-written natural language. The details on the

virtual working area and working objects construction are covered. The mouse

operation on the virtual working area and working objects are discussed in details.

Next, the construction and processing of the task-oriented natural language are

explained. The intelligent parser is then introduced. The intelligent parser can guide

the user to operate the UTM telerobotic system through the mix usage of the mouse

operation and the type-written natural language discussed. Finally, the client-server

connection manager and FTP server are discussed. Both the client-server connection

manager and FTP server are playing an important role in maintaining the connection

between the client and server.

 73

CHAPTER 6

HIGH LEVEL COMMAND TO LOW LEVEL COMMAND TRANSLATION

6.1 Introduction

As mentioned in the Section 4.3, the robotic sub-system (the robot with its

controller) and the vision sub-system (combination of the camera and the image

controller) is equivalent to a closed-loop system. The details of the process in the

task conversion to a series of robot command and the robot command execution are

discussed in this chapter. The architecture of the UTM telerobotic system is given in

the Section 4.3.

6.2 Task Planner

The task planner consists of a task controller and the knowledge defined to

support the operation of the task controller. In the knowledge of the task controller, it

knows that the working objects can be manipulated within the area defined from

x10y10 to x240y240. As compared with command pre-processor, the task controller

knows only the basic operations that are move and rotate commands. The working

object can be either moved within the area from x10y10 to x240y240 or rotated for

0o to 89o. The smallest unit for the working object movement is 1 pixel while the

smallest unit for the working object rotation is 1o. The information of the working

objects is kept in a 2 dimensional matrix defined as Coordinate[3][100]. The

 74

matrix is capable to store information up to 100 working objects. The information

stored for each object is the coordinate-x of the centre, the coordinate-y of the centre

and the orientation of the working object. There are another two 2 dimensional

matrices defined as CoordinateClient[3][100] and PathPlan[3][200]. The

matrix CoordinateClient[3][100] is used to keep the information of the virtual

working object that is being send by the telerobotic client program. While the matrix

PathPlan[3][200] is used to keep the details of the task planned for the robot path

planner.

The task of the telerobotic system is to manipulate the cube blocks placed in

front of the telerobot. So the main objective of the task controller is to identify the

sub-task from the task send by the telerobotic client program. In the task send, it

might contain more than one virtual working objects being manipulated by the user.

The task controller has to identify each of the objects being manipulated as well as

the information of how the virtual working object is being manipulated.

For example, let’s assumed there are five working objects in the working area

at the remote site. The details of the working objects are given in the Table 6.1. The

information is stored in the 2 dimensional matrix Coordinate[3][100] and 5 out of

100 records available are used. Let’s assumed that the virtual working objects labeled

as 3, 4 and 5 are being manipulated by the user. The details of the virtual working

objects after manipulation are given in the Table 6.2. The information is stored in the

2 dimensional matrix CoordinateClient[3][100] and 5 out of 100 records

available are used. The task controller will then make a comparison between the

information kept in both of the 2 dimensional matrices. The differences between the

information kept in both of the 2 dimensional matrices are shown in the Table 6.3.

The pair of the records, for example the first and second records are referring to the

same working object. The first record is indicating the original state of the working

object while the second record is indicating the final state of the working object

requested by the user. The information shown in the Table 6.3 is stored in the 2

dimensional matrix PathPlan[3][200] and 6 out of 200 records available are used.

The 2 dimensional matrix PathPlan[3][200] is used by the robot path planner.

 75

Besides identifying the sub-task from the task send by the telerobotic client

program, there are some other objectives defined for the task planner. The task

planner is in charged for system initialization when the “system start” button is

clicked by the system administrator. The task planner will first initialize the robot,

vision self-calibration and then make the system online. Furthermore, the task

planner must supervise the progress of the task. An appropriate action is taken if any

system error is detected during the system initialization and task progress.

Table 6.1: Details of the working objects at the remote site

Object number Coordinate-x of

the centre

Coordinate-y of

the centre

Orientation

1 104 138 10 o

2 10 187 20 o

3 217 189 30 o

4 10 10 40 o

5 230 10 50 o

Table 6.2: Details of the virtual working objects send by the telerobotic client

program

Object number Coordinate-x of

the centre

Coordinate-y of

the centre

Orientation

1 104 138 10 o

2 10 187 20 o

3 164 232 50 o

4 10 10 10 o

5 120 20 50 o

 76

Table 6.3: Differences between the information kept in the Table 6.1 and Table

6.2

Sub-task number Coordinate-x of

the centre

Coordinate-y of

the centre

Orientation

1 217 189 30 o

2 164 232 50 o

3 10 10 40 o

4 10 10 10 o

5 230 10 50 o

6 120 20 50 o

6.3 Robot Path Planner

The Rhino robot is supporting both the joint coordinate system and the xyz

coordinate system (Rhino Robots, INC., 1989). In the joint coordinate system, the

motors are given distances to move in units of encoder count. In the xyz coordinate

system, the motors are given distances to move in units of millimeters or degrees.

The xyz coordinate system is easier to be used since it requires the programmer to

specify only the final coordinate and orientation of the end effector. The end effector

can be controlled directly to the coordinate of the object to be griped. However, in

this report the joint coordinate system is chosen instead of xyz coordinate system.

This is because in the xyz coordinate system the details of motors movement cannot

be controlled directly and this has caused the objects being collided by the end

effector. To avoid this from happening, the joint coordinate is used in UTM

telerobotic system.

Once the coordinate is known, the next step is to define the behavior for the

robot arm to grip and to place the working object. The Rhino robot is a revolute type

configuration (RRR) robot arm. The details of the revolute type configuration were

discussed in the Section 4.2.1. Since the process of the object gripping and placing is

 77

better done with the opening of the gripper 90o pointing downward. It will take less

space if compared with the other orientation of the gripper. Thus in the arm behavior

definition, the motor C can be ignored since the gripper is already 90o pointing

downward after initialization.

During the process of the working object gripping and placing, one motor is

moved at a single time. This is decided after the testing to move more than one motor

at a single time. The robot arm becomes shaky and not stable when more than one

motor is moved at a single time. Besides by moving one motor at a single time, it

will simplify the process of the robot path prediction. There are many possible

combination of the different motors movement to grip the same object. The best

combination is chosen after the testing. It is assumed that the robot has been

initialized. The motor F is first moved to align the robot arm with the working object

to be gripped. The motor F is first moved before the arm is extended so that the

inertia can be reduced. Then the motor E is moved and followed by the motor D to

extend the robot arm to the coordinate of the working object to be gripped. The

motor E is moved before the motor D to avoid the physical limit being reached by

the motor D. After that, the motor B is moved according to the orientation of the

working object. The motor A is moved to grip the working object. Then the motor D

is moved and followed by motor E to move the arm to the soft home defined in the

Table 6.4. The working object is now gripped on the gripper waiting for the object to

be placed on the working area.

During the process of object placing, the motor F is first moved to align the

robot arm with the coordinate of the working object to be placed. Then the motor E is

moved. After that, the motor B is moved according to the orientation of the working

object as required by the user. Next the motor D is moved. Now the motor A is

moved to release the working object at the desired coordinate. The motor B is moved

again so that the opening of the gripper is aligned with the path of the robot hand to

avoid the collision with the working object being placed. Then the motor D is moved

and followed by motor E to move the arm to the soft home defined. The real pictures

for the process of working object gripping and placing are shown and discussed in

the Chapter 8.

 78

In the end of the working object gripping and placing cycles, the robot arm is

moved to the soft home defined. The unit encoder count for the motor D and E at the

soft home are -200 and 500 respectively. At the soft home, the robot arm is totally

out of the area viewable by the camera. The robot configuration at soft home is

shown in the Figure 6.1. An image is then captured and processed. The working

object exception is checked in case the working object is failed to be gripped. The

details of the working object exception handling are discussed in the Section 7.9.

The next step is to find the angle value for the motors rotation so that the

working object can be gripped. First of all, the coordinate systems for the robot and

the working area have to be defined. The coordinate systems for the working area

and the robot are shown in the Figure 6.2. The coordinate system for the working

area is 110 mm higher than the coordinate system for the robot. The direction of the

x-axis is defined opposite of the standard direction so that the coordinate system for

the real working area is exactly similar to the coordinate system used in the virtual

working area as discussed in the Section 5.2. The transformation matrices for both

the coordinate systems are given below:-

Transformation matrix refer to robot-based coordinate system (xyz0),

















 −

=

1000

110100

228010

5.92001

1
0T (1)

Transformation matrix refer to working area coordinate system (xyz1),



















−
−

=

1000

110100

228010

5.92001

0
1T (2)

Let say, there is a point axyz1 = (0, 0, 0)T , which is referred to working area

coordinate system. The calculation shown below shows the way to find the point

axyz0 referred to robot-based coordinate system.

 79

1
1

00 xyzxyz aTa =



































 −

=

1

0

0

0

1000

110100

228010

5.92001

0xyza

















−

=

1

110

228

5.92

0xyza

 Thus, axyz1 = (-92.5, 228, 110)T when expressed with respect to the robot-

based coordinate system.

During the process of the working object gripping and placing, the motor F,

E, D, B and A are involved. The geometric approach is used to solve the inverse

kinematics problem of the robot to find the angle value for each of the motor during

the process of gripping and placing of a working object. The angle value for the

motor A can be ignored since it controls only either to open or close the gripper. The

Figure 6.3 and Figure 6.4 are showing the top and side views of the robot. The

gripper of the robot is located at the coordinate),,(zyx PPP refer to robot-based

coordinate system. The value for the angles Bα , Dα , Eα , Fα and the top view

distance between the origin and the point),,(zyx PPP , d , can be found as follows:-

22
yx PPd += (3)

()[] ()2.457/cos6.228/2/cos 11 ddE
−− ==α (4)

()2.457/cos 1 dED
−== αα (Isosceles triangle) (5)

()yxF PP /tan 1−=α (6)

()yxFB PP /tan9090 1−+°=+°= αα (7)

Next the angle values found have to be converted to the unit of encoder count

which is required in the robot command. Unfortunately, the conversion is not given

in the manual or the Rhino official website. A lot of testing is carried out to find the

 80

approximate unit of encoder count for the corresponding angle value at each of the

motor. The Table 6.4 is giving the approximate value for the conversion from angle

value to the unit of encoder count and the relationship between the distance in the

working area with respect to the distance in the image captured. A reference unit

encoder count for each of the motor with respect to the physical position has to be

defined. The unit encoder count for each of the motor at the reference point is given

in the Table 6.5. At the reference point, the robot shoulder and the elbow as well as

the robot elbow and the hand are perpendicular to each other. The robot

configuration is shown in the Figure 6.5.

When implemented in the programming, the direction of the motor rotation

has to be considered. For example if the robot arm is turned to right-hand side, the

motor F unit encoder count is in negative value. The initial value of the motor at the

soft home has to be considered. Let’s assumed there is a working object placed at

the coordinate),(yx with the orientationθ . The equations given below are showing

the corresponding unit encoder count for the motors to reach the working object

mentioned.

T

xyz yxa)0,,(1 =

1
1

00 xyzxyz aTa = , where 1
0T is from equation (1)



































 −

=

1

0

1000

110100

228010

5.92001

0

y

x

axyz


















+
−

=

1

110

228

5.92

0

y

x

axyz

From the equation (3), the distance (top view) between the origin and the

point),(yx ,

() ()22 2285.92 ++−= yxd (8)

 81

By combining the equations (4) to (7) and the data from the Table 6.4 and

Table 6.5, the unit encoder count for the motors B, D, E and F can be found as

follows:-

 Motor B (unit encoder count),

[] () ()°×







−








+
−

+°=°×−= − 90/1165
228

5.92
tan9090/1165 1 θθα

y
x

B B (9)

Motor D (unit encoder count),

() () ()°×−−=°×−−= − 90/32002.457/cos7290/320072 1 dD Dα (10)

Motor E (unit encoder count),

[] ()°×−°+= 90/3200901120 EE α
()[] ()°×−°+= − 90/32002.457/cos901120 1 dE (11)

Motor F (unit encoder count),

() ()°×





+
−=°×= − 90/1590

228
5.92

tan90/1590 1

y
x

F Fα (12)

With the equations given above, all the sub-tasks passed from the task

planner, which is contained in the 2 dimensional matrix PathPlan[3][200] can now

be transformed into the corresponding robot commands. The coordinate value given

in the equations is based on the millimeter while the unit used in the virtual working

area is in pixel. The first two records in the 2 dimensional matrix PathPlan[3][200]

are used for the discussion. Based on the conversion data from the Table 6.4, the unit

for the coordinate values of the first two records to move the object at the coordinate

(217, 189) to coordinate (164, 232) is converted to the millimeter as shown below:-

mmpixel 160
476
350217217 =





×=

mmpixel 139
476
350189189 =





×=

 82

mmpixel 121
476
350164164 =





×=

mmpixel 171
476
350232232 =





×=

∴The new coordinates are (160, 139) and (121, 171).

The first two records can now be transformed into the equivalent robot

commands as shown in the Figure 6.6. The numbering is purposely labeled for every

line for the ease of explanation. A comment is given for every command. The

command given at the line number 1 is telling the robot controller the unit encoder

count for the motor F is 184. The value 184 is calculated from the equation (12). The

command at the line 2 is instructing the robot controller to move the motor F. The

command at the line 9 is to turn on the auxiliary port 1 to drive the motor A. The

auxiliary port 1 is used instead of the port A due to the sensor at the motor A is

damaged and cannot be driven by the port A. The robot command is send through the

serial port 1. The serial port 1 is set at the baud rate 9600 bps, 7 data bits, 2 stop bits

and 1 odd parity bit. The robot command to move the motor is send after the prior

motor command is completely carried out. The system is set at the maximum system

velocity for faster task completion.

Figure 6.1: Robot soft home

 83

Table 6.4: Motors’ unit encoder count at soft home

Motor Unit encoder count

A Gripper opened (Robot command: xs, 1, -40)

B 1165

C 0

D -200

E 500

F Depending on the previous state

Y0

X0
Z0

X1

Y1

Z1

185 mm

228 mm

Figure 6.2: Working area and robot-based coordinate systems

E, F

yP

Y0

X0
Z0

Fα

xP

C, A

D

Bα

Figure 6.3: Top view of the robot

 84

X0

Z0

Y0

D

C, AE

F

228.6 mm228.6 mm

279.4 mm
Eα

Dα

yP

zP

110 mm

Figure 6.4: Side view of the robot

Table 6.4: Conversion table

Unit 1 Unit 2

90o (motor B) 1165 unit encoder count

90o (motor D, E) 3200 unit encoder count

90o (motor F) 1590 unit encoder count

350 mm 476 pixel

Table 6.5: Motors’ unit encoder count at reference point

Motor Unit encoder count

A Gripper opened (Robot command: xs, 1, -40)

B 1165

C 0

D -72

E 1120

F 0

 85

Figure 6.5: Robot physical configuration at reference point

28 ms, e //Start motor E

27 pd, e, 500 //Set motor E destination position (Soft home)

26 ms, d //Start motor D

25 pd, d, -200 //Set motor D destination position (Soft home)

24 ms, b //Start motor B

23 pd, b, 1165 //Set motor B destination position (Soft home)

22 xs, 1, -40 //Set auxiliary port level (open gripper)

21 ms, d //Start motor D

20 pd, d, -103 //Set motor D destination position

19 ms, b //Start motor B

18 pd, b, 571 //Set motor B destination position

17 ms, e //Start motor E

16 pd, e, 3290 //Set motor E destination position

15 ms, f //Start motor F

14 pd, f, 72 //Set motor F destination position

13 ms, e //Start motor E

12 pd, e, 500 //Set motor E destination position (Soft home)

11 ms, d //Start motor D

10 pd, d, -200 //Set motor D destination position (Soft home)

9 xs, 1, 40 //Set auxiliary port level (close gripper)

8 ms, b //Start motor B

7 pd, b, 912 //Set motor B destination position

6 ms, d //Start motor D

5 pd, d, -1328 //Set motor D destination position

4 ms, e //Start motor E

3 pd, e, 3064 //Set motor E destination position

2 ms, f //Start motor F

1 pd, f, 184 //Set motor F destination position

Figure 6.6: Robot commands

 86

6.4 Vision Sub-system

The camera is put at 935 mm exactly on the top of the working area. This is

to make sure the whole of the working area can be captured by the camera. There is

no extra lighting required since the white color of the working object and dark color

of the working area are giving enough contrast in image processing. The vision sub-

system is playing an important role in the translation of the high level command to

the low level command. The vision sub-system is the “eye” of the telerobotic system

that help the telerobotic system to “see” the objects specified by the user in the task.

In other word, the objective of the vision sub-system is to abstract the information of

the working objects from the image captured. The vision sub-system is also used in

the system self-calibration.

6.4.1 Working Object Recognition

The steps involved in the working object recognition are as below:-

i) Image capturing

This is the process to capture an interested image from the continuing image

captured by the camera. For example, after the soft home the working area top view

image is captured for the image processing. The ActiveMIL function Grab() is

used to capture the image. A sample of the image captured is shown in the Figure

6.7.

ii) Segmentation

Segmentation is the process that partitions an image into objects of interest.

Since the size of the image captured is bigger than the actual size required, only the

interested part of the image is segmented. The ActiveMIL function CopyRegion()

is used to perform the segmentation. A sample of the image segmented is shown in

the Figure 6.8.

 87

iii) Pre-processing

Pre-processing deals with the techniques such as noise reduction and

enhancement of details. First of all, the image segmented is smoothed by using the

ActiveMIL function Smooth(). Smoothing is the process for reducing noise that

may be present in an image as a result of sampling and transmission. The result is

shown in the Figure 6.9. Then the image is binarized by using the ActiveMIL

function Binarize(). A binarizing operation reduces an image to two grayscale

values: 0 (black) and 255 (white). The result is shown in the Figure 6.10. After that,

the image is pre-processed by using the ActiveMIL functions Open() and Close(

). The opening operation is to remove small particles in the image while the closing

operation is to remove holes from the blobs. The result is shown in the Figure 6.11

and Figure 6.12.

iv) ModelFinder

The ActiveMIL ModelFinder control is used to find the working objects in

the image captured. A model of the working object is first defined in the ActiveMIL

ModelFinder as shown in the Figure 6.13. Then the working objects are searched

from the image pre-processed by using the ActiveMIL function Find(). The result

of the processing is kept in the 2 dimensional matrix Coordinate[3][100]

mentioned in the Section 6.2.

v) Object identifying

The boxes are drawn to identify the working objects found from the previous

process. The ActiveMIL function Draw() is used to draw the boxes. The result is

shown in the Figure 6.14.

 88

Figure 6.7: Image captured

Figure 6.8: Image segmented

 89

Figure 6.9: Image smoothed

Figure 6.10: Image binarized

 90

Figure 6.11: Image opened

Figure 6.12: Image closed

 91

Figure 6.13: Model defined in the ModelFinderer Control

Figure 6.14: Boxes are drawn at the working objects recognized

 92

6.4.2 System Self-calibration

The details of the system self-calibration are discussed in the Section 7.8. The

discussion here is limited to the image processing to identify the reference point in

the image captured. The image processing involved is exactly as the same as

discussed in the Section 6.4.1 except the steps (ii) and (iii) are skipped. The pre-

processing is not required to enhance the image captured since the model defined in

the ModelFinder control is big enough to overcome the noise in the image captured.

Figure 6.15: Model defined in the ModelFinder Control

 93

Figure 6.16: A box is drawn at the part of the gripper recognized

6.5 Summary

This Chapter explains the process of translating the task required by the user

to the robot command. The task planner will process the task required by the user to

the sub-task level. Meanwhile the robot path planner will then convert every sub-task

to a series of the robot command. The conversion of the sub-task to a series of the

robot command is based on the robot arm behavior defined in the Section 6.3. After

that, the robot command is executed by the robot path planner one by one. On the

other hand, the role of the vision sub-system in the translating the high level

command to low level command are also discussed.

 94

CHAPTER 7

SAFETY, RELIABILITY AND ACCURACY DESIGN OF THE

TELEROBOTIC SYSTEM

7.1 Introduction

 Safety, reliability and accuracy are some of the importance factors needed to

be considered when designing the telerobotic system. Among three of the factors, the

safety design is first considered since a bad safety design will make the system

costly. The telerobotic system design must take consider the safety of the human,

robot and others such as working objects, working area and the equipments. Among

three of the factors, human safety must be given the first priority. Since the

telerobotic system is remotely control thus the safety of the remote user can be

ignored. However the safety of the people who might do the system maintenance,

system setup and the visitors must be considered. A work cell with the fence has

been setup to prevent the people from accidentally entering the work area of the

robot. The dimension of the work cell design is discussed in Section 7.4.

Second priority is given to the safety of the robot. The system is built based

on the task-oriented concept and thus the user has no direct control on the robot. The

term “no direct control” is referring to the ability of the UTM telerobotic client

program to issue a command that can instruct the UTM telerobotic server program to

control the movement of the robot as desired by the user. On the other hand, the task

assigned by the user is processed by the UTM telerobotic server program to perform

the path planning. During the path planning, the safety of the robot and others such

 95

as working objects and the equipments are taken into consideration. Indirectly the

safety of the working objects, working area and the equipments are taken care.

Furthermore the UTM telerobotic system is self-supervised, any abnormal events can

be recovered without causing damage to the robot and others.

The reliability of the telerobotic system will determine the period between the

first system start and the next system restart is required. A reliable telerobotic system

seldom hangs or required system restarts during the 24 hour per day 365 days per

year operation. The UTM telerobotic system is able to function under various

conditions especially during abnormal events. The UTM telerobotic system is able to

cope with the abnormal events by carrying out some special activities to compensate

the abnormal events. For certain critical and complicated abnormal events, the UTM

telerobotic system is not able to perform the error recovery activities. However the

UTM telerobotic system will stop the system from the following system activities

that might cause damage to the system. The client will be informed about the UTM

telerobotic system error and a record of the abnormal event will be made by the UTM

telerobotic server program for further system investigation.

The UTM telerobotic server program is running on the Windows 2000 server

with the service pack installed. The operating system is chosen to host the UTM

telerobotic server program for its stability and reliability. On the other hand,

reliability criterion is also one of the factors considered when choosing the hardware

and developing tools for the vision sub-system. Some of the other facilities designed

in the UTM telerobotic system to increase the reliability of the system are discussed

in the subtopics below.

As mentioned above, a reliable telerobotic system will have longer period

between the first system start and the next system restart is required. So in the UTM

telerobotic system developed, the system is halted only for the critical abnormal

events which can not be recovered by the system automatically. This situation has to

be kept to the minimum. The UTM telerobotic system is halted under the conditions:

i) System calibration failed caused by the reference point is out of the range

or the model of gripper can not be found in the image captured. This type

 96

of system failure will affect the accuracy and functionality of the UTM

telerobotic system and thus the system has to be halted. The failure

happen only during the system initialization and the person in charged can

detect the error spontaneously. The error can be fixed before the UTM

telerobotic system is online. In another word, the error will not affect the

continuity of the UTM telerobotic system since it can be detected and

fixed before system is online.

ii) Log file failed to be opened. This happen when the log file is write

protected where the record can not be made. This type of error can be

detected during UTM telerobotic system initialization. Under normal

system operation the chance of the error happen is almost zero unless the

system is infected by the virus, hacked by someone or the log file is

intentionally set to ‘read only’. The UTM telerobotic system is halted for

safety purpose. In the case the log file is missing either before system is

initialized or during the operation the log file will be recreated

automatically.

iii) The working objects are too close and make it impossible for the gripper

to grip either of the working objects. The error can be detected during

UTM telerobotic system initialization. The chance of the error happen

during the operation is kept to the minimum. The minimum distance

required is discussed in the Section 7.6. If the error is detected, the system

is halted for the safety of robot, working objects and working area.

The next factor to be considered is the accuracy factor. Accuracy refers to the

error between the measured and commanded position of the robot. Errors is

introduced if the assumed kinematic structure differs from that of the actual

manipulator. Such errors may be due to manufacturing tolerances in link length or

link deformation due to load (Fu, K. S., et. al, 1987).

The term accuracy can be used to refer to the accuracy of the input, system

and the accuracy of the output. The accuracy of the output will rely on the accuracy

of the input and the system. An inaccurate input and processing will give the

 97

inaccurate output as what is called Garbage In Garbage Out (GIGO). The accuracy of

the input from the vision system is acceptable since the system is widely used and

recommended in industrial application. In the telerobotic system developed, the

accuracy of the output is affected mostly by the accuracy and the repeatability of the

robot. The Rhino robot is an educational robot. The accuracy and repeatability

problems of the robot have to be considered. Thus the size and shape of the working

objects (discussed in Section 7.3) and the gripper with new fingers (discussed in

Section 7.7) are designed to achieve the optimum accuracy of the UTM telerobotic

system.

7.2 Robot Selection and Task Definition

In the real application, the robot with the appropriate end effector is chosen

based on the task assigned for the system. However this is a research project, the

existing resources have to be optimized. So the task of the system is defined based on

the robot chosen. The robot chosen for the telerobotic system is the Rhino robot from

Rhino Robotics LTD.. There are three robot of the same type available. Two of the

robot can be used as standby robot. The component of the robot can be interchanged

within a short time if the component was damaged. This will reduce the system

downtime once the system is launched on the Internet. The robot comes with a

gripper. Thus the most suited task for the robot is object picked and placed.

7.3 Working Object Definition

The task of the robot was defined. The next step is to define the dimension of

the working object that is best suited the robot gripper and reliable. The original

finger of the robot is made by a rectangle metal. The surface of the touch area of the

finger is flat and both of the touch area of the fingers is parallel. Thus the possible

shape of the working objects is either cuboid or cube. The cube is the best choice

since the length of the four of the sides are equal.

 98

The next question is the dimension of the working object. From the design of

the gripper, the maximum dimension of the object that can be gripped safely is about

28 mm. The dimension of the gripper opening is shown in the Figure 7.1.

Theoretically the dimension of the cube must be equal or less than 28 mm. A bigger

cube will give a better result than a small cube during object recognition which is

discussed in the Section 6.4. However a smaller cube has less chance to be hit by the

gripper during gripping attempt. The collision happened due to the accuracy and the

repeatability problem of the Rhino robot. From the try and error testing, the optimum

dimension for the cube is about 20 mm.

The consistency of the object dimension is another importance factor to be

considered. During the object recognition as discussed in the Section 6.4, the object

from the image captured is compared with the model defined. The consistency in the

object size will improve the result of the object recognition. It is cost effective if the

cube can be found directly from the market. Luckily the cube from the word game,

Boggle fulfills all the conditions mentioned. The dimension of the cube is 18 mm x

18 mm x 18 mm and the size is quite consistent. The sample of the cube with the

gripper is shown in the Figure 7.2.

��

� �

Figure 7.1: Dimension of gripper opening

 99

Figure 7.2: Gripper and cube

7.4 Work Cell Design

When designing the robot work cell, the safety of the human, robot, working

objects, working area and equipment have to be considered. The work cell has to be

able to cover all the work volume of the robot. The robot work envelope is shown in

Figure 7.3. The maximum high of the robot is 895.4 mm as calculated from the

dimension given in the Figure 4.4 (Chapter 4). The work cell is also designed with

consideration of the ease of the system setup and maintenance. For example, the

robot and camera fixture are integrated with the work cell. The work cell is easy for

entering and does provide enough space for the person entered.

The details of the work cell dimension are given in the Appendix A while the

Figure 7.4 is showing the real work cell. The centre of the robot work volume is

fixed at the centre of the work cell. The work cell does provide the robot fixture. On

the other hand, the camera is fixed on the top of the working area. The location of the

camera is set to be out of the robot work volume for the safety consideration. The

work cell is designed with the camera fixture. Meanwhile the working area of the

robot is fixed in front of the robot. The dimension of the working area is discussed in

the Section 7.5.

 100

� �

Figure 7.3: Robot work envelope

Figure 7.4: Robot work cell

7.5 Working Area Definition

As the working object definition, the shape of the working area has to be first

determined. The image captured by the camera is in rectangle shape. Thus for ease of

image processing, real and virtual area presentation, the shape of the working area is

set to be square.

 101

The working area is placed in front of the robot and parallel with the ground

surface. As mentioned in Section 6.3, the gripper is always pointing downward and

perpendicular with the ground surface. Certain gap has to be reserved between the

gripper and the working area during the object gripping and placing process. From

the experiment, the working area is optimum if the level of the working area is set at

110 mm from the ground. The explanation diagram is given in Figure 7.5.

The next step is to define the dimension of the working area. From the

experiment, the minimum acceptable radius for the robot is about 180 mm while the

maximum radius is about 460 mm. The experiment is based on the assumption that

the working area is at 110 mm from the ground. Based on the experiment result, the

dimension of the working area is defined as 250 pixels x 250 pixels, or 185 mm x

185 mm. The details of the calculation are given in the Figure 7.6 and the virtual

working area is given in the Figure 7.7.

Although the working area is set to 250 pixels x 250 pixels, the real image

presented in the UTM telerobotic client program is 280 pixels x 280 pixels for the

convenience of the user. The client actual workable area in the UTM telerobotic

client program is set to 230 pixels x 230 pixels. The client actual workable area in

the UTM telerobotic client program refers to the area where the centre of the object

is valid for moving. The size of the image used in image processing is 280 pixels x

280 pixels. The robot workable area in the remote site is greater than 280 pixels x

280 pixels for reliability consideration. The robot workable area refers to the

achievable area for the telerobot gripper to grip and place the working object. The

area where the vision can recognize must be larger than the client actual workable

area where the user can work on while the robot workable area must bigger than the

area where the vision can recognize. The same concept applied for the client

viewable in the UTM telerobotic client program which must be larger than the client

workable area. The areas are shown in the Figure 7.8.

 102

Figure 7.5: Optimum height of the working area

Figure 7.6: Working area dimension calculation

 103

Figure 7.7: Virtual working area

�L[HOV�[� SL[HOV

�L[HOV�[� SL[HOV

�L[HOV�[� SL[HOV

&OLHQW�YLHZDEOH�DUHD�5HDO�LP DJ H�

&OLHQW�YLUWXDO�ZRUNLQJ�DUHD

&OLHQW�YLUWXDO�ZRUNDEOH�DUHD

Figure 7.8: Workable, viewable areas comparison

 104

7.6 Distance Between Objects Definition

Due to the robot architecture and the gripper design, certain area from the

object to be gripped must be cleared from obstacle. As discussed in Section 6.3, the

gripper is opened and then the opening is aligned with the path before move inward

and downward to the location of the object to be gripped. The gripper is rotated with

respect to the orientation of the object, gripping the working object then moved

outward and upward. The path for the object placing is slightly different but the size

of the area must be cleared is the same as in the object gripping.

When the gripper is opened as shown in Figure 7.9, the maximum outer

length of the finger is 56 mm. The area of a circle with radius of 34.7 mm and

centered at the centre of the object to be gripped must be cleared from other obstacle.

This is to give enough space for the gripper to be rotated around the object. The

details are shown in the Figure 7.10. Thus the minimum distance between the

working objects required is 43.7 mm. The explanation is shown in the Figure 7.11.

During the system operation, the actual distance allowed is set to be 48 mm or 65

pixels. The purpose of this is to compensate the accuracy and repeatability problems

of the Rhino robot.

Figure 7.9: The maximum outer length of the robot finger

 105

Figure 7.10: The area cleared for the gripper rotation

Figure 7.11: The minimum distance between the working objects required

7.7 Gripper with New Fingers Design

Rhino Robotics LTD. is supplying a wide range of the end effectors for the

robot sold, such as triple fingers, narrow fingers, long fingers and vacuum fingers as

shown in Figure 7.12. The best option for the application is vacuum fingers.

Although some modification has to be done on the surface of the working object, it

would allow the gripper to do some complicated operation such as to place the

working objects side by side. Due to some technical problem of getting a better end

effector, the plan had to be given up. The focus is put on the existing gripper. The

fingers of the gripper are redesigned as shown in Figure 7.13. The design is done

based on the study of the application of the telerobotic system. The advantages of the

new fingers are:-

 106

i) The inner distance between fingers is maximized. This reduces the chance

that the fingers might hit the top of the object. The safety of the robot,

working objects and the working area are improved.

ii) Object gripped is centralized automatically by the new fingers design.

Thus the accuracy of the output is improved.

iii) The friction and sticky problem with the surface of the fingers that touch

with the object are minimized. The object can be released spontaneously

when the gripper is opened. This can increase the accuracy of the system

output.

Figure 7.12: Types of gripper available for Rhino robot

Figure 7.13: New fingers design

 107

7.8 System Self-calibration

In the Section 7.4, the design of the work cell has been discussed. The

dimension for the work cell is optimized for the current system setup. However when

the work cell was build, there might be some tolerance occurred. This will affect the

inverse kinematic equations derived in the Section 6.3. The term “self-calibration”

referred here means the coordinate systems checking and calibration. The calibration

is done in term of the software compensation. The hardware calibration, especially

the Rhino robot can be done only by the manufacturer.

 In the Section 6.4.2, the ActiveMIL ModelFinder Control is used to search

the model defined during the system self-calibration. In order to define the model,

first of all a working object is placed at the centre of the virtual working area. The

gripper is moved to the top of the working object. The unit encoder count of the

motors are recorded in the Table 7.1. An image is then captured and cropped until the

part interested. A reference axis of the model is defined as shown in the Figure 6.15.

The coordinate of the axis is overlapping the centre of the virtual working area.

 When the system is initialized, the motors on the robot arm are moved

according to the unit encoder count recorded in the Table 7.1. An image is captured.

After the ActiveMIL ModelFind process, the coordinate of the gripper is identified.

If the position of the robot is changed, it will affect the coordinate of the gripper

found. Due to the design of the robot base holder at the work cell, the robot can be

shifted backward only. If the robot is moved 10 mm backward so will be the gripper.

The distance of the gripper offset is recorded. In order to compensate the error, the

client workable area is offset with the same distance. Although the position of the

camera and the physical working area are fixed, the position of the client workable

area in the image captured can be offset in term of the image processing. This is

shown in the Figure 7.14. Since the image size captured is 768 pixels x 576 pixels

and the size of the image required for processing is 280 pixels x 280 pixels, the

coordinate of the gripper found is valid provided it is still within the rectangle form

by coordinates (140, 140) and (628, 436).

 108

Table 7.1: Motors position for the gripper model defined

Motor Unit Encoder Count

A Gripper opened (xs, 1, -40)

B 1165

C 0

D -1399

E 2710

F 0

,PDJH�FDSWXUHG�SL[HOV�[� SL[HOV

,PDJH�XVHG�LQ�SURFHVVLQJ�SL[HOV�[� SL[HOV

,PDJH�Z LOO�EH�RIIVHW�P P
EDFNZDUG

Figure 7.14: Image offset to calibration the system

7.9 Working Object Exception Handling

During the process of object gripping and placing, the object exception might

be happening. The object exception is the event where the object is not properly

gripped or placed according to the procedure defined. For example, the object might

be failed to be gripped because of the coordinate systems calibrated during the

 109

system was initialized is no longer valid after the system is being used for a long

period of time.

At the end of the system initialization, the number of the working objects is

recorded. As mentioned in the Section 6.3, in the working object gripping and

placing cycles, the robot arm is moved to the soft home defined to allow for the

image capturing. The number of the working objects after gripping and placing

cycles are recorded and compared with the number of the working objects after

system initialization. For example, if the number of the working objects after placing

is not equal to the number of the working objects after system initialization, the

system is halted. The logic of the working object exception handling is given in the

Table 7.2.

Table 7.2: Working object exception handling

Condition Possible events and

cause

Error recovery

activities

Number of objects after placing

? Number of objects after

initialization

? The object dropped

? The object placed out

of working area

The system is halted.

Number of objects after gripping

+ 1 ? Number of objects after

initialization

? Failed to grip the

object

The system is halted.

7.10 Client-server Exception Handling

The data transfer between the telerobotic server and client programs are kept

to minimum. The data transferred is limited to the important data such as the image

of the top view of the working area and the working objects information encoded in

the URL string. Thus, the connection between the client and the server is not checked

 110

from time to time. Therefore the user may not be able to realize if some exception

has happened to the connection. The actual connection between the server and client

might lose but are not made realize by the other side, such as when the illegal

operation is detected in the telerobotic client program and caused the operating

system to terminate the program before the logout message is send.

 When the user login to the telerobotic system, he or she is allocated for 10

minute to operate the system. Both of the telerobotic server and client programs will

start the timer respectively. If the telerobotic program is terminated due to the illegal

operation mentioned, the server will automatically logout the user when the time is

out so that the other user can operate the system. On the other hand, if the telerobotic

server program is terminated due to the illegal operation, the telerobotic client

program is able to terminate the connection by itself.

The data send through the network is delayed. When the user is trying to

login to the server, the request will take a certain time to reach the server and the

delay will also happen to the message feedback from the server. Thus when the user

login to the telerobotic system, 10 second is allocated for the telerobotic client

program to wait for the reply from the server before the request is terminated.

As mentioned in the Section 5.6, the telerobotic server program is designed to

handle a client at a single time. When there is a client connected to the telerobotic

server, any other user might try to login to the telerobotic server. In order to avoid

the current user being interrupted by the other user, the telerobotic server will reject

the rest of the users. By the way, a working area top view image and the remaining

time for the current user is send to the user who is trying to login.

From the experiment, the system will take about 30 to 40 second to move a

working object. When the task is still in progress but the remaining time of the

current user is out, the current user is automatically logout by the server. The server

will not accept any user until the current task is completed.

Meanwhile, the telerobotic system is halted when there is working object

exception or system calibration error detected. The user who is currently connected

 111

to the UTM telerobotic system is automatically logout and informed about the

working object exception detected. Any other user who is trying to login after the

exception was detected will receive the same error message. For the system

calibration error, the client-server connection manager will not make the system

online after the system initialization.

7.11 Log File and Error Listing

Testing is a process of checking by means of actual execution whether a

system behaves as expected. It is an effort of finding error in the system. A good

testing is able to remove almost all the errors from the system. However it is

impossible to make the system 100% error free. The purpose of the log file in the

UTM telerobotic system is to record the activities of the UTM telerobotic server

program. The information recorded in the log file must be sufficient enough for

system trace back during system investigation. The log file is stored in the telerobotic

server. The Figure 4.9 in the Chapter 4 might help to understand the explanation

below. The types of the events recorded in the log file are as below:

i) Application launched: When the telerobotic server program is launched.

ii) Application terminated: When the telerobotic server program is

terminated.

iii) System start: When the telerobotic server system is being started. The

system can be started by a single click on the “system start” button of the

telerobotic server program. The system will first initialize the robot, system

self-calibration and then make the system online. The system start button can

also be used as the system restart function when the error happen.

iv) System online: When the telerobotic server system is online and ready for

the client remote control. The system is automatically online during the

system start. After the system being started, the user can manually make

 112

the system online by clicking on the online button (provided that the system

is offline) of the telerobotic server program. When the system is online the

label of the online button is changed to offline so that the system

administrator can offline the system by clicking on the offline button.

v) System offline: When the telerobotic server system is manually made

offline by clicking on the offline button (provided that the system is online)

of the telerobotic server program. When the system is offline the label of the

offline button is changed to online so that the system administrator can online

the system by clicking on the online button.

vi) Robot initialization: During the start of the robot initialization. The

robot is automatically initialized during the system start.

vii) System calibration: During the start of the vision self calibration. The

vision sub-system is automatically calibrated during the system start.

viii) Login: When there is a client successfully login to the telerobotic system.

ix) Logout: When the client manually logout from the telerobotic system before

time out.

x) RefPoint> …: When the reference point is identified during the vision self

calibration. For example, RefPoint> x180y142 means the reference point is

at the coordinate (180, 142) of the full vision area 756 pixels x 482 pixels.

xi) Env> …: When the environment information is being abstracted from the

image captured. For example, Env>

1=123+20+302&2=54+60+55&3=189+83+168 means there are 3 objects where

the first object is at coordinate (123, 20) of the working area and the

orientation is 302 degree.

 113

xii) TCPIn> …: When the message is received from the client. For example,

TCPIn> 1=123+20+302&2=54+60+55&3=189+83+168.

xiii) TCPOut> …: When the message is send to the client. For example, TCPOut>

1=123+20+302&2=54+60+55&3=189+83+168.

xiv) SerialOut> …: When the message is send to the robot through the serial port.

For example, SerialOut> pd,f,-5.

xv) Err> …: When an error is being detected. There are various types of error that

can be detected and recorded in the log file, such as:-

Err> Code 1: Objects x57y130 and x18y131 are too close

Err> Code 1: Object number error after placing

Err> Code 1: Object number error after gripping

Err> Code 1: Login attempt while objects error

Err> Code 2: System calibration failed because of modelfind

Err> Code 2: Login attempt while system calibration failed

Err> Code 3: System calibration failed because of out of range

Err> Code 3: Login attempt while system calibration failed

Err> Code 4: Login attempt while server is busy

Err> Code 5: Time out

Err> Code 6: Login attempt while task in progress

Err> Code 8: Logout (System offline)

There is a special type of error that cannot be recorded in the log file. This

type of error happened due to the log file error where the file exists but cannot be

opened for event recoding. Normally this happened when the log file is write

protected. Since the error cannot be recorded and it is still needed to be informed to

the system administrator, the error listing on the UTM telerobotic server program is

designed to solve this problem. All the errors mentioned above are also listed in the

error listing for the convenience of the system administrator. The log file error is

listed as below:-

Err> Code 7: Log file cannot be opened

 114

The example of the events recorded in the log file and the error listing are

shown in the Figure 7.15 and 7.16 respectively. Besides the types of event, the date

and the time of the events happened are also being recorded. The log file is a text file

and the name of the file is based on the date of the system for the convenience of the

system administrator. The name of the log file is based on the format YYYY-MM-

DD.txt, for example 2002-12-20.txt. The size of the log file will not be a problem

since the size of the hard disk can be found in the market is quite huge. Besides log

file and error listing facilities, the information recorded in the Event Viewer of the

Windows 2000 Server can also be used as a source to trace the events of the

telerobotic server program.

2002/12/20 14:16:34 Application launched

2002/12/20 14:16:48 System start

2002/12/20 14:16:48 Robot initialization

2002/12/20 14:17:8 SerialOut> xs,1,-40

2002/12/20 14:17:11 System calibration

2002/12/20 14:17:14 SerialOut> pd,e,2710

2002/12/20 14:17:14 SerialOut> ms,e

2002/12/20 14:17:17 SerialOut> pd,b,1165

2002/12/20 14:17:17 SerialOut> ms,b

2002/12/20 14:17:20 SerialOut> pd,d,-1399

2002/12/20 14:17:20 SerialOut> ms,d

2002/12/20 14:17:23 RefPoint> 181,142

2002/12/20 14:17:26 Robot initialization

2002/12/20 14:17:50 System online

2002/12/20 14:17:51 Env> 1=119+24+27&2=53+60+56&3=189+91+82

2002/12/20 14:17:59 Login

2002/12/20 14:18:0 Env> 1=119+24+27&2=53+60+56&3=189+91+81

2002/12/20 14:18:0 TCPOut> 1=119+24+27&2=53+60+56&3=189+91+82

Figure 7.15: Example of the events recorded in the log file

 115

Figure 7.16: Events recorded in the error listing

7.12 Summary

In this chapter, some of the measures are taken to cope with the safety,

reliability and accuracy issues of the UTM telerobotic system. The robot, task and

working object selection as well as the work cell and working area design have been

thoroughly carried out. The new fingers design and system self-calibration can

increase the accuracy of the UTM telerobotic system. Meanwhile, the working object

exception handling, client-server exception handling, log file and error listing will

enhance the reliability of the UTM telerobotic system.

 116

CHAPTER 8

SYSTEM TESTING, RESULT ANALYSIS AND SYSTEM ARCHITECTURE

COMPARISON

8.1 Introduction

After the UTM telerobotic system being developed, the functionality of the

UTM telerobotic system has been tested. In order to make the explanation easy to

understand, some of the pictures are captured and attached. The testing and analysis

discussed below represent a small number of the total testing. Only the importance

testing and analysis are discussed. For example, the discussion about the tasks is

limited to the cases:-

i) one object moved;

ii) one object moved and rotated; and,

iii) two objects moved and rotated.

This is because the tasks mentioned above cover enough movements in order

to test the ability of robot arm behavior discussed in the Section 6.3 to handle

different tasks. The tests carried out below include the functionality test, accuracy

analysis and platform testing. Finally, the UTM telerobotic system is compared with

the other similar telerobotic system. A CD-ROM contains the video clips for the

importance testing is attached with the report.

 117

8.2 Command Pre-processor Testing

The command pre-processor is designed to support the use of the type-written

natural language, the mouse operation and the integration of both of the input

methods. The system has been tested to support all the commands with only the

mouse operation. The test includes the logic testing. For example when the working

object is required for the move command, the mouse is clicked on the area without

any working object.

The system has also been tested to support all the commands with only the

use of the natural language. The natural language has been tested in full sentence and

partially. For example the move command has been tested as “move”, “move

x100y100”, “move x100y100 to” and “move x100y100 to x200y200”. The logic

of the command such as to move a working object to a point that is out of the virtual

working area has been tested.

 The integration of both of the input methods has been tested. For example the

move command, the user can first entered the command in natural language “move

x100y100” and followed by the mouse operation to move the object to the coordinate

desired. The user can also activate the move command by using the mouse operation

and then followed by the use of the natural language “x100y100” and “x200y200”.

All the possible combinations of both the input methods have been tested.

8.3 Task Analysis: Single Object Moved

The progress of the task to move a single working object is observed. The

Figure 8.1 is showing a virtual working object is being moved from the coordinate

x100y140 to x210y40. As discussed in the Section 6.3, the robot path planning for

the cycle to grip a working object is as below:-

 118

i) The motor F is first moved to align the robot arm with the working object to

be gripped. This is shown in the Figure 8.2 (left).

ii) Then the motor E is moved and followed by the motor D to extend the robot

arm to the coordinate of the working object to be gripped. These are shown in

the Figure 8.2 (right) and Figure 8.3 (left).

iii) After that, the motor B is moved according to the orientation of the working

object. This is shown in the Figure 8.3 (right).

iv) The motor A is moved to grip the working object. This is shown in the Figure

8.4 (left).

v) Then the motor D is moved and followed by motor E to move the arm to the

soft home defined. These are shown in the Figure 8.4 (right) and Figure 8.5

(left).

The working object is now gripped on the gripper waiting for the object to be

placed on the working area. The robot path planning for the cycle to place a working

object is as below:-

i) During the process of object placing, the motor F is first moved to align the

robot arm with the coordinate of the working object to be placed. This is

shown in the Figure 8.5 (right).

ii) Then the motor E is moved. This is shown in the Figure 8.6 (left).

iii) After that, the motor B is moved according to the orientation of the working

object as required by the user. This is shown in the Figure 8.6 (right).

iv) Next the motor D is moved. This is shown in the Figure 8.7 (left).

v) Now the motor A is moved to release the working object at the desired

coordinate. This is shown in the Figure 8.7 (right).

vi) The motor B is moved again so that the opening of the gripper is aligned with

the path of the robot hand to avoid the collision with the working object being

placed. This is shown in the Figure 8.8 (left).

vii) Then the motor D is moved and followed by motor E to move the arm to the

soft home defined. These are shown in the Figure 8.8 (right) and Figure 8.9

(left).

 119

The Figure 8.10 is showing the updated image of the top view of the working

area after the task is done. This testing shows the ability of the UTM telerobotic

system to move any working object in the task.

Figure 8.1: Task planned

Figure 8.2: Motor F is moved (left) followed motor E (right)

 120

Figure 8.3: Motor D is moved (left) followed by motor B (right)

Figure 8.4: Motor A is moved (left) followed by motor D (right)

Figure 8.5: Motor E is moved (left) followed by motor F (right)

 121

Figure 8.6: Motor E is moved (left) followed by motor B (right)

Figure 8.7: Motor D is moved (left) followed by motor A (right)

Figure 8.8: Motor B is moved (left) followed by motor D (right)

 122

Figure 8.9: Motor E is moved

Figure 8.10: Task completed

8.4 Task Analysis: Single Object Moved and Rotated

The Figure 8.11 is showing a virtual working object is being rotated and

moved from the coordinate x50y130 to x70y70. As discussed in the Section 6.3, the

robot path planning for the cycle to grip a working object is as below:-

 123

i) The motor F is first moved to align the robot arm with the working object to

be gripped. This is shown in the Figure 8.12 (left).

ii) Then the motor E is moved and followed by the motor D to extend the robot

arm to the coordinate of the working object to be gripped. These are shown in

the Figure 8.12 (right) and Figure 8.13 (left).

iii) After that, the motor B is moved according to the orientation of the working

object. This is shown in the Figure 8.13 (right).

iv) The motor A is moved to grip the working object. This is shown in the Figure

8.14 (left).

v) Then the motor D is moved and followed by motor E to move the arm to the

soft home defined. These are shown in the Figure 8.14 (right) and Figure 8.15

(left).

The working object is now gripped on the gripper waiting for the object to be

placed on the working area. The robot path planning for the cycle to place a working

object is as below:-

i) During the process of object placing, the motor F is first moved to align the

robot arm with the coordinate of the working object to be placed. This is

shown in the Figure 8.15 (right).

ii) Then the motor E is moved. This is shown in the Figure 8.16.

iii) After that, the motor B is moved according to the orientation of the working

object as required by the user. This is shown in the Figure 8.17.

iv) Next the motor D is moved. This is shown in the Figure 8.18 (left).

v) Now the motor A is moved to release the working object at the desired

coordinate. This is shown in the Figure 8.18 (right).

vi) The motor B is moved again so that the opening of the gripper is aligned with

the path of the robot hand to avoid the collision with the working object being

placed. This is shown in the Figure 8.19 (left).

vii) Then the motor D is moved and followed by motor E to move the arm to the

soft home defined. These are shown in the Figure 8.19 (right) and Figure

8.20.

 124

The Figure 8.21 is showing the updated image of the top view of the working

area after the task is done. The robot path planning is exactly the same as discussed

in the Section 6.3. The working object is rotated to the orientation specified by the

user at the step (iii) during the working object placing cycle. Thus the move and

rotate operations for the same working object can be done in the same cycle to

reduce the working time. This testing shows the ability of the UTM telerobotic

system to move and rotate any working object in the same cycle in the task.

Figure 8.11: Task planned

Figure 8.12: Motor F is moved (left) followed by motor E (right)

 125

Figure 8.13: Motor D is moved (left) followed by motor B (right)

Figure 8.14: Motor A is moved (left) followed by motor D (right)

Figure 8.15: Motor E is moved (left) followed by motor F (right)

 126

Figure 8.16: Motor E is moved

Figure 8.17: Motor B is moved

Figure 8.18: Motor D is moved (left) followed by motor A (right)

 127

Figure 8.19: Motor B is moved (left) followed by motor D (right)

Figure 8.20: Motor E is moved

 128

Figure 8.21: Task completed

8.5 Task Analysis: Two Objects Moved and Rotated

The Figure 8.22 is showing the virtual working objects are being moved from

the coordinate x210y40 to x180y130 and from the coordinate x20y80 to x40y210 As

discussed in the Section 6.3, the robot path planning for the cycle to grip a working

object is as below:-

i) The motor F is first moved to align the robot arm with the working object to

be gripped. This is shown in the Figure 8.23 (left).

ii) Then the motor E is moved and followed by the motor D to extend the robot

arm to the coordinate of the working object to be gripped. These are shown in

the Figure 8.23 (right) and Figure 8.24 (left).

iii) After that, the motor B is moved according to the orientation of the working

object. This is shown in the Figure 8.24 (right).

iv) The motor A is moved to grip the working object. This is shown in the Figure

8.25 (left).

 129

v) Then the motor D is moved and followed by motor E to move the arm to the

soft home defined. These are shown in the Figure 8.25 (right) and Figure 8.26

(left).

The working object is now gripped on the gripper waiting for the object to be

placed on the working area. The robot path planning for the cycle to place a working

object is as below:-

i) During the process of object placing, the motor F is first moved to align the

robot arm with the coordinate of the working object to be placed. This is

shown in the Figure 8.26 (right).

ii) Then the motor E is moved. This is shown in the Figure 8.27 (left).

iii) After that, the motor B is moved according to the orientation of the working

object as required by the user. This is shown in the Figure 8.27 (right).

iv) Next the motor D is moved. This is shown in the Figure 8.28 (left).

v) Now the motor A is moved to release the working object at the desired

coordinate. This is shown in the Figure 8.28 (right).

vi) The motor B is moved again so that the opening of the gripper is aligned with

the path of the robot hand to avoid the collision with the working object being

placed. This is shown in the Figure 8.29 (left).

vii) Then the motor D is moved and followed by motor E to move the arm to the

soft home defined. These are shown in the Figure 8.29 (right) and Figure 8.30

(left).

The cycle for the working object gripping and placing is repeated for the next

working object. The robot path planning for the cycle to grip a working object is as

below:-

i) The motor F is first moved to align the robot arm with the working object to

be gripped. This is shown in the Figure 8.30 (right).

ii) Then the motor E is moved and followed by the motor D to extend the robot

arm to the coordinate of the working object to be gripped. These are shown in

the Figure 8.31 (left) and Figure 8.31 (right).

 130

iii) After that, the motor B is moved according to the orientation of the working

object. This is shown in the Figure 8.32 (left).

iv) The motor A is moved to grip the working object. This is shown in the Figure

8.32 (right).

v) Then the motor D is moved and followed by motor E to move the arm to the

soft home defined. These are shown in the Figure 8.33 (left) and Figure 8.33

(right).

The working object is now gripped on the gripper waiting for the object to be

placed on the working area. The robot path planning for the cycle to place a working

object is as below:-

i) During the process of object placing, the motor F is first moved to align the

robot arm with the coordinate of the working object to be placed. This is

shown in the Figure 8.34 (left).

ii) Then the motor E is moved. This is shown in the Figure 8.34 (right).

iii) After that, the motor B is moved according to the orientation of the working

object as required by the user. This is shown in the Figure 8.35 (left).

iv) Next the motor D is moved. This is shown in the Figure 8.35 (right).

v) Now the motor A is moved to release the working object at the desired

coordinate. This is shown in the Figure 8.36 (left).

vi) The motor B is moved again so that the opening of the gripper is aligned with

the path of the robot hand to avoid the collision with the working object being

placed. This is shown in the Figure 8.36 (right).

vii) Then the motor D is moved and followed by motor E to move the arm to the

soft home defined. These are shown in the Figure 8.37 (left) and Figure 8.37

(right).

The Figure 8.38 is showing the updated image of the top view of the working

area after the task is done. This testing shows the ability of the UTM telerobotic

system to handle more than one working objects in the task. Regardless the number

of the working objects being manipulated in the task, the same path planning

discussed in the Section 6.3 is followed until all the sub-tasks are done.

 131

Figure 8.22: Task planned

Figure 8.23: Motor F is moved (left) followed by motor E (right)

 132

Figure 8.24: Motor D is moved (left) followed by motor B (right)

Figure 8.25: Motor A is moved (left) followed by motor D (right)

Figure 8.26: Motor E is moved (left) followed by motor F (right)

 133

Figure 8.27: Motor E is moved (left) followed by motor B (right)

Figure 8.28: Motor D is moved (left) followed by motor A (right)

Figure 8.29: Motor B is moved (left) followed by motor D (right)

 134

Figure 8.30: Motor E is moved (left) followed by motor F (right)

Figure 8.31: Motor E is moved (left) followed by motor D (right)

Figure 8.32: Motor B is moved (left) followed by motor A (right)

 135

Figure 8.33: Motor D is moved (left) followed by motor E (right)

Figure 8.34: Motor F is moved (left) followed by motor E (right)

Figure 8.35: Motor B is moved (left) followed by motor D (right)

 136

Figure 8.36: Motor A is moved (left) followed by motor B (right)

Figure 8.37: Motor D is moved (left) followed by motor E (right)

Figure 8.38: Task completed

 137

8.6 Output Accuracy Analysis

The telerobotic system is designed to manipulate with the cube blocks. The

accuracy of the output is analyzed. The accuracy of the output referred is the error

between the measured and commanded position of the cube block. It is hard to

measure the position and the orientation of the cube block. The reading of the

position and the orientation of the cube block is based on the value obtained from the

vision sub-system. The command “object information” is used to abstract the

information of the working object. Five sets of the reading are taken for the system

using the standard gripper and the gripper with new fingers design. The Table 8.1

and Table 8.2 are showing the readings taken. By comparing the reading from the

tables, it shows the accuracy of the system with new fingers design has been

improved.

Table 8.1: Output analysis for standard gripper

Commanded position Actual position Difference (Absolute

value)

C
oo

rd
in

at
e-

x

C
oo

rd
in

at
e-

y

O
ri

en
ta

ti
on

C
oo

rd
in

at
e-

x

C
oo

rd
in

at
e-

y

O
ri

en
ta

ti
on

C
oo

rd
in

at
e-

x

C
oo

rd
in

at
e-

y

O
ri

en
ta

ti
on

121 126 0 116 125 1 5 1 1

226 25 37 225 23 37 1 2 0

24 26 1 16 20 4 8 6 3

24 224 12 17 219 11 7 5 1

222 226 32 216 228 33 6 2 1

Average 5.4 3.2 1.2

 138

Table 8.2: Output analysis for new fingers design

Commanded position Actual position Difference (Absolute

value)

C
oo

rd
in

at
e-

x

C
oo

rd
in

at
e-

y

O
ri

en
ta

ti
on

C
oo

rd
in

at
e-

x

C
oo

rd
in

at
e-

y

O
ri

en
ta

ti
on

C
oo

rd
in

at
e-

x

C
oo

rd
in

at
e-

y

O
ri

en
ta

ti
on

130 143 0 134 140 1 4 3 1

25 200 15 23 205 15 3 5 0

30 60 10 25 61 11 5 1 1

30 190 23 31 188 21 1 2 2

0 250 40 3 252 39 3 2 1

Average 3.2 2.6 1

8.7 Exception Handling

The working object exception handling has been tested. The number of the

working object is purposely increased and reduced while the task is in progress to

test the ability of the system to detect and react according to the object exception

detected. Meanwhile the ability of the system to handle the client-server connection

exception is also tested. For example the other user has tried to login the server while

there is a user connected to the server.

8.8 Platform Testing

The telerobotic client and server programs are developed by using Microsoft

Visual C++ 6.0. The advantage of using the Microsoft Visual C++ is the software

developed is well supported by the Microsoft operating system. The telerobotic

 139

server program is installed on the Windows 2000 Server. However the operating

system for the telerobotic client program is depending on the operating system used

by the user, thus the compatibility of the telerobotic client program with the most

commonly used operating systems is tested. The telerobotic client program has been

installed and tested on the Windows operating systems such as Windows 98,

Windows 98 Second Edition, Windows Millennium Edition, Windows 2000 and

Windows XP.

8.9 Local Area Network (LAN) Testing

The telerobotic system has been tested on the local area network. The system

is controlled from the different computers at different building. Only the computers

that are connected to the Gateway 10.5.0.1 can be used to control the telerobotic

system. This is due to the local area network setting and configuration. However this

will not stop the system being accessed and controlled from the public once the fixed

IP address is obtained from the Internet Service Provider (ISP).

8.10 System Architecture Comparison

System architecture developed is compared with the systems developed by

other institutes and the prototype of UTM web-based telerobotic system. There are

three of the systems that are designed to manipulate with the blocks, namely

Australia's telerobotic system, CSC telerobot system and robotoy system. The

advantages of the UTM telerobotic system architecture developed as compared with

the other systems with the same application are as below:-

i) Task-oriented where the system developed requires only the user to focus

on the task, i.e. the blocks manipulation instead of the robot movement.

For three of the telerobotic system mentioned above, the user is required

to control the system based on the robot joint value.

 140

ii) Intelligent parser is used to guide the user to operate the system. The

concept of the intelligent parser is not used in any other of the telerobotic

system.

iii) The natural language command is supported in UTM telerobotic system.

iv) Virtual grid instead of real grid is provided. This allows the system to

perform system self-calibration. The Australia's telerobotic system and

CSC telerobot system are using real grid on the working area in the

remote site.

v) The complexity of the system in hidden thus no robotic knowledge is

required to operate the UTM telerobotic system. For example, the

knowledge about the part of the robot such as elbow and shoulder is not

required as compared with three of the projects mentioned.

vi) The safety of the robot and the working objects are protected. For

example, it is almost impossible to control the robot to purposely hit on

the working object. For the other telerobotic system mentioned, there is

the possibility for the robot gripper to hit on the working object.

vii) The system is developed using Microsoft Visual C++ instead of Java.

This is because at the time of the telerobotic system development,

Microsoft is planning not to support Java language in the Microsoft

Windows XP and the future operating system.

There are some limitations on the system developed such as:-

i) The block manipulation is limited to 2 dimensional operations. The

working object stacking is not allowed. This is due to the single camera

used on the top of the working area in the UTM telerobotic system

compared with the other telerobotic system.

ii) The distance required between the working objects is too far as compared

with the other projects mentioned. The distance is required in UTM

telerobotic system to avoid the possibility that the gripper will hit on the

working object during robot path planning.

iii) The requirement to download the application program whereas the other

projects are using web-based telerobotic system.

 141

iv) The telerobotic client software is not supported by the Linux and Mac

operating system. The UTM telerobotic application program is designed

specifically for the Windows operating system.

8.11 Summary

The UTM telerobotic system is first tested on its functionality such as

command pre-processor testing and the variety task handling. The accuracy of the

UTM telerobotic system is studied. The ability of the UTM telerobotic system on

exception handling is also analyzed. After that, the UTM telerobotic client program

is tested on different Windows operating system and on the local area network

(LAN). Finally, the UTM telerobotic system architecture is compared with the other

similar telerobotic systems.

 142

CHAPTER 9

CONCLUSION

9.1 Introduction

During the development and implementation of the system, various

disciplines of the knowledge are involved. This has made the project quite

challenging. The major knowledge is from the disciplines as below:-

i) Robotics

In order to be able to control the robot movement efficiently, the

inverse kinematics of the robot has been derived. The lack of the information

about the encoder rotation unit and the degree of the robot physical rotation

has made the situation more complicated. Many experiments, try and error

had been carried out to find the relationship between the two of the units.

Meanwhile, the construction of the virtual environment, working object and

mouse events processing such as object moving and rotation involve a lot of

calculation and mathematics equations derivation.

 143

ii) Natural language

A study on the natural language processing has been carried out to

develop a suitable method of natural language processing to be used. In the

project developed, the natural language is integrated with the mouse

operation and thus the natural language processing is more complicated.

iii) Vision system

Although the vision system is developed based on ActiveMIL from

Matrox Imaging Library (MIL), it is impossible to rely only on the high level

ActiveMIL command to complete the object recognition. The knowledge of

low level image processing is required. The low level ActiveMIL commands

are used to filter out the noise at background of the objects to increase the

accuracy of the output. Furthermore the hardware was not properly installed

by the supplier and a lot of effort had been carried out to solve the hardware

problems.

iv) Information technology

The application programs in the UTM telerobotic system are

developed based on C++ language by using Object-oriented Programming

(OOP) method. The ActiveMIL from Matrox Imaging Library (MIL) can be

supported only by either C++ or Visual Basic. Thus the skills in the

programming are very importance in determining the successful of the

project.

 Furthermore, the protocol used in the data transfer between the

telerobotic server program and client program is a result of the study from the

encoding scheme call URL (specified by the MIME). The study of the FTP

server of the Windows 2000 Server has enabled the telerobotic client program

to download the image file from the server.

 144

In the telerobotic programs produced, most of the coding is self-developed by

referring to the Microsoft Foundation Classes (MFC) documentation and the relevant

books. The functions of image processing are called from Matrox Imaging Library

(MIL). Due to the fact that the Matrox Imaging Library (MIL) requires a run-time

license, the JPEG file displaying function can not be incorporated in the telerobotic

client program. Thus the JPEG file displaying function is called from a downloaded

library for the ease of programming.

9.2 Objectives Achievement

As mentioned in the Section 1.3, the objectives of the project is to study the

latest finding in the internet-based telerobotics, develop and implement a new system

architecture design for use in the Internet-based telerobotic application. The system

designed must take the consideration of the problems faced in the Internet-based

telerobotic application, such as time delay, safety and reliability factors.

This project is successfully developed and implemented by considering the

importance factors that will determine the success of the telerobotic system. The

importance factors are learnt from the experience of the other projects developed.

The system developed, as compared with the other systems developed, has achieved

a lot of improvement form the perspective of:-

i) User friendly of GUI

The client program is providing the options for the user whether to

use the mouse, type-written natural language or the combination of mouse

and type-written natural language to issue a task-oriented command. The

buttons at the telerobotic client program are kept to as minimum as possible.

On the other hand, the telerobotic server system is designed so that the

system can be initialized by single click on the “start system” button.

 145

ii) User friendly of system architecture

The architecture of the system is designed so that the user needs only

to specify the final output required and then the system will carry out the task.

Every user is allowed to control the system for 10 minute only to avoid the

other user to keep waiting. The remaining time of the current user will be

informed so that the other user can estimate the time to login again.

iii) Reliability

The application of the system is designed for 24 hour per day 365

days per year operation, many of the designs are aiming for system reliability,

such as the log file, error listing, object size definition and the operating

system selection. However, it is almost impossible to achieve the target for 24

hour per day 365 days per year operation with the existing hardware. There

are still some factors that affect the continuity of the system such as the use of

PC as server and the type of the robot chosen. By the way, it is obvious that

the system has been optimized to make it as reliable as possible.

iv) Safety

The system is designed based on the task-oriented concept. The robot

can be safely protected from the damage caused by the client and the

abnormal events. Furthermore the robot is isolated from the people in the

work cell and thus the robot and the people are safely protected.

v) Time delay

The data transfer between the telerobotic client and server programs

are kept to as minimum as possible. The data are limited to the image of the

top view of the working area in JPEG file format and the URL strings as

discussed in the Section 5.6. The content of the data transferred can be

controlled easily when the system is build by using the application program.

 146

In the web-based telerobotic project, some other data will be added to

the original data automatically by the web server and this will increase the

size of the data transferred. For example it need only 1 second to transferred 5

kb of original data at transfer rate of 5 kbps. If the size of the original data is

increased by the web server from 5 kb to 10 kb then the time required will be

increased to 2 second. The response time of the system will become longer.

In UTM telerobotic system, the application programs are developed so that

the volume of data transferred between the client and server can be controlled

and kept to minimum.

vi) Accuracy

The accuracy of the output is enhanced by the gripper with new

fingers design. The tolerance achieved by the gripper with new fingers design

as compared with the use of standard gripper are compared and discussed in

the Section 8.6. Even though, the application of the UTM telerobotic system

is still limited to education and entertainment application.

 The system designed and developed had been tested on the local area network

(LAN). The communication protocol is based on TCP/IP as the protocol used on the

Internet. Thus the system can be directly connected to the Internet once a fixed IP

address and direct Internet connection are obtained from the Internet service provider

(ISP).

9.3 Contribution

As a conclusion, this report has successfully developed and implemented a

task-oriented telerobotic system for use in Internet-based telerobotic application. In

some of the aspects as discussed in the Section 8.8, the UTM telerobotic system

manages to surpass the telerobotic system developed by the other research groups.

The system has been tested from various aspects. Although the application of the

telerobotic system developed is limited to education and entertainment application,

 147

the knowledge and the experience gained from the project is valuable and useful for

the future project.

The UTM telerobotic system developed and implemented in this report

involves a wide discipline of knowledge. Thus the contribution of the project can be

viewed from various aspects as below:-

i) Command pre-processor

The command pre-processor is well designed to support mouse

events, type-written natural language and the integration of the both types of

command inputs. The command pre-processor can be easily expanded to

support spoken natural language since both of the spoken and type-written

natural language can use the similar command list and the difference is

limited only with the form of input. The command pre-processor can also be

easily expanded to support gesture recognition on the remote site. The object

specification for move operation as well as the location to be placed can be

specified by using the finger pointing.

ii) Task-oriented concept for telerobotic application

This project has successfully implemented a task-oriented robotic

system for Internet-based telerobotic application. Various aspect of the design

such as reliability, safety and accuracy consideration has been widely covered

in the Chapter 8. The knowledge and experience can be used for the future

project.

iii) Robot arm behavior

The robot, Rhino has been optimized for the object pick and place.

The behavior of the robot arm is specifically optimized for the cube gripping

with the cube dimension about 2 cm x 2 cm x 2 cm. In the Chapter 8, the

robot arm behavior has been tested for complicated task such as moves and

rotates an object in a single task. The robot arm behavior is also tested for

 148

manipulating two objects in a single task. A new behavior for different

application can be derived from the data given in the Section 6.3.

iv) Tested communication protocol for tele-application

The message transfer between telerobotic server and client programs

is based on the URL encoding scheme specified by the MIME which is used

on Internet form application. A small modification has been made to simplify

the encoding and parsing process. The semicolon sign (;) at the ending of the

message is omitted. The data transferred by using the protocol is easy to

understand and to be parsed. The data is identified by the name and value in

pair, for example the message used in the system 7?e means error with the

type 7. The protocol enables the sending of many pairs of data by separating

each pair of data by an ampersand (&). For example the message

1=100+100+0&2=100+200+45 means there are two objects with the

attributes given after equal sign (=). The protocol has been tested for

telerobotic application and it can also be used in wireless applications.

v) New fingers design for the Gripper

The new fingers design in this report brings some improvement to the

UTM telerobotic system. For example, the safety of the robot, working

objects and the working area are improved. The details of the improvement

have been discussed in the Section 7.7.

9.4 Recommendations and Future Work

Due to the limitation and the constraint, many of the new proposals and

designs that were discovered and identified during the development and

implementation of the project are not be able to be implemented in the current

project. The proposals for the future work are as below:-

 149

i) Change the robot from the revolute type configuration (RRR) arm to SCARA

type configuration which is more suitable for object pick and place from the

top.

ii) Change the end effector from gripper type to vacuum finger type. Thus the

size of the area required to be cleared from the obstacle around the object to

be picked and placed can be reduced.

iii) Support more cameras to allow 3 dimensional operations such as object

stacking.

iv) The camera that supports zoom operation can be fixed on the robot end

effector. This allows the objects to be view from various better perspectives.

The accuracy for object gripping can be improved.

v) Better users interactive where more than one user can be connected to the

telerobotic server program for chatting.

vi) Better system application such as allowing the user to manipulate with

different shape and size of objects.

vii) Voice recognition facility for spoken natural language.

viii) Gesture recognition facility for object and coordinate specification on remote

site.

ix) User registration and feed back for data collection and analysis.

x) Security precaution steps for the Internet connection such as by using the

firewall, password login and the data encryption.

From the knowledge and experience gained, it is possible to extend from the

current project to a totally new project to build a self-supervised task-oriented system

such as Aibo from Sony Company and Asimo from Honda Company. New features

 150

can be added to the command pre-processor to support voice and gesture recognition.

The natural language conveyed by the system can be realized as sound. A new design

of the gripper is required for more flexible and advanced arm behavior for different

object gripping and placing. The knowledge of the system can be expended to make

the system more intelligent such as the system can choose the best object picking

behavior among behavior 1, 2 and 3 that are supported for the object of type A under

various situation. The new system must be designed to work in a dynamic

environment.

 151

REFERENCE

Allen, J. (1987). “Natural Language Understanding.” Benjamin/Cummings

Publishing Company, Canada.

Allen, P. K. (1987). “Robotic Object Recognition Using Vision and Touch.” Klumer

Academic Publishers, USA.

Asada, H. and Slotine, J. J. E. (1986). “Robot Analysis and Control.” Wiley-

Interscience Publication, USA.

Brunner, B., Arbter, K. and Hirzinger, G. (1994). “Task-directed Programming of

Sensor-based Robots.” in Graefe, V.. “Intelligent Robots and Systems.” Netherlands:

Elsevier. 387 - 400.

Corke, P. I. (1996). “Visual Control of Robots: High-Performance Visual Servoing.”

Research Studies Press, England.

Craig, J. J. (1986). “Introduction to Robotics Mechanics and Control.” Addison-

Werley, Canada.

Deitel, H. M. and Deitel, P. J. (1998). “C++ How to Program.” Prentice-Hall Book

Company.

Farzin, B. R., Goldberg, K. and Jacobs, A. (1989). “A Minimalist Telerobotic

Installation on the Internet.” In 1st Workshop on Web Robots, Inter. Conf. on Robots

and Intelligent Systems, Victoria, Canada, 7 - 13.

 152

Fauzi Zakaria (2000). “Design and Development of a Prototype Internet-based

Telerobotics.” Universiti Teknologi Malaysia: Report of Research Proposal.

Fauzi Zakaria, Shamsudin H. M. Amin and Rosbi Mamat (2000). “Design and

Development of Control System for Internet-based Telerobotics.” Proc. of TENCON

2000, Kuala Lumpur, Malaysia, Vol. II, 338 - 342.

Friz, H. (1998). “Design of an Augmented Reality User Interface for an Internet

based Telerobot using Multiple Monoscopic Views.” Technical University of

Clausthal: Diploma Thesis.

Fu, K. S., et al. (1987). “Robotics: Control, Sensing, Vision, and Intelligence.”

McGraw-Hill, Singapore.

Goldberg, K. (Ed.) (1999). “The Robot in the Garden: Telerobotics and

Telepistemology in the Age of the Internet”. The MIT Press, Massachusetts Institute

of Technology, Cambridge.

Goldberg, K., et al. (2000). “The Mercury Project: A Feasibility Study for Internet

Robots.” IEEE Robotics and Automation Magazine, 7(1):35-40.

Gomi, T., Ide, K. and Maheral, P. (1994). “Vision-based Navigation for an Office

Messenger Robot.” in Graefe, V.. “Intelligent Robots and Systems.” Netherlands:

Elsevier. 619 - 635.

Hager, G. D., Grunwald, G. and Toyama, K. (1994). “Feature-based Visual Servoing

and Its Application to Telerobotics.” in Graefe, V.. “Intelligent Robots and

Systems.” Netherlands: Elsevier. 415 - 430.

Heath, L. (1985). “Fundamentals of Robotics.” Reston Publishing, USA.

 153

Ishikawa, S., et al. (2000). “Man-machine Collaborative Work Based on Visual

Communication.” Proc. of the TENCON 2000, Kuala Lumpur, Malaysia, Vol. II,

321 - 325.

Kang, S. B. and Ikeuchi, K. (1994). “Robot Task Programming by Human

Demonstration: Mapping Human Grasps to Manipulator Grasps.” in Graefe, V..

“Intelligent Robots and Systems.” Netherlands: Elsevier. 119 - 136.

Klafter, R. D., Chmielewski, T. A. and Negin, M. (1989). “Robotic Engineering.”

Prentice-Hall Book Company.

Lim, C. S., Rosbi Mamat and Zamani Md. Zain (2001). “Design of Task-Oriented

System for Internet-based Telerobotic System.” Proc. of the MSTC 2001, Malacca,

Malaysia, B136.

Lim, C. S., Rosbi Mamat and Zamani Md. Zain (2002). “Natural Language in Task-

oriented Telerobotic Application.” Proc. of the WEC 2002, Kuching, Sarawak,

Malaysia, 407-410.

Lloyd, J.E., Beis, J.S., Pai, D.K. and Lowe, D.G. (1997). “Model-based Telerobotics

with Vision.” Proc. of the ICRA '97, Albuquerque, New Mexico, 1297 - 1304.

Matrox Electronic Systems Ltd. (2001). “Matrox ActiveMIL User Guide.” Canada.

Norhayati A. M, Shamsudin H. M. Amin and Rosbi Mamat (2001a). “Internet Based

Leg Motion Control of a Mobile Robot.” Proc. of the 2nd International Conference on

Advances in Strategic Technologies (ICAST 2000), Selangor, Malaysia, Vol. 1, 283

- 292.

 154

Norhayati A. M, Shamsudin H. M. Amin and Rosbi Mamat (2001b). “Development

of the Internet Interface for Leg Motion Control of a Mobile Robot.” Proc. of the 1st

International Conference on Mechatronics (ICOM’01), Kuala Lumpur, Malaysia,

Vol. 2, 665 – 675.

Rembold, U. (1986). “Programming of Industrial Robots, Today and in the Future.”

in Rembold, U. and Hörmann, K.. “Languages for Sensor-based Control in

Robotics.” Germany: Springer-Verlag. 3 – 23.

Rembold, U. and Hörmann, K. (Eds.) (1987). “Languages for Sensor-based Control

in Robotics.” Germany: Springer-Verlag. 601 – 611.

Rhino Robots, INC. (1989). “Mark IV Axis Controller Owner’s Manual.” USA.

Rhino Robots, INC. (1995). “Introduction to Robotics Student Workbook I.” USA.

Richards, M. (2001). “Systems Development.” NCC Education Limited, UK.

Roland, S., et al. (1998). “Guiding Mobile Robots through the Web”. Proc. of

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’98),

1-6.

Shamsudin H. M. Amin, Rosbi Mamat, Md. Fauzi Zakaria, Rudas, I. J., Horvath, L.

and Tar, J. (2001). “User Interface Design for Internet-based Telerobotics.” Proc. of

SCOReD 2001, Kuala Lumpur, Malaysia, CD Vol..

Shamsudin H. M. Amin, Rosbi Mamat, Mohamad Fauzi Zakaria, Norhayati A. M.

and Lim, C. S. (2001). “Internet-based Telerobotics: UTM’s Experience and Future

Direction.” Proc. of the ICAR 2001, Budapest, Hungary, 313 - 319.

 155

Stein, M. R. (2000). “Interactive Internet Artistry. ” IEEE Robotics and Automation

Magazine, 7(2):28-32.

Taylor, K. and Dalton, B. (1997). “Issues in Internet telerobotics.” Inter. Conf. on

Field and Service Robotics (FSR 97), Canberra, Australia, 151-157.

Taylor, K. and Dalton, B. (2000). “Internet Robot: A New Robotics Niche.” IEEE

Robotics and Automation Magazine, 7(1):27-34.

Torrance, M. C. (1994). “Natural Language with Robots.” Massachusetts Institute of

Technology MIT: MSc. Thesis.

Trent, R. (2001). “IIS 5.0: A Beginner’s Guide.” McGraw-Hill, USA.

Wolovich, W. A. (1986). “Robotics: Basic Analysis and Design.” CBS College

Publishing, New York.

Young, M. L., et al. (1999). “Internet: The Complete Reference, Millennium

Edition.” McGraw-Hill, USA.

 156

APPENDIXES

 157

APPENDIX A

WORK CELL DIMENSION

 162

APPENDIX B

PAPER PUBLISHED

 163

 164

 165

 166

 167

 168

 169

 170

 171

 172

 173

 174

 175

 176

 177

 178

 179

 180

 181

 182

 183

 184

USER INTERFACE DESIGN FOR
INTERNET-BASED TELEROBOTICS SYSTEM

Shamsudin H. M. Amin
(sham@suria.fke.utm.my)

 Rosbi Mamat (rosbi@suria.fke.utm.my)
Mohamad Fauzi Zakaria

(fauzi@nadi.fke.utm.my)
Center for Artificial Intelligence and Robotics

(CAIRO)
Faculty of Electrical Engineering

Universiti Teknologi Malaysia
81310 UTM Skudai

Johor Darul Ta’zim, Malaysia
Fax: +607 5566272

Imre J. Rudas
(Rudas@Zeus.banki.hu)

Laszlo Horvath
 (Lhorvath@Zeus.banki.hu)

Joszef Tar
(Jktar@Zeus.banki.hu)

Budapest Polytechnic
H-1081 Budapest Nepszinhaz u.8

Hungary
Tel. 36 1 333-4513
Fax: 36 1 333-9183

Abstract ? One of the most important components
of any telerobotics system is the user interface, as it
determines the extent to which the user can sense the
remote environment and consequently control the robot.
The display in the user interface should be designed so
that the user receives sufficient information about the
remote environment. The controller part in the user
interface has to be designed such that the user can
effectively control the robot. This paper presents ways
to design the user interface for controlling the robot via
internet by defining the user operator, task and
environment requirement. Besides, the problem in the
internet also need to be considered before the user
interface system is developed. Lastly, this paper also
describe the implementation of development of user
interface in Universiti Teknologi Malaysia (UTM)
Telerobot.

Keywords : Internet-based telerobotics, user interface,
user operator.

I. INTRODUCTION

Internet-based Telerobotics is a system that accepts
instructions from a distance at anywhere in the world,
generally from a trained user operator. The user
operator thus performs live actions in a distant
environment and through sensors can gauge the
consequences [1]. The basic telerobotic system to be
launched in the Internet normally has a robot system, a
camera and a personal computer [2]. System
architecture of this telerobotic system is shown below:

Fig. 1: System Architecture Design

II. DESIGN APPROACH

User interface design is a very difficult business. It
combines two awkward disciplines [3]: psychology and
computer science. These disciplines have very different
cultural backgrounds: psychology is concerned with
people; computer science with computer machinery.
Psychologists are supposedly sympathetic and
understanding; computer scientists are supposedly
mathematical and precise. Psychologists have enough
trouble understanding people even when they are not
using computers; computer scientists have enough
trouble getting programs to work even when they are
not being used by people. Good user interface design
requires these two perspectives to be united.

Defining Requirement

Before designing any telerobotic system, it is crucial to
define several functional requirements. Those are:

? Who are the users of the specific application
and what are their experiences, aptitudes,
motivations, and needs?

? What is the task for the system and what is
required to do it?

? What is the environment in which the
application will be used, and what is the
context in which the task will be done?

 185

Defining the user, task, and environment is essential in
specifying appropriate technology for user operator
interaction in general and in creating usable systems [4].

User experience is divided to novice or expert. In
teleoperation, the concern for novices is generally ease
of first time use, clarity of what the user can and can’t
do, and recoverability from error. For the expert user,
more focus tends to be on the “power” the system
provides: high functionality, speed which users can
accomplish routine tasks, and flexibility of the systems
to accommodate the needs of expert users (e.g., to let
users customise the way an interaction is accomplished).
In addition, expert users might spend a great deal of
time with a system or use it for very demanding tasks.
In order to develop the teleoperation system, we should
identify the goals of the application, the tasks that will
be required to achieve those goals, and how the tasks
will be accomplished in the teleoperation. Telerobotics
devices are typically developed for situations or
environments that are too dangerous, uncomfortable,
limiting, repetitive or costly for humans to perform [5].
Some applications or tasks are listed below in different
of environments:

? Underwater: inspection, maintenance,
construction, mining, exploration, search and
recovery, science, surveying.

? Space: assembly, maintenance, exploration,
manufacturing, science.

? Resource industry: forestry, farming, mining,
power line maintenance.

? Process control plants: nuclear, chemical etc.,
involving operation, maintenance,
decommissioning, and emergency.

? Military: operation in the air, undersea and on
land.

? Medical: patient transport, disability aids,
surgery, monitoring, remote treatment.

? Construction: earth moving, building
construction, building and structure inspection,
cleaning and maintenance.

? Civil security: protection and security, fire
fighting, police work, bomb disposal.

? Education and entertainment.

Design Consideration

Based on the experiences in accessing telerobotics
websites and literature review, there are two problems
that affect the internet-based telerobotics performance
that should be solved. These problems are related to
time delay response and operator’s skill or behaviour.
The time delay response occurs when transmitting real
time visual feedback and control command to the client-
server. To solve these problems, the size of visual image
has to be reduced by choosing the compressed JPEG
(Joint Photographic Experts Group) file [6][7] and the
part of the software that controls the hardware should be
created as a plug-in component package [8].

Whereas, to solve the user operator’s problem who is
unfamiliar (inexperienced) with the system, there is a
need to create a security (safety) system in user
interface. This is especially to limit the robot workspace
so that the damage to the manipulator or other objects in
the task space may be avoided. Another problem that
will occur is when many users try to access the site at
the same time. In that case a database system may be
used to arrange the user list that only one should be
allowed to control the system on the particular time.

III. WEB AND APPLICATION INTERFACE

There are two ways the user interface can be launched
in the internet by using a web or application interface.
The web is designed as a hyper-text distributed
information storage system for technical documentation
[9]. Data is stored at many servers, and can be accessed
by many clients, seemingly simultaneously. The client
programs used by people are usually referred to as Web
browsers because they allow a user to explore inter-
related data on different topics. Whereas, application
interface is using client-server model. The client-server
model provides a convenient way to interconnect
programs that are distributed efficiently across different
locations.

Web-based interface

A web-based interface is usually a platform independent
hypertext mark-up language (HTML) form that is
coordinated with a server side common gateway
interface (CGI) program [10]. The CGI program, in
turn, controls the robot. Web browser forms allow the
designer to distribute the interface in a platform
independent manner with little or no programming on
the interface side. The HTML language contains
several different window system components that mimic
some standard user interface components. The interface
is designed in a manner easily understood by users
familiar with such environments.

The bulk of the processing behind an HTML interface is
handled by the CGI program on the server side. These
programs can involve sophisticated access control
subsystems and routines, which will decode the
interface input (motion and other commands) and
generally pass them on to the actual control programs
for the robot.

This method is currently a popular choice for existing
Internet-based robotics because interfaces can be
created easily and because there are multiple platforms
to which it can be distributed. However, it suffers from
the "set-submit" cycle, it has potentially wide security
loopholes, and it raises the challenge of controlling
concurrent users accessing multiple copies of the CGI
server programs. The example of web-based interface is
shown in Fig. 2.

 186

Application Interface

With an application interface (for example please refer
to Fig. 3), the user interacts directly to an executing
program. The program is written and compiled to a
specific hardware platform and utilises the
communications capabilities of the platform to connect
to a server program. The interface program can then be

released to users having the same hardware and
operating system platform. This approach, therefore,
only benefits those users with the same platform.

Applications generally require a greater effort to design
and code the interface when compared to HTML forms,
but they benefit from the ability to be more complex,

Fig. 2: UTM Telerobot web-based interface

 187

Fig. 3: UTM Telerobot application-based interface

supporting interactive tasks in a decidedly improved
fashion. Applications have the added benefit of
distributing the processing. The client-side application
deals with the interface and interaction with the user,
and the server-side controls the robot. Many of the
range checking and manipulation limits can be
implemented in the interface application, relinquishing
the server program from these duties.

IV. IMPLEMENTATION

The UTM Telerobot system basically consists of three
main hardware systems that must be integrated. These
systems are robot system, camera system and host
computer system. Robot system includes robot
controller and its arm. The robot is a fixed base Rhino
XR-4 robot that has five degree of freedom (5 DOF) and
a gripper. The camera system is a webcam (Logitech
Quickcam Pro) type that is used to capture the entire
robot environment. These systems must be integrated
together before being launched to Internet by
programming in host computer. System architecture of
this telerobotic system is shown in Fig. 1. Actually this
system is built to perform simple tasks such as to move
a small plate of steel. The target of application is in
education and training sectors. Many research and
educational institutions cannot afford to purchase
industrial robots, mainly because they are very

expensive. By introducing Internet-based Telerobotics
system, it is a chance to expose to any users especially
students in Malaysia on robotics area.

UTM Telerobot User Interface

User interface system in UTM telerobot basically
consists of three basic services as shown in Fig. 4.
These three services are login service, robot guidance
(control) service and visual feedback service. The login
service, provides communication with the other
services, and allows the system manager to get
information about established connection. This part is
important to enable the system manager to arrange the
priority user to control the robot by following the
database system. The second service, robot guidance
(control) service allows the user to send high-level
commands to the server, where a Common Gateway
Interface (CGI) script decodes and builds the
corresponding order for the robot. The CGI is a standard
way for the Web server (HTTPD etc) to run and talk to
other programs on the remote computer. The last one is
video feedback service is a part to allow feedback from
different video cameras. The users can view the status
of robot image.

Fig. 4: Schematics of the User Interface

Robot Guidance

Actually, this telerobot system is using the point-to-
point controller type. So, the program should be
designed following the controller specifications. In this
system, C++ programming language was used to
program the robot control system. In order for Host PC
to talk with the robot controller, the communication link
and protocol must be established. This must be done
each time a program run. An open serial communication
program is shown below [11][12].

 DCB dcbCommPort;
 hComm = CreateFile("COM1",
 GENERIC_READ | GENERIC_WRITE,
 0, // exclusive access
 NULL, // no security
 OPEN_EXISTING,
 0, // no overlapped I/O
 NULL); //null template

 SetupComm(hComm, 128, 128);

 GetCommTimeouts(hComm,&ctmoOld);
 ctmoNew.ReadTotalTimeoutConstant = 100;

Robot Guidance

Visual Feedback

Login Service

Client

Client

Client

Control
Server

Image
Server

 188

 ctmoNew.ReadTotalTimeoutMultiplier = 0;
 ctmoNew.WriteTotalTimeoutMultiplier = 0;
 ctmoNew.WriteTotalTimeoutConstant = 0;
 SetCommTim eouts(hComm, &ctmoNew);

 dcbCommPort.DCBlength = sizeof(DCB);
 GetCommState(hComm, &dcbCommPort);
 BuildCommDCB("9600,N,8,1", &dcbCommPort);
 SetCommState(hComm, &dcbCommPort);

To send data or commands to the serial port the
WriteFile call is used. For example, the following call
sends “GO” (open gripper) command to the controller:

 WriteFile(hComm, “GO\r”, 3, &IpNumber, NULL);

If a command sent to the controller is a responsive
command, that is, one that results in data being sent
back to the host, the data is retrieved using the ReadFile
call.

Camera Image Programming

Live image from camera (webcam) is a robot movement
feedback. Therefore the programming of camera is very
important to capture a live image. Normally, the web
cam camera can capture the image up to 30 frames per
second (fps) based on image size, resolution and
computer system. This image feedback was developed
using the AVICap window class that is programmed in
C++. AVICap provides applications with a simple, to
view a live incoming video signal by using the overlay
or preview methods.

The Robot Control Step

To control the robot, a user needs to follow the control
flow shown in Fig. 5. Firstly, the user needs to go to the
UTM Telerobot website at http://161.139.116.98 . He or
she must understand the condition and rules given by
the Webmaster and then must register before being
allowed to control the robot. Second step, the user must
enter the password into the Password Form and then the
password will be processed. After that, the user operator
will get the result either he will be able to control and
view the system or just view only the system handled by
system manager (software). To control the system, only
one user is accepted and the others just view the status
and image until the first user quit or reach maximum
limit time (10 minutes). After that, the second user will
substitute as first user. If there is only one user
accessing the telerobot web, the system manager will
give permission to that user to control a robot, as he or
she likes until other users come in.

Result

UTM Telerobot Graphics User Interface (GUI) was
developed using Hyper Text Mark-up Language
(HTML) and C++ Builder. The C++ builder 4 Web
Broker Technology allows developer to build CGI Web
server applications without having to worry about too

many low-level details. The Robot Control Panel was
launched to web page (internet) after it is programmed
in CGI Web Broker. HTML was used to integrate CGI –
Robot Control and Camera Live Image page to one web
page by using FRAME and IFRAME technology. The
GUI for this basic telerobot is shown in Fig. 2 and is
working successfully.

V. CONCLUSION

The aims of internet-based telerobotics are to control the
robot at a distance, at any time and to allow for a good
feedback response. So, the user interface design is an
important part to implement in an internet-based
telerobotics system. This paper has described the
methodology in design of user interface system and
development of basic telerobotics system. The user
interface system has been developed by using C++
programming language to program the robot guidance
(control) and visual feedback. Both of these systems are
combined together and produced in World Wide Web
(WWW) by using HTML technology.

Fig. 5: Steps to Control the Telerobotics System

VI. ACKNOLEDGEMENTS

 189

The authors would like to thank the Malaysian Ministry
of Science, Technology and Environment for
sponsoring this work under IRPA 09-02-06-0022.

VII. REFERENCES

[1] K. Goldberg (ed.). “The Robot in the Garden:

Telerobotics and Telepistemology in the Age of the
Internet”. The MIT Press, Massachusetts Institute
of Technology, Cambridge. 1999.

[2] Mohamad Fauzi Zakaria, Shamsudin H.M. Amin,

Rosbi Mamat. “Design and Development of
Control System for Internet-based Telerobotics”.
Proc. of TENCON 2000 Vol. II, p. 338-342, 2000.

[3] H. Thimbleby. “User Interface Design”. ACM

Press, New York. 1990.

[4] R. Stuart. “The Design of Virtual Environments”.

McGraw-Hill, New York. 1996.

[5] “Virtual reality: Scientific and Technological

Challenges”. Computer Science and
Telecommunications Board Press. 1994.

[6] K. Taylor and B. Dalton. “Issues in Internet

Telerobotics”. Proceeding of FSR'97 International
Conference on Field and Service Robotics, The
Australian National University, Canberra,
Australia. 8-10 December 1997.

[7] R. Siegwart, C. Wannaz, P. Garcia, R. Blank.

“Guiding Mobile Robots through the Web”. Proc.
of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’98), p. 1-6,
1998.

[8] K.P. Leu, M.H. Ang and Y.S. Wong. “A

Telemanufacturing Workcell Over the Internet”.
Proc. SPIE Vol. 3524, Telemanipulator and
Telepresence Technologies V, Paper No. 32, 1998.

[9] K. Taylor and J. Trevelyan. “A Telerobot On The

World Wide Web”. National Conference of the
Australian Robot Association, Melbourne,
Australia. 1995.

[10] P. DePasquale, J. Lewis, M. Stein. “A Java

Interface for Asserting Interface Telerobotic
Control”. Proc. SPIE Vol. 3206, Telemanipulator
and Telepresence Technologies IV, Paper No. 19,
1997.

[11] J. Miano, T. Cabanski and H. Howe. “Borland C++

Builder How-To”. Waite Group Press, United State
of America. 1997.

[12] K. Reisdorph et al, “Borland C++Builder 4

Unleashed”. Sams Publishing, United State of
America. 1999.

 190

 191

 192

 193

 194

 195

Internet-based Telerobotics:
UTM’s Experience and Future Direction

Shamsudin H. M. Amin 1

Rosbi Mamat
Mohamad Fauzi Zakaria

Norhayati A. Majid
Lim Cheng Siong

Center for Artificial Intelligence and Robotics (CAIRO)
Faculty of Electrical Engineering

Universiti Teknologi Malaysia
81310 UTM Skudai

Johor Darul Takzim, Malaysia
Tel: +607 557 6160
Fax: +607 556 6272

Imre J. Rudas 2
Laszlo Horvath

Joszef Tar

Budapest Polytechnic
H-1081 Budapest Nepszinhaz u. 8

Hungary
Tel. 36 1 333-4513
Fax: 36 1 333-9183

1 sham@suria.fke.utm.my 2 Rudas@Zeus.banki.hu

Abstract

This paper reports on the development of the Universiti
Teknologi Malaysia’s (UTM) Internet telerobotics
systems. The design can be categorised into three
phases. In the first phase, the leg of a mobile are tested
and controlled through local internet connection. The
task is called robot-oriented control system. The second
phase of the project is the implemention of the web-
based robot using Rhino robot and the last phase is
future works on task-oriented of Rhino robot through
the Internet.

Keywords : Internet-based telerobotics, robot-oriented,
task-oriented.

1. Introduction

The goal of our project in the telerobotics area is to
discover and develop the system by combining network
technology with capabilities of robots. Using Internet
technology for telerobotic application offers the
advantage of low-cost deployment. There is no longer a
requirement for expensive purpose built equipment at
each operator’s location. Almost every computer
connected to the Internet can be used to control a
teleoperable device. The downside is the limitation of
varying bandwidth and unpredictable time delays [1].
These Internet features should be defined and
considered before designing an efficient telerobotic
system. Besides that, several functional requirements
should also be defined before designing any telerobotic
system:

? Who are the users of the specific application
and what are their experiences, aptitudes,
motivations, and needs?

? What is the task for the system and what is
required to do it?

? What is the environment in which the
application will be used, and what is the
context in which the task will be done?

Defining the user, task, and environment is essential in
specifying appropriate technology for user operator
interaction in general and in creating usable systems [2].

In this paper we focus mainly on the overview of our
past and recent projects and present some preliminary
results.

2. UTM Telerobotics Project

The user interface of telerobot has two ways to be
launched in the internet either by using an application or
a web interface. Interface using an application usually
used a client-server model. The client-server model
provides a convenient way to interconnect programs that
are distributed efficiently across different locations.
Whereas, web is designed as a hyper-text distributed
information storage system for technical documentation
[3]. Data is stored in many servers, and can be accessed
by many clients, seemingly simultaneously. The client
programs used are usually referred to as Web browsers
because they allow a user to explore inter-related data
on different topics.

2.1 Non-web-based Telerobotics System

Our early telerobotics system used an application
interface which is based on client-server model [4]. We
call this non-web-based telerobotics system. This basic
interface is designed using Borland C++ Builder, an

 196

object-oriented programming environment which
provides a Visual Component Library which is needed
to generate the graphical user interface for this interface.
Data is transfer using windows sockets element.

System overview

The architecture of the basic system is shown in Fig. 1.
The hardware set-up consists of a leg of a mobile robot,
which has three joints that move in three degrees of
freedom. The leg is controlled by a PC which also acts
as a local server. The motor drivers and interfacing
electronics are connected to the PC through the parallel
port. Every single command that is send to the server
interface will invoke the server to perform a certain task
to the robot. That is why we call this task as robot-
oriented.

The computer is also connected to a main server which
has many computers connected to it. Other computers
can act as clients and can download the interface and
control the motion of the leg of the mobile robot
through the local area network. When the system goes
to the public network, other users from anywhere can
control the robot. Windows sockets provide
connections based on the TCP/IP protocol.

Technically, sockets are easy-to-use and flexible and are
the ideal solution when building distributed
applications. This technology is built on TCP/IP and it
should appeal to people who want to work across very
large distances using the Internet. The executable
interface is generated from Borland C++ Builder
compiler. The application is written based on client
server model application concept where one server is
activated and awaits client request. The client and the
server react as a standalone where the client has to
download and execute the program from the server and
start connecting to the server by calling the server’s IP
address [5].

Fig1. : System Architecture for non-web-based

Graphical user interface

One of the most important components of any
telerobotics system is the user interface. The display in
the user interface should be designed sufficiently so that
the user receives enough information about the remote
environment. The preliminary basic design of the
graphical user interface (GUI) is shown in Fig. 2. This
GUI consists of a few panels including motor drive
controller panel, speed control panel, selection of either
to be a client or a server and indicator panel. Image
feedback is shown in Fig. 3.

Fig 2: Graphical User Interface for Non-web-based
Telerobotics System

Fig. 3: Image Feedback

Parallel Port Interfacing

Data
request is
sending
through
the TCP/IP
using
windows
socket
connection

WINDOWS INTERFACE

Event
Handler

TServerClientWinSocket

Server Side

Client Side

Client Client

Client

LAN
Connection

PC SERVER

LEG OF A MOBILE
ROBOT

Client socket

Server socket

 197

System achievement

The client can control the robot through the graphical
interface and the movement of the robot can be seen
through the digital camera that is focused on the robot,
which is provided by Microsoft NetMeeting software. In
the real situation the client cannot see the robot
movement directly because of the delay that always
occurs in the Internet application. The system is a robot-
oriented system where the client and server will behave
like a standalone application. The user must download
and execute the application program from the server.
The user will be allowed to control the robot after
obtaining permission from the server. The interface has
been tested locally but is not yet freely available on the
Internet yet.

2.2 Web-based Telerobotics System

Our current telerobotics project are based on web
interface. A web-based interface is usually a platform
independent hypertext mark-up language (HTML) form
that is coordinated with a server side common gateway
interface (CGI) program [5]. Web browser forms allow
the designer to distribute the interface in a platform
independent manner with little or no programming
application on the interface side. The HTML language
contains several different window system components
that mimic some standard user interface components.
This method is chosen since interfaces can be accessed
easily in the web browser and there are multiple
platforms in which it can be distributed .

2.2.1 Robots Oriented Interface

Robot-oriented telerobotic is a system that requires the
operator to control the robot step by step in
implementing a task. In UTM, robot-oriented
telerobotics system was built to perform simple tasks
such as to move a small plate of steel, which is used in
education and entertainment (edutainment) purposes.

System overview

The UTM robot-oriented telerobot system basically
consists of three main hardware components that must
be integrated. These comsystems are robot system,
camera system and host computer system [6]. The robot
system includes robot controller and its arm. The robot
is a fixed base Rhino XR-4 robot that has five degree of
freedom and a gripper. The camera system has two
cameras, they are a Sony EVI-D31 pan/tilt/zoom camera
type that is used to capture the entire robot environment
and a webcam that is attached on the gripper. These
systems must be integrated together before being

launched to the Internet by programming in the host
computer server. System architecture of this telerobot is
shown in Fig. 4 and its explanation is given below:

? Control server

The Control Server handles instructions and feedbacks
to/from robot controller. The instructions command
should be sent to controller via serial communication
port if we want to move the arm and know the position
of robot.

? Image server

Visual feedback server that controls the camera images
feedback before launching Internet server. The actual
image of robot depends on type of camera used.

? Web server

The web server system provides three basic services.
These three services are login service, system manager
service and Common Gateway Interface (CGI) script
service. The login service provides communication with
the telerobot system by requesting a password and
allows the system manager to get information on
established connection. This part is important to allow
system manager to schedule the user to control the
telerobot system by following the database. The CGI
script is used to integrate the control and visual
feedback server before launching to the client site
through GUI.

Fig. 4: Web-based Telerobotic System Architecture

Graphical user interface

Robot-oriented GUI shown in Fig. 5 is developed using
HTML and C++ Builder. The Robot Control Panel is
launched to the web after it is programmed in CGI.
HTML was used to integrate CGI – Robot Control and
Cameras Live Image page to one web page by using
FRAME and IFRAME technologies [7].

 198

System achievement

Fig. 5: UTM Telerobot web-based interface

The GUI for this robot-oriented telerobotic system
shown in Fig. 5 has been successfully tested on Internet
explorer and Netscape navigator web browser. There are
some problems especially in internet response time and
difficulties to achieve the task target are to be overcome.

2.2.2 Task Oriented Interface

Task-oriented robotic system or so called “task-centric”
robotics system requires only the operator to specify the
tasks to be done by the system and the system will then
plan and carries out a series of action to complete the
tasks. In contrast, robot-oriented system will require the
operator to plan the actions step by step to get the tasks
done. Compared to a robot-oriented system, task-
oriented robotic system has higher degree of autonomy.
Table 1 shows the comparison between both of the
systems.

Advantages of the task-oriented system

The task-oriented internet-based telerobotic system
provides better solution to the problems mentioned in
previous discussion.

i) Easy to operate

Basically task-oriented robotic system is easier
to be operated than robot-oriented system since
one task in task-oriented robotic system may
equal to a set of commands in robot-oriented
system. For example the task to move a cube
from one location to another which may
require the operator to specify a set of
commands to move the various motors in
robot-oriented system.

ii) Response time
Certain processes such as command and task
pre-processing will be carried out on the client
site thus reduce the waiting time for the
response from the server. Furthermore the
system may carry out the steps in completing
the task without delay between the steps
compared with robot-oriented system where
each step followed must be specified upon
completion of the latest command.

Table 1: Comparison between robot-oriented system and task-oriented robotic system
Robot-oriented System Task-oriented Robotic System

Basic command unit:
? Based on robot movement, e.g.:

a) Arm type robotic system: shoulder up 30°,
elbow down 30°, gripper open or spray start;

b) Mobile robot: move forward 30 cm, turn left
45°.

? Usually, 1 basic command unit equals to 1 robot
instruction.

Basic command unit:
? Based on the task designed for the robotic system,

e.g.:
a) Welding/spray painting system: spot,

straight, arc or follows certain marks/pattern;
b) Robotic goods sort ing system: transfer

objects type A to line A and objects type B
to line B;

c) Mobile robot: find the target such as
heat/light source in unknown environment.

? Usually, 1 basic command unit equals to a series of
robot instruction.

 199

The system can directly convert the command given to
robot instruction since 1 basic command unit equals to
1 robot instruction.

The systems need to have the ability to “understand” the
task given (requires task specified method) before the
task can be converted to a series of robot instruction.

Human will act as path planner to complete the task
such as welding and spray painting.

The task controller will do the path planning once
“understand” the task(s) required to be done.

Autonomy level: low. Autonomy level: higher (with certain limitations).
Low efficiency in completing the work since every
steps involved must be manually planned/programmed.

Higher efficiency in completing the work since task
controller will do the path planning.

Image capturing system (if involved) usually works
merely for visual feedback.

Image capturing system (if involved) works not only for
visual feedback but also as part of the vision system.

Less complicated to be designed and developed. Complicated to be designed and developed especially the
task controller.

Suitable application: usually for repeated/routine work
especially in mass production.

Suitable application: usually for the work that is not/less
repeated or the work with uncertainties such as goods
sorting where the objects may vary in size, shape,
orientation and location.

 System architecture

The system is built based on the task-oriented robotic
system concept. The task of the system is to manipulate
the cubes in front of the robot. The operator only needs
to tell the system what to be done (task) rather than
how to do it. The operator can tell the system to move
some of the blocks to certain locations as well as the
pattern of arrangement. Then the system will plan the
path on which cube is to be best moved first than the
other as well as how the gripper will move the cube.

Fig. 6 shows the system architecture without providing
the web service. The preliminary GUIs design is shown
in Fig.9. The system can accept task-oriented
command from the operators either through mouse
operation or natural language. The command will then
be processed by the command preprocessor – either
interpreter or parser. The purpose of the command
preprocessor is to remove the illegal commands such as
spelling mistake, syntax error as well as to limit the
mouse operation. Information such as the number of
objects as well as the location and orientation of
respective object are required by the command
preprocessor.

Once the system accepts the command from the
operator to complete the task, the task will then be
passed to the task preprocessor. The task preprocessor

will do the simulation if the task could be performed by
the task controller. This is very important since the
system is designed based on task-oriented approach.
Apparently not all tasks can be performed by the task
controller due to the limitations in the design and the
task-oriented robotic system itself. The complicated
task may need to divided into sub-tasks with the
assistance from the operator
The task will then be passed to the task controller to do
the path planning as well as the transformation to
action. The combination of the task controller, the
robotic system (the robot controller and the robot) as
well as the sensory system (sensors and the sensory
sub-system) will form a closed-loop task control sub-
system as shown in Fig. 7. In other word, the system
will be able to carry out the task autonomously.

At the end of the project, the system must be able to
provide the web service. Web-based and non-web-
based system will be developed for comp arison. The
non-web-based system architecture is shown in Fig. 8.
The task control sub-system mentioned will be kept on
the server. An application program will be developed
to provide the command and task pre-processing. The
application program will run on the client site. With the
pre-processing carried out on the client site, this
absolutely will reduce the data transferred and waiting
time for the response from the server.

 200

Interpreter

Parser

Command Preprocessor

Task
(Code

Listing)

Robot
Path
Planner

Robot
Instructions

Queue

Knowledge

Sensory
Sub-system

Update Current StatusFeedback Information
(Eg: Modelled Environment, Real

Image, Robot Status)

Update
Feedback

Information

Personal Computer

Task-oriented
Command

(Mouse
Operation)

Task-oriented
Command
(Natural

Language)

Operator

Robot
Controller

Sensors
(Eg: Camera)

Robot Status and
Sensor Reading

Task Controller

Robot

GUIs

Task Pre-
processor

Fig. 6: Task-oriented robotic system architecture (without web service)

Task
Controller

Control
Instruction

Robotic
System

Sensory
System

+ -

ErrorTask
Task

Progress

Fig. 7: Block diagram of the task control sub-system (closed-loop)

httpd

HTML
CGI

Task
Controller

Sensors
(Eg: Camera)

Web Server

Robotic
System

Internet

Client

Client

Client

Sensory Sub-
system

Fig. 8: Internet-based telerobotics system architecture

 201

Fig. 9: Preliminary GUIs design (without web service)

3. Future Work

There have been many internet-based telerobotic
projects developed since the first robot launched on
Internet in 1994. Some of the projects are designed for
critical applications such as telesurgery and
telemanufacturing. Nevertheless, these applications are
too risky and not practical for the current technologies
available for the Internet. Unless in the future there are
some break through technologies introduced and are low
cost and publicly available or the system mu st be
developed based on better quality connection but higher
cost such as leased line and fibre optic. In a nutshell, our
future direction of internet-based telerobotic projects
will tend toward edutainment which is in line with the
nature of today’s Internet – publicly available, low cost
as well as vulnerable and suffered from time delay.

4. Conclusion

We have successfully developed the internet-based
telerobotic system for the leg of a mobile robot as well
as the fixed type robot. The systems are designed based
on robot-oriented and task-oriented concept. The project
for fixed robot is expected to be available on the
Internet in July. Currently we are developing the
internet-based telerobotic system for the mobile robot
and the fixed robot based on task-oriented concept. A
comparison will be later made between robot-oriented
and task-oriented systems.

Acknowledgements

The authors would like to thank the Malaysian Ministry
of Science, Technology and Environment for sponsoring
this work under IRPA 09-02-06-0022.

References

[1] H. Friz. “ Design of an Augmented Reality User

Interface for an Internet based Telerobot using
Multiple Monoscopic Views”, Diploma Thesis,
Technical University of Clausthal, Germany, Sept.
1998.

[2] H. Thimbleby. “User Interface Design”. ACM

Press, New York. 1990.

[3] Norhayati A.M, Shamsudin H.M.Amin, Rosbi

Mamat. “ Internet Based Leg Motion Control of A
Mobile Robot”, Proc. of the 2nd International
Conference on Advances in Strategic Technologies
(ICAST 2000), 15th –17th August 2000, Selangor,
Malaysia, Vol.1, pg: 283-292, 2001.

[4] Norhayati A.M, Shamsudin H.M.Amin, Rosbi

Mamat. “Development of the Internet Interface for
Leg Motion Control of A Mobile Robot”, Proc. of
the 1st International Conference on Mechatronics
(ICOM’01), 12th – 13th February 2001, Kuala
Lumpur, Malaysia, Vol.2, pg: 665-675, 2001

[5] Shamsudin H.M. Amin, Rosbi Mamat, Mohamad

Fauzi Zakaria, Imre J. Rudas, Laszlo Horvath,
Joszef Tar. “User Interface Design for Internet-
based Telerobotics”. Proc. of SCOReD 2001, CD
Vol., 2001.

[6] Mohamad Fauzi Zakaria, Shamsudin H.M. Amin,

Rosbi Mamat. “Design and Development of
Control System for Internet-based Telerobotics”.
Proc. of TENCON 2000 Vol. II, pg. 338-342, 2000.

[7] Rick Darnell. “ HTML 4 Unleased – Second

Edition”, Macmillan Computer Publishing, USA,
1998.

 202

DESIGN OF TASK-ORIENTED SYSTEM FOR INTERNET-BASED TELEROBOTIC SYSTEM

Rosbi Mamat
Zamani Md. Zain
Lim Cheng Siong

Center for Artificial Intelligence and Robotics
(CAIRO)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

81310 UTM Skudai
Johor Darul Ta’zim, Malaysia

Phone: +607 5505004
Fax: +607 5566272

chengsiong@hotmail.com

Imre J. Rudas
Laszlo Horvath

Joszef Tar
Budapest Polytechnic

H-1081 Budapest Nepszinhaz u.8
Hungary

Abstract

Task-oriented robotic system or so called
“task-centric” [1] robotic system requires only
the operator to specify the task to be done by the
system and the system will then plan and carry out
a series of actions to complete the task. In
contrast, robot-oriented system requires the
operator to plan the actions step by step to get the
task done. Compared to a robot-oriented system,
task-oriented robotic system has higher degree of
autonomy. In this paper our decisions and
approaches used in designing our task-oriented
telerobotic system will be discussed and
presented.

Keywords : Task-oriented robotic system, task-
centric robotic system, robot-oriented system,
robot-centric system, internet-based telerobotic
system.

1 Robot-oriented System vs. Task-

oriented Robotic System

The robot-oriented system and the task-
oriented robotic system can be distinguished by

many aspects. The basic command unit for the
robot-oriented system is based on the robot
movement. For example the commands for arm
type robotic system are shoulder up 30°, elbow
down 30°, gripper open or spray start. Usually, 1
basic command unit for the robot-oriented system
equals to 1 robot instruction. Meanwhile, the basic
command unit for the task-oriented system is
based on the task designed for the robotic system.
For example the commands for the robotic goods
sorting system are transferring objects type A to
line A and objects type B to line B. Usually, 1
basic command unit for the task-oriented system
equals to a series of robot instructions. The
comparison between the robot-oriented system
and the task-oriented robotic system is
summarized in Table 1. It is important to
understand that no matter which type the robotic
system design is, in practical application both of
the systems will have their own specific task such
as welding, spray painting and goods sorting. The
main different is on how the systems carry out the
task.

Table 1: Comparison between robot-oriented system and task-oriented robotic system

Robot-oriented System Task-oriented Robotic System
Basic command unit:
? Based on robot movement, e.g.:

a) Arm type robotic system: shoulder up
30°, elbow down 30°, gripper open or

Basic command unit:
? Based on the task designed for the robotic

system, e.g.:
a) Robotic goods sorting system: transfer

 203

spray start;
b) Mobile robot: move forward 30 cm,

turn left 45°.
? Usually, 1 basic command unit equals to 1

robot instruction.

objects type A to line A and objects type
B to line B;

b) Mobile robot: find the target such as
heat/light source in unknown
environment.

? Usually, 1 basic command unit equals to a
series of robot instructions.

The system can directly convert the command
given to robot instruction since 1 basic
command unit equals to 1 robot instruction.

The system need to have the ability to
“understand” the task given (requires task
specified method) before the task can be
converted to a series of robot instructions.

Operator will act as path planner to complete
the task. In other word, the operator has full
control over how the system will complete the
task - direct control.

The task controller will do the path planning
once “understand” the task(s) required to be
done. In other word, the operator has no control
over how the system will complete the task -
indirect control.

Autonomy level: low. Autonomy level: higher (with certain
limitations).

Low efficiency in completing the work since
every step involved must be manually
planned/programmed.

Higher efficiency in completing the work since
task controller will do the path planning.

Image capturing system (if involved) usually
works merely for visual feedback.

Image capturing system (if involved) works not
only for visual feedback but also as part of the
vision system.

Less complicated to be designed and
developed.

Complicated to be designed and developed
especially the task controller.

Suitable application: usually for
repeated/routine work especially in mass
production.

Suitable application: usually for the work that
is not/less repeated or the work with
uncertainties such as goods sorting where the
objects may vary in size, shape, orientation and
location.

2 Designing the Task-oriented Robotic

System

The first stage in designing a task-oriented
robot system is to define the task required to be
performed by the system as well as the methods to
specify the task. For a wooden plank cutting
machine, the task required is to produce a certain
shape and size of plank based on the soft copy of
the drawing or lines made on the surface of the
plank. On the other hand, the task for a welding
robotic system is to perform welding based on the
joint of two or more metal plates. The tasks
mentioned must be understood by the robotic
system so that a series of actions can be planned
and carried out. A proper task specified methods
must be defined. For example the wooden plank
cutting machine mentioned must be able to

interpret the soft copy of the drawing (task)
provided to the system.

Since the task definition and specified
methods have been determined, the feasibility and
cost of designing and developing the robotic
system must be considered before proceed to the
next stage. A robotic system with 2D operation is
easier to be designed and developed compared to
a robotic system with 3D operation. This is also
true for a fixed robot arm system compared to a
mobile robot equipped with robot arm, and
similarly for robotic system working in structured
environment compared to robotic systems
working in unstructured environment.

The second stage involved the design of
the sensory sub-system. The main purpose of the

 204

sensory sub-system is to ensure the capability of
the robotic system to identify the working target
as well as miscellaneous purposes such as
environmental information feedback and
uncertainties occurrence detection. A vision
system can be equipped to a welding robotic
system to identify the length, shape, position and
orientation of the joints of two or more metal
plates. From the sensory feedback, the operator
can decide on required task. The same kind of
vision system can be incorporated to the wooden
plank cutting machine so that it can “see” the
“shape” to be cut out. As a conclusion, sensory
feedback is very important in supporting the task-
oriented robotic system to complete the task.

In stage three, the knowledge about the
robot, the working area, the working target as
well as the sensory sub-system must be modelled.
This knowledge is required by the task-oriented
controller before it can plan and carry out a series
of actions which will be discussed in stage four.
For the robot, its inverse kinematics equations
must be derived. A proper working area must be
developed and set up based on the dimension of
the robot, the working objects, the task and the
sensory sub-system requirement such as lightning
for vision system. The relationship among the
robot, the working area, the working target and
the sensory sub-system can be formed through
transformation matrices.

In stage four, the task which tells the task-
oriented robotic system what to be done must be
transformed into action, step by step how to get
the task done. This is called as path planning and
it is one of the functions of task-oriented
controller. A well designed path planner will be
managed to handle complicated tasks and requires
shorter working time to get the task done without
scarifying the output quality.

Finally, it involved the design of the user
interface for the task-oriented robotic system.
Although the system is easier to be operated
compared to robot-oriented system, effort is still
needed in designing the user interface since it is
the medium where human and machine interact to
each other.

3 The Design of the UTM’s Task-oriented
Internet-based Telerobotic System:
Fixed Arm Type Robot

A robot can be broadly defined as a system

where a mechanism is controlled by a computer.
In telerobotics, the mechanism is remote. It sends
back data and is generally controlled by a human
at the other end [2]. The first robot has appeared
on the internet in 1994. The project, named
Mercury project [3], was the first system that
allowed WWW users to remotely view and alter
the real world via telerobotics. Since the launch of
the robots on the internet, an enormous effort has
been undertaken by hundreds of researchers to
push this technology.

Below describes the stages involved in the

designing the UTM’s task-oriented internet-based
telerobotic system.

3.1 First Stage: Defining the Task and the

Task Specified Methods

The telerobotic system is built to work in
structured environment where the system learns
about its working environment as well as the
working object. The working object is limited to
the wooden cube of the size 50 mm x 50 mm. The
task defined for the telerobotic system is to
manipulate the wooden blocks in front of the
robot. The task is limited to 2 dimension operation
or in other word the users are not allowed to stack
the blocks. The users can tell the system about the
task by manipulating the blocks in the virtual
environment. This can be done either through
mouse operation or by using natural language.
The details about the task and the methods used to
tell the telerobotic system will be discussed in
Section 4.

3.2 Second Stage: Sensory Sub-system

The telerobotic system is equipped with a
vision system. The vision system allows the
telerobotic system to “see” the working objects
and the progress of the task. Besides, the vision
system can detect the occurrence of the
uncertainties so that the telerobotic system can
take the recovery action. The vision system

 205

consists of a colour CCD camera, Sony XC-003,
and a frame grabber, Matrox Genesis-LC (PCI bus
version). The camera is put at the top of the
working area. The captured image is processed by
using Matrox Imaging Library (MIL).

3.3 Third Stage: Knowledge Development

The knowledge about the robot, the
working area as well as the working object have
been modelled and made known to the telerobotic
system through the inverse kinematic equations
and the transformation matrices derived. The
RT100 robot has been chosen to be the candidate
for the project because of its high accuracy and
repeatability. Figure 1 shows the relationship
between the working area and the position of the
RT100 robot.

300 mm

300 mm

160 mm

Center of the
RT100 shoulder spindle

Y0

X0
0

Figure 1: Working area and the position of
RT100 robot

3.4 Fourth Stage: Path Planning and

Transformation into Action

Since there are too many possible paths for
the robot to move even just a block of cube from a
point to another, certain criteria has been set. The
path preferred is the path that requires minimum
working time without hitting the other objects as

well as easy to be transformed into a series of
actions. Below are the rules laid down for the path
planning and the transformation into action:

i) Lift the cube at optimum height that
allows the cube to be moved across the
other cubes. It will take longer time if
the cube was lifted too high. On the
other hand the cube might hit the other
cubes if the height was not enough. In
order to simplify the path planning,
this rule is obeyed even there is no
obstacle along the path;

ii) All the motors rotate simultaneously to
move and open/close the gripper;

iii) Rotate and move operations for the
same cube will be performed
simultaneously;

iv) The time needed by the gripper to
travel from point to point is not
depending on the distance between the
points but the time taken by the motors
to complete the degrees of rotation
calculated through inverse kinematic
equations ;

v) The time needed by the gripper to
travel from point to point equals to the
maximum time required by the motors
to complete the rotation since all the
motors rotate simultaneously;

vi) The number of possible sequences to
move the N cubes equals to N factorial
(N!); and,

vii) The time required by the gripper to
travel from the set point to the first
cube will be considered.

3.5 Fifth Stage: User Interface Design

Figure 2 shows the user interface of the
client application. First of all, the user has to click
the connect button to get connected to the server.
If the robot was free from other user, then the user
is allowed to manipulate the blocks in the virtual
environment either through mouse operation or by
using natural language. These input methods have
been chosen for their ease of use. A pop-up menu
will appear if the user clicked on the square in the
virtual environment. There are four options listed
in the menu: move, rotate, cancel and execute.

 206

The user can choose the operation he or she
wished to. The image will be updated upon the
completion of the task.

On the other hand, the user will be

restricted to receive image feedback and the chat

room if the robot was controlled by the other user.
The purpose of these is to attract the users to
remain connected to the server until their turn.
Besides, the users can exchange their opinions
about the project.

Figure 2: Preliminary GUIs design for client application

4 Task-oriented Robotic System

Architecture

Figure 3 shows the architecture of the task-

oriented robotic system. The system can accept
task-oriented command from the operators either
through mouse operation or natural language. The
command will be then processed by the command
pre-processor – either by the interpreter or the
parser. The purpose of the command pre-
processor is to remove the illegal commands such
as spelling mistake, syntax error as well as to
check the validity of the mouse operation. Once
the command gets passed from the command pre-
processor, the command will be then passed to the
task pre-processor. The task pre-processor will do
the simulation if the task could be performed by
the task controller. Apparently not all tasks can be
performed by the task controller due to the

limitation in the system design. The simulation is
hidden from the user and if the process succeeded
the virtual environment will be updated. During
the command and task pre-processing stage,
information such as the number of objects,
location and orientation are made available to the
command pre-processor.

Once the system accepts the command from

the operator to execute the task, the task will be
then passed to the task controller to do the path
planning as well as to transform into action. The
task controller, the robotic system (the robot with
its controller) as well as the sensory system
(combination of the sensors and the sensory sub-
system) can be simplified into a closed- loop block
diagram as shown in Figure 4. This is what called
as visual servoing [8]. In other word, the system

 207

will be able to complete the task given without the
supervision from the operator.

At the end of the project, the telerobotic

system will be incorporated with the Internet
service. The system architecture is shown in
Figure 5. An application program will be
developed to provide the command and task pre-

processing (shown in Figure 2). On the other
hand, the task control sub-system (shown in
Figure 4) will be kept remain on the server. The
application program will run on the client site.
With the pre-processing be carried out on the
client site, this absolutely will reduce the data
transferred and waiting time for the response from
the server.

Interpreter

Parser

Command Pre-processor

Task
(Code

Listing)

Robot
Path
Planner

Robot
Instructions

Queue

Knowledge

Sensory
Sub-system

Update Current StatusFeedback Information
(Eg: Virtual Environment, Real

Image, Robot Status)

Update
Feedback

Information

Personal Computer

Task-oriented
Command

(Mouse
Operation)

Task-oriented
Command
(Natural

Language)

Operator

Robot
Controller

Sensors
(Eg: Camera)

Robot Status and
Sensor Reading

Task Controller

Robot

GUIs

Task Pre-
processor

Figure 3: Task-oriented robotic system architecture (without Internet service)

Task

Controller
Control

Instruction
Robotic
System

Sensory
System

+ -

ErrorTask
Task

Progress

Figure 4: Block diagram of the task control

sub-system (closed-loop)

Sensors
(Eg: Camera)

Server

Robotic
System

Internet

Client

Client

Client

TCP/IP
Server Application

Task
Controller

Sensory Sub-
systemChat Room

Login /
Database

Figure 5: Internet-based telerobotic system

architecture

5 Advantages of the System Architecture

The task-oriented system architecture
provides better solution to the certain problems
faced in internet-based telerobotic application
which had been discussed by Taylor and Dalton
[4]. The advantages of the system architecture are
as below:

5.1 Task-oriented Robotic System: Easy to

Operate

Basically the task-oriented robotic system

is easier to be operated than robot-oriented system
since one task in the task-oriented robotic system
equals to a set of commands in the robot-oriented
system. For example a simple task to move a cube
from one location to another in the task-oriented
robotic system requires the operator to specify a
set of commands to move the various motors in
the robot-oriented system. Furthermore, the
complexity of the robotic system is hidden from
the users where the robotics knowledge is not
required any more. The users just have to

 208

concentrate on the task designed for the robotic
system without learning what the elbow, shoulder,
gripper, tilt and spin mean.

5.2 Interface Design: Easy to Use

The option of mouse operation as one of the
task specified methods makes the application
program easy to use. The users who learnt how to
use the computer definitely understand the
operation of the mouse. The mouse right click will
pop up a menu and the users can then left click to
select the command wished. On the other hand,
even though natural language is a bit more
difficult to be learnt compared with mouse
operation, it does provide higher accuracy
operation. Natural language is chosen to be one of
the task specified methods because it is more
human-oriented and thus easier to be learnt
compared with the command used in robot-
oriented system which is tend toward robot-
oriented such as rotate shoulder 30°.

5.3 Response Time

A client application program is developed

for the users to download. The size of the program
is maintained as small as possible. Certain
processes such as command and task pre-
processing will be carried out on the client site
thus reduce the waiting time for the response from
the server. Furthermore the robotic system does
the path planning and supervises the progress of
the task at the remote site thus the delay between
the steps can be minimized. In contrast, the robot-
oriented system requires the user to specify each
step followed upon completion of the latest step.

5.4 Human Factor

In order to attract more users to operate the
robot, the users who fail to gain control over the
telerobotic system will be restricted to receive
image feedback and the chat room. These make
the users feel they are not alone and still involved
in the project even though they are still waiting for
their turn. From the statistics done by Taylor and
Dalton [4], three quarters of the users have given
up after waiting for three minutes. Furthermore,
the use of mouse operation as one of the task

specified methods will be able to attract the users
who are not keen to learn how to operate a
complex system.

5.5 Safety and Reliability

Since the system is designed based on task-

oriented concept, the system architecture is hidden
from the users and thus the users are not
controlling the robot directly. The problems that
the users might cause damages to the robot,
working area and working objects have overcame.
Furthermore, any uncertainties that happen on the
remote site can be detected by the vision system
and the appropriate recovery action will be taken.

6 Conclusion

This paper has described our decisions and

approaches in designing the task-oriented robotic
system for use in Internet-based application. The
capabilities of the system architecture in solving
the certain problems faced in Internet-based
telerobotic application have been highlighted. The
objective of the project is intended for
edutainment purpose after taking consideration of
the nature of today Internet – publicly available,
low cost as well as vulnerable and suffered from
time delay.

Acknowledgements

The authors would like to thank the
Malaysia Ministry of Science, Technology and
Environment for sponsoring this work under
IRPA 09-02-06-0022.

References

[1] J.E. Lloyd, J.S. Beis, D.K. Pai, and D.G. Lowe.

Model-based Telerobotics with Vision.
Proceedings of the ICRA '97, page 1297-1304,
Albuquerque, New Mexico, April 1997.

[2] Bobak R. Farzin, Ken Goldberg, and Adam
Jacobs. A Minimalist Telerobotic
Installation on the Internet. In 1st Workshop
on Web Robots, International Conference on
Robots and Intelligent Systems, September
1998.

 209

[3] K. Goldberg et al.. The Mercury Project: A
Feasibility Study for Internet Robots. IEEE
Robotics and Automation Magazine, page 35-
40, March 2000.

[4] K. Taylor and B. Dalton. Issues in Internet
telerobotics. In International Conference on
Field and Service Robotics (FSR 97), page
151-157, Canberra, Australia, 8-10 December
1997.

[5] K. Taylor and B. Dalton. Internet Robot: A
New Robotics Niche . IEEE Robotics and
Automation Magazine, page 27-34, March
2000.

[6] Matthew R. Stein. Interactive Internet
Artistry. IEEE Robotics and Automation
Magazine, page 28-32, June 2000.

 [7] Fauzi Zakaria. Design and Development of
Control System for Internet-based
Telerobotics. Proceeding of the 2000
TENCON, Vol. II, page 338-342, 2000.

[8] Peter I. Corke (1996). Visual Control of
Robots: High-Performance Visual
Servoing. Research Studies Press: England.

[9] K.S. Fu et al. (1987). Robotics: Control,
Sensing, Vision, and Intelligence. McGraw-
Hill: Singapore.

[10] H. Friz. Design of an Augmented Reality
User Interface for an Internet based
Telerobot using Multiple Monoscopic
Views. Diploma Thesis, Technical University
of Clausthal, German, 1998.

[11] J. Allen (1987). Natural Language
Understanding. Benjamin/Cummings
Publishing Company: Canada.

 [12] Mark C. Torrance. Natural Language with
Robots. Thesis in Master of Science,
Massachusetts Institute of Technology MIT,
USA, 1994.

[13] RT100 User Manual. Universal Machine
Intelligence: England. 1990.

210

INTRODUCTION

A robot can be broadly defined as a system where a
mechanism is controlled by a computer. In telerobotics, the
mechanism is remote. It sends back data and is generally
controlled by a human at the other end (Bobak R. Farzin
et.al., 1998). The first robot has appeared on the internet in
1994. The project, named Mercury project (K. Goldberg
et.al., 2000), was the first system that allowed WWW users
to remotely view and alter the real world via telerobotics.
Since the launch of the robots on the internet, an enormous
effort has been undertaken by hundreds of researchers to
push this technology.

Our internet-based telerobotic system is developed based on
task-oriented concept for the convenient of the operators. The
system is more user friendly than robot-oriented system since
the operators focus more on the task completion rather than
robot movement planning. As a result, natural language has
been chosen to be one of the methods for user to operate the
system. Natural language is human-oriented thus it is easier
to be learnt and used. The natural language designed for the
system is a typewritten English like language.

THE UTM’S TASK-ORIENTED INTERNET-BASED
TELEROBOTIC SYSTEM: FIXED ARM TYPE
ROBOT

The telerobotic system is built to work in structured
environment where the system learns about its working
environment as well as the working object. The working
object is limited to the wooden cube of the size 50 mm x 50
mm. The task defined for the telerobotic system is to
manipulate the wooden blocks in front of the robot. The task
is limited to 2 dimension operation or in other word the users
are not allowed to stack the blocks. Figure 1 shows the
relationship between the working area and the position of the
RT100 robot, which is chosen for the project because of its
high accuracy and repeatability.

The telerobotic system is equipped with a vision system. The
vision system allows the telerobotic system to “see” the
working objects and the progress of the task. Besides, the
vision system can detect the occurrence of the uncertainties
so that the telerobotic system can take the recovery action.
The vision system consists of a colour CCD camera, Sony
XC-003, and a frame grabber, Matrox Genesis -LC (PCI bus
version). The camera is put at the top of the working area.

The captured image is processed by using Matrox Imaging
Library (MIL).

300 mm

300 mm

160 mm

Center of the
RT100 shoulder spindle

Y0

X0
0

Figure 1: Working area and the position of RT100 robot

TASK-ORIENTED ROBOTIC SYSTEM
ARCHITECTURE

Figure 2 shows the architecture of the task-oriented robotic
system. The system can accept task-oriented command from
the operators either through mouse operation or natural
language. The command will be then processed by the
command pre-processor – either by the interpreter or the
parser. The purpose of the command pre-processor is to
remove the illegal commands such as spelling mistake,
syntax error as well as to check the validity of the mouse
operation. Once the command gets passed from the command
pre-processor, the command will be then passed to the task
pre-processor. The task pre-processor will do the simulation
if the task could be performed by the task controller.
Apparently not all tasks can be performed by the task
controller due to the limitation in the system design. The
simu lation is hidden from the user and if the process

Natural Language in Task-Oriented Telebobotic Application

Lim Cheng Siong, Rosbi Mamat, Zamani Md. Zain

Universiti Teknologi Malaysia, Malaysia

ABSTRACT: Task-oriented robotic system or so called “task-centric” (J.E. Lloyd et.al., 1997) robotic system requires only the
operator to specify the task to be done by the system and the system will then plan and carry out a series of actions to complete the
task. In contrast, robot-oriented system requires the operator to plan the actions step by step to get the task done. Compared to a
robot-oriented system, task-oriented robotic system has higher degree of autonomy. In this paper, the design and application of the
natural language in the task-oriented telerobotic system will be discussed and presented.

211
succeeded the virtual environment will be updated. During
the command and task pre-processing stage, information such
as the number of objects, location and orientation are made
available to the command pre-processor.

Once the system accepts the command from the operator to
execute the task, the task will be then passed to the task
controller to do the path planning as well as to transform the
task into action. The task controller, the robotic system (the
robot with its controller) as well as the sensory system
(combination of the sensors and the sensory sub-system) can
be simplified into a closed-loop block diagram as shown in
Figure 4. This is what called as visual servoing (Peter I.
Corke, 1996). In other word, the system will be able to

complete the task given without the supervision from the
operator.

At the end of the project, the telerobotic system will be
incorporated with the Internet service. The system
architecture is shown in Figure 5. The task control sub-
system (shown in Figure 4) will be kept remain on the server.
A client application program will be developed to provide the
command and task pre-processing (shown in Figure 3). The
application program will run on the client site. With the pre-
processing be carried out on the client site, this absolutely
will reduce the data transferred and waiting time for the
response from the server.

Interpreter

Parser

Command Pre-processor

Task
(Code

Listing)

Robot
Path
Planner

Robot
Instructions

Queue

Knowledge

Sensory
Sub-system

Update Current StatusFeedback Information
(Eg: Virtual Environment, Real

Image, Robot Status)

Update
Feedback

Information

Personal Computer

Task-oriented
Command

(Mouse
Operation)

Task-oriented
Command
(Natural

Language)

Operator

Robot
Controller

Sensors
(Eg: Camera)

Robot Status and
Sensor Reading

Task Controller

Robot

GUIs

Task Pre-
processor

Figure 2: Task-oriented robotic system architecture (without Internet service)

Figure 3: Preliminary GUIs design for client application

212

Task
Controller

Control
Instruction

Robotic
System

Sensory
System

+ -

ErrorTask
Task

Progress

Figure 4: Block diagram of the task control sub-system

(closed-loop)

Sensors
(Eg: Camera)

Server

Robotic
System

Internet

Client

Client

Client

TCP/IP
Server Application

Task
Controller

Sensory Sub-
systemChat Room

Login /
Database

Figure 5: Internet-based telerobotic system architecture

APPLICATION OF NATURAL LANGUAGE

Since the task of the telerobotic system is limited to 2
dimension operation, a limited variety of English sentence
constructions is needed to support all the possible operations.
Thus, a very constrained grammar will suffice. Below are the
set of the language supported by the system:-

“{coordinate xy of an object} is {name given to the object}”

This informs the telerobotic system that the object with the
coordinate mentioned is given a name. The command can
also be used to rename the name of the object. The name
given to the object must be in single word. Besides, the
coordinate mentioned must be any point that falls within the
area covered by the object.

“{coordinate xy of an object}”

This command is used to inquire the telerobotic system about
the name given to the object (if any).

“{object’s name}”

This command is used to inquire the telerobotic system about
the coordinate of the object specified (if any).

“Place {object’s name|coordinate xy of an object} to
{coordinate xy}”

This will instruct the telerobotic system to move the object to
the coordinate specified.

“Place {object’s name|coordinate xy of an object} to
{coordinate x|coordinate y}”

This will instruct the telerobotic system to move the object to
a new coordinate where the value of coordinate x or y will be
changed.

“Place {object’s name|coordinate xy of an object} to
{left|right|front|back} {distance in milimeter}”

This command will instruct the robot to offset the object to
left/right/front/back of the current coordinate with the
distance specified.

“Rotate {object’s name|coordinate xy of an object} {degree
of rotation}”

This command will instruct the robot to rotate the object
according to the degree specified.

“{command 1} then {command 2}”

This command allows the operator to issue two commands in
one statement.

“execute”

This command instructs the telerobotic system to carry out
all the commands required by the operator.

“undo”

This command will cause the telerobotic system to restore all
the objects to their previous position before the “execute”
command.

The application of the natural language will be more
effective if the telerobotic system would be able to
communicate with the operator through natural language.
Intelligent parser that will be able to guide the operator by
communicating in natural language is still under
construction. For example the parser will be able to point out
the error in the command by replying “unknown {error} in
{command}”.

CONCLUSION

This paper has described the application of natural language
in designing the task-oriented robotic system for use in
Internet-based application. Even though natural language is
more difficult to be learnt compared with mouse operation, it
does provide higher accuracy for objects manipulation.
Furthermore, natural language is human-oriented and thus is
easier to be learnt compared with the command used in
robot-oriented system which is tend toward robot-oriented.

ACKNOWLEDGEMENTS

The authors would like to thank the Malaysia Ministry of
Science, Technology and Environment for sponsoring this
work under IRPA 09-02-06-0022.

REFERENCES

Lim Cheng Siong, Amin, Rosbi Mamat, Zamani Md. Zain,
Design of Task-Oriented System for Internet-based
Telerobotic System. Proc. of the MSTC 2001, Malacca,
Malaysia, pp. B136 (2001).

213
Shamsudin H.M. Amin, Rosbi Mamat, Mohamad Fauzi
Zakaria, Norhayati A.M, Lim Cheng Siong, Internet-based
Telerobotics: UTM’s Experience and Future Direction. Proc.
of the ICAR 2001, Budapest, Hungary, pp. 313-319 (2001).

J.E. Lloyd, J.S. Beis, D.K. Pai, and D.G. Lowe, Model-based
Telerobotics with Vision. Proc. of the ICRA '97,
Albuquerque, New Mexico, pp. 1297-1304 (1997).

K. Taylor and B. Dalton, Issues in Internet telerobotics. Inter.
Conf. on Field and Service Robotics (FSR 97) , Canberra,
Australia, pp. 151-157 (1997).

Fauzi Zakaria, Design and Development of Control System
for Internet-based Telerobotics. Proc. of the 2000 TENCON ,
Kuala Lumpur, Malaysia, Vol. II, pp. 338-342 (2000).

Bobak R. Farzin, Ken Goldberg, and Adam Jacobs, A
Minimalist Telerobotic Installation on the Internet. In 1st
Workshop on Web Robots, Inter. Conf. on Robots and
Intelligent Systems, Victoria, Canada, pp.7-13 (1998).

Peter I. Corke, Visual Control of Robots: High-Performance
Visual Servoing. Research Studies Press: England (1996).

K.S. Fu et al., Robotics: Control, Sensing, Vision, and
Intelligence. McGraw-Hill: Singapore (1987).

J. Allen, Natural Language Understanding.
Benjamin/Cummings Publishing Company: Canada (1987).

Mark C. Torrance, Natural Language with Robots. Thesis in
Master of Science, Massachusetts Institute of Technology
MIT, USA (1994).

H. Friz, Design of an Augmented Reality User Interface for
an Internet based Telerobot using Multiple Monoscopic
Views. Diploma Thesis, Technical University of Clausthal,
German (1998).

RT100 User Manual. Universal Machine Intelligence:
England (1990).

K. Goldberg et al., The Mercury Project: A Feasibility Study
for Internet Robots. IEEE Robotics and Automation
Magazine, 7(1):35-40 (March 2000).

K. Taylor and B. Dalton, Internet Robot: A New Robotics
Niche. IEEE Robotics and Automation Magazine, 7(1):27-34
(March 2000).

Matthew R. Stein, Interactive Internet Artistry. IEEE
Robotics and Automation Magazine, 7(2):28-32 (June 2000).

	Title Page
	Contents
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Chapter6
	Chapter7
	Chapter8
	Chapter9
	Reference
	Appendixes

