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ABSTRACT 

 

 

 

 

Numerical solution of 2-D polar cavity is very less investigated analytically, 

numerically and experimentally. The investigation is mainly to understand the flow 

phenomena in the domain. One of the difficulties that occur for the numerical 

investigation is domain setup for complex geometry. The numerical solution for 

polar cavity is made possible by ANSYS FLUENT. Steady state incompressible 

ideal gas is considered for simplicity and other mechanical and thermal properties of 

fluid are constant with respect to temperature and pressure. The cavity’s stationary 

walls such as inner radial wall and side wall kept as isothermal wall, while outer 

radial wall is set  in motion in circumferential direction. The physical characteristic 

of flow phenomena in the polar cavity is analysed for different Reynolds numbers 

and different angles (30
0
, 60

0
 and 90

0
). Based on the mean velocity results, 

convective heat transfer coefficient in the driven curve cavity is computed. At end of 

the study, it is expected the convective coefficient increases with respect to the 

Reynolds numbers and cavity angle. The results are verified based on the numerical 

solution found in the in the published literature.  
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ABSTRAK 

 

 

 

 

Penyelesaian secara  berangka, analitik mahupun secara ujikaji masalah rerongga 

kutub memang agak kurang diberi perhatian. Penelitian ini dilakukan adalah  untuk 

memahami gelagat aliran di dalam rerongga tersebut. Salah satu masalah yang 

dihadapi dalam penyelesaian secara berangka ialah dalam membangunkan domin 

penyelesaian geometri yang komplek ini. Penyelesaian berangka masalah aliran di 

dalam reronga kutub ini telah mampu dilaksanakan dengan ANSYS FLUENT.  

Untuk memudahkan penyelesaikannya aliran bendalir dianggap sebagai gas unggul 

lagi tidakbolehmampat dengan sifat mekanikal dan termalnya kekal malar terhadap 

suhu dan tekanan.  Semua dinding dinding rerongga dianggap isotermal kecuali 

dinding atas yang bergerak.   Ciri ciri fizikal fenomena aliran di dalam rerongga 

kutub ini dianalisis pada pelbagai magnitude nombor Reynolds dan sudut bukaan 

yang berlainan. Berasaskan hasil halaju purata dinding yang bergerak, koeffisien 

pemindahan haba olakan di dalam rerongga kutub tersebut ditentukan secara 

berangka. Kajian ini menunjukkan bahawa nilai koeffisien pemindahan haba olakan 

di dalam rerongga kutub bertambah dengan pertambahan magnitude numbor 

Reynolds dan sudut bukaan rerongga tersebut. Keputusan ini disahkan kebenarannya 

melalui  perbandingan nilai koeffisien pemindahan haba olakan masalah serupa yang 

diberi dalam literatur yang telah diterbitkan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

Computational Fluid Dynamics, (CFD) become upsurge of interest by means 

of high performance computing hardware and user friendly interfaces have led to 

diverge of fluid analyzing. The CFD techniques have implemented into design, 

research and development, and manufacture of aircraft and automotive. As the CFD 

is appropriate a vital component in the flow analysis, driven cavity flow have always 

been the attention due to the simplicity of geometry and boundary condition. 

Contempt its simplicity, it is helped to shows attractive flow features as the 

geometries and Reynolds numbers varies. With available tremendous of computer-

based simulation encouraging to analyze the different geometries and varies 

Reynolds numbers to present different flow features with high accuracy and 

numerical efficiency. The majority of cavity driven flows for steady incompressible 

flow were done by numerical studies. These shows discrepancies in studies, 

however, this study can be continued to computational of heat transfer in the cavity. 
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1.2 Background Study 

 

 

The 2-D incompressible cavity flow has been studied numerically and 

experimentally. The 2-D cavity might be square, rectangular, triangular, and cone 

shapes. It can be polar cavity.  They are numerous important engineering application 

this gadget. Most of the literatures presented the numerical studies about physical 

flow patterns inside the cavity for various Reynolds numbers. Among the literatures 

are Erturk E. and Gokcol O. (2005), Henri C.H and Saad M. (2005), Baytas A.C. and 

Liaqat A. (2000), Glowinski R., Guidoboni G. and Pan T.-W (2005), Xu H., Zhang 

C. and Barron R. (2005), Cheng M. and Hung K.C. (2005), Povitsky A. (2005), 

where each of them present different geometries and the results with different 

numerical approach.   

 

 

 In 1977, Ghia U. Ghia K.N and Studeruss C.J, computed 3-D laminar 

incompressible flow in straight polar cavity by numerical method. In the study some 

assumption have been done which is polar duct’s axial flow direction the governing 

differential equations are parabolic, while for cross-flow the equation remain as 

elliptic for the computation of 3-D polar duct. To accomplish the assumption, they 

have made some limitation on their analysis such that entrance flow Reynolds 

number cannot be too low and the axial velocity must not be negative values 

everywhere.  

 

 

 The applications of the cavity flow are turbo machinery flow in the blade 

passages, heat exchangers and blood flow in the human arterial system. In 

engineering, examiner really wants to study the fluid motion in a cavity in order to 

optimize the effectiveness of flow in that cavity. It shows that the driven cavity flow 

analysis is very important in our daily life. 
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1.3 Problem Statement  

   

 

Polar cavity driven flow is very less investigated due to its complex geometry 

and complex mathematical modeling. Eventually, investigator cannot examine the 

fluid motion inside of driven cavity. Based on literature, the last was analyzed by 

Ghiak.U, et al. (1977) and it is not examined for high Reynolds numbers.  

 

 

 Incompressible flow in polar cavity became very subjective to study the fluid 

motion in engineering application such as in pump’s impellers, turbo machinery’s 

blade passages, rotating heat exchangers and blood flow in the human arterial system 

and etc. Besides, the coefficient of forced convective heat transfers cannot to be 

compute due to unknown mean velocity at cavity. 

 

 

With these considerations, a study in polar driven cavity is conducted to study 

the flow physical and to calculate mean velocity of fluid inside cavity and the rate of 

heat transfer between fluid and the wall.   

    

 

 

 

1.4 Objective  

 

 

The objective of this study is to analyze numerically the effect fluid flow 

physical; especially the mean velocity of fluid on coefficients of convective heat 

transfer for varies Reynolds no and cavity angles.  

 

 

  

  

1.5 Significance of the Project 

 

 

One of the important of this project is to study the physical properties of flow 

and understand the rate of heat transfer from body to fluid. Most of today’s 

technologies operates with higher frequency (rotation or translation or even in 

microprocessor) which dissipate heats. The faster heat release system helps a system 
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to operate effectively and efficiently. Besides, this numerical study contributes to 

development department of design to create very effective channel to release heat 

from particular engineering application, especially turbo machinery and motors. With 

this particular design concept will improve the reliable of component or equipment 

or an integrated system. To succeed the goal at first have to study the flow physical 

and the rate of heat transfer at polar cavity.  

 

 

 

 

1.6      Research Scope        

 

 

This project focuses on the numerical study of convective coefficient of heat 

transfer in polar cavity, where the flow profile is taken for consideration to achieve 

the main objective. The research scopes of this project are as follow; 

 

  Design criteria 

I. Development of polar cavity as discussed: 

Cavity angles (30
0
, 60

0
, 90

0
); dimensionless radius is constant. 

II. Identify data input for the software (Gambit and Fluent)  

Flow analysis: 

III. Analyze the flow physical characteristic; the velocity profile in x and 

y direction as Reynolds numbers increases. 

IV. Analyze the flow in regions with corners and curved boundaries. 

Thermal analysis: 

V. Analyze temperature distribution inside the cavity 

VI. Numerically compute the coefficient of heat transfer for various 

Reynolds number and cavity angles. 
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1.7     Research Methodology 

 

 

To complete this project, few important steps need to be followed. The steps 

are: 

 

I. Data collection 

II. Polar cavity design for angle (30
0
, 60

0
 ,90

0
 ) 

III. Reynolds number ranging (0, 100, 200, 500, 800, 1000, 1200, 1500)  

IV. Boundary condition settings 

V. Development of meshing 

VI. Identify the convergence of results 

VII. Analyse velocity profile, stream line and eddy at corners 

VIII. Do numerical analysis to calculate mean velocity in cavity 

IX. Analyse thermal distribution in cavity 

X. Compute the coefficient convective heat transfer 

XI. Repeat steps, III to X for greater angle 

XII. Discuss the flow phenomena inside cavity, thermal distribution and at 

last not least the effect of Reynolds number and cavity angle on 

coefficient of convective heat transfer  

XIII. Conclusion 
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