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Introduction

0ver the past few decades, drug discovery companies 
have used combinatorial chemistry approaches to cre-

ate large and diverse libraries of structures, in which a large 
array of compounds are formed by combining sets of different 
types of reagents, called building blocks, in a systematic and 
repetitive way. These libraries can be used as a source of new 
potential drugs because compounds in the libraries can be ran-
domly tested or screened to find a good drug compound. By 
increasing the capabilities of testing compounds using chemo-
informatics technologies, such as high-throughput screening, it is 
possible to test hundreds of thousands of these compounds in 
a short time. Computers can be used to aid this process in a 
number of ways, for example, in the creation of virtual com-
binatorial libraries, which can be much larger than their real 
counterparts. These virtual libraries can be virtually screened 
either by docking into the active site of interest or by virtue of 
their similarity to a known active. Recently, searching chemical 

databases using a computer, instead of by experiment, has 
been called the virtual screening technique.1,2

Many virtual screening approaches have been implemented 
for searching chemical databases, such as the substructure 
search, similarity, docking, and QSAR. Similarity searching 
is the simplest and one of the most widely used techniques for 
ligand-based virtual screening in drug discovery programs.3 
There are many studies in the literature associated with the 
measurement of molecular similarity.1–4 However, the most 
common approaches are based on two-dimensional finger-
prints, with the similarity between a reference structure and 
a database structure computed using association coefficients 
such as the Tanimoto coefficient.3

The effectiveness of ligand-based virtual screening approaches 
can be enhanced by using data fusion.5 Data fusion can be 
implemented using two different approaches.5,6 The first, simi-
larity fusion, involves searching for a single reference structure 
using multiple fingerprints. The similarity scores, or ranking, 
for each similarity measure (fingerprint) are combined to 
obtain the final ranking of the compounds in the database. The 
second approach is group fusion, in which multiple reference 
structures with a single similarity measure are used to search 
the database. Group fusion has been found to be generally more 
effective than similarity fusion.

In more recent studies, the Bayesian inference network (BIN) 
has been introduced as promising the similarity search approach.7,8 
In our previous works,9–11 the retrieval performance of the 
Bayesian inference network was observed to improve signifi-
cantly when multiple reference structures were used or more 
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weights were assigned to some fragments in the molecule struc-
ture. Unfortunately, such information is unlikely to be available 
in the early stages of a drug discovery program when just a sin-
gle weak lead is available.

BIN was originally developed for text document retrieval 
systems.12 Many studies in information retrieval (IR) have 
shown that the retrieval effectiveness of BIN can be improved 
by using relevance feedback technique. Relevance feedback is 
one of the most useful query modification techniques in IR 
systems.13 It is used to improve the query formulated in the IR 
systems when the documents initially retrieved do not com-
pletely fulfill the user’s information need. It works in the fol-
lowing way: A user submits a query expressing his information 
need to the IR system, which then ranks the documents in 
decreasing order of relevance to the query. The user then inspects 
the high-ranking documents returned by the IR system and 
specifies which documents are relevant and which ones are not 
relevant to his information need (relevance judgment). Based 
on the user’s relevance judgment, the IR system updates the 
initial query, adds new terms to the query, and reweights the 
query terms. This process is repeated until the user is completely 
satisfied with the retrieved documents. Relevance feedback has 
been extensively studied in the literature13,14 and is the focus of 
the present article.

Relevance feedback has also been used in similarity-based 
virtual screening under the name of its nearest neighbors. Hert 
et al.15 have described an extension of similarity searching, 
referred to as Turbo similarity searching (TSS), in which a 
single active reference structure and the information about the 
nearest neighbors for that reference structure in a conventional 
similarity search are used to search the database and then data 
fusion is used to combine the individual similarity searches. The 
information about the nearest neighbors is also used to enable 
the use of machine-learning techniques for virtual screening 
without the need for an explicit training set of known active 
and inactive molecules.16 The basic idea underlying TSS is the 
assumption that the nearest neighbors of a reference structure 
are actives. These assumed active structures can be used as 
reference structures together with the original reference struc-
ture to construct multiple reference structures that are required 
for group fusion. This process is performed automatically 
without any additional burden on the user. The nearest neigh-
bors information has been proven to be a very effective way to 
enhance the effectiveness of the ligand-based virtual screen-
ing approaches.15,16

In this article, we enhance the screening effectiveness of the 
BIN using the relevance feedback information. In this approach, 
a few high-ranking structures of unknown activity were filtered 
from the outputs of BIN based on a single active reference 
structure to form a set of active reference structures. This set of 
active reference structures is used in two distinct techniques of 
carrying out such BIN searching: reweighting the fragments  
in the reference structures and group fusion methods. In the 

group fusion method, the BIN repeats the search using the set of 
reference structures and then combines the similarity scores 
resulting from individual reference-structure similarity searches 
using data fusion rules.

Materials and Methods

This study compares the retrieval results obtained using 
three different similarity-based screening models. The first 
model was based on the BIN described by Abdo and Salim9 that 
uses the Okapi (OKA1) weight, which was found to perform 
best in their experiments, which we shall refer to as the conven-
tional BIN model. This model involves searching using a single 
reference structure. The second model was based on the BIN 
and relevance feedback information, which we shall refer to as 
the reweighted BIN model. It involves searching for a single 
reference structure and then using the feedback information to 
reweight the fragments in the reference. The third model was 
also based on the BIN and relevance feedback information, 
which we shall refer to as the group fusion model. It involves 
searching using multiple reference structures extracted from 
relevance feedback information and then combining the individ-
ual similarity searches using any fusion rules.

In what follows, we give a brief description of the BIN model 
on which this work is based. Full details of the BIN model are 
given by Abdo and Salim.7,9 In this work, the emphasis will be 
on investigating the capability and performance of BIN to use 
the feedback information.

Conventional BIN model

Supplementary Figure S1 shows the conventional BIN model 
used in molecular similarity searching. It consists of three types 
of nodes: compound nodes as roots, fragment nodes, and a 
reference structure node as a leaf. The roots of the network are 
the nodes without parent nodes, and the leaves are the nodes 
without child nodes. Each compound node represents an actual 
compound in the collection and has one or more fragment nodes 
as children. Each fragment node has one or more compound 
nodes as parents and one reference structure node as a child (or 
more, if multiple references are used). Each network node is 
binary valued, taking one of the two values from the set {true, 
false}. The probability that the reference structure is satisfied 
given a particular compound is obtained by computing the 
probabilities associated with each fragment node connected to 
the reference structure node. This process is repeated for all the 
compounds in the database. The resulting probability scores are 
used to rank the database in response to a bioactive reference 
structure in the order of decreasing probability of similar bio-
activity to the reference structure.

To estimate the probability associating each compound to 
the reference structure, we need to compute the probability in 
the fragment and reference nodes. Our recent work9 showed 
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that one particular belief function, called OKA1,9 was the most 
effective of those tested, and we have hence used this function 
for the experiments reported below. This function was used to 
compute the probability in the fragment nodes and is given by
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where α is a constant, and experiments using the Bayesian net-
work show that the best value is 0.4.7 ffij and ffir are the frequency 
of the ith fragment within jth compound and r reference structure, 
respectively; cfi is the number of compounds containing ith frag-
ment; |cj| is the size (in terms of the number of fragments) of the 
jth compound; |Cavg| is the average size of all the compounds in 
the database; and m is the total number of compounds.

To produce a ranking of the compounds in the collection with 
respect to a given reference structure, a belief function from In 
Query, specifically the SUM operator, was used. If p1, p2,..., pn 
represent the beliefs at the fragment nodes (parent nodes of r), 
then the belief at r is given by
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∑
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where n is the number of the unique fragments assigned to r 
reference structure, and pi is the value of the belief function 
bel(fi) in ith fragment node. The reader should note that in this 
article, we consider the use of only a single reference structure. 
However, the methods that we describe can be extended to mul-
tiple reference structures. This is achieved by combining the 
individual reference structure nodes using any of the fusion 
rules (e.g., MAX, SUM) as described previously for the BIN 
model.10

Reweighted BIN model

The difference between the two models (BIN and reweighted 
BIN) arises from the differences in the type of belief function 
used to produce the ranking of the compounds in the collection. 
In the conventional BIN model, the probability in the reference 
node is computed by summing up the probabilities in the frag-
ment nodes connected to the reference node. The fragment 
nodes participating in the final probability are scored equally 
(meaning that no weight is given to any fragment node). This 
calculation is conducted using the SUM operator, as described 
above. In the reweighted BIN model, the relevance feedback 
information is used to assign weights to the fragment nodes 
associated with the reference node. Consequently, the probability 
value in the reference node depends on the values in the frag-
ment nodes and the assigned weights associated to them. To 

illustrate how the reweighted BIN model can have different 
weights for fragments in the reference structure, the belief 
function from InQuery, the WSUM operator, has been used. If 
p1, p2,..., pn represent the beliefs at the fragment nodes (parent 
nodes of r) and w1, w2, and wn are the parent weights, then the 
belief at r is given by
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To produce the relevance feedback information, we have to 
start with the conventional BIN model to search the database 
with a single active reference structure. A few high-ranking 
structures of unknown activity are then chosen from the outputs 
of conventional BIN, based on a single active reference struc-
ture, to form a set of active reference structures (relevance 
feedback information). The original active reference structure, 
together with the set of active reference structures (feedback 
information), form the final set that is used to reweight the BIN 
model. Here, the additional weights assigned to the fragments 
are based on the frequency of their occurrence in the set of rel-
evance feedback structures. The weight of the ith fragment wi is 
given by

w
i

=
Rf

i

MaxRf
,

where Rfi is the sum of the frequencies of occurrence for the 
fragment ith in the set of relevance feedback structures, and 
MaxRf is the maximum frequency of occurrence in the set of 
relevance feedback structures. Consequently, higher weight 
will be assigned to those fragments that occur more frequently 
in the relevance feedback structures.

Group fusion model

The group fusion model uses the conventional BIN model to 
search the database using a single active reference structure. 
The relevance feedback information (the nearest neighbors 
information) for that reference structure is also used to search 
the database. Data fusion rules are then used to combine the 
similarity scores of individual similarity searches. This model 
is similar to the TSS method described by Hert et al.15 The dif-
ference is in the type of similarity-searching approach used to 
search the database. The basic idea underlying the reweighted 
BIN and group fusion model is the assumption that the rele-
vance feedback structures (nearest neighbors) of the original 
reference structure are actives, as in Hert et al. These assumed 
active structures can be used as reference structures, together 
with the original reference structure, to construct the multiple 
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reference structures that are required for the reweighted BIN 
and group fusion models.

Simulated virtual screening experiments

Our experiments have used the most popular chemoinfor-
matics database: the MDL Drug Data Report (MDDR)17 that 
has been used in our previous studies of Bayesian networks.9 
This database consists of 102 516 molecules. The 102 516 
molecules in the database were converted to Pipeline Pilot’s 
(Accelrys Software, San Diego, CA) ECFC4 (extended con-
nectivity) fingerprints and folded to a size of 1024. For the 
screening experiments, three data sets (DS1-DS3) were chosen 
from the MDDR database. The data set DS1 contains 11 activity 
classes, with some of the classes involving actives that are 
structurally homogeneous and other classes involving actives 
that are structurally heterogeneous (i.e., structurally diverse). 
The DS2 data set contains 10 homogeneous activity classes, 
and the DS3 data set contains 10 heterogeneous activity classes. 
Details of these three data sets are given in Supplementary 
Tables S1 to S3. Each row of a table contains an activity class, 
the number of molecules belonging to the class, and the class’s 
diversity, which is computed as the mean pairwise Tanimoto 
similarity, calculated across all pairs of molecules in the class 
using ECFP6. The pairwise similarity calculations for all data 
sets were conducted using Pipeline Pilot software. Full details 
of these data sets are given by Hert et al.16

Conventional BIN searches were carried out using 10 refer-
ence structures selected randomly from each activity class. 
Different numbers of nearest neighbors—10, 20, 50, and 100—
were selected (as reference structures) for each reference structure 

in the conventional BIN searches. These sets were used by the 
reweighted BIN search and group fusion search: these searches 
will be referred to as BIN, RE, and GF, respectively. In the 
group fusion search, the outputs from sets of 10, 20, 50, or 100 
searches were fused using the MAX fusion rule. The superiority 
of the MAX rule has been noted by previous works.10 The effec-
tiveness of similarity searches was evaluated by the recall, 
where the recall is the percentage of the actives retrieved in the 
top 1% or the top 5% of the ranked list resulting from a simi-
larity search.

Results and Discussion

Our purpose is to identify different approaches of using 
relevance feedback information in the BIN model and then 
identify the retrieval effectiveness of using such approaches. In 
this study, we tested the various BIN models (conventional 
BIN, reweighted BIN, and group fusion) on the MDDR data-
base using three different data sets: DS1 to DS3.

The results of the conventional BIN, the reweighted BIN, 
and group fusion for the searches of DS1 to DS3 are presented 
in Tables 1 to 3, respectively, using a cutoff of 5%. The first 
column from the left of each table contains the results for the 
conventional BIN when a single reference structure is used, the 
second column of each table contains the corresponding results 
when different numbers of nearest neighbors (10, 20, 50, or 100) 
are used to reweight the reference fragments in the reweighted 
BIN model, and the last column of each table contains the cor-
responding results when different numbers of nearest neighbors 
(10, 20, 50, or 100) are used as reference structures in the group 
fusion model. Each row in a table lists the recall for the top 5% 

Table 1. R etrieval Results of Top 5% for Data Set DS1

Reweighted BIN Group Fusion

Activity Index BIN 10 20 50 100 10 20 50 100

31420 87.61 87.83 87.80 88.00 88.02 88.57 87.84 87.85 88.18

71523 52.72 60.44 60.51 61.62 61.91 54.81 57.37 59.21 57.38

37110 48.20 46.05 46.67 47.99 47.57 50.10 51.13 53.63 53.69

31432 77.57 83.97 85.79 88.20 88.93 78.34 84.19 86.73 86.82

42731 26.63 32.77 32.55 32.76 32.30 31.03 32.53 39.63 47.44

06233 23.49 26.67 27.16 27.60 27.50 42.52 44.19 45.98 49.03

06245 14.86 15.45 15.56 16.62 16.90 20.34 18.49 18.27 18.13

07701 27.79 31.24 31.45 31.17 31.60 30.15 31.12 31.32 33.07

06235 23.78 26.39 27.51 26.30 25.88 27.41 28.66 28.89 29.83

78374 20.20 22.17 21.53 20.73 20.60 21.99 21.57 20.66 19.89

78331 11.80 12.50 12.35 12.47 12.30 14.06 13.67 15.50 13.72

Mean 37.70 40.50 40.81 41.22 41.23 41.76 42.80 44.33 45.20

Shaded cells 1 3 5 3 4 3 4 6 7
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Table 2. R etrieval Results of Top 5% for Data Set DS2

Reweighted BIN Group Fusion

Activity Index BIN 10 20 50 100 10 20 50 100

07707 74.81 75.49 75.34 75.15 74.17 77.33 76.8 75.53 74.47

07708 99.61 100.00 100.00 100.00 100.00 99.68 99.74 99.87 99.81

31420 95.46 95.64 95.76 96.14 96.28 96.37 96.92 97.5 97.81

64100 92.55 93.00 95.27 93.36 91.18 97.36 98.27 98.55 98.73

64200 99.22 99.29 99.41 99.52 99.63 99.27 99.36 99.38 99.46

64220 99.20 99.73 99.64 99.64 99.55 99.64 99.64 99.91 99.91

64500 91.32 92.15 93.29 93.79 91.82 96.44 98.19 98.24 98.12

64300 94.96 96.16 97.52 94.40 97.92 95.2 97.84 99.36 99.52

65000 91.47 99.07 99.38 99.48 99.48 90.08 92.35 89.97 94.91

75755 98.33 98.24 98.24 98.26 98.24 98.44 98.61 98.88 99.01

Mean 93.69 94.88 95.39 94.97 94.83 94.98 95.77 95.72 96.18

Shaded cells 7 8 9 8 8 9 9 9 10

Table 3. R etrieval Results of Top 5% for Data Set DS3

Reweighted BIN Group Fusion

Activity Index BIN 10 20 50 100 10 20 50 100

09249 27.43 30.26 31.07 31.89 32.28 30.96 32.97 38.40 40.95

12455 14.29 14.65 15.18 15.45 15.05 17.18 17.35 18.08 18.62

12464 18.13 21.49 21.07 19.35 17.90 19.70 18.45 17.90 17.56

31281 32.95 33.81 31.43 27.52 25.52 43.71 41.52 39.71 37.52

43210 15.68 15.99 15.65 16.40 16.53 18.57 22.66 22.13 21.04

71522 11.43 10.93 10.96 10.86 10.80 11.66 12.60 12.80 12.90

75721 35.01 35.37 35.50 35.64 35.64 37.09 36.90 37.24 38.63

78331 15.70 15.62 15.91 15.73 15.98 16.20 16.71 17.04 16.52

78348 20.60 29.59 28.93 29.25 28.62 21.59 22.34 20.70 18.96

78351 16.56 15.47 16.12 16.94 16.31 19.45 20.39 19.60 20.28

Mean 20.78 22.32 22.18 21.90 21.46 23.61 24.19 24.36 24.30

Shaded cells 0 2 2 1 1 4 6 6 6

of a sorted ranking when averaged over the 10 searches for 
each activity class, and the penultimate row in a table corre-
sponds to the mean value for that similarity method when aver-
aged over all of the activity classes for a data set. The similarity 
method with the best recall rate in each row is strongly shaded, 
and the recall value is boldfaced; any similarity method with 
an average recall within 5% of the value for the best similarity 
method is shown lightly shaded. The bottom row in a table cor-
responds to the total number of shaded cells for each similarity 
method across the full set of activity classes.

Visual inspection of the recall values in Tables 1 to 3 enables 
one to make comparisons between the effectiveness of the vari-
ous search models. However, a more quantitative approach is 
possible using the Kendall W test of concordance.18 This test 
shows whether a set of judges makes comparable judgments 
about the ranking of a set of objects; here, the activity classes 
were considered as judges and the recall rates of the various 
search models as objects. The output of such a test is the value 
of the Kendall coefficient and the associated significance level, 
which indicates whether this value of the coefficient could have 
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occurred by chance. If the value is significant (for which we 
used cutoff values of 0.01 or 0.05), then it is possible to give 
an overall ranking of the objects that have been ranked. The 
results of the Kendall analyses (for DS1–DS3) are reported in 
Table 4 and describe the top 1% and top 5% rankings for the 
various search models. In Table 4, the columns show the data-
set type, the recall percentage, the value of the coefficient, the 
associated probability, and the ranking of the methods.

Some of the activity classes may contribute disproportion-
ally to the overall value of mean recall (e.g., low-diversity activity 
classes). Therefore, using the mean recall value as an evaluation 
criterion could be impartial to some methods but not others. To 
avoid this bias, the effectiveness performance of different 
methods has been further investigated, based on the total num-
ber of shaded cells for each method across the full set of activ-
ity classes, as shown in the bottom row of Tables 1 to 3. These 
shaded cell results are listed in Supplementary Table S4. The 
results shown in the bottom rows of Tables 1 to 3 form the 
lower part of results in Supplementary Table S4.

Inspection of the DS1 search in Table 1 shows that the 
group fusion search (GF100, GF50, GF20, or GF10) produced 
the highest mean value compared with the BIN and reweighted 
BIN. In addition, according to the total number of shaded cells 
in Table 1, group fusion with 100 nearest neighbors (GF100) is 
the best performing search across the 11 activity classes in 
terms of mean recall, with GF50 also performing well. Table 4 
shows that the value of the Kendall coefficient (for DS1 top 
5%), 0.352, is significant at the 0.01 level of statistical signifi-
cance. Given that the result is significant, we can hence con-
clude that the overall ranking of the different procedures is 
GF100 > GF50 > GF20 > GF10 > RE50 > RE100 > RE20 > 
RE10 > BIN. The good performance of the group fusion method 
is not restricted to DS1 because it also gives the best results for 
the top 1% and 5% for DS2 and DS3.

The results in Table 1 also show that the reweighted BIN and 
group fusion methods are always superior to the conventional 
BIN in their ability to identify active molecules for all activity 
classes, with performance being quite significant for the more 
heterogeneous activity classes. In only one instance (for the 
Renin inhibitor activity class), the increase in performance was 

marginal. The low performance with low-diversity activity 
classes can also be seen clearly through the DS2 search results 
reported in Table 2. Results in Table 2 show that group fusion 
(GF100) is the best-performing search across the 10 activity 
classes in terms of mean recall and number of shaded cells, 
with reweighted BIN (RE20) also performing well. The overall 
ranking of the 10 different procedures based on the Kendall 
coefficient in Table 4 (for DS2 top 5%) is GF100 > GF50 > 
GF20 > RE50 > RE20 > GF10 > RE100 > RE10 > BIN.

The DS3 searches are of particular interest because they 
involve the most heterogeneous activity classes in the three data 
sets used and thus provide a tough test of the effectiveness of 
a screening method. Hert et al.16 found that TSS (group fusion) 
was not being preferred to the conventional similarity search 
for the DS3 activity classes. However, when the group fusion 
described here, GF, is used on this data set, Tables 3 and 4 show 
that it (as shown by GF20, GF50, and GF100) gives the best 
performance of all the methods for this data set at both cutoffs.

Table 4 gives the level of statistical significance and the asso-
ciated ranking for the set of results in Tables 1 to 3. It can be 
seen that there is a high degree of commonality in the rankings, 
with the group fusion method (e.g., GF100, GF50, and GF20) 
in particular providing a level of performance that is generally 
superior to the other similarity methods tested here. In addi-
tion, the results in Supplementary Table S4 show that the 
higher values (i.e., corresponding to a greater number of high- 
effectiveness searches) tend to occur in the right-hand part of 
this table, corresponding to the group fusion method.

Visual inspection of the results (Tables 1–4 and Supplementary 
Table S4) shows very clearly that the relevance feedback infor-
mation can significantly increase the effectiveness of the BIN 
method. Results are presented for an original search using the 
conventional BIN (using a single active reference structure), the 
reweighted BIN, and the group fusion methods, with 10, 20, 50, 
and 100 nearest neighbor structures used for the reweighted 
BIN and group fusion methods. When the MDDR classes are 
used, there is often a significant increase in the recall of the 
search as more nearest neighbors are included in the group 
fusion model, with the best searches using 50 to 100 nearest 
neighbors. This finding is in line with a previous study by Hert 

Table 4. R ankings of Similarity Approaches Based on Kendall W Test Results: DS1 to DS3 Top 1% and 5%

Data Set Recall Type W P Ranking

DS1 1% 0.264 <.01 GF50 > GF100 > GF20 > GF10 > RE50 > RE100 > RE20 > RE10 > BIN

  5% 0.352 <.01 GF100 > GF50 > GF20 > GF10 > RE50 > RE100 > RE20 > RE10 > BIN

DS2 1% 0.046 >.01 GF100 > RE50 = RE100 > GF20 > RE20 > GF50 > RE10 > BIN > GF10

  5% 0.296 <.01 GF100 > GF50 > GF20 > RE50 > RE20 > GF10 > RE100 > RE10 > BIN

DS3 1% 0.221 >.01 GF20 > GF50 > GF100 > GF10 > RE50 > RE20 > RE10 > RE100 > BIN

  5% 0.365 <.01 GF20 > GF50 > GF100 > GF10 > RE50 > RE20 > RE10 > RE100 > BIN
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et al.15 Moreover, the reweighted BIN method shows superior 
performance compared with the conventional BIN, with little 
additional effort. However, both the reweighted BIN and group 
fusion methods show a significant enhancement because this 
enhancement is achieved without any additional effort on the part 
of the user carrying out the similarity search. A very surprising 
pattern of behavior is observed in the DS3 results presented in 
Table 3. The degree of enhancement for this more challenging 
screening task is remarkable.

In Figure 1, the percentage of active compounds in different 
data sets has been plotted as a function of its ranks (i.e., the part 
of the ranked list in which it would occur during a conventional 
BIN similarity search). This percentage was obtained by aver-
aging the number of compounds found active at a given rank 
when averaged over all of the activity classes. The results are 
shown in Figure 1, which provides a better insight into why the 
reweighted BIN and group fusion methods work and improve 
the recall effectiveness. Surprisingly, the best results are gener-
ally obtained when the largest number of nearest neighbors is 
used, because Figure 1 shows clearly that the percentage of 
active compounds decreases rapidly as one increases the num-
ber of the nearest neighbors. However, the reason the average 
recall does increase is that these molecules are providing useful 
information. This finding is in line with previous studies by Hert 
et al.15 and Klon et al.19 However, for the data sets studied here, 
we found that the use of 100 nearest neighbors produced better 
results at minimal computational cost than the use of 200 near-
est neighbors, and we have hence included results only for the 
number 10, 20, 50, and 100 nearest neighbors.

To validate the performance of the reweighted BIN and 
group fusion methods, similar experiments were repeated but 
using the TSS15 method, and their results are presented in 
Supplementary Table S5. Results reported Supplementary 
Table S5 reveal the benefit that can be achieved using the re-
weighted BIN and group fusion methods. We can readily see 

that reweighted BIN and group fusion significantly outper-
form the TSS method in all data sets.

In conclusion, we have introduced two different techniques 
of using the relevance feedback information in ligand-based 
virtual screening using the BIN. The first technique is based on 
reference fragment reweighting, and the second is based on 
reference expansion (group fusion). Simulated virtual 
screening experiments with MDDR data sets show that the 
proposed techniques described here provide simple ways of 
enhancing the cost-effectiveness of ligand-based virtual 
screening in chemical databases. Our experiments also 
show that the increases in performance are particularly 
marked when the sought actives are structurally diverse. If 
this is not the case (low-diversity actives), then any improve-
ment over the conventional similarity searching is likely to be 
marginal.
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