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ABSTRACT 

 

 

 

 

Microstructural developement during continuous cooling (0.245oC/min to 

500oC/min) from the α-Ti phase region and subsequent annealing treatment, 1450oC 

(15minutes)          1250oC (1 hour) has been investigated using Ti-48Al, Ti-48Al-

2Cr, Ti-48Al-4Cr and Ti-48Al-8Cr (at. %) alloys. In the Ti-48Al alloys and Ti-48Al-

2Cr, nearly fully lamellar transform fully lamellar with the lamellar grain size and 

lamellar spacing decrease as the cooling rates increases. At slowest cooling rates, a 

small amount of Widmanstatten-lamellar structure observed appears to be 

intermediate between the lamellar structure. Meanwhile, addition of chromium up to 

4%, at any cooling rates the lamellar grain size remain unchanged. But the formation 

of β phase is increases at fastest cooling rate (oil quenched). This is due to the 

precipitation of the β phase at grain boundaries during heat treatment and insufficient 

time to dissolve to α and γ phase due to fast cooling. Slowest cooling rates (furnace 

cooled) all β phase completely dissolved as the following transformation β       α + γ                   

      α2+ γ. The study revealed at 8% of Chromium slowest and fastest cooling rates 

shows large portion of β phase at precipitated at grain boundaries but at intermediate 

cooling rates the β phases seem disappeared or dissolved. Microhardness analysis 

shows that several factors significantly increase the hardness value of Ti-48Al alloys  

which is the evolution of α2-volume fraction, high cooling rates and smallest lamellar 

spacing.  
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ABSTRAK 

 

 

 

 

Pembentukan mikrostruktur semasa penyejukan berterusan (0.245oC/min to 

500oC/min) daripada α-Ti fasa dan diikuti dengan pembaikan penyepuhlindapan 

1450oC (15minit)        1250oC (1 jam) telah dikaji dengan menggunakan Ti-48Al, Ti-

48Al-2Cr, Ti-48Al-4Cr and Ti-48Al-8Cr (at. %) aloi. Bagi Ti-48Al and Ti-48Al-2Cr 

aloi, berhampiran sepenuhnya lamella mengubah kepada sepenuhnya lamella dengan 

saiz bijian lamela dan penurunan jarak lamela sebagai kenaikan kadar pendinginan. 

Pada kadar paling perlahan penyejukan, sejumlah kecil struktur Widmanstatten-

lamela diperhatikan muncul untuk menjadi perantaraan di antara struktur lamela. 

Sementara itu, kromium sehingga 4%, di mana-mana kadar pendinginan saiz bijian 

lamela kekal tidak berubah. Tetapi pembentukan fasa β meningkat pada kadar 

terpantas penyejukan (minyak dipadamkan). Ini adalah disebabkan oleh pemendakan 

fasa β di sempadan bijian semasa rawatan haba dan masa yang tidak mencukupi 

untuk membubarkan α dan γ fasa disebabkan oleh penyejukan pantas. Penyejukan 

kadar paling perlahan (relau disejukkan) semua fasa β sepenuhnya dibubarkan 

sebagai β transformasi berikut β       α + γ         α2+ γ. Kajian ini mendedahkan pada 

8% Kromium paling perlahan dan terpantas kadar pendinginan menunjukkan 

sebahagian besar fasa β di dicetuskan di sempadan bijian tetapi pada kadar 

penyejukan perantaraan fasa β seolah-olah hilang atau dibubarkan. Analisis 

Microhardness menunjukkan bahawa beberapa faktor meningkatkan nilai kekerasan 

aloi Ti-48Al yang evolusi pecahan α2-isipadu, kadar penyejukan yang tinggi dan 

terkecil jarak lamela. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

Development and processing of high-temperature materials is the key to 

technological advancement in engineering areas where materials have to meet 

extreme requirements. Examples for such areas are the aerospace, spacecraft and the 

automotive industries. New structural materials have to be stronger, stiffer and 

lighter to withstand the extremely demanding conditions in the next generation of 

aircraft engines, space vehicles and automotive engines. Intermetallic γ-TiA1 based 

alloys exhibit numerous attractive properties which meet these demands. These 

properties include high melting point, low density, high specific elastic modulus, 

good oxidation and burn resistance, and high specific strength up to application 

temperatures of 700oC to 900°C. Thus, γ-TiA1 based alloys outperform advanced Ti-

based alloys and have the potential to replace heavy Ni-based superalloys (Zheng et 

al., 1995; Cheng et al., 1999).  

 

 

The most promising alloys, which is based on the Ti-48Al composition (in 

at.%) with ternary and quaternary additions, are characterized by the two-phase Ti3Al 

+ TiAL (α2+γ) lamellar microstructure (Kim and Dimiduk, 1991). One way to obtain 

variety of microstructures is by the addition of β-stabilizing elements such as 
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chromium. Most of their properties, such as tensile, creep, fatigue and fracture, are 

dominated by microstructures for given compositions. The properties of these alloys 

are quite sensitive to microstructures; near lamellar structure for ternary alloys (with 

2 at.%Cr) show highest tensile strength, ductility, modulus elasticity and toughness 

but the presence of β phase (> 4at.%Cr) in Ti-Al based alloys deteriorates its  

ultimate tensile strength and ductility at room temperature as well as creep strength at 

high temperature with respect to the applications (Hamzah et al., 2008), whereas 

fully lamellar structure have poor ductility (S.C. Huang, 1991) . On the other hand, 

the creep resistance of the fully lamellar structures is considerably superior to that of 

duplex structure (S.C. Huang, 1991). 

 

 

The lamellae transformation is of greatest importance because fully lamellar 

structures can offer good and balanced properties (D.M. Dimiduk et al., 1991). This 

is referred to lamellae spacing. Studies have shown that fully lamellae 

microstructures with very fine lamellae spacing give better mechanical properties 

such as creep and toughness (W.Schillinger, 2002). But extremely fine lamellae 

spacing come along with a very high dislocation density and internal stresses which 

causes detrimental to creep resistances (Schillinger., 2002). However, the present 

study revealed that controlled alloying element does not have significant effect on 

the microstructural features such as lamellae spacing and grain size. Thus, no effects 

on the mechanical properties. These features are usually controlled by heat treatment 

(M.Kanniah, 2006). Various microstructures can be obtained through different heat 

treatment steps by controlling several parameters (annealing temperature, holding 

time and cooling rate). The final microstructures can be massively transformed γ to 

feathery or Widmanstatten type lamellae (Lutjering et al., 2003), duplex 

microstructures (Hamzah et al., 2005) and discontinous or continous coarsening 

lamellae (Y. Zheng et al.,1996). For this reason it is necessary to understand and 

quantify the influence of and heat treatment on the microstructure and the 

corresponding mechanical properties. 
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Subsequent heat treatments above the α-transus are needed to develope the 

metastable structure, which leads to a substantial grain growth and ductility loss. One 

factor that controls the ductility is grain size, and generally the finer the grain size the 

higher the ductility (Y.W.Kim, 1992). On the other hand, heated  at α2+γ region has 

little effects on as-cast fully lamellae morphology. Beside that, previous studies show 

that the β phase amount drastically reduced when the temperature of annealing above 

1250oC (α+γ region) for 168h followed by water quenching (Y.Zhen, 1996). As 

mentioned before, this phase is brittle at room and high temperature that limit these 

alloys for high temperature applications. 

 

 

Thus, the aim of this study is to determine the effect of heat treatment on the 

microstructures and its influence on the mechanical properties, of a γ-based TiAl 

alloy containing Cr. Since these alloy are to be used at high temperatures it is 

important to characterize the microstructure of the as-received material and to 

observe the changes that may occur during long, high-temperature exposures 

comparable to those in service. It is also necessary to understand how any 

microstructure changes produced by the heat treatments affect the mechanical 

properties of the material. Therefore, designing the optimum heat treatment process 

by controlling severals paramaters (annealing temperature, holding time and cooling 

rate) to optimize its mechanical properties is necessary. 

 

 

 

 

1.2 Objective of The Research 

 

 

The objective of this research is to determine the effect of heat treatment on 

the microstructure and its influence on mechanical properties, of a γ-based TiAl alloy 

containing Cr. 
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1.3 Statement of Research Problems 

 

 

How does heat treatment affects microstructure and mechanical properties of 

binary and ternary TiAl based alloys? 

 

 

 

 

1.4 Scope of Study 

 

  

The scopes of the study are as follows; 

 

a) Microstructural characterization before and after heat treatment on Ti-

Al and Ti-Al-Cr samples 

b) Different heat treatments has been designed based on Ti-Al phase 

diagram to  obtain different microstructures that lead to different 

mechanical property. All materials will be have similar heat treatment 

process. 

c) Determination of mechanical property namely hardness for all heat 

treated samples.  

d) Analysis of results to relate between microstructures obtained and 

hardness after heat treatment.  

 

 

 

 

 

 




