HUMAN REACH FOR SAFETY, CMFORT AND EFFICEINCY AT WORK ROJA ABEDIAN KASGARI

UNIVERSITI TEKNOLOGI MALAYSIA

HUMAN REACH FOR SAFETY, COMFORT AND EFFICIENCY AT WORK

ROJA ABEDIAN KASGARI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Industrial Engineering)

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

To my beloved Mother, Father and Brothers

ACKNOWLEDGMENT

First and foremost, I thank God for His faithfulness, blessings, provisions and favour and sustaining me throughout this research. The successful completion of this research would definitely be impossible without the kind, helpful and wonderful individuals who have contributed so much in the completion of this project.

Author would like to take this opportunity to express her sincere gratitude and appreciations especially to her supervisor, Professor Dr. Mat Rebi bin Abdul Rani for his guidance, valuable knowledge, and constructive ideas that led her to complete this project successfully. Special thanks to Mohammad Abedian (author's brother) for his support and Mohammad Mobin Rupani (her best friend) for his help. The author would like to acknowledge the subjects who have spent their time for the experiment and last but not least, to everyone who has offered their help and support throughout this project.

ABSTRACT

In today's industry, resources, skills, innovation and technology, and strategic plans contributes to the increased of a company's productivity. Among all these, workers are the main asset of a company, and companies need to ensure that they have good workforce health. Apart from safety, ergonomic aspects play an important role in determining the level of comfort in the workplace or jobs which workers are subjected to. Correct body posture is very important while doing everyday activities such as walking, sitting, bring thing or even during sleeping. Straight vertical alignment of body from the top of head, through body's center, to the bottom of feet was known as a correct body posture. If this value was used to determine the position for meter display as an example, it is possible for someone to have neck pain and back problem. This project is to determine the safety, comfort and efficiency at work. The project was conducted in two stages where 1st stage was to determine the appropriate technique that would be used to determine the distance. Then, the technique would be tested.

ABSTRAKT

Pada masa kini, bidang perindustrain, sumber, kemahiran, inorasi dan teknologi dan pelan yang berkesan menyumbang kea rah peningkatan pengeluaran syarikat. Pekerja - pekerja merupakan qset utama dalam sesebuah syarikat dan syarikat perlu memastikan mereka mempunyai kesihatan yang baik. Selain dari keselamatan, aspek ergonomic juga memainkan peranan yang pentiny untuk menentukan tahap keselesaan cli tempat kerja atau kerja apakah yang mereka lakukan. Postur badan yang betul adalah sangat penting ketika melalcuken qletiviti – aktiviti harian seperti berjalan, duduk, membawa barang dan juga ketika ticlur. Keduduken badan yang tegak dari atas kepala, ke bahagian tengah badan. ke bawah kaki dikenali sebasai posture badan yang betul, jika postur badan tidak betul, berkemungkinan seseorang akan mengalami sakit tengkuk / leher dan masalah belakang badan. Projek ini adalah untuk menemtukan keselamatan, keselesaan dan juga keefisian di tempat kerja. Projek ini terbahasi kepada dua peringkat di mana peringkat pertama adalah untuk menentukan teknik yang betul untuk menentukan jamk. Kemudiar, teknik itu akan di uji keberkesanannya.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
		ACKNOWLEDGEMENTS	i
		ABSTRACT	ii
		ABSTRAK	iii
		TABLE OF CONTENTS	iv
		LIST OF TABLES	viii
		LIST OF FIGURES	ix
		LIST OF APPENDIXES	xii
1	INT	ΓRODUCTION	1
	1.1	Introduction	1
	1.2	Background to the problem	5
	1.3	Problem statement	5
	1.4	Objective of study	7
	1.5	Scope of study	10
	1.6	Organization of thesis	10
	1.7	Conclusion	11
2	LI	TERATURE REVIW	12
	2.1	Introduction	12
	2.2	Work station design	12
	2.3	A systematic ergonomics approach to industrial	
		workstation design	14
	2.4	Determination of the work station dimensions	14
		2.4.1 Work height	15

	2.4.2	Normal and maximum reaches	16	
	2.4.3	Lateral clearance	18	
	2.4.4	Angle of vision and eye height	19	
	2.4.5	NIOSH Lifting Equation	20	
	2.4.6	Basic elements that should be consider	23	
		2.4.6.1 Head height	23	
		2.4.6.2 Shoulder height	23	
		2.4.6.3 Arm reach	24	
		2.4.6.4 Elbow height	24	
		2.4.6.5 Hand height	25	
		2.4.6.6 Leg length	25	
		2.4.6.7 Hand size	25	
2.5	Using	anthropometric data	26	
	2.5.1	Anthropometric and biomechanic		
	related	design data	26	
		2.5.1.1 Body Size	26	
		2.5.1.1.1 Strike Reach Envelope Data		
		Design Requirements	40	
2.6	The in	nportance of correct body posture	42	
2.7	Propos	Proposed body posture for standing and sitting		
	2.7.1	Standing posture	44	
	2.7.2	Sitting posture	46	
2.8	Proble	ems related to poor body posture	47	
	2.8.1	Kyphosis	47	
	2.8.2	Back Problems	50	
	2.8.3	Neck Problems	50	
	2.8.4	Shoulder Problems	50	
	2.8.5	Forearm & Hand Problems	51	
	2.8.6	Leg Problems	51	
	2.9.1	Backrests	52	
	2.9.2	Armrests	52	
	2.9.3	Footrests	53	
2.10	Some reference posture for provide neutral positioning 55			

		2.10.1 Upright sitting posture	56
		2.10.2 Standing posture	56
		2.10.3 Declined sitting posture	56
		2.10.4 Reclined sitting posture	56
	2.11	Some problems in sitting posture	57
	2.12	Some problems in standing posture	59
	2.13	Some cases that should be considerate in	
		using computer for users	60
		2.13.1 Monitors	60
		2.13.2 Keyboards	61
		2.13.3 Possible Solutions	62
	2.14	Conclusion	63
2	ME	THOROLOGY	<i>(</i> 1
3		THODOLOGY	64
	3.1	Introduction	64
	3.2	Available methods	66 66
		3.2.1 Self-reports3.2.2 Observation Methods	68
	2.2	3.2.3 Direct measurements	68
	3.3	Design the equipment	69
		3.3.1 Study form	69
		3.3.2 Prepare for the other equipment	69
		3.3.2.1 Measuring tape	69
		3.3.2.2 Pencil	70
	2.4	3.3.2.3 Excel Software	70
	3.4	Criteria	71
	3.5	Procedure	72
		3.5.1 Standing position	72
	2.7	3.5.2 Sitting position	75
	3.7	Process Design	80
	3.8	Conclusion	82

4	RE	SULT AND ANALYSIS	83
	4.1	Introduction	83
	4.2	Questionnaires result	84
	4.3	Charts	85
	4.4	Conclusion	92
5	DIS	SCUSSION	93
	5.1	Introduction	93
	5.2	Measure efficiency distance	101
	5.3	Measure comfort distance in sitting position	104
	5.4	Measure safety distance in sitting position	105
	5.5	Measure comfort distance in standing position	107
	5.6	Measure safety distance in standing position	108
	5.7	Conclusion	110
6	SUN	MMARY AND FUTURE WORKS	111
	6.1	Introduction	111
	6.2	Summary	111
	6.3	Future works	113
	6.4	Conclusion	114
	REF	TERENCES	115
	APP	PENDIXES	117-131

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Standing work surface height for female operations in cm	16
Table 2.2	Anthropometric measures for females and maximum reach	1
	in cm	17
Table 2.3	Anthropometric measurements for females for	
	lateral clearances	18
Table 2.4	Standing and Sitting Dimensions in meters	39
Table 3.1	Statistical summaries of body measurements from	
	individual ISO populations	79
Table 5.1	Time average for efficiency in different distance for	
	male and female in sitting position	101
Table 5.2	Time average for efficiency in different distance for	
	male and female in standing position	103

LIST OF FIGURES

FIGURE NO.	. TITLE	PAGE
Figure 2.1	Anthropometric Dimensional Data for American Female	27
Figure 2.2	Anthropometric Dimensional Data for American Male	29
Figure 2.3	Anthropometric Dimensional Data for American Female	31
Figure 2.4	Anthropometric Dimensional Data for American Male	33
Figure 2.5	Anthropometric Dimensional Data for American Female	35
Figure 2.6	Anthropometric Dimensional Data for American Male	37
Figure 2.7	Adapted from RL Huston, principles of Biomechanics	39
Figure 2.8	Strike reach envelope of a Seated 95th Percentile Male	
	Wearing Full Restraint	41
Figure 2.9	Correct body posture means back, muscles and joints are in	tip-top
	shape (American Physical Therapy Association, APTA	43
Figure 2.10	Functional Design Posture: Front view, side view	45
Figure 2.11	Correct sitting postures	46
Figure 2.12	Normal curve of spine (www.spineuniverse.com/authorbio) 48
Figure 2.13	Poor and good body postures in standing position	49
Figure 2.14	Bad postures in sitting position	49
Figure 2.15	Correct sitting posture	54
Figure 2.16	Some problems in sitting posture	57
Figure 2.17	Some problems in sitting posture	58
Figure 2.18	Some problems in standing position	59
Figure 3.1	Measuring tape	69
Figure 3.2	Pencil	70
Figure 3.3	Microsoft Excel Software	71
Figure 3.4	Standing posture	74

Figure 3.5	Sitting posture	77
Figure 3.6	Statistical summaries of body measurements	
	from individual ISO populations	78
Figure 3.7	Sitting and Standing process Design	80
Figure 3.8	Sitting and Standing position	81
Figure 4.1	Genders and Race	86
Figure 4.2	Men in standing situation vs. Weight	86
Figure 4.3	Men in sitting situation vs. Weight	86
Figure 4.4	Female in standing situation vs. Weigh	87
Figure 4.5	Female in sitting situation vs. Weight	87
Figure 4.6	Male and Female in standing situation vs. Weight	88
Figure 4.7	Male and Female in sitting situation vs. Weight	88
Figure 4.8	Male in standing situation vs. Height	89
Figure 4.9	Male in sitting situation vs. Height	89
Figure 4.10	Female in standing situation vs. Height	90
Figure 4.11	Female in sitting situation vs. Height	90
Figure 4.12	Male and Female in standing situation vs. Height	91
Figure 4.13	Male and female in sitting situation vs. Height	91
Figure 5.1	Just female distance in sitting position	95
Figure 5.2	Just female distance in standing position	96
Figure 5.3	Just male distance in sitting position	97
Figure 5.4	Just male distance in standing position	98
Figure 5.5	Gender's hand measure in sitting position	99
Figure 5.6	Gender's hand measure in standing position	100
Figure 5.7	Measuring efficiency in sitting position	102
Figure 5.8	Measuring efficiency at standing position	103
Figure 5.9	Measure comfort distance in sitting position	104
Figure 5.10	Measure safety distance in sitting position	105
Figure 5.11	The Best area that covers safety, comfort	
	and efficiency at sitting position	106
Figure 5.12	Measure comfort distance in standing position	107
Figure 5.13	Measure safety distance in standing position	108

Figure 5.14 The Best area that covers safety, comfort and efficiency at standing position

109

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Example of questionnaire	117
B1	Data of the experiment	120
B2	Data collection for comfort, safety and	
	efficiency in 3 different distance in	
	sitting position	124
В3	Data collection for comfort, safety and	
	efficiency in 3diferent distance in	
	standing position	128

CHAPTER 1

INTRODUCTION

1.1 Introduction

In recent years, the majority of factories pay attention to cut off cost in order to remain competitive. Factory managers have not wish to put their workers in dangerous work situation. They don't desire to see a strike in their factories. They are also afraid of any lawsuits against their factories if some workers get injured at workplaces. But at the same time, they prefer to see the factory survive and succeed in the competitive markets, and to do so, they have to continuously improve the productivity. And actually it's no doubt that focus on human reach for efficiency and safety and comfort at work is the most important way to save their cost.

Sometimes designers ignore or forget to consider the best human reach at work so employees may feel uncomfortable working at their work stations and they may hurt and injury themselves when they reaching for a tool. These hurts cause a lot of pains. The workplace involves equipment, workers, machines and so on, thus, workplace result in high risk in injuries to the workers. Beside injuries, factory managers may lose their experienced workers. Their workers might not fit very well to their jobs and may leave their jobs or even may cause a decrease in workers skill. These problems will effect on factory's productivity that may spend plenty of money for repayment claim from workers.

In addition, workplace should be fit with the body dimensions of the workers, because it could be effective to prevent errors, injuries, fatigues, pains and discomforts for workers. Indeed, workplace design is one of the main areas that can help to improve compatibility between situation and workers. In this case anthropometry that means the measurement and the study of human body dimensions play a main role.

A workstation is the place a worker occupies when performing a job. The workstation may be occupied all the time or it may be one of several places where work is done. Some examples of workstations are work stands or work tables for machine operation, assembly or inspection; a work tables where a computer is operated; a control console; etc. A well designed workstation is important in preventing diseases related to poor working conditions, as well as for ensuring that work is productive. Every workstation should be designed with both the worker and the task in mind so that work can be performed comfortably, smoothly and efficiently. If the workstation is properly designed, the worker should be able to maintain a correct and comfortable body posture. This is important because an uncomfortable work posture can cause a variety of problems, such as:

- o Back injury;
- o Development or aggravation of repetitive strain injuries;
- o Circulatory problems in the legs

The main causes of these problems are:

- o Poorly designed seating;
- o Standing for long periods;
- o Reaching too far;
- o Inadequate lighting forcing the worker to get too close to the work.

The following are some basic ergonomic principles for workstation design. A general rule of thumb is to consider body size information, such as height, when choosing and adjusting workstations. Above all, workstations must be adjusted so that the worker is comfortable.

Departments are encouraged to purchase adjustable equipment for the reasonable accommodation of worker. Some workers may have special needs, such as left-handedness, color blindness, vision impairment, etc. The goal should be flexibility to accommodate the workers so that personnel may interface effectively with equipment. Equipment should be sized to fit the individual user.

Equipment, which is available, has adjustable components that enable the worker to modify the workstation to accommodate different physical dimensions and the requirements of the job. Ergonomically-designed walk station can reduce pain and injury, increase productivity, improve morale, and decrease complaints.

Equipment should be task specific to eliminate:

- (a) Static or awkward posture,
- (b) Repetitive motion,
- (c) Poor access or inadequate clearance and excessive reach,
- (d) Display that are difficult to read and understand, and
- (e) Controls those are confusing to operate or require too much force.

Therefore, machines that are selected should be appropriate for the types of tasks performed and be adaptable to multi-purpose use. Office workstations must be designed carefully to meet the need of the staff and to accomplish the aims of the facility.

This study aims to establish and define precisely the areas for comfort, safety and efficiency at work and tries to discuss about the relation of perfect work station with workspace and machine design to prevent the awkward postures and heavy exertion forces of workers that may cause injuries to worker and result in dangers for their safety. These factors are very useful to improve efficiency for human reach at work. In addition, design of standing and seated work areas is another factor that is discussed in this study that could be effective for worker's safety and comfort.

1.2 Background to the problem

In daily life, people cannot grasp and reach an object if this object is too high on a wall. So, physical dimensions of a workplace must be fit to the body dimensions of workers.

Each year there are lots of injuries for workers that occur in factories. All these injuries would result in cost to workplaces. So, workstations design should be perfect otherwise, the workers may feel uncomfortable working at unaffordable stations and hurt themselves when they overextend their shoulder or bend forward and make curved too much in reaching to a tool.

Workers in many factories suffer from many injuries each year that make some problems such as low back pain, upper extremity (shoulders, fingers, arms, hands and wrists), lifting, back pain and hand tools problems. These problems many result in large amount of cost to a factory so; the productivity of the factory goes down.

1.3 Problem statement

Keeping the body in an upright position requires considerable muscular effort that is particularly unhealthy even while standing motionless. It effectively reduces the blood supply to the loaded muscles. Insufficient blood flow accelerates the onset of fatigue and causes pain in the muscles of the legs, back and neck (these are the muscles used to maintain an upright position).

The worker suffers not only muscular strain but other discomforts also. Prolonged and frequent standing, without some relief by walking, causes blood to pool in the legs and feet. When standing occurs continually over prolonged periods, it can result in inflammation of the veins. This inflammation may progress over time to chronic and painful varicose veins. Excessive standing also causes the joints in the spine, hips, knees and feet to become temporarily immobilized or locked. This immobility can later lead to rheumatic diseases due to degenerative damage to the tendons and ligaments (the structures that bind muscles to bones).

Work station design is one of the main factors that can be useful to improve the fit between machines, workers and situations. Work stations that are not designed according to the anthropometric characteristics of the workers will force the workers to adopt awkward or inconvenient postures that are hard to maintain and full of stress to their body. In work station design, focus on standing and seated work area is very important to prevent of injuries and provides the worker's safety and their comfort.

Clearance problems are the main issues in work stations design. Some of clearance problems are: the space between equipment, the dimensions provided for the head, elbow, feet, legs and height and width of walkway. Inadequate clearance may force workers to adopt an awkward posture, hence discomfort for workers that may reducing productivity.

Sometimes workers need to extend their arms to grasp and reach a tool clearly harmful to their safety. Therefore objects and tools that need to be reached regularly must be located close to the worker's body and within the reach area of their body as possible.

Manual material handling including twisting motions of worker's torso, bending, lifting are also a main cause of low back pain among the workers.

1.4 Objective of study

The health and safety representative should play an important role in ensuring that ergonomics is applied accordingly at workplaces. Efforts to ensure that equipment and jobs are designed or adapted to fit workers will help to prevent a variety of health problems caused by poor working conditions.

Therefore the main objectives of this project are:

- a) To determine the limit for reach for safety at work.
- b) To determine the limit for reach for comfort at work.
- c) To determine the limit for reach for efficiency at work.

The basic objective of this project is to determine the limit for reach for safety. This objective wants to study about the weakness among the employees; if these problems occur some losses will be faced; employees should take a medical leave; the factory will lose its employees, and so on.

Workplace safety is about preventing injury and illness to employees and volunteers in the workplace. Therefore, it's about protecting the nonprofit's most valuable asset: its workers. By protecting the employees' and volunteers' well-being, the nonprofit reduces the amount of money paid out in health insurance benefits, workers' compensation benefits and the cost of wages for temporary help. Losses could be due to the cost of lost-work hours (days away from work or restricted hours or job transfer), time spent in retraining programs and services that may suffer due to fewer service providers, stress on those providers who become the substitutes or, worse case, having to suspend or shut down a program due to lack or providers.

Workplace to make the workplace safer, the organization has to acknowledge which potential health and safety hazards are present. Or determine where and what and how a worker is likely to become injured or ill.

The second objective is to determine limit for reach for comfort. This objective will be used in the work station design as a main factor, but other factors such as worker's satisfaction could be added.

The work environment can impact on a person's performance in a number of different ways from the effects to health (heat stress, musculoskeletal disorders); effects that reduce the individual's ability to perform a task; to effects that cause dissatisfaction, resistance to change and uncooperative attitudes.

Workers need adequate working space to carry out the tasks they are responsible for. This means they need sufficient space to move about the work area and to access their work station(s) safely. They also need sufficient space to store work equipment including files and documents that they need to use for their work. Work spaces that are perceived by employees to be cramped have a negative effect on job satisfaction and efficiency, and on long-term sickness and absenteeism.

The third objective is to determine limit for reach for efficiency. This objective will try to help the companies overcoming problems that could be existed in this project.

Today, Ergonomics commonly refers to designing work environments for maximizing safety and efficiency. Biometrics and Anthropometrics play a key role in this use of the word Ergonomics. Engineering Psychology often has a specialty dealing with Workplace or Occupational Ergonomics.

Companies once thought that there was a bottom-line tradeoff between safety and efficiency. Now they embrace ergonomics because they have learned that designing a safe work environment can also result in greater efficiency and productivity. But it is in the design of the workplace as a whole where the greatest impact can be seen for both safety and efficiency. The easier it is to do a job, the more likely it is to see gains in productivity due to greater efficiency. Analogously, the safer it is to do a job, the more likely it is to see gains in productivity due to reduced time off for injury. Ergonomics can address both of these issues concurrently by maximizing the workspace and equipment needed to do a job.

1.5 Scope of study

This study considers on human reach for safety, comfort, and efficiency at work. Machine designs, work station designs, design of standing and seated work areas may be carried out efficiently based on the data on reaches among workers. For this literature library of Universiti of Teknologi Malaysia was selected, since it has students from different races. Moreover it has a good distribution of different genders and ages. Thus, it is selected to carry out the study on the students.

1.6 Organization of thesis

Chapter 1 illustrated the introduction and background of the human reach for comfort, safety and efficiency at work. Chapter 2, literature review will discuss about human reach some information on its theories. Chapter 3, include of methodology about how to carry out and implement the analysis. Chapter 4 provides the result of experiment and examination and analysis that in previews chapters have been used. Chapter 5 consists of discussion. Chapter 6 that is the last chapter is about project conclusion, recommendation and suggestion for future work. Next chapter provide the literature review of the area under investigation.

1.7 Conclusion

This chapter provides an introduction on safety, comfort, and efficiency. The main purpose of this study is based on the problem statement that has been stated clearly in Chapter 2.