OPTICAL RECEIVER BANDWIDTH ENHANCEMENT USING BOOTSTRAP TRANSIMPEDANCE AMPLIFICATION TECHNIQUE

SITI SARA BINTI RAIS

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical-Electronics and Telecommunications)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > DISEMBER 2006

To my beloved mother and father

ACKNOWLEDGEMENT

I would like to thank the many people who have made my Master Project possible. In particular, I wish to express my sincere appreciation to my supervisor, Dr. Sevia Mahdaliza Idrus, for encouragement, guidance, critics and friendship.

I would never have been able to make this accomplishment without my loving support of my family.

My sincere appreciation also extends to all my friends and others who have provided assistance. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful having all of you besides me. Thank you very much.

ABSTRACT

Optical wireless link operates in high noise environments owing to ambient conditions such as sun for outdoors and fluorescent for indoors. The performance of free-space optics is subjected to several atmospheric factors like environmental temperature, fog, smoke, haze and rain. Signal-to-noise ratio (SNR) can vary significantly with the distance and ambient noise. Limited range due to ambient noise is the dominant noise. A good sensitivity and a broad bandwidth will invariably use a small area photodiode where the aperture is small. However, freespace optics requires a large aperture and thus, the receiver is required to have a large collection area, which may be achieved by using a large area photodetector and large filter. However, large area of photodetector produces a high input capacitance that will be reduced the bandwidth. Typical large photodetection area commercial detectors has capacitance are around 100-300pF compared to 50pF in fiber link. Hence, techniques to reduce the effective detector capacitance are required in order to achieve a low noise and wide bandwidth design. In this project, modeling and analysis the bootstrap transimpedance amplifier (BTA) of front-end receiver for input capacitance reduction has been simulated. This technique improved the conventional transimpedance amplifier (TIA) bandwidth up to 1000 times with an effective capacitance reduction technique for optical wireless detector.

ABSTRAK

Rangkaian optik tanpa wayar beroperasi dalam keadaaan hingar yang tinggi disebabkan oleh persekitaran seperti cahaya matahari untuk aktiviti luar manakala aktiviti dalaman terdedah kepada cahaya fluorescent. Prestasi komunikasi optikal tanpa wayar bergantung kepada faktor-faktor persekitaran seperti suhu, kabus, asap dan hujan. Nisbah isyarat kepada hingar boleh berubah bergantung kepada jarak dan persekitaran hingar. Hingar ini merupakan hingar yang paling dominan. Disebabkan persekitaran tanpa wayar, hingar dan kehilangan isyarat laluan sangat tinggi. Penggunaan kawasan kecil fotodiod dapat mengekalkan kepekaan dan keluasan lebar jalur yang baik di mana bukaan fotodiod adalah kecil. Tetapi dalam ruang bebas optik memerlukan bukaan fotodiod yang besar di mana ia memerlukan kawasan pengumpulan yang besar dan ini boleh dicapai menggunakan fotodiod yang mempunyai keluasan yang besar. Bagaimanapun, penggunaan fotodiod ini akan menyumbang kepada peningkatan input kemuatan sekaligus menyebabkan lebar jalur berkurangan. Kebiasaan nilai kemuatan fotodiod yang besar di pasaran adalah dalam lingkungan 100-300pF berbanding 50pF yang digunakan dalam rangkaian fiber optik. Oleh yang demikian, teknik untuk mengurangkan kesan kemuatan fotodiod diperlukan untuk mencapai hingar yang rendah dan dalam masa yang sama juga, memperolehi lebar jalur yang tinggi. Dalam projek ini, BTA yang dimodelkan dan dianalisis untuk mengenalpasti kesan kemuatan telah pun disimulasi menggunakan perisisan Matlab. Teknik ini memperbaiki lebar jalur TIA yang konvensional lebih 1000 kali ganda dengan mengurangkan kesan kemuatan dan sangat sesuai digunakan bagi rangkaian optic tanpa wayar.

TABLE OF CONTENTS

CHAPTER	CONTENTS	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF SYMBOLS	xvi
	LIST OF ABBREVIATIONS	xvii
	LIST OF APPENDIXES	xviii

1 INTRODUCTION

1.1	Fiber-Optic Systems	2
1.2	Free-Space Systems	4
1.3.	Objectives	7
1.4	Scopes	7
	1.4.1 Detector Model	8
	1.4.2 Transimpedance Amplifier	9
1.5	Problem Identified and Solution	9

LITERATURE REVIEW

2

2.1	Free-S	Space Optics (FSO)	13
	2.1.1	The Technology at the heart of Optical	
		Wireless	13
	2.1.2	History	14
	2.1.3	How it works	15
	2.1.4	FSO: Optical or Wireless?	16
	2.1.5	Optical vs. Radio	17
	2.1.6	Outdoor FSO	19
	2.1.7	Indoor FSO	20
	2.1.8	Challenges of FSO	21
		2.1.8.1 Fog	22
		2.1.8.2 Absorption	22
		2.1.8.3 Scattering	23
		2.1.8.4 Physical obstructions	23
		2.1.8.5 Building sway/seismic activity	24
		2.1.8.6 Scintillation	24
		2.1.8.7 Safety	24
2.2	Photo	detector	25
	2.2.1	Semiconductor Photodiodes	29
	2.2.2	PIN Photodiodes	29
		2.2.2.1 PIN Photodiode Model	30
2.3	Optica	al Front-end Design	33
	2.3.1	Low Impedance Front-end	33
	2.3.2	High Impedance Front-end	34
	2.3.3	Transimpedance Front-end	35
2.4	Boots	trap Approach	37
	2.4.1	The Shunt Bootstrap Circuit	37
	2.4.2	The Series Bootstrap Circuit	39

2.5	Optica	al Receiver Noise Considerations	41
	2.5.1	Electronics Noise	42
		2.5.1.1 Thermal-noise	43
		2.5.1.2 Electronic Shot-noise	44
		2.5.1.3 1/f Noise	45
	2.5.2	Photodetector Dark-current noise	46
	2.5.3	Photodetector Thermal-noise	47
	2.5.4	Ambient Light Noise	47
2.6	Optica	al Wireless Receiver Design Considerations	48
	2.6.1	Optical Concentrator	50
	2.6.2	Angle Diversity	52
	2.6.3	Acceptance Angle	52
2.7	Previo	ous Works	53

3 METHODOLOGY

3.1	Spice		56
	3.1.1	Multisim 7	56
		3.1.1.1 The Circuit Design Process	57
		3.1.1.2 Multisim 7 Features Summary	57
	3.1.2	OrCAD Family Release 9.2 Lite Edition	58
3.2	Matla	b	59
	3.2.1	What is Matlab?	59
	3.2.2	The Matlab System	61
3.3	Circui	t Implementation	63
	3.3.1	BTA Circuit and Simulation Using SPICE	65
		3.3.1.1 Floating Source and Series BTA	65
	3.3.2	BTA Circuit and Simulation Using Matlab	66
		3.3.2.1 Transimpedance Amplifier	66
		3.3.2.2 Floating Source and Shunt BTA	67
		3.3.2.3 Series-Shunt BTA	69

RESULTS AND DATA ANALYSIS

4.1	Simulation Results and Analysis Using Spice	71
	4.1.2 Floating Source and Series BTA	71
4.2	Simulation Results and Analysis Using Matlab	73
	4.2.1 Transimpedance Amplifier	73
	4.2.2 Floating Source and Shunt BTA	77
	4.2.2.1 DC Gain 50dB with peaking gain	77
	4.2.2.2 Lag Compensation	80
	4.2.2.3 DC Gain 50dB without peaking gain	81
	4.2.2.4 Comparison BTA A ₀ =20dB with	
	varying C_f and fixed C_f	84
	4.2.2.5 DC Gain 20dB	86
	4.2.2.6 TIA vs. BTA	90
	4.2.3 Series-Shunt Bootstrap	93

5 CONCLUSIONS

4

5.1	Discussions	94
5.2	Conclusions	96
5.3	Future Recommendations	97

REFERENCES	100
Appendices A – F	102-127

х

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Photodetection techniques	27
4.1	Parameter used in TIA Simulations	74
4.2	Results of TIA from Figure 4.4	75
4.3	Parameter used in BTA Simulations for $A_0=50$ dB	77
4.4	Result of BTA from Figure 4.7	78
4.5	Parameter used in BTA Simulations for $A_0=50$ dB	82
4.6	Result of BTA from Figure 4.12	83
4.7	Comparison BTA A ₀ =50dB with variable C_f and fixed C_f	85
4.8	Parameter used in BTA Simulations for A ₀ =20dB	86
4.9	Result of BTA from Figure 4.16	87
4.10	Result of BTA from Figure 4.18	89
4.11	Comparison TIA and BTA A ₀ =50dB	91
4.12	Comparison TIA and BTA A ₀ =20dB	92

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
1.1	A generalized optical communication link	2
1.2	Block diagram of an optical receiver and transmitter	4
1.3	Block diagram of a free-space system	6
1.4	Free-Space Optical Systems	7
1.5	Basic Receiver Model	8
1.6	Generalized circuits for photoreceiver	10
2.1	Historical photos of FSO technology	15
2.2	(a)Diffuse optical LAN (b)Cellular Line-Of-Sight LAN	21
2.3	LightPointe's product use multi-beam systems	23
2.4	(a) PIN photodiode schematic, (b) electric field intensity,(c) light intensity across photodiode	30
2.5	Simple PIN model (a)Physical Structures (b)Equivalent Circuit	31

2.6	A full equivalent circuit for a digital optical fiber receiver including the various noise sources	33
2.7	Low Impedance front-end optical fiber receiver with voltage amplifier	34
2.8	High Impedance integrating font-end optical fiber receiver with equalized voltage amplifier	34
2.9	An equivalent circuit for the optical fiber receiver incorporating a transimpedance (current mode) preamplifier	35
2.10	The op-amp based TIA	36
2.11	(a)Grounded source (b)Floating source of Shunt BTA	38
2.12	Transistor level using the source connection of the input FET	39
2.13	(a)Grounded source (b)Floating source of Series BTA	40
2.14	Block Schematic of the front-end of an optical receiver showing the various sources of noise	42
2.15	Maximum power transfer from a noisy resistor	43
2.16	Shot and thermal-noises in a diode (a)Diode schematic symbol (b)noise equivalent model	45
2.17	Photodetector dark-current noise model	46
2.18	Thermal-noise sources in a photodetector	47

2.19	Multipath propagation in diffuse systems	49
2.20	Multi-spot diffusion system	49
2.21	Optical concentrator concept for computation of G and P_{al}	50
2.22	Optical concentrator	51
2.23	Holographic curve mirror is used to improve SNR	51
2.24	Angle diversity of receiver	52
2.25	Trade-offs exist in a single element receiver	53
2.26	Reflection pattern for diffusing spot	53
3.1	Window of Multisim 7	58
3.2	Window of OrCAD Capture Lite Edition	59
3.3	Window Of Matlab	61
3.4	Flowchart of work progress	64
3.5	Series BTA Circuit	65
3.6	Floating source and shunt BTA circuit	68
3.7	Series-Shunt BTA Circuit	69
3.8	Simplified ac model of the series-shunt BTA circuit from Figure 3.7	70

4.1	BTA frequency responses with variable C_f and C_d =100nF	72
4.2	BTA frequency responses with 3.5pF $C_{\rm f}$	72
4.3	Frequency responses showing effects of circuit capacitances	73
4.4	Frequency response of TIA using parameter in Table 4.1	75
4.5	Bandwidth versus C_{in} for TIA A_0 =50dB	76
4.6	Peaking gain versus C _{in} for TIA A ₀ =50dB	76
4.7	Frequency response of BTA using parameter in Table 4.3	78
4.8	Bandwidth versus C_{in} for BTA $A_0=50$ dB	79
4.9	Peaking gain versus C _{in} for BTA A ₀ =50dB	79
4.10	Frequency response for C_f between 1.5pF to 5pF	80
4.11	Frequency response for C_f between 1.5pF to 2pF	81
4.12	Frequency response of TIA using parameter in Table 4.5	82
4.13	Bandwidth versus C_{in} for BTA $A_0=50$ dB	83
4.14	$C_{\rm f}$ versus $C_{\rm in}$ for BTA $A_0=50$ dB	84
4.15	Comparison between fixed value of $C_{\rm f}$ and variable $C_{\rm f}$	85
4.16	Frequency response of BTA using parameter in Table 4.6	86
4.17	Bandwidth versus C_{in} for BTA $A_0=20$ dB with fixed C_f	87

4.18	Frequency response of BTA A_0 =20dB with varying C_f	88
4.19	Bandwidth versus C_{in} for BTA A_0 =20dB with variable C_f	89
4.20	Comparison of varying C_f and fixed C_f for BTA $A_0=20$ dB	90
4.21	Compariosn TIA and BTA for A_0 =50dB from Table 4.11	91
4.22	Compariosn TIA and BTA for $A_0=20$ dB from Table 4.12	92
4.23	Frequency response of Series-Shunt Bootstrap	93
4.24	Bandwidth of Figure 4.23	93
5.1	Challenges of FSO systems	95
5.2	Noise analysis for front-end receiver circuit	98
5.3	Functional block diagram for an optical receiver front-end	98
5.4	Example of receiver implementation in practical	99

LIST OF SYMBOLS

C _f	-	feedback capacitance
R _f	-	feedback resistance
R _L	-	equivalent shunt resistance
C _d	-	photodiode capacitance
C _{in}	-	total capacitance to the front-end receiver
R _e	-	emitter resistance
Cs	-	amplifier input capacitance
A_0	-	DC gain amplifier
i _d , i _{PD}	-	current source of photodetector
f	-	cut-off frequency
E	-	electric field intensity
Wa	-	dominant pole frequency
w_0	-	unity gain frequency
DC	-	direct current
AC	-	alternating current
Hz	-	Hertz
V_0	-	output voltage
Vs	-	source voltage
K	-	Boltzman's constant
Т	-	absolute temperature
B,BW	-	bandwidth
msec	-	milliseconds
nsec	-	nanoseconds
А	-	area of the depletion region
l_d	-	depletion region length

LIST OF ABBREVIATIONS

TIA	-	Transimpedance Amplifier
BTA	-	Bootstrap Transimpedance Amplifier
Clk	-	clock
PD	-	photodetector
AGC	-	automatic gain control amplifier
LA	-	limiting amplifier
MAs	-	main amplifiers
CDR	-	clock and data recovery
MUX	-	multiplexer
DMUX	-	demultiplexer
LD	-	laser diode
CMU	-	clock multiplication unit
FSO	-	free space optic
Op-amp	-	operational amplifier
РСВ	-	printed circuit board
APD	-	Avalanche Photodiode
CR	-	multiplication of capacitance and resistance
FET	-	Field Effect Transistor
RF	-	Radio frequency
WDM	-	wavelength division multiplexing
FOV	-	field of view
OW	-	optical wireless
MSD	-	multi-spot diffusing
SNR	-	signal-to-noise ratio

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Gantt Chart For Project 1	102
В	Gantt Chart For Research Project Thesis 2	103
С	Source Code Of Series-Shunt BTA	104-108
D	TIA Source Code	109-110
E	BTA Source Code	111
F	Lag Compensation	112-127

CHAPTER 1

INTRODUCTION

A generalized optical communication link is well illustrated in Figure 1.1 [5]. The information to be transmitted to the receiver is assumed to exist initially in an electrical form. The information source modulates the field generated by the optical source. The modulated optical field then propagates through a transmission channel such as an optical fiber or a free-space path before arriving at the receiver.

The receiver may perform optical processing on the incoming signal. The optical processing may correspond to a simple optical filter or it may involve interferometers, the introduction of additional optical fields, or the use of an optical amplifier. Once the received field is optically processed it is detected. The photodetection process generates an electrical signal that varies in response to the modulations present in the received optical field. Electrical signal processing is then used to finish recovering the information that is being transmitted.

Figure 1.1 A generalized optical communication link [5]

1.1 Fiber-Optic Systems

The block diagram of a typical optical receiver and transmitter for optical fiber link is shown in Figure 1.2 [15]. The optical signal from the fiber is received by a photodetector (PD), which produces a small output current proportional to the optical signal. This current is amplified and converted to a voltage by a transimpedance amplifier (TIA). The voltage signal is amplified further by either a limiting amplifier (LA) or an automatic gain control amplifier (AGC Amplifier). The LA and AGC amplifier are collectively known as main amplifiers (MAs) or post amplifiers.

The resulting signal, which is now several 100 mV strong, is fed into a clock and data recovery circuits (CDR), which extracts the clock signal and retimes the data signal [15]. In high-speed receivers, a demultiplexer (DMUX) converts the fast serial data streams into n parallel lower-speed data streams that can be processed conveniently by the digital logic block. Some CDR designs (those with a parallel sampling architecture) perform the DMUX task as part of their functionality, and an explicit DMUX is not needed in this case [15].

The digital logic block descrambles or decodes the bits, perform error checks, extracts the payload data from the framing information, synchronizes to another clock domain, and so forth. The receiver just described also is known as a 3R receiver because it performs signal re-amplification in the TIA (and the AGC amplifier, if present), signal re-shaping in the LA or CDR, and a signal re-timing in the CDR [15].

On the transmitter side, the same process happens in reverse order. The parallel data from the digital logic block are merged into a single high-speed data stream using a multiplexer (MUX). To control the select lines of the MUX, a bit-rate (or half-rate) clock must be synthesized from the slower word cock. This task is performed by a clock multiplication unit (CMU). Finally, a laser driver or modulator driver drives the corresponding optoelectronics device. The laser driver modulates the current of a laser diode (LD), whereas the modulator driver modulates the voltage across a modulator, which in turn modulates the light intensity from a continuous wave (CW) laser. Some laser/modulator drivers also perform data retiming, and thus require a bit-rate (or half-rate) clock from the CMU (dashed line and red colour in Figure 1.2).

Figure 1.2 Block diagram of an optical receiver (top) and transmitter (bottom)[15]

1.2 Free-Space Systems

The high data-rate capability of optical communication systems also make them particularly attractive for use in free-space systems. As the amount of data available continues to grow, there will be increasing need to efficiently distribute the information for further processing, analysis and presentation. Rapidly reconfigurable communication, treaty verification, natural resource determination, atmospheric sensing, weather forecasting and environmental monitoring are functions that are often best performed from satellites. Any single satellite could directly transmit data down to the Earth's surface, but the costs and difficulties involved in maintaining a large number of individual ground stations can be prohibitive. A space-based communication network that allowed satellites placed in a variety of orbits such as low-earth-orbit (LEO), high-earth-orbit (HEO) or geosynchronous-earth-orbit (GEO) to communicate with each other would provide increases in flexibility and data availability. Optical techniques will not replace microwave systems in all applications, however. Low data-rate systems and applications requiring Earth coverage from a single antenna are often better serve by microwaves. The optimum role for optical communications is most likely to be in providing the high data-rate (100+ Mbps) trunk lines [5].

With the high data-rates circulating in the spaceborne network, the problem of transmitting the information back to earth arises. Optical communication can also provide connectivity between satellites and Earth if ground station site diversity is employed. It is desirable to place the various ground sites far enough apart to guarantee that they are located in uncorrelated weather systems and that there is a high probability that at least one of the sites will have a clear, unobstructed view to the satellite. The ground sites would then be interconnected via conventional high data-rate optical fiber technology.

The major subsystems of a free-space optical communication link are illustrated in Figure 1.3 [5]. The telescopes, spatial acquisition, spatial tracking and point-ahead subsystems are used to establish and maintain a stable line-of-sight between the platforms that wish to communicate.

Telescopes are frequently mounted in gimbals so that they can point to a variety of locations such as cross-orbit, down at the Earth, or up towards a relay satellite. The spatial tracking system utilizes the telescope's gimbals to accomplish coarse pointing and uses small, high bandwidth, movable mirrors to accomplish fine tracking.

There are some issues on optical wireless or Free Space Optics (FSO) for instance ambient conditions, range aspects of Bit Error Rate (BER) and Signal to Noise Ratio (SNR), optical spectrum and eye safety considerations. Optical wireless link operates in high noise environments owing to ambient conditions such as sun for outdoors and fluorescent for indoors. There are a limitation of range aspects in FSO such as BER and SNR. The optical wireless link operates with limited power on

account of eye safety considerations like IR hotspots. High power optical could hazard to human eye.

Figure 1.3 Block diagram of a free-space system [5]

1.3 Objectives

Objectives of this project are clarified below.

1.3.1 To improve receiver performance and bandwidth enhancement

The main objective of this project is to improve front-end receiver performance and bandwidth enhancement can perform high gain-bandwidth using bootstrapping technique; so called Bootstrap Transimpedance Amplification (BTA). The BTA should be improved especially in terms of bandwidth enhancement compared to transimpedance technique.

1.3.2 The design will be modeled and simulated using Matlab

The improvement of bandwidth can be modeled and simulated using Matlab. All the comparisons between frequency response of Transimpedance and Bootstrap Amplification can be plotted to analyze the for performance characterization.

1.4 Scopes

A free-space optical system is shown graphically in Figure 1.4. The main scope concentrates on the front-end receiver in a box which contains only a detector and preamplifier.

Figure 1.4 Free-Space Optical Systems

Figure 1.5 Basic Receiver Models [15]

The basic receiver model consists of [15]

- i. A photodetector
- ii. A linear channel model that comprises the transimpedance amplifier (TIA), the main amplifier (MA) & optionally a Low Past Filter (LPF)
- iii. A binary decision circuit with a fixed threshold (VDTH)

As mentioned before, we are only concerned with a detector and TIA as shown in a box in Figure 1.5. The detector we used is a p-i-n photodiode while Bootstrap Transimpedance Amplification technique is used as a preamplifier.

1.4.1 Detector model

A detector's function is to convert the received optical signal into an electrical signal, which is then amplified before further processing. A p-i-n photodetector have been studied as a detector model. In all cases, we have found that the signal current is linearly related to the received optical power and that the noise current spectrum is approximately white & signal dependent [15]. We model the p-i-n photodiode using the simple cylindrical volume structure as illustrated further in Chapter II. We assume the system is ideal where noise analysis is ignored in this detector.

1.4.2 Transimpedance amplifier (TIA)

The TIA can be modeled with a complex transfer function that relates the output voltage V_o to those of the input current I_{PD} . An optical receiver's front-end design configurations can be built using contemporary electronics devices such as operational amplifier (op-amp), bipolar junction transistor (BJT), field effect transistor (FET), or high electron mobility transistor. The receiver performance that is achieved will depend on the devices and design techniques used. In this project, a Bootstrap Transimpedance Amplification (BTA) technique is used to perform high gain-bandwidth.

1.5 Problem Identified and Solution

A fundamental requirement in the design of an optical receiver is the achievement of high sensitivity and broad bandwidth. These two features are, generally, in conflict with a capacitive device, as the CR product, of course, increases with load resistance. In any photodetector application, capacitance is a major factor which limits response time. Decreasing load resistance improves this aspect, but at the expense of sensitivity [2].

There are many techniques have evolved because of the following basic features of photodiode :

- a) It essentially acts as a current source
- b) It is capacitive

equivalent circuit of photodiode

Figure 1.6 Generalized circuits for photoreceiver

- Id : photodiode current
- Cd : photodiode capacitance
- Rs : series photodiode resistance
- R1 : load resistance
- Rd : internal photodiode resistance
- Cs : stray capacitance
- CA : amplifier input capacitance
- RA : amplifier input resistance

A generalised equivalent circuit is shown in Figure 1.6, from which the upper cut-off frequency is, simply,

$$f = \frac{1}{2\pi R_L C_{in}} \tag{1.1}$$

where C_{in} is a total capacitance and R_L is an equivalent shunt resistance.

Due to the wireless environments, there are high path loss and background noise. A good sensitivity and a broad bandwidth will invariably use a small area photodiode where the aperture is small. But, FSO require a large aperture and thus, the receiver is required to have a large collection area, which may be achieved by using a large area photodetector and large filter. However, large area of photodetector produces a high input capacitance that will be reduced the bandwidth.

The total capacitance to the front-end of an optical receiver, C_{in} is given by [4]

$$C_{in} = C_d + C_s \tag{1.2}$$

where C_d is a photodetector capacitance and C_s is an amplifier input capacitance. We need to minimize in order to preserve the post detection bandwidth. It is necessary to reduce R_L corresponding to the equation (1.1) to increase the bandwidth. Consequently, the thermal noise element due to the load resistor will increase. This relationship is given by [4]

$$i_{n(Rl)}^2 = \frac{4KTB}{R_L} \tag{1.3}$$

where K is Boltzmann's constant, T is the absolute temperature and B is the postdetection (electrical) bandwidth of the system.

Thus, the trade-off becomes either to lower R_L to give a high bandwidth, or increase R_L to give low noise currents. Therefore, in this project we introduce BTA to enhance the optical wireless receiver bandwidth by reducing input capacitance, C_{in} employing BTA.

An optical receiver's front-end design can be usually grouped into 1 of 4 basic configurations [5]:

- a) A resistor termination with a low-impedance voltage amplifier
- b) A high impedance amplifier
- c) A transimpedance amplifier
- d) A noise-matched or resonant amplifier

Any of the configurations can be built using contemporary electronics devices such as operational amplifiers (Op-Amp), bipolar junction transistors (BJT), field effect transistors (FET) or high electron mobility transistor (such as CMOS). The receiver performance that is achieved will depend on the devices and design techniques used. The theory of the Bootstrap Transimpedance Amplifier (BTA) was found but very less effort on the modeling. Therefore, in this work a BTA circuit has been studied and analyzed especially the effects of the input capacitance of the photodetectors.

REFERENCES

- Abraham, M. Design of Butterworth-type transimpedance and bootstraptransimpedance preamplifiers for fibre-optic receivers. *IEEE Transactions on Circuit and Systems*, 1982. CAS-29(6). 375-382
- Green, R.J., and Mcneill, M.G. Bootstrap Transimpedance Amplifier: A New Configuration. *IEE Proceedings*, 1989, 136(2): 51-61
- 3. Sibley, M.J.N. Optical Communications. London: Macmillan. 1990
- 4. Senior, J.M. Optical Fiber Communications. New York: Prentice Hall. 1992
- 5. Alexander, S.B. *Optical Communication Receiver Design*. Bellingham, Washington : SPIE The International Society for Optical Engineering. 1997
- Chien, F.T. and Chan, Y.J. Bandwidth Enhancement of Transimpedance Amplifier by a Capacitive-Peaking Design. *IEEE Journal of Solid State Circuits*. 1999. 34(8): 1167-1170
- Hoyle, C. and Peyton, A. Shunt Bootstrapping Technique To Improve Bandwidth Of Transimpedance Amplifiers. *Electronics Letters*, 1999. 35(5): 369 – 370
- 8. Tomasi, W. *Electronic Communications Systems: Fundamentals through advanced.* 4th Edition. Upple Saddle River, New Jersey: Prentice Hall. 2000
- Idrus, S.M., Ramierez-Inguiez, R. and Green, R.J., Receiver Amplifiers for Optical Wireless Communication System. *3rd PREP*, University Of Keele, UK, p19-20. Apr. 2001
- Centurelli, F., Luzzi, R., Olivieri, M. and Trifiletti, A. A Bootstrap Technique for Wideband Amplifiers. *IEEE Transactions on circuits and systems*, 49(10). 2002
- O'Brien, D. C., Faulkner, G. E., Jim, K., Zyambo, E. B., Edwards, D. J., Whitehead, M., Stavrinou, Parry, G., Bellon, J., Sibley, M. J., Lalithambika, V. A., Joyner, V. M., Samsudin, R. J., Holburn, D. M., and Mears, R. J. High-

speed integrated transceivers for optical wireless. *IEEE-Communications-Magazine*. 2003. 41 : 58-62

- 12. Analui, B. and Hajimiri, A. Bandwidth Enhancement for Transimpedance Amplifiers. *IEEE Journal of Solid-State Circuits*. 2004. 39(8): 1474-1480
- Green, R.J., Idrus S.M., Ramirez Iniguez, R, and Sweet, C. Optical Wireless Interface Technology. OSDA Workshop, Oundle, April 2005
- 14. Boucouvalas, A.C. (2005). *Ambient Light and its effect on Receiver Design* for Indoor Wireless Optical Links. Bournemouth University. unpublished.
- Sackinger, B. Broadband Circuits for Optical Fiber Communication. Hoboken, New Jersey : John Wiley & Sons Inc. 2005
- Ghassemlooy, F.Z. (2006). Optical Wireless Communications The Story So Far. The University Northumbria, Newcastle, U.K. unpublished
- Idrus, S.M., Hafizah, N. and Azis, S.I.A. Performance Analysis of Bootstrap Transimpedance Amplifier for Large Windows Optical Wireless Receiver. *RFM2006:* Putrajaya. Sept 2006