EFFECT OF HEAT TREATMENT ON THE MICROSTRUCTURES AND HARDNESS OF Ti-48Al-xCr ALLOYS

FARIZA BINTI MOHAMED JAMIL

A thesis submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical-Materials)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > JANUARY 2012

FFECT OF HEAT TREATMENT ON THE MICROSTRUCTURES AND HARDNESS OF Ti-48A1-xCr ALLOYS

FARIZA BINTI MOHAMED JAMIL

Universiti Teknologi Malaysia

This thesis is dedicate to My mother Fatimah binti Abu Kassim And

My father Mohamed Jamil bin Abdul Samad

ACKNOWLEDGEMENT

In the name of Allah, the Most Benevolent, the Most Merciful. First of all I wish to record immeasurable gratititude and thankfulness to the One and The Almighty Creator, the Lord and Sustainers of the universe, and the Mankind in particular. It is only had mercy and help that this work could be completed and it is keenly desired that this little effort be accepted by Him to be some service to the cause of humanity.

First and foremost, I would like to express my deepest gratitude to my supervisor Prof. Dr. Esah binti Hamzah for her guidance, support, and understanding during this research work. I am indebted to her for providing a supportive environment in which this research was conducted and her endless support throughout the thesis write-up. Not forgetting contribution from Material Science Laboratory, Metallurgy Laboratory and Production Laboratory (FKM, UTM) for providing assistance at various instances. I am very thankful for their assist.

My fellow postgraduate students should also be recognised for their support. My sincere appreciation also extends to all my colleagues; Mohd Syazwan, Kurnia, Nor Farah Bazilah and others who have provided assistance at various occasions. Their views and tips are useful indeed. nfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.

ABSTRACT

Microstructural development during continuous cooling (0.245°C/min to 500°C/min) from the α -Ti phase region and subsequent annealing treatment, 1450°C (15minutes) \longrightarrow 1250°C (1 hour) has been investigated using Ti-48Al, Ti-48Al-2Cr, Ti-48Al-4Cr and Ti-48Al-8Cr (at. %) alloys. In the Ti-48Al alloys and Ti-48Al-2Cr, nearly fully lamellar transform fully lamellar with the lamellar grain size and lamellar spacing decrease as the cooling rates increases. At slowest cooling rates, a small amount of Widmanstatten-lamellar structure observed appears to be intermediate between the lamellar structure. Meanwhile, addition of chromium up to 4%, at any cooling rates the lamellar grain size remain unchanged. But the formation of β phase is increases at fastest cooling rate (oil quenched). This is due to the precipitation of the β phase at grain boundaries during heat treatment and insufficient time to dissolve to α and γ phase due to fast cooling. Slowest cooling rates (furnace cooled) all β phase completely dissolved as the following transformation $\beta \rightarrow \alpha + \gamma$ $\rightarrow \alpha_2 + \gamma$. The study revealed at 8% of Chromium slowest and fastest cooling rates shows large portion of β phase at precipitated at grain boundaries but at intermediate cooling rates the β phases seem disappeared or dissolved. Microhardness analysis shows that several factors significantly increase the hardness value of Ti-48Al alloys which is the evolution of α_2 -volume fraction, high cooling rates and smallest lamellar spacing.

ABSTRAK

Pembentukan mikrostruktur semasa penyejukan berterusan (0.245°C/min to 500°C/min) daripada α-Ti fasa dan diikuti dengan pembaikan penyepuhlindapan 1450°C (15minit) → 1250°C (1 jam) telah dikaji dengan menggunakan Ti-48Al, Ti-48Al-2Cr, Ti-48Al-4Cr and Ti-48Al-8Cr (at. %) aloi. Bagi Ti-48Al and Ti-48Al-2Cr aloi, berhampiran sepenuhnya lamella mengubah kepada sepenuhnya lamella dengan saiz bijian lamela dan penurunan jarak lamela sebagai kenaikan kadar pendinginan. Pada kadar paling perlahan penyejukan, sejumlah kecil struktur Widmanstattenlamela diperhatikan muncul untuk menjadi perantaraan di antara struktur lamela. Sementara itu, kromium sehingga 4%, di mana-mana kadar pendinginan saiz bijian lamela kekal tidak berubah. Tetapi pembentukan fasa β meningkat pada kadar terpantas penyejukan (minyak dipadamkan). Ini adalah disebabkan oleh pemendakan fasa β di sempadan bijian semasa rawatan haba dan masa yang tidak mencukupi untuk membubarkan α dan γ fasa disebabkan oleh penyejukan pantas. Penyejukan kadar paling perlahan (relau disejukkan) semua fasa β sepenuhnya dibubarkan sebagai β transformasi berikut $\beta \longrightarrow \alpha + \gamma \longrightarrow \alpha_2 + \gamma$. Kajian ini mendedahkan pada 8% Kromium paling perlahan dan terpantas kadar pendinginan menunjukkan sebahagian besar fasa ß di dicetuskan di sempadan bijian tetapi pada kadar penyejukan perantaraan fasa ß seolah-olah hilang atau dibubarkan. Analisis Microhardness menunjukkan bahawa beberapa faktor meningkatkan nilai kekerasan aloi Ti-48Al yang evolusi pecahan α_2 -isipadu, kadar penyejukan yang tinggi dan terkecil jarak lamela.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE PAGE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vii
	TABLE OF CONTENTS	viii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATIONS	XX

1 INTRODUCTION

1.1	Introduction	1
1.2	Objectives	3
1.3	Statement of Research Problems	4
1.4	Scope of Study	4

2 LITERATURE REVIEW

2.1	Introduction	5
2.2	Titanium Alloys	6
2.3	Titanium Aluminides	7

	2.3.1	Intermetallic Compound	9
2.4	Near (Gamma Titanium Aluminides	10
	2.4.1	Equaixed Microstructures	12
	2.4.2	Lamellar Microstructures	12
	2.4.3	Duplex Microstructures	13
2.5	Two I	Phase Near Gamma Titanium Aluminides	14
	2.5.1	Crystal Structure	14
	2.5.2	Microstructures	15
		2.5.2.1 Microstructures Features	17
	2.5.3	Mechanical Properties	18
2.6	Terna	ry Gamma Titanium Aluminides	20
	2.6.1	Effect Addition of Chromium on	
		Microstructure of Ti-Al alloys	21
	2.6.2	Effect Addition of Chromium on	
		Mechanical Properties of Ti-Al alloys	24
2.7	Appli	cation of Titanium Aluminides	24
	2.7.1	Aerospace Applications	25
	2.7.2	Automotive Applications	27

3 HEAT TREATMENT

3.1	Introduction	29
3.2	Transformation from α field	30
	3.2.1 Massive Transformation	30
	3.2.2 Widmanstatten Formation	31
	3.2.3 Lamellar Formation	32
3.3	Transformation of γ Titanium Aluminides	34
	3.3.1 Discontinous Coarsening	36
3.4	Effects of Heat Treatment on Microstructures and	
	Mechanical Properties	36
3.5	Effects of Different Cooling Rate on	
	Microstructures	41

RESEARCH METHODOLOGY

4

5

4.1	Introd	uction	44
4.2	Mater	ials	45
4.3	Sampl	le Preparations	47
4.4	Heat 7	Freatnent Processes	48
4.5	Mater	ial Characterization	
	4.5.1	Energy Dispersive X-Ray Analysis (EDX)	49
	4.5.2	X-Ray Diffraction (XRD)	50
	4.5.3	Optical Image Analyzer	51
	4.5.4	Scanning Electron Microscope (SEM)	52
	4.5.5	Characterization of Microstructural	
		Features	53
4.6	Room	Temperature Mechanical	
	Chara	cterization	53
	4.6.1	Hadness	53

RESULTS AND DISCUSSIONS

5.1	Introduction		55	
5.2	Micro	Microstructural Characterization of		
	As-Re	eceived Materials	55	
	5.2.1	Chemical Composition of Ti-48Al Alloys	55	
	5.2.2	Microstructure of Ti-48Al Alloys	56	
	5.2.3	X-Ray Diffraction Analysis of As-received		
		Samples	59	
	5.2.4	Energy Dispersive X-Ray Analysis of As-		
		Received Samples	61	
	5.2.5	Hardness Property of As-Received Ti-48Al		
		Alloys	62	
5.3	Effect	s of Chromium on Heat Treated Ti-48Al-xCr		
	Alloys	5	64	

	5.3.1	Microstructure Characterization of Heat	
		Treated Ti-48%Al Alloys	64
		5.3.1.1 Hardness Property of Heat Treated	
		Ti-48%Al Alloys	69
	5.3.2	Microstructure Characterization of Heat	
		Treated Ti-48%Al-2%Cr Alloys	70
		5.3.2.1 Hardness Property of Heat Treated	
		Ti-48%Al-2%Cr Alloys	75
	5.3.3	Microstructure Characterization of Heat	
		Treated Ti-48%Al-4%Cr Alloys	76
		5.3.3.1 Hardness Property of Heat Treated	
		Ti-48%Al-4%Cr Alloys	80
	5.3.4	Microstructure Characterization of Heat	
		Treated Ti-48%Al-8%Cr Alloys	81
		5.3.4.1 Hardness Property of Heat Treated	
		Ti-48%Al-8%Cr Alloys	85
5.4	Effect	s of Cooling Rates on Heat Treated Ti-48Al	
	-xCr A	Alloys	86
	5.4.1	Oil Quenched	86
	5.4.2	Air Cooled	88
	5.4.3	Furnace Cooled	89

6	CONCLUSION	92

REFERENCES	95
APPENDICES	97

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Comparison of typical properties with conventional Ti-Alloys, superalloys, α_2 -Ti ₃ Al and γ_2 -Ti Al based Intermetallics	8
	y-mail based intermetantes	15
2.2	Classification of near gamma titanium aluminides	
2.3	Chemical composition of lamellar structure γ	23
2.5	phase and β phase in Ti-48Al alloys	23
2.4	Results of lamellar grains size and lamellar spacing measurements	23
3.1	Microstructures and average diameter at different cooling rate after heat treated at 1200°C for Ti-48 and Ti-45at.%Al	42
4.1	Chemical Composition of as-received and as-cast γ -TiAl samples	45
4.2	Parameters for X-Ray Diffraction (XRD) measurement	50
5.1	Results of EDX analysis	56

5.2	Chemical composition of lamellar structure, γ phase and β phase in Ti-48Al alloys	62
5.3	Average hardness of Ti-48Alloys	63
5.4	Results of lamellar grain size and lamellar spacing measurements	67
5.5	Measurement of average grain size and lamellar spacing of Ti-48%Al-2%Cr	73
5.6	Chemical composition each phase (γ and α_2) of heat treated Ti-48%Al-2%Cr	74
5.7	Measurement of average grain size of Ti-48%Al- 4%Cr	78
5.8	Compositions of $\alpha_2 + \gamma$ lamellae, fine γ and β phase in Ti-48%Al-4%Cr	79
5.9	Compositions of $\alpha_2 + \gamma$ lamellae, fine γ and β phase in Ti-48%Al-8%Cr	83
5.10	Measurement of average lamellar grain size and lamellar spacing of Ti-48%Al-8%Cr	83

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Proposed Titanium-Aluminium Phase Diagram	10
2.2	Central portion on Ti-Al binary phase diagram. Shaded area indicates composition range that is the basis for two-phase gamma titanium aluminides	11
2.3	Illustration of the apparent microstructures in γ -TiAl; a) equiaxed b) duplex and c) lamellar	12
2.4	Crystal Structure of γ-TiAl	14
2.5	Scanning electron (back scattered electron mode) micrograph of γ -TiAl	16
2.6	Optical micrograph of γ -TiAl	18
2.7	Phase equilibria of Ti-Al-Cr ternary system at 1200^{0} C and 1000^{0} C	22
2.8	Low pressure turbine (LPT) rotor	
2.9	Low pressure turbine (LPT) γ blades in the as-cast	25
	condition ready for machining	26

2.10	(a) Investment Cast γ -TiAl Diffuser (Schafrik, 2001), (b) Close-Out Beam Castings of γ -TiAl for Outlet-Nozzle of HSCT Engine (Loria, 2000), (c) Transition Dust-Beam Castings of γ -TiAl for GE90 Engines (Loria, 2000), (d) Cast I-Beam and Track of γ -TiAl for Outlet-Nozzle of HSCT Engine (Loria, 2000).	26
2.10	(e) Advanced Engine Rada Diffuser of As-Cast γ -	27
(continued)	TiAl (Loria, 2000), (f) Triple Corrugation (Loria, 2000).	
2.11	Cast Turbocharger Rotor using Ti-46Al-7Nb-1Cr	27
2.12	Cast γ -TiAl Exhaust Valves in Testing for High Performance Cars in US and in Europe	28
2.13	Piston Head for a Diesel Engine	28
3.1	Movement of the Shockley parts transferring from hcp to fcc	33
3.2	Binary phase diagram of Ti-Al alloys	35
3.3	Optical micrograph of a nearly lamellar microstructure	35
3.4	Schematic illustration of the cycle heat treatment route	37
3.5	Schematic illustration of the refining process occurring by discontinuous coarsening in one cycle of CHT-B	37

3.6	Effects of numbers of cycles on the average grain diameter and grain boundaries Ti-48Al-2Cr-CNb	38
3.7	Microstructure before and after rapid heat treatment a) as cast b) After 8 times R-HT	39
3.8	Optical microstructure of a) one step HT and b) two steps HT	40
3.9	Schematic diagram when the TiAl alloys heated to near α phase temperature	41
3.10	Microstructures of Ti-46Al-2Cr-2Nb after solutions treated at 1350°C for 15 min and then a) water, b) organic aqueous solution NQ, c) oil queched. γ_f : feathery γ ; γ_m : massive γ	43
4.1	Research Methodology	46
4.2	Schematic drawing of sample for polishing	47
4.3	Schematic drawing for heat treatment test	47
4.4	Schematic heat treatment temperature-time path used in heat treatment, T_{α} = Temperature transus α phase field, Te = Eutectoid temperature, Tt =Temperature treatment. Q =Quenched, A=Air- cooled, FC= Furnace-cooled	48
4.5	Schematic Drawing of X-Ray Detector for EDX Analysis	49
4.6	X-Ray Diffractometer	50

4.7	Image Analyzer	51
4.8	Scanning Electron Microscope	52
4.9	Vickers Microhardness Tester	54
5.1	Optical micrographs of Ti48%Al alloys: (a) Ti-48%Al (b) Ti-48%Al-2%Cr	57
5.1 (continued)	Optical micrographs of Ti48%Al alloys: (c) Ti- 48%Al-4%Cr and d) Ti-48%Al-8%Cr	58
5.2	XRD results of Ti-48Al alloys: (a) Ti-48%Al	59
5.2 (continued)	XRD results of Ti-48Al alloys: (b) Ti-48%Al- 2%Cr and (c) Ti-48%Al-4%Cr and (d) Ti-48%Al- 8%Cr	60
5.3	a) Optical Micrograph of Ti-48Al-8Cr at magnification of 50x; b) and c) EDX results to verify β phase (spot A) and γ (TiAl) phase (spot B)	61
5.4	Average hardness at room temperature as a function of Crcontents in As-received Ti-48Alloys	64
5.5	Optical Micrograph of heat treated Ti-48%Al followed by (a) Oil quenched and (b) Air cooled	66
5.5 (continued)	Optical Micrograph of heat treated Ti-48%Al followed by (c) Furnace cooled	67

xvii

	٠	٠	٠
N/N /			
x v/			
/ v	۰	۰	

5.6	XRD analysis on the heat treated Ti-48%Al	68
	followed by (a) Oil quenched and (b) Air cooled	69
5.6	XRD analysis on the heat treated Ti-48%Al	0,7
(continued)	followed by (c) Furnace cooled	
57	Microbardness at room temperature as a function	70
5.7	of cooling rate in Ti-48%Al alloys	
		72
5.8	Optical Micrograph of heat treated Ti-48%Al-	
	2%Cr followed by (a) Oil quenched; (b) Air cooled	
	and (c) Furnace cooled	
5.0	VDD analysis on the best treated T: 480/ A1 20/Cr	74
5.9	followed by (a) Furnace cooled	
	Tonowed by (a) I difface cooled	75
5.9	XRD analysis on the heat treated Ti-48%Al-2%Cr	
(continued)	followed by (b) Oil quenched and (c) Air cooled	
		76
5.10	Average microhardness at room temperature as a	
	function of cooling rate in Ti-48%Al-2%Cr alloys	
5 1 1	Ontion! Missessments of boot twested Ti 490/ Al	77
5.11	4%Cr followed by (a) Oil guenched and (b) Air	
	cooled	
5.11	Optical Micrograph of heat treated Ti-48%Al-	78
(continued)	4%Cr followed by, c) Furnace cooled	
5 10	VDD analyzis on the heat treated T: 490/ A1 40/C	79
5.12	followed by (a) Oil guenched and (b) Air cooled	
	Tonowed by (a) on quenened and (b) An eooled	

5.12	XRD analysis on the heat treated Ti-48%Al-4%Cr	80
(continued)	followed by (c) Furnace cooled	
5.13	Average microhardness at room temperature as a function of Cr contents in Ti-48%Al-4%Cr alloys	81
5.14	Optical Micrograph of heat treated Ti-48%Al- 8%Cr followed by (a) Oil quenched; (b) Air cooled and (c) Furnace cooled	82
5.15	X-Ray Diffraction Analysis on heat treated Ti- 48%Al-8%Cr followed by (a) Oil quenched; (b) Air cooled and (c) Furnace cooled	84
		85
5.16	Average microhardness at room temperature as a function of Cr contents in Ti-48Al-8Cr alloys	
5.17	Average microhardness after heat treated and as- received as a function of Cr contents in Ti-48A1 alloys	87
5.18	Average microhardness after heat treated and as- received as a function of Cr contents in Ti-48A1 alloys	89
5.19	Average microhardness after heat treated and as- received as a function of Cr contents in Ti-48Al alloys	91

LIST OF ABBREVIATIONS

CHT	- Cycle Heat Treatment
RHT	- Rapid Heat Treatment
FL	- Fully Lamellar
NFL	- Nearly Fully Lamellar
%	- Percentage
⁰ C	- Degree celsius
at.%	- Atomic percentage
Ti ₃ Al	- Super alpha titanium aluminide
TiAl	- Gamma titanium aluminide
α_2	- Super alpha/hexagonal closed packed atomic structure
γ	- Gamma Phase/ tetragonal atomic structure
β	- Betha phase/ cubic atomic structure
α	- Alpha phase/ hexagonal atomic structure
Ti-Al	- Titanium-aluminum
Ti-Al-Cr	- Titanium-aluminum-chromium
НСР	- Hexagonal closed packed
BCC	- Body centered cubic
RT	- Room temperature
ASTM	- American Standard for Testing Materials
EDM	- Electro discharge machine
Ti	- Titanium
Cr	- Chromium
SEM	- Scanning Electron Microscope
XRD	- X-ray Diffraction

CHAPTER 1

INTRODUCTION

1.1 Introduction

Development and processing of high-temperature materials is the key to technological advancement in engineering areas where materials have to meet extreme requirements. Examples for such areas are the aerospace, spacecraft and the automotive industries. New structural materials have to be stronger, stiffer and lighter to withstand the extremely demanding conditions in the next generation of aircraft engines, space vehicles and automotive engines. Intermetallic γ -TiA1 based alloys exhibit numerous attractive properties which meet these demands. These properties include high melting point, low density, high specific elastic modulus, good oxidation and burn resistance, and high specific strength up to application temperatures of 700°C to 900°C. Thus, γ -TiA1 based alloys outperform advanced Tibased alloys and have the potential to replace heavy Ni-based superalloys (Zheng *et al.*, 1995; Cheng *et al.*, 1999).

The most promising alloys, which is based on the Ti-48Al composition (in at.%) with ternary and quaternary additions, are characterized by the two-phase Ti₃Al + TiAL (α_2 + γ) lamellar microstructure (Kim and Dimiduk, 1991). One way to obtain variety of microstructures is by the addition of β -stabilizing elements such as

chromium. Most of their properties, such as tensile, creep, fatigue and fracture, are dominated by microstructures for given compositions. The properties of these alloys are quite sensitive to microstructures; near lamellar structure for ternary alloys (with 2 at.%Cr) show highest tensile strength, ductility, modulus elasticity and toughness but the presence of β phase (> 4at.%Cr) in Ti-Al based alloys deteriorates its ultimate tensile strength and ductility at room temperature as well as creep strength at high temperature with respect to the applications (Hamzah et al., 2008), whereas fully lamellar structure have poor ductility (S.C. Huang, 1991). On the other hand, the creep resistance of the fully lamellar structures is considerably superior to that of duplex structure (S.C. Huang, 1991).

The lamellae transformation is of greatest importance because fully lamellar structures can offer good and balanced properties (D.M. Dimiduk et al., 1991). This is referred to lamellae spacing. Studies have shown that fully lamellae microstructures with very fine lamellae spacing give better mechanical properties such as creep and toughness (W.Schillinger, 2002). But extremely fine lamellae spacing come along with a very high dislocation density and internal stresses which causes detrimental to creep resistances (Schillinger., 2002). However, the present study revealed that controlled alloying element does not have significant effect on the microstructural features such as lamellae spacing and grain size. Thus, no effects on the mechanical properties. These features are usually controlled by heat treatment (M.Kanniah, 2006). Various microstructures can be obtained through different heat treatment steps by controlling several parameters (annealing temperature, holding time and cooling rate). The final microstructures can be massively transformed γ to feathery or Widmanstatten type lamellae (Lutjering et al., 2003), duplex microstructures (Hamzah et al., 2005) and discontinous or continous coarsening lamellae (Y. Zheng et al., 1996). For this reason it is necessary to understand and quantify the influence of and heat treatment on the microstructure and the corresponding mechanical properties.

Subsequent heat treatments above the α -transus are needed to develope the metastable structure, which leads to a substantial grain growth and ductility loss. One factor that controls the ductility is grain size, and generally the finer the grain size the higher the ductility (Y.W.Kim, 1992). On the other hand, heated at $\alpha_2+\gamma$ region has little effects on as-cast fully lamellae morphology. Beside that, previous studies show that the β phase amount drastically reduced when the temperature of annealing above 1250°C ($\alpha+\gamma$ region) for 168h followed by water quenching (Y.Zhen, 1996). As mentioned before, this phase is brittle at room and high temperature that limit these alloys for high temperature applications.

Thus, the aim of this study is to determine the effect of heat treatment on the microstructures and its influence on the mechanical properties, of a γ -based TiAl alloy containing Cr. Since these alloy are to be used at high temperatures it is important to characterize the microstructure of the as-received material and to observe the changes that may occur during long, high-temperature exposures comparable to those in service. It is also necessary to understand how any microstructure changes produced by the heat treatments affect the mechanical properties of the material. Therefore, designing the optimum heat treatment process by controlling severals paramaters (annealing temperature, holding time and cooling rate) to optimize its mechanical properties is necessary.

1.2 Objective of The Research

The objective of this research is to determine the effect of heat treatment on the microstructure and its influence on mechanical properties, of a γ -based TiAl alloy containing Cr.

1.3 Statement of Research Problems

How does heat treatment affects microstructure and mechanical properties of binary and ternary TiAl based alloys?

1.4 Scope of Study

The scopes of the study are as follows;

- a) Microstructural characterization before and after heat treatment on Ti-Al and Ti-Al-Cr samples
- b) Different heat treatments has been designed based on Ti-Al phase diagram to obtain different microstructures that lead to different mechanical property. All materials will be have similar heat treatment process.
- c) Determination of mechanical property namely hardness for all heat treated samples.
- d) Analysis of results to relate between microstructures obtained and hardness after heat treatment.