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Abstract: The climate impact studies in the hydrology are often relying on the climate change 

information at a fine spatial resolution. However, Global Climate Models (GCMs) which is 

regarded as the most advanced models yet for estimating the future climate change scenarios are 
operated on the coarse spatial resolution and not suitable for climate impact studies. Therefore, in 

this study, the Statistical Downscaling Model (SDSM) was applied to downscale rainfall from the 

GCMs. The data from single rainfall station located in the Kurau River were used as input of the 

SDSM model. The study included the calibration and validation with large-scale National 

Centers for Environmental Prediction (NCEP) reanalysis data, and the projection of future 

rainfall corresponding to the GCMs-variables (HadCM3 A2). The study results shows that during 

the calibration and the validation stage, the SDSM model can be well acceptable in regards to its 

performance in the downscaling of the daily and annual rainfall. For the future period (2010-

2099), the SDSM model estimates that there were increases in the total average annual rainfall 

and generally, the area of rainfall station become wetter.  
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1.0   Introduction 

 
In recent years, many studies have focusing the effects of Global Climate Models 

(GCMs) and climate change on rainfall variability in different parts of the world. Even 
through GCMs can be applied directly for climate change assessment, these models 

have the largest scale resolution and need to be downscaled into a site-scale (smaller-

scale) (Yimer et al., 2009). Therefore, the statistical methods by using the Regression 

Models are applied in this study. These models generally involve the establishing linear 
or nonlinear relationships between sub grid-scale (e.g. single-site) parameters and 

coarser-resolution (grid-scale) predictor variables (Wilby and Wigley, 1997). The 

relationship can be named as ‘transfer function’.  
 

One of the examples of the Statistical Downscaling tools that implement the Regression 

Models is the Statistical Downscaling Models (SDSM). The SDSM facilities have 
undergone rapid development of multiple, low cost, single-site scenarios of daily surface 
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weather variables under the present and future climate forcing. As an addition, the tool 

performs ancillary tasks of data quality control and transformation, predictor variable 

pre-screening, automatic model calibration, basic diagnostic testing, statistical analyses 

and graphing of climate data (Wilby et al., 2007). Therefore, the main objective of this 
study is to downscale current and future rainfall corresponding to GCMs-variables, by 

applying the SDSM model.  

 

 

2.0   Material and Methods 

 
2.1   Study Area 

 

The rainfall station chosen for this study was located in the catchment of Kurau River of 
Perak State of Malaysia (Figure 1).The coordinate of rainfall station is 5

o
 12’N 100

o
 

41’E. This catchment is selected as a study area because there is a dam located at the 

downstream of basin. This dam provides irrigation water for double cropping planting 

intensity to the Kerian-Sg. Manik irrigation scheme. About 10,000 farmers with some 
24,000Ha of paddy land are depending on this rice cultivation industry. The dam also 

provides fresh water to meet the domestic and industrial demands to Kerian District as 

well as Larut Matang District. Therefore, assessing the impact of future climate change 
at this catchment will gives an insight upon which appropriate decisions about the water 

resource development can be made.  

 

2.2   Global Climate Models (GCMs) 
 

The GCMs-predictors of Hadley Center’s GCM (Hadley Centre 3rd Generation - 

HadCM3) A2 future scenario is run (named as SRES A2) for 1961–2099. The re-
analysis data predictors of National Center of Environmental Prediction (NCEP) on 

HadCM3 computational grid for 1961–2000 at daily time steps was used in the study. 

Both GCMs-predictors were obtained from the Canadian Climate Impacts Scenarios 
(CCIS) website for a daily time step.  

 

HadCM3 is a coupled atmosphere-ocean GCMs developed at the Hadley Centre of the 

United Kingdom’s National Meteorological Service. This GCMs contained a complex 
model of land surface processes, included 23 land cover classifications; four layers of 

soil where temperature, freezing, and melting are tracked; and a detailed 

evapotranspiration function that depends on temperature, vapour pressure, vegetation 
type, and ambient carbon dioxide concentrations (Mohammed, 2009). HadCM3 was 

chosen because the model is widely used in many climate-change impact studies. 

Furthermore, HadCM3 provides daily predictor variables, which can be used for the 

SDSM model. In addition, HadCM3 has the ability to simulate for a period of thousand 
years, showing little drift in its surface climate. Its predictions for temperature change 

are average, and for the precipitation, the predictions’ increases are below average 
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(McCarthy et al., 2001). Among the SRES scenarios, A2 was considered as among the 

worst case scenarios, projecting high emissions for the future. 

 

 
 

Figure 1: Location of the observed rainfall station 

 
2.3   Statistical Downscaling Model (SDSM) 

 

The SDSM model was introduced by Wilby et al. (2002). The method consists of two 
steps. In the fist step, it determines whether rainfall occurs on each day or not. This is 

defined as; 

 

       ∑    ̂ 
   

         
 
        (1) 

  

where, t is time (days), wt is the conditional possibility of rain occurrence on day t, 

 ̂ 
   

is the normalized predictor, αj is the regression parameter deduced by an ordinary 

least square method and wt-1 and αt-1 are the conditional probabilities of rain occurrence 

on day t-1 and lag-1 day regression parameter respectively. These two parameters are 
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optional, depending on the study region and predictand. Uniformly distributed random 

number rt (0 ≤ rt ≤ 1) was used to determine the rain occurrence and supposed the rain 

would happen if wt  ≤ rt. 

 
In the second step, it determines the estimated value of rainfall on each rainy day. It can 

be defined by a z-score as; 

 

      ∑    ̂ 
   

        
        (2) 

 

in which Zt is the z-score on day t, βj is the calculated regression parameter, and βt-1 and 
Zt-1 are the regression parameter and the z-score on day t-1 respectively. Furthermore, 

rainfall yt on day t can be written as; 

 

                     (3) 

 

in which ϕ is the normal cumulative distribution function and F is the empirical function 

of yt. 
 

During downscaling with the SDSM, a multiple linear regression between a few selected 

GCM predictors and rainfall were uutilised. The operation and structure of the SDSM 
model during calibration can be summarised as shown in Figure 2. 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

Figure 2: The operation and structure of SDSM 

 

 
 

 

Preliminary screening of potential downscaling GCMs-predictor 

variables 

 

Assembly and calibration of SDSM variables (1961-1975) 

 

Synthesis of ensembles of current weather data using observed 

predictor variables (validation) (1976-1990) 

Generation of ensembles of future weather data using GCM-derived 

predictor variable (2011-2099) 
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2.3.1 Preliminary Screening of Potential Downscaling Predictor Variables 

 

Several procedures have been suggested to select suitable GCMs-predictor variables, 

such as partial correlation analysis, step-wise regression, or information criterion. Each 
statistical analysis can be used to choose a sensible combination of predictors from the 

available data. However, in SDSM, the task of screening is simple and can be achieved 

by using linear correlation analysis and scatter plots. 
 

The observed daily data of GCMs-predictor variables representing the current climate 

condition (1960–2000) derived from the NCEP reanalysis data set was used to 

investigate the percentage of variance explained by each predictand-predictor pairs. The 
steps to identify predictor variables that were used in this study being recommended by 

several researchers (Wilby et al., 2007; Mohammed, 2009; Chu et al., 2009) are; (1) 

Choose all predictors and run the explained variance on a group of eight or ten of 
predictors at a time; (2) Of each group, pick a high explained variance of predictor(s); 

(3) Then, partial correlation analysis is done for selected predictors based on correction 

of each predictor. There could be a predictor with a high explained variance, but it might 
be very highly correlated with another predictor. This means that it is difficult to tell that 

this predictor will add information to the process, and therefore, it will be dropped from 

the list; (4) Finally, the scatter-plot is used to show the relationship between potential 

predictor and predictand. 
 

2.3.2 Calibration and Validation 

 
The calibration model process constructs downscaling models based on multiple 

regression equations, given a daily weather data (the predictand) and a regional-scale 

atmospheric (predictor) variables (Wilby et al., 2007). It was carried out based on the 
selected predictor variables that were derived from the NCEP data set. The temporal 

resolution of the downscaling model for precipitation and temperature downscaling are 

specified as monthly for each station. Some of the SDSM setup parameters for bias 

correction and variance inflation were adjusted during calibration to obtain a good 
statistical agreement between the observed and simulated climate variables. For event 

threshold, a value of 0.5 was used. 

 
After the model calibration, validation process is needed. Validation process enables to 

produce synthetic current daily weather data based on inputs of the observed time series' 

data, and the multiple linear regression parameters produced using independent observe 

data, which neglected during calibration procedure. In this study, daily rainfall from 
1961-1975 was used for calibration and 1967-1990 was then used for validation. The 

choices of 1961-1990 as the calibration and validation periods was made based on the 

availability of the rainfall data.   
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The performances of SDSM on calibrating and validating data were evaluated based on 

the coefficient of correlation (R), which being defined as;  

   

  
∑        ̅̅ ̅̅ ̅           ̅̅ ̅̅ ̅̅ ̅ 

√∑        ̅̅ ̅̅ ̅  ∑          ̅̅ ̅̅ ̅̅ ̅  
      (4) 

 

where, obs = observed stream flow value; pred = predicted stream flow value;     ̅̅ ̅̅ ̅ = 

mean streamflow observed value; and     ̅̅ ̅̅ ̅̅ ̅ = mean streamflow predicted. R is measure 
of how well the predicted values from a forecast model fit with the real-life data with a 
perfect fit gives a coefficient of 1.0. 

 

2.3.3 Downscaling for Future Emission 

 
The regression weighted produced during the calibration process is applied to generate a 

future daily weather data. The study assumes that relationship between predictor and 

predictand under the observed conditions (during calibration) remains valid under the 
future climate conditions. Hundred ensembles of synthetic daily rainfall time series were 

produced for HadCM3 A2 for a period of 139 years (1961 to 2099). The outcome was 

averaged and divided by three (3) period of time, which are 2020s (2010-2039), 2050s 

(2040-2069) and 2080s (2070-2099). 

 

 

3.0   Results 

 
3.1   Selection of Predictors 

 
Correlation coefficients between selected predictors and daily rainfall are presented in 

Table 1.  This combination has been selected for the SDSM model due to their 

maximum correlation daily rainfall. This table also reports the partial correlation and P 
value between the predictors and rainfall that help identify the amount of explanatory 

power for each predictor 

 

3.2   Results of the Calibration and Validation Models 
 

The calibration model process constructs downscaling models based on multiple 

regression equations, given the observed daily rainfall and NCEP-reanalysis. The model 
structures of calibration have been categorised as the condition for rainfall and un-

condition for temperature. Figure 3 exhibits the calibration result of the SDSM model 

downscaling (1961-1975) of daily rainfall. It can be seen that the SDSM model shows a 
good agreement between the observed and simulated mean daily rainfall and variance. 

However, there was under-estimation for the graph of average dry and wet-spell length 

for several months. 
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Table 1: Partial correlation between NCEP-reanalysis with observed rainfall 

 

 
Rainfall 

 Partial r P value 

ncepp__fas.dat -0.059 0.0001 

ncepp5_fas.dat 0.05 0.001 

ncepshumas.dat 0.04 0.0011 

nceptempas.dat 0.045 0.002 

 

 

 

 
Figure 3: Calibration result of SDSM model downscaling (1961-1975) for daily rainfall 

 

After model calibration, a validation process is required. The validation process 

produces synthetic current daily weather data based on inputs of the observed time 
series' data, and the multiple linear regression parameters produced using independent 

observe data, which were not used during calibration procedure. Figure 4 shows a 

validation result of the SDSM model downscaling of daily rainfall, and gives a 
satisfactory agreement between the observed and simulated mean daily rainfall, average 

dry-spell length and average wet-spell length for all months of the year. However, in the 
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graph of rainfall variance, there was an underestimate simulation for several months. It 

is very difficult to improve this result since any attempt to improve quality of variance 

from the model output will automatically affects the other variables which are originally 

well calibrated. Therefore, the result of rainfall variance was accepted in this case. 
  

 

 
 

Figure 4: Validation result of SDSM model downscaling (1976-1990) of daily rainfall 

 

 
The result for calibration and validation are shown in Table 2. The results show the 

acceptable response of the SDSM model between the observed and downscaling 

predictands such as rainfall corresponding on the NCEP predictors. For a downscaled of 
daily rainfall, the R do not show a close relationship with observed value. It can be seen 

that the SDSM model unables to predict well for daily rainfall when R<0.3 during 

calibration and validation. However, the downscaled of monthly and annual rainfall give 

a close relationship with observed rainfall values (R>0.4). Therefore, the SDSM 
performance indicates the ability of selected NCEP predictors in generating the 

predictands for the HadCM3 A2 scenarios of the studied site. 
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Table 2: The SDSM performance using coefficient of correlation (R) for downscaling 

rainfall using NCEP predictor and observed predictands 

 

 Calibration 

(1961-1975) 

Validation 

(1976-1990) 

Rainfall 
  

   Daily 0.26 0.17 

   Monthly 0.67 0.50 

   Annual 0.59 0.43 

 

 

3.3   Downscaling for Future Emission 

 
The result of downscaling for future emission of SDSM for daily rainfall is shown in 

Figure 5. This figure exhibits that the mean daily rainfall does not show a constant 

increase or decrease in rainfall trend. From January to February, an increase of daily 
rainfall is noticeable. Meanwhile, in March, a decrease of rainfall and in April, a 

marginal increment of rainfall intensity are clearly exhibited. There is an increment in 

June until August, with the highest increment of rainfall recorded in June, which gives 
reading of 48mm in 2080s. From September to October, the rainfall decreases constantly, 

before return to increament patten in November. 

 

 
Figure 5: General trend of mean daily precipitation and temperature corresponding to a 

climate change scenario downscaled with the SDSM 

 
For annual rainfall corresponding to future emission (Table 3), the result shows that 

there is an increase in trend of annual rainfall. In the 2020s, the simulated annual rainfall 

is 3828.03mm, and increase by 233.07mm than the present annual rainfall. In the 2050s, 

there is increases of annual rainfall of 4138.38mm and the increases is measured at 
543.42mm than the present annual rainfall. The increase trend is also found in the 2080s 

with 4892.80mm and the increases given by 1297.84mm than the present annual rainfall.  
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Table 3: Annual average values for present and simulated rainfall, maximum temperature 

and minimum temperature corresponding toA2 scenario 

 

 Annual Average Values 

Rainfall (mm) 

  Present 3594.96 

  A2 Scenario 

     2020s 3828.03 

     2050s 4138.38 

     2080s 4892.80 

 

 

4.0   Discussion 

 
The main fundamental of the SDSM model is the relationships between GCMs-predictor 

(HadCM3 A2) and predictand (rainfall). Therefore, the selections of GCMs variables are 

most important parts in the climate change study, and will affect the results of climate 
assessment. Many studies such as Wilby and Wigly (2000) and Hashmi et al. (2009) 

have applied more than five (5) GCMs-variables in their SDSM analysis. These 

numbers of GCMs-variables have been chosen in order to show a real condition of 

climate change in the future. However, the selections of GCMs-variables are difficult 
and tricky. In addition, the selections of GCMs-variables are still in uncertainty on their 

methods and there is no standard rule for it. Therefore, in this study, only four (4) of 

GCMs-variables have been applied. The selections have been tested based on the higher 
correlation between GCMs-variables and rainfall. Furthermore, the selections of GCMs 

variables have been looked through by the good performance of the SDSM model 

during the calibration and validation periods. These results have a similar pattern with 
the patterns from Karamouz et al. (2009), which used only three (3) of GCMs-variables.  

 

In general, the study showed that the SDSM model was able to capture most of the 

monthly and annual rainfall with a good agreement between observed and simulated 
rainfall. However, the study found that the model was poor in predicting on a daily 

rainfall. The results were similar with other studies such as Dibike and Coulibaly (2005), 

Harun et al. (2008), Karamouz et al. (2009), and Chu et al. (2009). Hence, results from 
this study is considered fully justified according to early research works. Furthermore, a 

daily rainfall is the most difficult variables for prediction and it is a condition process 

which involves an inter-connected with many factors/variables.  

 
The future (2011-2099) annual rainfall results showed that there were an increase in the 

rainfall’s intensity. For daily rainfall, the results showed that a larger increase of daily 

rainfall in Jun and August, and a larger decrease in March and December.  
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5.0   Conclusion 

 
The Statistical Downscaling tools are a tool to downscale the GCMs into a fine scale 

hydrological region. The SDSM model has been used for this purpose and being widely 
applied across the world, but not much usage in Malaysia. This study proves that the 

SDSM model has the ability to perform well during calibration and validation. The 

study results show that the Kurau River basin will become wetter in future. The results 
of downscaling of daily rainfall for future emission show an increment trend for each 

month, except for March, September and December. The increment of annual rainfall 

has also been observed in this study. 
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