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ABSTRACT 
 
This paper presents a boundary integral equation method for conformal mapping of unbounded multiply connected regions onto 
circular slit regions. Three linear boundary integral equations are constructed from a boundary relationship satisfied by an analytic 
function on an unbounded multiply connected region. The integral equations are uniquely solvable. The kernels involved in these 
integral equations are the classical and the adjoint generalized Neumann kernels. Several numerical examples are presented.  
 
| Numerical conformal mapping | Boundary integral equations | Unbounded Multiply Connected Region | Neumann kernel | 
Generalized Neumann kernel |  
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1. INTRODUCTION 

 
Conformal mapping is a special mapping that uses 

function of complex variable to transform a planar region 
onto another planar region while the angles between curves 
are preserved in magnitude as well as in their direction. 
With regards to conformal mapping, canonical region is 
known as a set of finitely connected regions S such that 
each finitely connected non-degenerate region is 
conformally equivalent to a region in S. There are several 
types of canonical region for multiply connected regions as 
listed in [1] and [2]. The class of canonical regions includes 
slits regions and circular regions. For slit regions, there are 
five types of such regions which are (i) disk with concentric 
circular slit, (ii) annulus with concentric circular slit, (iii) 
circular slit regions, (iv) radial slit region, (v) parallel slit 
region. 
       One major setback in conformal mapping is that only 
for certain regions are exact conformal maps known. One 
way to deal with this limitation is by numerical 
computation. Trefethen [3] has discussed several methods 
for computing conformal mapping numerically. Boundary 
integral equation related to a boundary relationship satisfied 
by a function which is analytic in a simply connected region 
interior to a closed smooth Jordan curve has been given by 
[4] and [5].   
 
 
 
*Corresponding author at:  
E-mail address: alihassan@utm.my  

 
Special realizations of this integral equation are the 

integral equations related to the Szegö kernel, Bergmann 
kernel and Riemann map. The kernels arise in these integral 
equations are the Neumann kernel and the Kerzman-Stein 
kernel.  

Hu [6] and Murid and Hu [7] managed to construct a 
boundary integral equation for numerical conformal 
mapping of bounded multiply connected region onto a unit 
disk with slits. However, the integral equation involves 
unknown radii which lead to a system of nonlinear equation 
after the discretization of the integral equation. Nasser [8] 
produces another technique for numerical conformal 
mapping of multiply connected regions by expressing the 
mapping function in terms of the solution of a uniquely 
solvable Riemann-Hilbert problem. This uniquely solvable 
Riemann Hilbert problem can be solved by means of 
boundary integral equation with the generalized Neumann 
kernel. Sangawi et al. [9] have constructed new linear 
boundary integral equations for conformal mapping of 
bounded multiply region onto a unit disk with circular slits, 
which improves the work of [7] and [4]. Recently, Yunus et 
al. [10] managed to extent work by [4] and [9] for 
numerical conformal mapping of unbounded multiply 
connected region onto exterior unit disk with circular slits. 

In this paper we construct some integral equations 
for numerical conformal mapping of unbounded multiply 
connected regions onto the circular slit region. The 
boundary integral equations are constructed from a 
boundary relationship satisfied by an analytic function on 
an unbounded multiply connected region. 
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2.  Notation and Auxiliary Material 
   

Suppose −Ω  denotes the unbounded multiply 
connected region of connectivity M. The boundary Γ  
consist of  M  smooth Jordan curves jΓ , j= 1, 2, 3…, M and 
shall be denoted by 1 MΓ = Γ ∪ ∪Γ . The boundaries are 
assumed in clockwise direction (see Figure 1). Each curve 

kΓ is parameterized by 2π-periodic twice continuously 
differentiable complex function ( )kz t with non-vanishing 
first derivative 

( )
' ( ) 0,    [0, 2 ],      1,..., .k
k k

dz t
z t t J k N

dt
π= ≠ ∈ = =

 
The total parameter J is the disjoint union of M intervals, 

[ ]0,2 , 1,2,...,kJ k Mπ∈ = . We define a parameterization 
( )z t  of the whole boundary Γ  on J by 

1 1( ),   [0, 2 ],
                  ( )            

( ),  [0, 2 ].M M

z t t J
z t

z t t J

π

π

∈ =
= 
 ∈ =

  

Let ( )f z be the conformal mapping function that maps −Ω  

onto U−  , where U−  represents the circular slit region. The 
boundary correspondence function ( )tθ  for ( )f z  can be 
written as  

1 1( ),              [0, 2 ],
( )

( ),           [0, 2 ].M M

t t J
t

t t J

θ π
θ

θ π

∈ =
= 
 ∈ =



 
 

The radii (piecewise real constant function) of the radial 
slits for t J∈  can be represented by 
 

1 1            [0, 2 ],
( )    

            [0, 2 ].M M

t J
t

t J

µ π
µ

µ π

∈ =
= 
 ∈ =

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For simplicity, the piecewise constant function R  will be 
denoted as 1 2( , ,..., )Mµ µ µ µ= . Let A(t) be a complex 
continuously differentiable 2π -periodic function for all 
t J∈ . We define the generalized Neumann kernel formed 
with A as [11] 

1 ( ) '( )( , ) Im .
( ) ( ) ( )

A t z sN t s
A s z s z tπ

 
=  − 

 

 
When A=1, the generalized Neumann kernel reduces to the 
classical Neumann kernel, i.e.  

1 '( )( , ) Im .
( ) ( )

z sN t s
z s z tπ

 
=  − 

 

 
The adjoint kernel N*(t,s) of the classical Neumann kernel 
is given by  

1 '( )*( , ) ( , ) Im .
( ) ( )

z tN t s N s t
z t z sπ

 
= =  −   

 
We define the Fredholm integral operators N and N* by 

( ) ( , ) ( ) , ,

( ) *( , ) ( ) , .
J

J

t N t s s ds t J

t N t s s ds t J

υ υ

υ υ

= ∈

= ∈

∫

∫

N                                  

N*                               
 

The eigenfunctions of N(t,s) corresponding to the 
eigenvalue 1λ = −  are [ ] [ ] [ ]{ }1 2, , , Mχ χ χ , where  [11] 

[ ] 1,             ,   
( )

0,           otherwise.
j jξ

χ ξ
∈Γ

= 
  

 
Lastly, we define an integral operator J as [9] 

1 2

1 2
1 1 1( ) , ( ) , , ( )

2 2 2
M

M
J J J

v v s ds v s ds v s ds
π π π

 
=   
 

∫ ∫ ∫J 

 
which is required for uniqueness of the solution in Section 4 
and to find  the values of the constants.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Mapping of −Ω  onto U−  
 
 

 
        w=f(z) 
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3. Non-Homogeneous Boundary Relationship 
for Conformal Mapping of Unbounded 
Region  

 
Suppose we are given a function D(z) which is 

analytic with respect to z −∈Ω , continuous on −Ω ∪Γ , 
Hölder continuous on Γ  and ( )D ∞ is finite. The boundary 

jΓ is assumed to be a smooth Jordan curve. The unit 
tangent to Γ  at the point z∈Γ  will be denoted by T(z) . 
Suppose further that D(z) satisfies the exterior non-
homogeneous boundary relationship  

 
conj

( ) ( ) ( )( ) ( ) ( ),         .      (1)
( )

T z Q z D zD z c z H z z
P z

 
= + ∈Γ 

 

 
where the symbol “conj” denotes complex conjugation, 
 c(z), H(z), Q(z) and P(z) are complex-valued functions 
defined on Γ  with the following properties. 

• P(z) is analytic with respect to z −∈Ω , continuous 
on −Ω ∪Γ , 

• ( ) 0, ( ) is finiteP D∞ ≠ ∞ ,  
• ( ) 0, ( ) 0c z P z≠ ≠ and ( ) 0Q z ≠ for ,z∈Γ  
• ( ) / ( ) ( ) Lip .H z Q z T z λ∈  

 Note that the boundary relationship (1) also has the 
following equivalent form: 

2

2

( ) ( ) ( )( ) ( ) ( ) ( ) + ,         .     (2)
( )| ( ) |

D z P z H zP z c z T z Q z z
D zD z

= ∈Γ

 
Under these assumptions, an integral equation for D can be 
constructed by means of the following theorem: 
 
Theorem 1. Let u and v be complex-valued functions 
defined on Γ . Then  
 
1 ( )( ) ( )                                                                  
2 ( ) ( )

1 ( ) ( ) ( ) ( ) ( )
2 ( )( ) ( )

( )( ) ( ) ( ) ( )                         
( )

u zv z D z
T z Q z

c z u z v z T wPV D w dw
i w zc w w z Q w

Dc z u z v z D
P

π Γ

 
+ 

 
 

+ − −− 

∞
= + ∞

∞

∫

conjm

1

             

( ) ( ) ( ) Res ( ) ( ) .  z     (3)        
( ) ( )jw aj

D wc z u z u z L z
w z P w

+

==

 
− − ∈Γ − 

∑

 

 
where 

1 ( ) 1 ( ) ( )( ) +PV .
2 ( ) ( ) 2 ( )( ) ( ) ( )

H z c z H wL z dw
Q z T z i c w w z T w Q wπ

+

Γ

= −
−∫  

 
The sum in the Theorem 1 is over all those zeros lies inside 

.−Ω  However, if P(z) does not have zeros, the term 
containing residue in Theorem 1 will not be appear. If  

H(z)=0 then (1) is known as homogeneous boundary 
relationship and the term which contain H(z) above will not 
appear. The symbol L+ denotes boundary values from 
outside .−Ω  
 
 
4. Application of Boundary Integral Equation 

for Conformal Mapping of Unbounded 
Multiply Connected Region onto Circular 
Slits Regions 

 
   The canonical region U- consist of M slits along the 
circle ,kw µ=  where k=1,2,...,M and kµ  is undetermined 
real constant. Let ( )w f z= be the analytic function that 

maps conformally −Ω  onto -U . The boundary value of 
( )f z  can be represented in the form    

( )
k  ( ( )) ,     Γ : ( ),      0 , (4)ki t

k k k kf z t e z z t tθµ β= = ≤ ≤
 

 
where ( )p tθ  denotes boundary correspondence function of 

pΓ and pµ is the radius of a circular slit. Thus,  it can be 
shown that (4) can be rewritten as  

( ( )) '( ( ))
( ( )) sign( ' ( )) ( ( )) .    (5)

| '( ( )) |
p p

p p p
p

f z t f z t
f z t t T z t

i f z t
θ=  

 
This boundary relationship is useful for computing the 
boundary values of ( )f z provided '( ),  ( )  andt f zθ  '( )f z
are all known. The integral equations for finding all these 
unknown functions are discussed next. 
 
 
4.1 Integral Equation Method for Computing pµ  
 

The mapping function ( ( ))w f z t=  can be uniquely 
determined by assuming ( ) 0, ( )  and '( ) 1.β = ∞ = ∞ ∞ =f f f  
We assume that β is a prescribed point located inside - .Ω   
Thus, the mapping function can be expressed as [8] 

( ) ( ) ( ) ,                               (6)h zf z z eβ= −  
where ( )h z is analytic in −Ω  with ( ) 0h ∞ = . By taking 
logarithm on both sides of  (6), we obtain  

log ( ( )) ( ( )) log( ( ) ).                          (7)f z t h z t z t β= + −  
 
Further arrangements yields,  

( ( )) ( ) ( )                                         (8)h z t t r t iγ= + + Φ  
 
where , 
 

( ) ln | ( ( )) |,            
( ) ln | ( ) |,        
( ) ( ) arg( ( ) ).

γ β
θ β

=
= − −

Φ = − −

r t f z t
t z t
t t z t
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The value of ( ) and ( )r t tΦ are both unknown.  However, 
the values for r(t) can be calculated by using the following 
theorem as given in [12]. 
 
THEOREM 2. The function r is given r=(r1,r2,…,rM), 
where  

[ ] [ ]1( , ) ( ) ( ) ,
2

j j
jr t t dtγ φ γ φ

π Γ

= = ∫  

 
and [ ]jφ is the unique solution of the following integral 
equation 

[ ] [ ]( * ) , 1, 2,..., .j j j Nφ χ+ + = − =I N J                 
 
By obtaining r1,r2,…,rM, the value for the unknown radii 

, 2,3,...,q q Mµ = , can be obtained by  

               .                                          (9)qr
q eµ =  

 
4.2 Integral Equation Method for Computing  

'( )f z  
 
By squaring both sides of equation (5) and divide both sides 
of the equation with 2( ( ) )z t β− , we obtain 

2 22
2

2 2

( ( ))( ( )) '( ( ))( ( ))   .    (10)
| '( ( )) |( ( ) ) ( ( ) )

pp f z tf z t f z tT z t
f z tz t z tβ β

 
= −  − −    

 
Upon comparing (10) and boundary relationship (2) leads to 
a choice of  

2 2

2

( )( ) , ( ) 1, ( ) ( ), ( ) ( ) ,
( ( ) )

f zP z P Q z T z u z T z
z t β

= ∞ = = =
−

2

2

| ( ) |( ) '( ), ( ) , ( ) 1.
( ( ) )

f zD z f z c z v z
z t β

= = − =
−

  

 
By means of Theorem 1 yields 

2

2

( )
( ) ( , ) ( ) | ( ) | '( ) '( ), (11)

( ( ) )

f z
g z N z w g w d w z t z t

z t β
−

Γ

+ = − +
−

∫  
 

where 
 

2 2

22

( ) '( ) '( ),

1 '( ) ( ( ) ) | ( ) | '( )( , ) ,
2 ( ) ( ) | ( ) | ( ( ) ( ))( ( ) )

1 ''( ) 1 '( )( , ) Im .
2 '( ) ( )

g z f z z t

z t w s f z z tN z w
i z t w s f w z t w sz t

z t z tN z z
i z t i z t

β
π β

π π

−

−

=

 −
= − 

− −−  

= +

 

 
Numerical evidence suggests that to obtain a unique 
solution for this region, one need to add M conditions since 
the eigenvalue -1 of ( , )N z w− appears M times. Since f(z) 
is assumed single-valued, it is also require that the unknown 
mapping function f(z) satisfies [2] i.e., 

( ) 0.                             (12)
J

g w ds =∫  

 
By solving the integral equation (11) with condition (12) 
will give us a unique condition. However, the kernel 

( , )N z w− involves unknown parameter pµ . To overcome 
this, one need the result of Section 4.1 .  
 
 
4.3 Integral Equation Method for Computing  

' ( )p tθ  
 

By taking logarithmic derivatives on (6) yields 
'( ) 1'( ) .                            (13)
( )

f z h z
f z z β

= +
−

 

 
Thus,  

'( ) 1( ) '( ),                             (14)
( )

f zR z h z
f z z β

= − =
−

 

 
is analytic in −Ω . Note that the boundary relationship in 
(10) can be rewritten as 

2'( ( )) '( ( ))( ( ))  .      (15)
( ( )) ( ( ))p p

f z t f z tT z t
f z t f z t

= −  

 
By substituting (14) into boundary relationship  (15) yields 

 
( ) 1( ) ( ( )) ( ) ,       .      (16)p p

T zR z T z t R z z
zz ββ

= − − − ∈Γ
−−

 
Upon comparing (16) and boundary relationship (1) leads to 
a choice of 

'( ) 1( ) ( ) , ( ) 1, ( ) ( ),
( )

f zD z R z c z Q z T z
f z z β

= = − = − =
−

 
2( ) 1( ) 1 and ( ) .                          T zP z H z

z zβ β
= = − −

− −
.  

Let ( ) ( ) ( ),u z T z Q z= and ( ) 1v z = . By substituting all these 
assignments into Theorem 1 and multiply both sides with 
T(z) yields  

'( ) 1 ( ) ( ) '( )( ) ( ) | |
( ) 2 ( )

( )          2 Im .                                                         (17)

f z T z T z f wT z T w dw
f z i z w f wz w

T zi
z

π

β

Γ

 
+ − = − − 
 
 − 

∫

 
Let z=z(t) and w=w(s). Hence, by multiplying both sides of 

(17) by |z’(t)| and using the fact that 
'( ( ))'( ) '( )
( ( ))

f z ti t z t
f z t

θ = , 

integral equation (17) becomes 
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'( )'( ) ( , ) '( ) 2 Im .         (18)
( )
z tt N s t s ds

z t
θ θ

βΓ

 
+ =  − 
∫  

 
Since N(s,t)=N*(t,s), the integral equation (18) can be 
written as an integral equation in operator form 

'( )* ' 2 Im . (19)
( )
z t

z t
θ

β
 

+ =  − 
(I N )                 

 
However,  1λ = −  is an eigenvalue of *N  with multiplicity 
M. By Theorem 12 in [11], (19) is not uniquely solvable. 
Note that 

1 2

1 2 3
1 1 1' '( ) , '( ) , , '( ) ,

2 2 2
NJ J J

s ds s ds s dsθ θ θ θ
π π π

 
=   
 

∫ ∫ ∫J 

 
 
Since for the boundary kΓ , we have (2 ) (0) 0,k kθ π θ− =  
the function ( )tθ satisfies  

' (0,0, ,0). (20)θ =J                                              
 
By adding (20) to (19), we obtain  

'( )* ' 2 Im . (21)
( )
z t

z t
θ

β
 

+ + =  − 
(I N J)                      

 Thus the integral equation (21) is uniquely solvable [12]. 
 
 
4.4 Mapping of the exterior points 
 

By solving the integral equations in Section 4.1 will give us 
the value for unknown parameters qµ  and by using this 
information, integral equation in Section 4.2 can be solved 
linearly. The value for '( )tθ can be obtain by solving 
integral equation in Section 4.3. With all these information, 
the boundary value of f(z) is computed by 

( ( )) ( ) ( ) sign( '( )) ,              .        (22)
| ( ) |

f z t g zf z t z
i g z

θ= ∈Γ
 

Let f(z) be written as  
                   ( ) ( ) ( ),                                      (23)f z z F zβ= −  

where ( )( ) ( )
f zF z z β= −  is analytic in −Ω  with ( ) 1F ∞ =  

. Then for every z −∈Ω , the value of ( )F z  can be 
calculated by Cauchy integral formula  

1 ( )      ( ) 1 ,       ,   .          (24)
2

F wF z dw w z
i w zπ

−= + ∈Γ ∈Ω
−∫

 
By using the information in (24), the exterior point of the 
function f(z) can be calculated by (23). 
 
4.5 Numerical Example 
 
   For numerical experiment, we used a test region with 
connectivity three. All the computations were done by using 
Matlab R2008a software. The number of collocation point 
on each boundary component is n=512 points. The test 
region and the corresponding image are shown in Figure 2. 

Figure 2. The original region and its image by using our method 
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5. CONCLUSION  
 

In this paper, we have constructed some new 
boundary integral equations for numerical conformal 
mapping of unbounded multiply connected region onto the 
circular slit regions. The advantage of this method is that 
the integral equations obtained are linear.  
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