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FORMULATION OF MODEL PREDICTIVE CONTROL ALGORITHM FOR 
NONLINEAR PROCESSES 

 
(Keywords: Model Predictive Control (MPC), process control, high purity distillation, 
highly non-linear process) 
 

Process control is essential in any chemical plant.  For the past forty years, the 
conventional PID controller has governed the process control industry.  It is the sole 
selection although many other sophisticated control algorithms have been developed 
largely because it is able to deliver satisfactory performance for most control problems 
when properly tuned and installed.  However, with faster computing technology, the 
industry is now demanding a tighter advanced control strategy. To fulfil all these 
objectives, Model Predictive Control (MPC), an optimal model based control algorithm 
is definitely the best choice among all the advanced control algorithms available to date. 
The most significant feature that distinguishes MPC from other control algorithms is its 
long range prediction concept.  MPC will perform the prediction over the future horizon 
and this will enable current computations to consider future dynamic events and hence 
allow it to overcome the limitation from the process dead-time, nonminimum phase and 
slow process dynamic. This research explores the capability of MPC in controlling a 
highly nonlinear, iterative process.  Two case studies are explored. For the first case 
study, linear MPC is applied on a continuous solution copolymerization reactor with 
promising results. For the second case study, linear and Nonlinear MPC is applied on a 
high purity distillation column. This is to determine if there is superiority of one over the 
other. An unconstrained MIMO DMC and nonlinear MPC (NNMPC) algorithms were 
developed using a step response model and two feedforward neural networks 
respectively.  Additionally, the comparison between DMC, NNMPC and PI controller 
based on IAE tuning rules was conducted. Overall, NNMPC control scheme shows a 
superior performance over the DMC and PI controllers by presenting a smaller 
overshoot and shorter settling time. 
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FORMULASI ALGORITMA KAWALAN RAMALAN MODEL UNTUK 

PROSES TIDAK LINEAR 

ABSTRAK 

 

 (Keywords: Model Predictive Control (MPC), process control, high purity distillation, 
highly non-linear process) 

 

Kawalan proses penting di dalam industri kimia. Pengawal PID biasa digunakan 
di industri kawalan proses selama empat puluh tahun yang lepas. Walaupun banyak 
algoritma kawalan yang canggih dibina, namun pengawal PID masih biasa digunakan 
disebabkan prestasi pengawal PID yang baik sekiranya dipasang dengan baik. Walau 
bagaimanapun, industri kini berminat dengan kawalan termaju yang lebih ketat. 
Kawalan ramalan modal (MPC) sebagai algoritma kawalan optima berdasarkan modal, 
adalah pilihan yang terbaik antara algoritma kawalan termaju kini. Keistimewaan MPC 
adalah dalam konsep ramalan jangka panjang. MPC akan melaksanakan ramalan untuk 
masa hadapan dan ini membolehkan komputasi masa sekarang untuk 
mempertimbangkan peristiwa dinamik masa hadapan. Ini akan membolehkan MPC 
untuk mengatasi batasan masa mati proses, fasa tidak minima and dinamik proses yang 
perlahan. Kajian ini mendalami keupayaan MPC untuk mengawal proses yang amat 
tidak linear. Dua kajian kes akan didalami. Dalam kajian kes yang pertama, MPC linear 
diaplikasi untuk mengawal reaktor ‘solution copolymerisation’ berterusan dengan 
keputusan yang baik. Untuk kajian kes yang kedua, MPC linear and MPC tidak linear 
diaplikasi untuk mengawal ‘distillation column’ ketulenan tinggi. Ini bertujuan 
menentukan prestasi kedua-dua algoritma. Algoritma MIMO DMC dan MPC tidak 
linear dibangunkan dengan menggunakan model ‘step response’ dan dua buah ‘neural 
network’ suap balik. Perbandingan antara pengawal DMC, NNMPC dan PI berdasarkan 
IAE dilaksanakan. Secara keseluruhannya, kawalan NNMPC menunjukkan prestasi 
yang cemerlang dibandingkan dengan pengawal DMC dan PI dengan ‘overshoot’ yang 
kecil dan masa redaman yang kecil.  
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CHAPTER 1 
 
 
 
 

INTRODUCTION 

 
 
 
 
1.1 Background 

 

 Process control is essential in any chemical plant.  For the past forty years, 

the conventional PID controller has governed the process control industry.  It is the 

sole selection although many other sophisticated control algorithms have been 

developed.  This is largely because the standard PID controller is able to deliver 

satisfactory performance for most control problem when properly tuned and installed.  

Additionally, for most of the advanced control algorithms, a fast computation 

machine is required to execute their complex and time consuming calculation in real 

time.  Consequently this is a big problem in the past as such computers were very 

costly and not easy to get.  However, the computing technology has progressed much.  

It is now possible for the process engineer to implement many sophisticate control 

methods with the availability of faster and cheaper computers.  There are also many 

changes in the chemical process industry, with the tougher environment regulations, 

rigorous safety codes, and rapidly changing economic situation.  As a result, the 

demand and requirement for process control system has become more stringent. The 

industry is now demanding a tighter advanced control strategy with the ability to 

integrate all the requirements to reduce operating costs, improve product quality, 

better use of energy resources and reduce environmental emission.        

 

 To fulfill all these objectives, Model Predictive Control (MPC), an optimal 

model based control algorithm is definitely the best choice among all the advanced 

control algorithms available to date.  MPC refers to a wide class of optimal control 
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based algorithm that makes use of explicit process model to predict the future 

behavior of a plant.  MPC is “optimal” in the sense that it minimizes the pre-

specified objective function.  MPC was originally developed in late 70’s to meet the 

specialized control needs of power plants and petroleum refineries. Over the past 

decade, MPC has established itself as standard control especially in petrochemical 

and refinery industries (Qin and Bagwell, 1997) largely due to its advantages over 

traditional controllers (Garcia et al., 1989).  The most significant feature that 

distinguishes MPC from other control algorithms is its long range prediction concept.  

MPC will perform the prediction over the future horizon and this will enable current 

computations to consider future dynamic events and hence allow it to overcome the 

limitation from the process dead-time, nonminimum phase and slow process dynamic. 

In addition, the superior performance of MPC in handling constraints violation in 

systematic way (through incorporating the constraints directly into objective function) 

also makes it theoretically a perfect real-time optimal control paradigm equipped 

with process integration ability (Camacho and Bordons, 1998).              

 

 This research explores the capability of MPC in controlling a highly 

nonlinear, iterative process.  Both linear and Nonlinear MPC is applied to determine 

if there is superiority of one over the after.  A high purity distillation column is 

chosen as the process of interest. The distillation column is chosen because it is a 

common yet critical unit operation in chemical and petroleum industries.  In addition, 

the distillation column is also very often to be the final separation process which will 

determines the quality of the product.  It is also one of the highest energy consuming 

unit operations in the chemical industries.  The high purity distillation column is 

selected due to its highly nonlinearity characteristic which has made it as the focus of 

many research activities (Fruzzetti et al., 1997; Georgiou, et al., 1988; Kyoung, 1995; 

Ravi Sriniwas et al., 1995).     

 

 Theoretically, there are some difficulties to control a high purity column by 

means of MPC.  This is because to most of the popular and commercial MPC 

packages available today are based on linear models (Qin and Bagwell, 1997), while 

the high purity column is well-known for its highly nonlinear characteristic.  This 

will definitely limit the performance of Linear Model Predictive Controller (LMPC).  

A Nonlinear Model Predictive Controller (NMPC), which employs a more accurate 
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nonlinear model, is also implemented in this thesis to control the high purity column. 

The NMPC is used with the expectation to provide a better performance compare to 

LMPC.  Neural Network (NNs) is chosen to be the nonlinear process model used in 

NMPC formulation due to its proven mapping ability as a global approximator 

(Hornick et al., 1989). In addition, the literature review also revealed that it is the 

most popular nonlinear empirical process model and applications of Neural Network 

based Model Predictive Control (NNMPC) have been reported (Proll, 1993; 

Pottmann and Seborg, 1997; Shaw and Doyle III, 1997).   

 
 
 
 
1.2 Model Predictive Control 

 

 MPC is not a specific control strategy but a wide class of optimal control 

based algorithms that use an explicit process model to predict the behavior of a plant.  

There is a wide variety of MPC algorithms that have been developed over past 30 

years.  For example, the Model Predictive Heuristic Control (MPHC) algorithm 

reported by Richalet et al. in 1976 which is used an impulse response model as its 

linear model.  In addition, the most industrially popular LMPC algorithm, the 

Dynamic Matrix Control (DMC) presented by Cutler and Ramaker (1979) , the 

Generalized Predictive Control (GPC) by Clarke et al. (1987) which was intended to 

provide a new adaptive control alternative and lastly the Internal Model Control 

(IMC) reported by Garcia and Morari (1982a).  The main differences for all these 

MPC algorithms are the types of models used to represent the plant dynamic and the 

cost function to be minimized (Soeterboek, 1992).   

 

 However, the fundamental framework of MPC algorithms is in common for 

any kinds of MPC schemes.  The basic elements of MPC are illustrated in Figure 1.1 

and can be defined as follows: 
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                            Past           Future                                                     target 
                                                                             
 
                                                                                                            Projected output 
 
                                         ŷ (k+1|k) 
 
               y(k) 
 
 
 
 
                                                                                                                           Inputs      
 
 
 
                                              K+1   k+2           k+m-1                       k+P  

 
Figure 1.1 MPC strategy 

 

1) An appropriate model is used to predict the output behavior of a plant over a 

future time interval or normally known as the prediction horizon (P).  For a 

discrete time model this means it predicts the plant output from )1(ˆ +ky to 

)(ˆ pHky + based on all actual past control inputs )(),...,1(),( jkukuku −− and 

the available current information ).(ky  

 

2) A sequence of control actions adjustments (∆u(k|k-1)… ∆u(k+m|k-1)) to be 

implemented over a specified future time interval, which is known as the 

control horizon (m) is calculated by minimizing some specified objectives 

such as the deviation of predicted output from setpoint over the prediction 

horizon and the size of control action adjustments in driving the process 

output to target plus some operating constraints.  However, only the first 

move of computed control action sequence is implemented while the other 

moves are discarded.  The entire process step is repeated at the subsequent 

sampling time. This theory is known as the receding horizon theory.        
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3) A nominal MPC is impossible, or in other words that no model can constitute 

a perfect representation of the real plant.  Thus, the prediction error, 

)(kε between the plant measurement )(kym and the model prediction 

)(ˆ ky will always occur.  The )(kε obtained is normally used to update the 

future prediction.  The Figure 1.2 illustrated the error feedback of MPC.         

 

              
        
                    
                                        Controller 
 
 
 
 
 
 
 
setpoint  +                                                   u(k-i)                                                    ym(k) 
 
 
                       _                                                                                                              + 
                                                                                                                           )(kε   
 
                                                                                                                                       _ 
 
 

                                                                                                                              
∧

y (k+i) 
   

 
Figure 1.2   The MPC block diagram 

 
 
 
 
1.3 Research Objective  

 

 The primary objective of this research is to assess the performance of LMPC 

and NMPC. In the first case study, LMPC is applied to a solution copolymerization 

continuous reactor.  The second case study explores the application of LMPC and 

Optimizer Process 

Model 

Cost 
function 

Constraints
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NMPC in controlling a chosen high purity distillation column both in disturbance 

rejection and setpoint tracking aspects.  The LMPC chosen is DMC, and the NMPC 

chosen is NNMPC.   

 

 

 



 
 
 
 
 

CHAPTER 2 
 
 
 
 

LITERATURE REVIEW 

 
 
 
 
2.1 Introduction 

 

 The interest in MPC started to surge after the first successfully 

implementation of MPC algorithm was reported in 1978 with the application of 

Identification and Command (IDCOM) by Richalet et al. (1978).  Richalet et al. 

(1978) reported a successfully implementation of Model Predictive Heuristic Control 

(MPHC) algorithm on a Fluid Catalytic Cracking Unit (FCCU) main fractionator 

column in a poly-Vinyl Chloride (PVC) plant.  However, the thought of ideas for 

model predictive control (MPC) had started since the 1960’s (Garcia et al., 1989).  

Propoi (1963) had suggested the core of all MPC algorithms, the moving horizon 

approach in 1963 and Lee and Markus (1967) had anticipated current MPC practice 

in their optimal control textbook.   

 

 After almost 30 years since the first implementation of MPC in industry had 

been reported, the MPC has now become a standard advanced control technique in 

many process industries. The application area for MPC has now spread wide and 

covers not only the petrochemicals and refining fields but also in food processing, 

automotive, metallurgy, pulp and paper and aerospace and defense industries (Qin 

and Bagwell, 1997).  Qin and Bagwell (1997) showed that at of the end of 1995, 

there were over 2200 reported applications of using MPC in United State.  In Asia, 

Yamamoto and Hashimoto (1991) showed that MPC were one of the most popular 

advanced control strategies in industry.  They reported that out of 139 Japanese 

companies in their survey, 25.4% of them have already applied the MPC to their 
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plants and another 21.1% are considering the possibility.  In 1995, Ohshima et al. 

(1995) likewise conducted a survey on the MPC application in Japan and the results 

showed that number of MPC application has increased steadily in Japan from 1990 to 

1995.  

 

 MPC became popular for the past 20 years especially in petrochemicals and 

refining industrial largely due to its superior performance over conventional 

controllers. One of the advantageous features of this strategy is that it is ideally 

suited for multivariable control operations where all interaction between manipulated 

variables (MVs) and control variables (CVs) is taken into account. In conventional 

controllers, pairing is often done between CVs and MVs and if there is strong 

interaction, a decoupler is applied.  Moreover, MPC is an optimal control strategy 

that provides constraints handling abilities which had been ignored by most of the 

conventional controller.  As a model based control strategy, the MPC is also able to 

tackle the long delay time and non-minimum phase problems intrinsically.   

 

 However, there are also some limitations or drawbacks associated with MPC, 

such as the complexity in derivation of control law, the lack of systematic analysis of 

stability and robustness properties, the lack of clearly defined tuning procedure since 

the effect of certain parameters upon closed-loop behavior is example dependent 

(Camacho and Bordons, 1998), and highly dependence on the accuracy of model 

used.  Any discrepancy that arises between the real process and the model will 

deteriorate the performance severely.  Lundstrom et al. (1994) reported a few 

limitations of DMC including it may perform poorly for multivariable plants with 

strong interaction. On the other hand, Hugo (2000) questioned the benefits that can 

be brought by MPC and argues that the claims of improved performance boosted by 

the MPC vendor are often not justified by rigorous statistical analysis such as Harris 

Performance Index and the benefit actually might be generated by the installation of 

new instrumentation, change in feedstock or improvement to the regulatory layer 

before the implementation of MPC.  He also presented his ideas about some other 

practical limitations of MPC such as the difficulties with operation, the high 

maintenance cost, and lack of flexibility of MPC which may result in a fragile 

controller. 

 



 9

2.2 Linear Model Predictive Control 

 

 Until recently, the MPC is actually a synonym to Linear Model Predictive 

Control (LMPC).  Most of the MPC software available in the market nowadays used 

linear models even though most processes are nonlinear.  For example, the DMC™ 

from Aspen and HIECONTM from Adersa used the step convolution model and Finite 

Impulse model respectively (Qin and Bagwell, 1997).  Actually, there are several 

reasons behind this.  First, a linear model can be identified in a straightforward 

manner from the process test data whereas it is very difficult in developing a generic 

nonlinear model from empirical data.  Second, the computational problem in NMPC. 

Nonlinear Programming (NP) resulting from nonlinear model would make the 

NMPC’s computational problem become very complex, time consuming and 

sometimes non-convex.  On the other hand, the solutions for LMPC algorithm are 

much easier and sometimes can easily be solved analytically.  For example, the 

solution of DMC algorithm can be done analytically by performing simple least 

square method.  Even for the second generation of DMC, the Quadratic Dynamic 

Matrix Control (QDMC) algorithm where the problem is the form of Quadratic 

Program (QP), it is still a very highly structured convex problem where enormous 

number of reliable solution can be found.  For example, many LP and QP problem 

solution can be found in Fletcher (1987).  From the practical point of view, the 

conventional linear model predictive controller is acceptable in industry because 

most of the applications of MPC to date are in refinery processing, where the process 

operates at a single setpoint and the primary use of controllers is for disturbance 

rejection (Qin and Bagwell, 2000).  In this term, a carefully identified linear model is 

accurate enough because the MPC only have to operate at a certain single operating 

region.           

 

 Even though it has been a long time that since the MPC becomes standard 

control in industry, the MPC is still being the focus or subject of many researches.  

Many researches are still carried out with the aims of improving the performance of 

MPC algorithms or strengthen the weakness of MPC such as the stability and 

robustness issues.  As mention before, traditional LMPC is only able to perform well 

for the process which characteristic doesn’t change significantly (one setpoint 

operation) along the operating region.  However, many chemical processes such as 
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the polymerization reactor doesn’t operate at a single setpoint, and may operate at 

different setpoint depending on the grade of product to be produced.  Hence, the 

performance of LMPC may severely deteriorate and need to be detuned and 

redesigned.  Thus, some researchers have come out with a new predictive controller 

strategy which is able to accommodate the changing process conditions and at the 

same time retain the solution in the LP or QP form for ease of computation. The 

common solution is to perform an Adaptive Model Predictive Control (AMPC) in 

which the internal process model is updated as it needed.  This can be done in several 

ways include the multi-model method or by linearizing a suitable nonlinear model 

near the current operating condition.  In general, multiple model approaches is 

normally done by using a bank of linear models to describe the dynamic behavior 

over a wide operating region. A recursive Bayesian scheme may be used to assign 

weights to each linear model and then the combined weighted model is used to do the 

prediction similar to conventional MPC scheme (Aufderheide and Bequette, 2003).  

In addition, many literatures about linearization of a nonlinear model for predictive 

control also have been reported (Garcia, 1984; Gattu and Zafrizou, 1992; Lee and 

Ricker, 1994).  In 1984, Garcia proposed a Nonlinear-QDMC (NQDMC) where the 

linear model is updated as the state of the process changes and used to obtain the step 

response model coefficients and the nonlinear model is used to do the prediction. 

This strategy was able to solve the nonlinearity problem of the process and at the 

same time retain the controller solution in simple QP form.  However, the standard 

constant output disturbance assumption inherited from DMC algorithm has limited 

the NQDMC be applied only for open loop stable system.   

 

 Analysis of stability and robustness properties cannot be easily performed in 

MPC algorithm because of the nature of MPC formulation where the implicit 

definition of MPC control law through a quadratic program with explicitly 

incorporated input and output constraints.  Nevertheless, the MPC stability analysis 

problem has attracted a considerable number of research activity and a several 

encouraging results had been reported for the last decade.  In fact, closed loop 

stability for MPC is not easy to ensure because the MPC is a feedback controller as a 

result of the receding horizon policy. Rawling and Muske (1993) published the first 

useful result on stability issues in MPC by using the infinite prediction horizon.  This 

theory had proven that an asymptotic stability is able to retain even in the presence of 
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constraints by imposing infinite horizon and with the criterion where the model used 

is perfect (nominal stability).  However, it is hard to handle constraints with infinite 

horizon, and hence another way to ensuring stability is to impose a terminal 

constraint which will force the state to take a particular value at the end of prediction 

horizon.  This method can be performed in many ways such as terminal equality 

constraint (Meadow et al., 1995) or terminal inequality constraints (Polak and Yang, 

1993).   

 

 Perhaps, the principal shortcoming of existing MPC algorithms is their 

inability to effectively deal with the difference between the model used and the 

actual plant. However, compared to the extensive amount of literature on other MPC 

issues, the number of research activities on the MPC design in the presence of plant-

model uncertainty is much less. For the analysis of robustness properties of MPC, 

Garcia and Morari (1989) reported a robustness analysis of an unconstrained MPC 

by using a new MPC framework which is later known as Internal Model Control 

(IMC).  They also developed a tuning guideline for IMC filter to ensure robust 

stability.  Zafiriou (1990) have used the contraction properties of MPC to develop 

necessary / sufficient condition for robust stability of input output constraint. In 

addition, Polak and Yang (1993) also contributed their idea in robust stability 

analysis of a continuous time linear system by imposing a contraction constraint on 

the state.  In fact, the conventional way to deal with the plant–model uncertainty or 

robustness problem is to detune the controller.  Nevertheless, in recent years, the 

subject of the research in this issue is to incorporate the plant-model uncertainty 

explicitly into the MPC problem formulation.  A min-max method (Campo and 

Morari, 1987) which modifies the online constrained minimization problem to a min-

max problem (minimizing the worst case value where worst case is taken over the set 

of uncertain plant) is a relevant reference in this area.                                        

 

 For further details about MPC, several excellent technical reviews of MPC 

that provide more detail about MPC formulation and its future exploration direction 

from the an academic perspective (Garcia et al., 1989; Morari and Lee, 1999) and 

from an industrial perspective (Camacho and Bordon, 1995; Qin and Bagwell, 1997; 

Qin and Bagwell, 2000; Maciejowski; 2002) are available.      
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2.2.1 Dynamic Matrix Control   

 

 In this research, DMC is chosen as the LMPC algorithm used to control the 

chosen high purity distillation column because the DMC represent the chemical 

process industry’s standard for MPC.  According to a survey by Qin and Bagwell 

(1997), DMC is the most industrially popular MPC scheme at the end of 1995 in the 

United State.  A large part of DMC’s appeal comes from its effectiveness in handling 

multivariable constrained problem and its theoretical simplicity compare to other 

MPC schemes.  This is because by using Finite Step Response (FSR), the need to 

specify the model order and dead time has been eliminated.  Moreover, the FSR 

model also can be used to represent multivariable plants easily by superposition of 

linear models.  In addition, the constant output disturbance assumption also has 

greatly simplified the DMC algorithm.  However, the use of FSR model had limited 

the DMC algorithm only for open-loop stable process and the constant output 

disturbance assumption has limited DMC’s feedback performance.   

 
 
 
 
2.2.2 Application of LMPC on Distillation Columns 

 

 There is an abundance of LMPC applications on various kinds of distillation 

columns in the past 20 years.  In a simulated column model application, McDonald 

and McAvoy (1987) applied a dual point composition control by using a DMC 

controller to control a moderate-high purity column (a benzene-toulene column with 

product purities 0.994/0.006).  They suggested the use of gain and time constant 

scheduling method to overcome the nonlinearity problem and also found that it is 

difficult to obtain a representative process model because the gain and time constants 

are highly dependent on the size and direction of input step used.  Georgiou et al. 

(1988) likewise studied the possibility to control a high purity distillation column by 

means of DMC.  However, they deal with the nonlinearity by performing a 

logarithmic transformation on the output results.  They found that DMC performed 

well for moderate purity column (10,000 ppm) but for the high purity column (1000 

ppm), it displayed a worse performance compared to PI diagonal controller 

especially when a large load disturbance is imposed.  Simple output logarithmic 
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transformation method improves significantly the performance of DMC for high 

purity column.  For the very high purity column (10 ppm), the transformation method 

failed to remove the nonlinearity and thus PI diagonal perform a better bad 

performance compare to DMC.  Gokhale et al. (1994) likewise applied DMC to a 

propylene propane splitter (C3 splitter) and compared its performance with the PI 

controller.  However, they did not observe a significant difference in the performance 

between PI and DMC controller for servo and regulatory problem.   

 

 Other than common binary distillation column, the application of DMC can 

also be found in other types of distillation column.  For example, Serra et al. (2001) 

applied the DMC to a Divided Wall Column (DWC), which was used to separate 

three different ternary mixtures up to purity 0.99 molar fraction.  The result showed 

that DMC present a longer response time compare to PI controller in both setpoint 

tracking and disturbance rejection problems.  For real industrial applications (pilot 

scale column), Abou-Jeyab et al. (2001) implemented a Simplified Model Predictive 

Control (SMPC) algorithm, developed by Gupta (1996) to an Imperial Oil Ltd’s 

distillation column.  The application significantly improved the column performance. 

The cycling in the product composition which occurred with the SISO controller was 

eliminated and there was 2.5% increase in production rate and 0.5 increase in product 

recovery.  Hovd and Michaelsen (1997) likewise applied the D-MPC (Fantoft 

Process Package) on a vacuum distillation column at Nynashamn Refinery of 

Company Nynas.  The use of MPC successfully increased the yield of the most 

desirable product fraction (110K USD per year) and the feed rate (120k USD) while 

at the same time decreasing the energy consumption by 20K USD annually.      

 
 
 
 
2.3 Nonlinear Model Predictive Control 

 

 Nonlinear Model Predictive Control refers to the MPC algorithm that 

employs a more accurate nonlinear model in doing prediction and optimization 

(Henson, 1998).  Theoretically, NMPC is able to deliver a better performance 

compared to LMPC because many chemical processes are highly nonlinear and have 

strong interactions such as the high-purity distillation column and multi-grade 
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polymerization reactor.  Although the need of NMPC is well recognized and various 

kinds of NMPC strategy have been developed, whether from academic researchers or 

commercial companies, LMPC is still much more popular than NMPC in industry 

(Qin and Bagwell, 1996 & 2000).  There were only 86 of NMPC commercial 

applications that had been reported at the end of 1999 in the United State (Qin and 

Bagwell, 2000).  This is largely due to two main reasons: 1) the difficulty and 

sometime inability in developing an accurate nonlinear process model and 2) the 

computational problem associated with the Non-Linear Programming (NLP).       

 

 Many kinds of strategies have been proposed over the past 20 years in 

developing and incorporating a nonlinear model into a MPC algorithm.  Overall, the 

relevant nonlinear modeling methods can be divided into two main groups: 

 

1. Fundamental or first principles modeling method: This method is performed 

through the analysis of the system at fundamental level such as analysis of system’s 

physical relationships like the conservation laws (mass, energy and momentum), 

phenomenological laws, state equations and boundary conditions.  It is normally in 

the form of differential and algebraic equations such as the ordinary differential 

equations (ODE) or partial differential equation (PDE).  This kind of model is 

globally valid due to its natural characteristic, and thus makes it suitable for 

optimization and control task which often required extrapolation beyond the range of 

data.  However, the derivation of first principles model is normally expensive and 

difficult to maintain (Piche et al., 2000) and often yield a model of very high order 

due to rigorous modeling (Lee, 1998).  Many of NMPC studies based on the 

fundamental model had been reported within last decade (Patwardhan and Edgar, 

1990; Chen and Allgower, 1997; Ricker and Lee, 1995; Zheng, 1997).  However, 

Henson (1998) pointed out that most of them used a very simple dynamic model 

except Ricker and Lee (1995) that used a model with 10 x 23 (10 MVs and 23 CVs).  

In NMPC, online solution to NLP or at least nonlinear integration Jacobian matrix 

calculation is required and hence it is good to keep the model order low. Therefore, 

order reduction technique such as Orthogonal Collocation method (Patwardhan et al. 

1992; Proll, 1993; Kawatheka, 2004) is normally applied to ease the computation.      
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2. Empirical modeling method: This method relies solely on the process data 

available and requires no understanding of underlying physical phenomena of the 

system and hence is also known as black-box method.  This modeling approach is 

based on the assumption that the process characteristics are well embedded in the 

data and can be extracted by appropriate methods and hence the application of this 

modeling method is limited to the operating region where the model had been 

identified.  In other words, it has unreliable extrapolation capability, which is often 

required in optimization and control problems. Various kinds of empirical models 

have been utilized in NMPC design.  These include Hammerstein model (Fruzzetti, 

et al., 1997), Volterra model (Maner et al., 1996), collocation model (Jang and Wang, 

1997) and the most popular one, the neural network model (Asohi, 1995; Doherty, 

1999).   

 

 Computational problem is another obstacle that precludes successful 

application of NMPC and a large part of NMPC computational problem is stemmed 

from the NLP problem.  The solution procedure of NMPC basically consists of two 

main parts: 1) solving optimization problem 2) integrating the system model equation.  

These two solution procedures can be implemented either sequentially or 

simultaneously. 

 

1. Sequential solution: In this method, the optimization problem and the differential 

equation is solved separately.  Normally, the optimization algorithm serves as outer 

the loop to iteratively select new sets of manipulated variables to minimize the 

objective function, while the ODE solver will be used to integrate the dynamic 

equations to obtain the controlled variable profile in order to determine the objective 

function.  The availability of accurate and efficient integration and optimization 

packages largely ease the implementation in this method.  However, there are some 

drawbacks associated with this method.  There are difficult to incorporate 

state/output constraints in this approach and this method requires the solution of 

differential equation at each iteration of optimization and this has made the 

implementation very computationally expensive, especially for large system.  In 

addition, the gradients information required for optimization procedure is often 

obtained through the finite differences based on small changes in the manipulated 

variables and are commonly done by differencing the output of an integration routine 
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with adaptive step.  However, the integration error is unpredictable and hence 

differencing output of an integration routine would greatly degrade the quality of the 

finite difference derivative (Gill et al., 1998)         

 

2. Simultaneous Solution: In this approach, the system dynamic (ODE) is reduced 

to algebraic equations using a weighted residual method (Finlayson, 1980).  The 

algebraic equation is then solved as equality constraints in a nonlinear program. 

Sequential Quadratic Programming (SQP) is often used to solve the optimization 

problem for this approach.  This solution approach results in more decision variables 

(the manipulated inputs are the only decision variables in sequential solution) since 

the values of the state variables at each collocation point are included as decision 

variables.  The advantage of this solution is that the state variable constraints can be 

handled easily and the fast convergence speed of SQP whereas its disadvantage is 

that only at the end of the iteration a valid state for the system is available and if the 

optimization cannot finish in time, nothing can say about the feasibility.  

 

 NMPC’s computational problem has been an active research topic for the last 

20 years and a numbers of alternatives have been developed and reported.  One of 

them is the model order reduction approach.  This approach has been proven to 

reduce the computational burden of numerically integrating differential equations 

and this helps especially when dealing with a large system.  A famous model order 

reduction example is the Orthogonal Collocation method (Patwardhan et al. 1992; 

Proll, 1994; Kawatheka, 2004).  This approach is able to reduce the model order by 

converting a differential equation in the time domain into an approximating set of 

algebraic equations.  Instead of reducing the model order, some researchers chose to 

increase the speed of popular local optimization method by tailoring them to take 

advantage of the specific structure of the MPC formulation. The interior-point 

approach is a good example for these.  This method was successful in easing the 

computational burden in NMPC and come into favor with many academic 

researchers lately (Albuquerque et al., 1999).  In addition, the non-convex problem is 

also another popular issue in NMPC.  Many of them focused on global optimization 

especially the genetic algorithms (Onnen, et al. 1997; Wasif, 2001).  However, this 

approach tends to be too slow and therefore not applicable.  Another popular 

research direction is to simplify the optimization problem in order to decrease the 
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computation time of each calculation.  Zheng (1997) proposed to optimize only the 

first move of the prediction horizon instead of perform the optimization all along the 

control horizon.  However, this approach does not yield favorable results as it is 

closely related to a finite horizon optimization with one step ahead prediction.   

Additionally, Cannon et al., (2001) suggested the Triple mode MPC algorithm, 

which is done by splitting the prediction horizon into three distinct parts to ease the 

computation.     

         

 For further details about NMPC, there are several excellent technical reviews 

of NMPC that provide more details about NMPC formulation and its future 

exploration direction from the academic perspective (Henson, 1998; Lee, 1998; 

Findeisen  and Allgower, 2002) and from an industrial perspective (Qin and Bagwell, 

2000; Piche et al., 2000).      

 
 
 
 
2.3.1 Application of NMPC on Distillation Columns   

 

 Unlike the LMPC, the inherent computational and nonlinear modeling 

problems in NMPC have precluded the popularity of NMPC.  However, there are 

still several literatures on the application of NMPC to control distillation especially 

the high purity columns, which posses highly nonlinearity and strong interaction.  

For example, Norquay et al. (1999) applied an incorporation of Wiener Model in a 

unique way into MPC to control a C2-splitter at Orica Olefines plant.  The Wiener 

model actually consisted of a linear dynamic element in series with a static nonlinear 

element.  The results showed that the nonlinearity of the control problem can be 

removed effectively and at the same time retain the favorable properties of LMPC.  

However, there is a limitation for this approach as there are processes in which the 

dominant nonlinearities cannot be separated as a distinct static element.   

 

 Brizuele et al. (1996) reported an application of Neural Network based Model 

Predictive Control (NNMPC) to control a Multi-component distillation column.  

They used the static feedforward neural networks (FNN) to model the distillation 

column and employed two different single loops to perform the two point 
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composition control.  The results showed that NNMPC displays a significant 

improvement in performance compared to PI controller in regulatory problem 

whereas the difference is negligible in setpoint tracking. Moreover, Shaw and Doyle 

III (1997) proposed an efficient way to model a 2x2 high purity distillation column 

by using Recurrent Dynamic Neural Network (RDNN).  The model was able to 

capture actual fundamental underlying column dynamics which are second order in 

nature and hence this model able to account for both external and internal flow in 

open loop simulation.  Similarly the model was able to represent both high and low 

frequency in closed loop simulation.  The RDNN model was then incorporated into 

MPC scheme to control the column and simulation results showed that the RDNN 

based MPC outperform the normal IMC and Input-Output Linearization based 

controller.   

 

 For the real time application, Findeisen and Allgower (2002) reported an 

application of Nonlinear Model Predictive Control (NMPC) to control a 40 tray high 

purity distillation column for the separation of Methanol and n-Propanol.  They 

applied the Quasi-Infinite Horizon MPC algorithm (QIH-MPC) which is found more 

real-time feasible compare to the optimization toolbox in MATLAB.  The former 

requires only 0.89s for the solution of optimal control problem for 42nd order model 

whereas the latter needs in average 620s and hence is not real time implementable.            

 
 
 
 
2.4 Neural Networks for System Identification and Control    

 

 The interest of employing the NNs in nonlinear system identification and 

control has increased and grown over the last decade. This is largely due to the 

proven superiority of NNs, or more specifically, the ability of certain NNs 

architecture, such as the Multi-Layered Perceptron (MLP) in arbitrary non-linear 

mapping (Hornik et al., 1989).  Hunt et al. (1992) and Nareda and Parthasarathy 

(1990) have reported a review paper on the system identification and control using 

neural network.  According to Hunt et al. (1992), typical application of NNs to 

nonlinear control is based on internal model control (IMC) strategy where the control 

structure uses both a forward and an inverse NNs model to control a system.  This 
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approach have been applied widely especially in the robotic control system.  

However, in this thesis, the interest is on the NNMPC in which the NNs is used as 

forward model for the prediction of process output.   

 

 In recent years, after the successful application of MPC in industry, the drive 

in refining the current MPC schemes has motivated the growth and development of 

many nonlinear modeling approaches.  Among them, the NNs is the most popular 

empirical modeling method and numbers of literature review on the incorporation of 

various kinds NNs into MPC schemes have been reported.  For example, Zhan and 

Ishida (1994) reported an application of Feedforward Neural Networks based Model 

Predictive Control scheme to control an unstable nonlinear Constant Stirred Tank 

Reactor (CSTR).  The input data are fed to the trained FNN in recursive way to in 

order to perform the multi-step prediction.  However, their multi-step prediction 

algorithm is limited to Single Input Single Output (SISO) process only.  Pottmann 

and Seborg (1997) employed a Radial Basis Function (RBF) neural network.  The 

RBF model is developed using stepwise regression and least squares estimation.  An 

implementation of MPC by using the RBF neural network is also demonstrated and 

the results showed that RBF based MPC outperform the PI controller in controlling a 

stirred tank in a pH neutralization process.  Shaw et al. (1995) applied the Recurrent 

Neural Network (RNN) in modeling and control the Constant Stirred Tank Reactor 

(CSTR) and Cycol-pentenol production process.  They found that RNN outperform 

the FNN and linear model in performing the prediction.  They claimed that the FNN 

is unable to capture the behavior of the system in this case because the fact the FNN 

is essentially an Auto-Regressive Moving Average (ARMA) model which is not able 

to perform well in doing multi-step prediction.  The control results also showed that 

the RNN based MPC outperform the FNN based MPC.   

 
 
 
 
2.4.1 Neural Networks and Feedforward Neural Networks 

 

 Neural Networks (NNs) basically comprised of interconnected simulated 

neurons. A neuron is the smallest unit in NNs and is used to receive and send signals.  

Normally, each neuron receives signals from other neurons, sums these signals and 
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transforms this sum by means of an activation function, which is monotonic 

continuously differentiable, bounded function.  Frequent used activation function 

including logistic sigmoid and hyperbolic tangent functions.  In addition, there are 

weights associated with each connection that scale the input to target and training 

process is to determine optimal weight.  The neuron can be arranged into multi-

layers which are normally known as Multi-Layer Perceptron (MLP).  The Figure 2.1 

illustrated the basic structure of a neuron. 

 

 

 

 
Figure 2.1 A Basic Architecture of A Neuron 

 

 In chemical engineering application to date the most widely used neural 

network is the Feedforward Neural Network (FNN).  This is large due its simplicity 

compared to other networks and its ability to learn the implicit governing relation 

between the inputs and outputs if sufficient training data is supplied. Feedforward 

networks is network structure in which the information or signals will propagates 

only in one direction on contrary to the recurrent networks in which the time-delayed 

neural net outputs will feed back in to the neural networks as inputs.  The FNN 

typically consist of three or four layers including input layer, hidden layer and output 

layer (as depicted in Figure 2.2).  
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Figure 2.2 A Feedforward Artificial Neural Network Structure 

 

 It is possible to have more than one hidden layer but a single layer is 

sufficient to approximate any function to a desired degree of accuracy (Hornik et al., 

1989).  The numbers of neurons in the input layer and output layer are normally 

determined by the problem.  However, the number of neurons in the hidden layer has 

to be specified; optimal number of neurons has to be determined in order to obtain a 

good identified network.  If there are too few neurons in the hidden layer, the 

network may be unable to describe the underlying function because it has insufficient 

parameters to map all point in the training data.  On the contrary, if there are too 

many neurons, the network would have too many parameters and might overfit the 

data and results losing of the ability to generalize.  For most cases to date, the best 

way to determine the optimal number of neurons is done by systematic trial and error. 

 
 
 
 
2.4.2 Training  

 

 Training is basically a systematic adjustment of weights to get a chosen 

neural network to predict a desired output data set (training set) and it can be done in 

either supervised or unsupervised way.  The training for FNN is supervised.  In the 

supervised training, the connection weights for each processing element are 

randomly initialized.  As the training begins, the training algorithm will start to 

compare NNs’s predicted outputs to the desired outputs (from training data set), and 
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any error will be used to correct the network.  The correction is done by adjusting the 

set of connection weights of each processing element (neuron) and this will 

continues until the algorithm meet the pre-specified convergence criteria.  The 

frequent used criteria including the limit of error and the numbers of iteration.  

However, care must taken to ensure that the network does not overfit or 

overfamiliarize with the training data set and hence lose its generalization ability.  

Various approaches can be used to avoid this problem including regularization theory 

which attempt to smooth the network mapping (Larsen and Hansen, 1994) and cross-

validation which using as independent test data. 

 
 
 
 
2.4.3 Backpropagation  

 

 In the majority of studies, the FNN will employ backpropagation as its 

training algorithm.  Backpropagation get its name from the fact that, during training, 

the output error is propagated backward to the connections in the previous layers, 

where it is used to update the connection weights in order to achieve a desired output.  

Typical backpropagation is a gradient descent optimization method, which is 

executed iteratively with implicit bounds on the distance moved in the search 

direction in the weight space fixed via learning rate, which is equivalent to step size. 

The backpropagation technique adjusts each variable (weight) individually according 

to the size along the path of the steepest descent to minimize the objective function.   

 

For example, given a set of input-output training data in which (Koivisto, 

1995): 

                                    

                                               Nk
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and a set of candidate models: 

                                                )),(()|(ˆ θϕθ tgty =                                 (2.2) 

 

Training a neural network implies fitting the network parameter θ (which is 

the weights in NNs) such that the network learns to approximate the output sequence 
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{y(k)} by giving the input sequence {u(k)}.  Normally, the Prediction Error Method 

(PEM) would be used and the estimated parameterθ  can be found such that to 

minimize an objective function which is typically a Mean Square Error (MSE). 
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For the backpropagation algorithm, the way to find θ is done in iterative way.  

The backpropagation often start with an initial parameter vector θ and then the 

training would iteratively decrease the MSE in equation 2.4 by incrementally update 

the θ along the negative gradient of MSE as follow: 
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where the η is the learning rate, and kδ  is the gradient of the objective function                                 
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This procedure of updating the θ  or weights using only the gradient 

information often requires a small step size (learning rate) to attain stability.  Thus, 

the backpropagation method has to be repeated many times to achieve the minimum 

value of the objective function.  Small step size able to ensure convergence but 

would increases the number of iteration and calculation time.  In addition, a local 

minimum solution also being a problem for this method and normally, a trial and 

error procedure (start with a different set of initial weights) would be employ and try 

to get a global minimum convergence.   

 

 In recent years, other than classical backpropagation training algorithm, 

numbers of other optimization alternatives have been developed and applied for 

training neural network.  For example, the Levenberg Marquardt, Quasi-Newton and 

Conjugate gradient approaches. All these algorithms might display a more reliable 
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and fast convergence ability compare to backpropagation under certain 

circumstances.     

 
 
 
 
2.4.4 Neural Networks based Multi-Step Predictor 

 

 In most of the NNMPC scheme, NNs is employed as the Multi-Step Predictor 

(MSP) whose require to predict the process output over the prediction horizon.  

Literature review had shown that there are three main approaches in performing the 

MSP using NNs:  

 

1. Recursive Prediction: In this approach, NNs is used to do one step ahead 

prediction and the predicted output plus current input measurement is feedback to 

same NNs iteratively to do following multi step ahead prediction.  For example, 

assume there is a one step ahead NARX predictor (Koivisto, 1995): 

 

                               2...1),),(()|(ˆ Niitfiuty =+=+ θϕ                   (2.7) 

where the input vector,  

               ϕ(t,θ)= [yT(t-1),…, yT(t-my), uT(t-d),…,uT(k-d-mu+1)] T   (2.8) 

 

The future measurements are unknown and thus they are replaced with the 

predicted one.  The Figure 2.3 illustrated an example of neural network that acts as 

multi-step predictor under the assumption of my= 2, mu=1 and d=1 and prediction 

horizon, P =3. 
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Figure 2.3 Neural Network-based Multi-Step Predictor Employing Recursive 

Prediction Method 

 

 However, there is a drawback for this method where the small single step (SS) 

prediction errors at the beginning of the horizon would accumulate and propagate 

and this often resulting in poor prediction accuracy.  To reduce the prediction error, 

data conditioning method is used where each network input and output variable is 

normalized and then the normalized data is applied to each single network nodes.  

Moreover, Spread Encoding method proposed by Gomm et al. (1996) by utilizing 

some fuzzy logic knowledge has been proven able to enhance the performance of 

MLP especially in doing the long range prediction.       

 

2. Grouped neural network strategy (Ou, 2001): In this method, several of 

separate direct i-step ahead predictors or grouped neural network is used to so the 

multi step prediction.   For example, consider a prediction horizon of three and the 3 

step ahead prediction can be done as follow: 

                                      ),(ˆ 1|1 kkKk uyNNy =+                        (2.9) 

                                     ),(ˆ 112|2 +++ = kkKk uyNNy                    (2.10) 

                                     ),(ˆ 223|2 +++ = kkKk uyNNy                    (2.11) 

 

To do the first prediction (as described by equation 2.9), the present output, yk and 

future manipulated move, uk is required and since both of them is known, the 

equation can used to evaluate Kky |1ˆ + .  The second prediction is depend on yk+1 and 

uk+1, and for this, uk+1, the manipulated move to be made at time k+1 is known but 

 
NN 

 

 
NN 

 

 
NN 
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the output at the next instant yk+1 is unknown at time k.  However, yk+1 can be 

assume to be equal to Kky |1ˆ + and by combining the equation 2.9 to equation 2.10,  

                                    ),,(ˆ 12|2 kkkKk uuyNNy ++ =                   (2.12) 

 

By extending this approach to third prediction,  

                                      ),,,(ˆ 123|3 kkkkKk uuuyNNy +++ =                (2.13) 

 

In short, for this approach, three neural networks are required for three 

predictions.  There are two inputs to the NNs for the one step prediction whereas 

there are four inputs for three step predictions.  The limitation of this approach is that 

it is not suitable to do a large prediction due to the fact that the number and size of 

NNs as well as the data required to process will increase significantly as the number 

prediction increase.        

 

3. Employing a dynamic recurrent neural network (Su et al., 1992; Parlos et al., 

2000): Instead of using the feedforward network as what happen in two previous 

methods, the latest approach is using a single time lag recurrent network to perform 

the Multi Step Prediction.  This approach is done by employing a single multi-step 

prediction recurrent network and then trains it with some dynamic optimization 

method such as dynamic gradient descent method (Parlos et al., 2000).  The recurrent 

network showed a better prediction accuracy compare to FNN especially in 

performing a Multi Step Prediction due to its inherent dynamic (local hidden layer 

fed back/data feedback via tapped delay).        

 
 
 
 
2.5 Summary  

 

 In summary, a complete and updated literature review of MPC technology is 

presented in this chapter.  They includes the historical background of MPC; the basic 

ideas of MPC; the reported implementation of LMPC and NMPC in industry; the 

reason of popularity of LMPC; the advantages and limitations of LMPC; the ideas of 

AMPC; the stability and robustness issues in LMPC; the reasons why we need 
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NMPC; the basic elements of NMPC; the difficulties associated in performing the 

NMPC and some of the alternative solutions in counteract it.  Additionally, the 

literature review in studying the application of MPC in controlling a high purity 

distillation column (interest of this research) had shown that the comparison between 

the performance of DMC and NNMPC particularly in controlling a high purity 

distillation column remains an unexplored issue (similar research hasn’t been found) 

and this has reinforced again the need of conducting this research.  Lastly, the 

description for FNN based system identification and three common ways to perform 

the multi step prediction were also shown in this chapter.             

 

 

 

 



 
 
 
 
 

CHAPTER 3 
 
 

 
 

CASE STUDY 1: LMPC ON CONTINUOUS SOLUTION 

COPOLYMERIZATION REACTOR 

 
 
 
 

In this chapter, a control system is designed for a copolymerization reactor using 

the feedback control to regulate polymer production rate, copolymer composition, 

molecular weight and reactor temperature. A model is developed to illustrate the 

behaviour of the copolymerization process. Relative Gain Analysis (RGA) is used to 

investigate input/output control pairings in order to identify fundamental nature of the 

solution copolymerization control problem and to determine the best control system 

structure. PID control and LMPC control techniques are applied to compare the results.  

A flowchart of methodology is illustrated in Figure 3.1. 

 
 
 
 
3.1 Process Description and Model Development 

 

The solution polymerization of methyl methacrylate and vinyl acetate in a 

continuous stirred tank reactor is described in Figure 3.2 (Congladis et al., 1989). 

Monomers A (methyl methacrylate) and B (vinyl acetate) are continuously added with 

initiator, solvent and chain transfer agent. A coolant flows through the jacket to remove 

the heat of polymerization. Polymer, solvent, unreacted monomers, initiator and chain 

transfer agent flow out of the reactor to the separator for further processing. In this 

study, initiator used is azobisisobutyronitrile (AIBN) and the chain transfer agent is 
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acetaldehyde. This system is interesting as methyl methacrylate (MMA) is much more 

reactive than vinyl acetate (VAc) in copolymerization, as indicated by their respective 

reactivity ratios of 26 and 0.03.  

 
 

 
Figure 3.1 Methodology for Case Study 1 

 
 
 
 

The level of liquid in the reactor is assumed constant. The steady-state operating 

conditions are shown in Table 3.1.  

Development of Process Model 

Simulate step response 

Comparison 

Analyse control structure pairing using RGA 

Obtain process transfer functions 

PID Control MPC 
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Figure 3.2  Solution Copolymerization in Continuous-Stirred Tank Reactor 

 
 
 
 
3.2 Step Response Simulation 

 

The flow of work for developing step response is shown below: 

 

a) Define input variables  

b) Steady-state operations 

- Define initial valures 

- Run the ODE function from t=0 to t= 55 hours 

- Use the ODE values to calculate other output variables 

c) Plot output variable versus time 

d) Step change each variable 

e) Run ODE functions and obtain output variables 

f) Plot step response  

Reactor 

Coolant 

Product 

Coolant 

To 
Separator 

Methyl  
Methacrylate 

Vinyl  
Acetate 

Initiator 

Solvent 

Chain  
Transfer 
Agent 
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Table 3.1: Steady-state Operating Conditions 

Inputs Value 

Monomer A (MMA) 18 kg/hr 

Monomer B (VAc) 90 kg/hr 

Initiator (AIBN) 0.18 kg/hr 

Solvent (Benzene) 36 kg/hr 

Chain Transfer Agent (Acetaldehyde) 2.7 kg/hr 

Inihibitor (m-DNB) 0 kg/hr 

Reactor Jacket Temperature 336.15 K 

Reactor Feed Temperature 353.15 K 

Reactor Parameters Value 

Residence Time 6 hr 

Volume 1 m3 

Heat Transfer Area 4.6 m3 

Density 879 kg/m3 

Outputs Value 

Polymer Production Rate 23.3 kg/hr 

Mole fraction of A in Polymer 0.56  

Weight Average Molecular Weight 35 000 

Reactor Temperature 353.01 K 

 
 
 
 
3.3 Relative Gain Array Analysis 

 

Relative gain method is a measure of the influence a selected manipulated 

variable has over a particular controlled variable relative to that of other manipulated 

variables acting over the process. The relative gain of a controlled variable, i to a 

manipulated variable, j is defined as  
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For the copolymerization process, it is convenient to arrange the RGA in an 

array. 
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 One property of the array Λ is that the relative gain in each column and row add 

up to unity. The λij that has the nearest value to unity will be paired with that particular I 

controlled variable and j manipulated variable. If any lies outside 0 and 1, it means that 

there is a substantial difference between those processes. The matrix method has been 

used to pair up the variables for this copolymerization process. Results of RGA analysis 

for four sets of selected manipulated variables are shown in Table 3.2.  

 

Control variables : 

 Gpi, yap, Mpw, Tr 

 

Manipulated variables: 

Set 1: Gif/Gbf, Gaf/Gbf, Gbf, Tj 

Set 2: Gtf/Gbf, Gaf/Gbf, Gbf, Tj 

Set 3: Gif, Gaf, Gbf, Tj 

Set 4: Gtf, Gaf, Gbf, Tj 
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From the four sets, the best set of manipulated variables is Set 2 with the pairing 

as below: 

 

 Gtf/Gbf :  Gpi 

 Gaf/Gbf :  yap 

 Gbf  :  Mpw 

 Tj  :  Tr 

 
 
 
 
3.4 Results and Discussion 

 

3.4.1 Digital PID Feedback Control 

 

Figure 3.3 shows the block diagram for digital PID feedback control for 

copolymerization system. For multivariable input multivariable output system (MIMO), 

there will still be interactions between the manipulated variables with the controlled 

variables as shown in Figure 3.4. In controlling the copolymerization process, there will 

be four PID controllers for a 4 x 4 input-output variable system. The equation for the 

digital PID controller in its velocity form are shown below. 
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             (3.3) 

 

Where ∆t =the sampling period  

            pn  = controller output at the t sampling instant. 

            en  = error at the t sampling instant 

            Kc = Ultimate controller gain 

            Iτ   = Integral time  

 τD = derivative time 
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Figure 3.3  Block Diagram for PID Control System 

 

 
Figure 3.4 Block Diagram for a MIMO Control System 
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 The results for the simulation are shown in Figures 3.5 to 3.10.  In Figure 3.5, the 

response after a disturbance of 10% ratio between Gtf to Gbf was seen to be negligible.  

There was hardly any change in the outputs.  However, there was a significant change in 

polymer composition and molecular weight after a 10% change in the ratio of Gaf to 

Gbf.  The nomenclature for the symbols are as follows: 

 

Input 1: Gt/Gbf (ratio of transfer agent feed rate to the monomer B feed rate) 

Input 2: Gaf/Gbf (ratio of monomer A feed rate to monomer B feed rate) 

Input 3: Gbf (monomer B feed rate) 

Input 4: Jacket temperature 

 
 

 
 

Figure 3.5 Result After Adding 10% Of Gtf/Gbf as Disturbance. (Very Small 
Change Observed) 
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Figure 3.6 Result After Adding 10% Of Gaf/Gbf as Disturbance.  
 
 

 
 

Figure 3.7 Result After Adding The 10% Of Gbf as Disturbance.  
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Figure 3.8 Result After Adding The 10% Of Tj as Disturbance.  
 
 

 
 

Figure 3.9 Result After Adding The 10% Of Gpi as New Set-Point 
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Figure 3.10 Result After Adding 10% To Gif as Disturbance.  
 
 
 
 
3.4.2 Linear MPC 

 

 In this case study, LMPC based on state-space model is used. The general 

discrete-time linear time invariant (LTI) state-space representation used in the MPC 

toolbox in MATLAB is as follows. 

 

)()()()()( kwkdkukxlkx wdu Γ+Γ+Γ+Φ=+  (3.4) 

 

)()()()()( kwDkdDkuDkCxky wdu +++=  (3.5) 

 

where  x = vector of n state variables 

  u = manipulated variables 

  d= measured but freely-varying inputs 

  w= immeasurable disturbances 

  z= measurement noise 
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 The results from the simulation are shown in Figures 3.11 to 3.22.  Results for each 

run is shown in two figures which represent changes in inputs and outputs.  The inputs 

and outputs are as follows: 

 

Input 1: Gt/Gbf (ratio of transfer agent feed rate to the monomer B feed rate) 

Input 2: Gaf/Gbf (ratio of monomer A feed rate to monomer B feed rate) 

Input 3: Gbf (monomer B feed rate) 

Input 4: jacket temperature 

 

Output 1:  Gpi (polymerization rate) 

Output 2: yap (composition of monomer A in the product polymer) 

Output 3: Mpw (molecular weight of polymer) 

Output 4: Tr (reactor temperature) 

 

d(1):  Gif (initiator feed rate) 

d(2):  Gsf (solvent feed rate) 

 

Steady state operation values: 

Input  =  [0.03 0.2 90 336.15] 

Output  = [23.3 0.56 35000 353.01] 

d  = [0.18 36] 

 
 
Conditions given: 

 

P =  6 number of prediction horizon 

M = [3] blocking factor 

ywt = [1 3 1 1] output weight 

uwt = [1 0 0 0] input weight 

 

Figures 3.11 to 3.18 show the inputs and outputs with MPC when 4 different set 

point changes were applied.  As seen from the figures, the MPC were able to perform 
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the set point changes smoothly.  Figures 3.19 to 3.22 illustrate the inputs and outputs 

with MPC when 2 different disturbances occurred.  As for the servo control, the MPC 

were able to correct the controlled variables back to the set point smoothly. 
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Figure 3.11 Input Changes For The New Set-Point (Gpi = 24 kg/h) 

 

 
 

Figure 3.12 Output Changes For The New Set-Point (Gpi = 24 kg/h) 
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Figure 3.13 Input Changes For The New Set-Point (Gpi = 24 kg/h, yap = 0.6) 

 
 

 
Figure 3.14 Output Changes For The New Set-Point (Gpi = 24 kg/h, yap = 0.6) 

 
 



 43

 
Figure 3.15 Input Changes For New Set-Point (Gpi = 24kg/h, yap = 0.6, Mpw = 
35500) 

 

 
Figure 3.16 Output Changes For New Set-Points (Gpi = 24kg/h, yap = 0.6, Mpw =35500) 
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Figure 3.17 Input Changes For New Set-Points (Gpi=24kg/h, yap=0.6, Mpw=35500, 

Tr=363K) 

 
Figure 3.18 Output Changes For New Set-Points (Gpi=24kg/h, yap=0.6, 

Mpw=35500, Tr=363K) 
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Figure 3.19 Input Changes When Disturbance Loaded (d(1) = 0.28) 

 

 

Figure 3.20 Output Changes When Disturbance Loaded (d(1) = 0.28) 
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Figure 3.21 Input Changes When Disturbance Loaded (d(1) = 0.28, d(2) = 41) 

 

 

Figure 3.22 Output Changes When Disturbance Loaded (d(1) = 0.28, d(2) = 41) 



 
 

 
 
 

CHAPTER 4 
 
 
 

 
APPLICATION OF LMPC AND NNPC ON HIGH PURITY DISTILLATION 

COLUMN 

 
 
 
 

In this chapter, the methodology is comprised of three main elements.  There 

are the distillation column simulated with PI Control, Linear Model Predictive 

Control and Nonlinear Model Predictive Control.  First part in this chapter describes 

the detail of the chosen distillation column model and the dual composition control 

approach used.  Section two focuses on the detail of the Step Response Model 

derivation and the design of the DMC controller.  Final section discusses mainly on 

the nonlinear model fitting using the FNN and the way to incorporate the FNN into 

MPC paradigm.  A flowchart of methodology is illustrated in Figure 4.1. 

 
 
 
 
4.1. Distillation Column and PI Controller  

 

 The high purity distillation column used in this work is taken form Skogestad 

(1997) and it is the extension of the distillation model derived form Skogestad and 

Morari (1988).  The main reason this model is chosen instead of many other 

available distillation models (Luyben, 1987; Chen and Ogunnaike, 1993) is largely 

due to this model has been proven able to represent of a large class of moderately 

high purity distillation column and has been tested for numbers of researchers under 

various kinds of control based research activities (Chou et al., 2000; Skogestad et al., 

1990; Skogestad et al., 1998). Skogestad provided an ODE based model which is 

better than the transfer function model (TF model).  TF models are unable to model 

the highly nonlinear response of minimum reflux distillation column especially when 
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the operation is shifted towards high purity limit (McDonald et al., 1988).  In 

addition, Skogestad performed many works on the configuration selection and 

controllability issues based on this model. For example, the Closed Loop Disturbance 

Gain analysis (CLDG) which able to define the effect of the disturbances for 

decentralized control when interaction taken into account has been done by 

Skogestad (1997) and according to him this is a better alternatives for decentralized 

control to deal with the effect of disturbance (Skogestad and Hovd, 1990).   

 

 
 

Figure 4.1  Methodology for Case Study 2 

 
 
 
 
4.1.1 Formulation of Skogestad’s Distillation Model  

 

 Skogestad’s distillation column (1997) is an ideal, binary, 40-tray distillation 

column with a single feed and a total condenser.  The specifications and assumptions 

made for this model are: i) it is a binary mixture column  ii) constant pressures 

change over the entire tray  iii) constant relative volatility  iv) constant molar over 

flows and constant liquid holdup on all trays  v) linear liquid dynamics and vapor 

liquid equilibrium (VLE)  vi) perfect mixing on all stages  vii) no vapor holdup as 

Distillation Column 

DMC 
 

-  SRC Derivation 
-  DMC Design 
-  Simulation of DMC 

PI Control 
 

- IAE Settling 
- PI control Simulation  

NNMPC 
-  Neural Networks based     
    System Identification 
-  NNMPC Design  
-  Simulation of NNMPC  

Comparison  

Regulatory Problems  
 

- Feedrate change from 1.0 to 1.2       
  at t=5min 
- Feed composition change from   
  0.50 to 0.60 at t=5min 

Servo Problem   
 

-  Setpoint change from 0.99 to   
    0.995 for XD at t=5min 
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well (immediate vapor response).  The overall material balance based on Skogestad 

(1997) for all stages is described as follows: 

For the feed stage: i = NF 

The overall material balance: 

FiViViLiL
dt

dM i +−−+−+= )()1()()1(
                                                      (4.1) 

 

The component material balance: 

 
F

ii FziyiVixiLiyiVixiL
dt

XMd
+−−−−+++= )()()()()1()1()1()1(

)(

 (4.2) 

 

The total condenser: 

The overall material balance: 

DiLiV
dt

dM i −−−= )()1(
 (4.3) 

 

The component material balance: 

)()()()1()1( iDxixiLiyiV
dt

XdM ii −−−−=
 (4.4) 

 

Reboiler:  

The overall material balance: 

BiViL
dt

dM i −−−= )()1(
 (4.5) 

 

The component material balance: 

)()()()1()1( iBxiyiVixiL
dt

XdM ii −−++=
 (4.6) 

   

The Rest Stages: 

The overall material balance: 

)()1( iLiL
dt

dM i −+=
 (4.7)  
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The component material balance: 

)()1()1()1( iVyxLiVyixiL
dt

XdM
ii

ii −−−−++=
 (4.8) 

   

The steady state data for this model is described in the Table 4.1. 

 

Table 4.1: The steady-state data for Skogestad’s column 

Column Data  Operating Variables 

Relative volatility, α =1.5  

Number of theoretical trays,   N=40 

Feed tray position, NF = 21   

Feed composition ZF = 0.5;     

yD =0.99;   

xB=0.01 

 

Feed rate = 1 kmol/min 

Reflux flow = 2.706 kmol/min                      

Boilup rate= 3.206 kmol/min 

Nominal liquid holdup = 0.5 kmol 

Liquid holdup for condenser = 32.1 kmol 

Liquid holdup for reboiler = 10 kmol 

Distillate flow, D = 0.5 kmol/min  

Bottom product flow, B = 0.5 kmol/min 

 
 
 
 
4.1.2 Two Point Composition Control    

 

 The distillation column is a 5 x 5 system (five inputs flow that can be 

adjusted: L, V, VT, D, B). However, at steady-state, the assumption of constant 

pressure and perfect level control in the condenser and reboiler reduces it into a 2 x 2 

control system. A well accepted industrially control scheme, the LV control 

configuration is employed (Georgiou, et al., 1988) and this means the top product 

composition XD is regulated by adjusting reflux flow, L whereas the bottom product 

composition is regulated directly by adjusting vapor flow V.  A schematic of this 

control scheme is illustrated in Figure 4.2. Two single Proportional-Integral (PI) 

controllers would be used to perform the two point composition control.  In this work, 

the digital PI controller is used and the digital PI controller equation in the velocity 

form is as follows: 
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Where ∆t =the sampling period  

            ut  = controller output at the t sampling instant. 

            en  = error at the t sampling unit 

            Kc = Ultimate controller gain 

            Iτ   = Integral time  

 

 The PI controller was tested and tuned for a load disturbance and a set point 

change.  Nevertheless, a tuning procedure should be done before taking any control 

action. In this work, due to the nonuniqueness of Quarter Decay Ratio tuning 

parameter, the Integral of Absolute Value of the Error (IAE) tuning approach is used 

(Chiu et al., 1973). The IAE is a tuning approach in the aim to minimize the integral 

error as follow: 

 

                                                IAE = ∫
∞

0

|)(| dtte          (4.11) 

 

The final tuning parameters used in testing the PI control method were obtained 

using the fitting method proposed by Smith (1972) and the results were as follow: 

 

For disturbance rejection: 

 

KD=25.66    τD=15.80 

KB=-0.6767    τB=37.17 

For setpoint change:  

 

KD= 18.56   τD=16.62 

KB=-0.4307    τB=31.32 
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 After tuning the controller, the next step was to test the PI control for a load 

disturbance and a set point tracking.  Independent tests were conducted for a 20% 

step change in feed composition (ZF), a 20% step change in feed rate (F), a distillate 

set point step change from 0.99 to 0.995 at t=5min.     
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Figure 4.2 LV control scheme 
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4.2 LINEAR MODEL PREDICTIVE CONTROL 

 

 The LMPC algorithm chosen to be applied in this research is the DMC 

algorithm from Cutler and Ramaker (1979) and hence a Finite Step Response model 

(FSR) is required to do the prediction.  Therefore, a FSR system identification 

procedure was performed before starting the DMC algorithm.  There are three 

common ways to obtain the FSR including: 1) Straightforward form the step 

response data by the step test. 2) Indirectly form the impulse response coefficient by 

pulse testing. 3) Indirectly using the Orthogonal Least Square Method (OLS) form 

the Input Output data.  In this work, a step test was employed to derive the FSR.  

After obtaining the Step Response Coefficients (SRC) and obtaining the dynamic 

matrix by arranging the SRC in specify form of matrix, the DMC was carried out.  In 

short, the procedure the DMC algorithm is as follows: 

 

0. Initialize the controller:  calculate controller gain, Kc; measure the plant 

output y(t); set all elements of predicted output )(ˆ ty equal to y(t) (start at 

steady state); set the set point equal to y(t) (no set point changes)    

 

1. Increment the sample time by one. Start to test the controller (set point 

tracking or disturbance rejection problems).  Measure the plant output and 

calculate the error of the future projection of the controlled variable (CV) 

using:  

                                        )1(ˆ)1( int +−=+ tyyte setpo                               (4.12) 

 

2. Solve the objective function, which is the minimization of the sum of error 

squared plus weighting for the CVs and the solution    

                             

                                  )(][)( 1 keAAAkU TTuTuTTu ΓΓΛΛ+ΓΓ=∆ −                    (4.13) 

 

      where   Γ : diagonal weighting matrix  

                   Λ : Diagonal move suppression matrix  

                   k  : Sampling instant  

                  uA : Dynamic matrix   
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           )(kU∆ : Resultant control actions  

 

3. Implement the computed changes in the MV.  This is done by adding the first 

change of the MV to the current MV. 

 

4. Calculate the plant/model mismatch, d(t).  

 

5. Update the vector of the past changes in the MV and also correction of 

prediction by adding d(t) from step 4.  The vector update is done by swap the 

values down the array and then adds new inputs changes.  

 

6. Repeat the step from 1 to 5 to the end of simulation time. 

 

 On the other hand, the tuning parameters such as the prediction horizon, 

control horizon, Γ and Λ must be initialized first before starting the DMC algorithm.  

Moreover, in this research, the constraints for the MVs are set and being evaluated 

after step 6 and before step 7 (not include the constraint consideration directly into 

the objective function).  The details in FSR derivation and DMC algorithm will be 

explained in next section.    

 
 
 
 

4.2.1 Finite Step Response Model 

 

 The step response model is the integral of the impulse response model.  It is 

so-named as its coefficients are the changes in the sampled process output value from 

its initial value in response to a unit step change in the process input.  For example, 

in a SISO, stable process, the step response model can be presented as: 

                       ∑
−

=
−+−++ +∆=

1

1
1

N

i
NjkNjkijk uauay                               (4.14) 

 

Where ai is the step response coefficients and element after aN  is assumed to be 

constant where N is the model horizon (when process settle down).   
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 The control system is in 2x2 and thus step test was performed twice by 

imposing a +5% step input from steady state in reflux, LT and boilup rate, VB 

separately to obtain 2 set of input-output data (each set of I/O data contains LT, VB, 

XD and XB data).  The step response coefficients that relate the LT  and XD, LT and 

XB are derived from first set data (+5% LT change) whereas the relationship of VB 

and XD and VB and XB are obtained through second set data (+5% VB change).  Their 

relationship can be shown in Figure 4.3 below where G11, G12, G21, and G22 are the 

relationship associated with LT and XD, LT and XB, VB and XD and VB and XB 

respectively.  

 

 

 
 

Figure 4.3 The relationship between I/O data in step test 

 

The procedure of step test can be summarized as below: 

 

1. Make a step change in u of a specified magnitude, ∆u   

                                  

                                u(t) = uo  + ∆u  for t≥  to                            (4.15) 

 

2. Measure y(t) at regular intervals: 

                         

                                  yk = y(to +khs) for k =1,2 ,…,N                          (4.16) 

 

where hs : The sampling interval 

           Nh: Approximate time to reach steady state 

 

 G11           G12 
 
 
  G21           G22

LT 

VB 

XD XB 
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3. Calculate the step response coefficient from data 

                                            

                                             
u

yy
a k

k ∆
−

= 0                                     (4.17) 

 
 
 
 
4.2.2 Design of DMC Algorithm 

 

 In this research, the simulated distillation column employed does not have the 

constraints information.  Thus, an unconstrained DMC is actually implemented in 

this research, instead of performing the constrained DMC like what Garcia and 

Morshedi (1985) did in their QDMC algorithm in which the constraints of both the 

MVs and CVs are taken into account directly in their objective function.  In this case, 

only the constraints of MVs are imposed and considered after the derivation of inputs 

from equation 4.13.  For the tuning procedures, due to the large number of adjustable 

parameter available in DMC, many of these parameters have overlapping effects on 

the closed loop performance (Shridhar, 1998). Thus, the appropriate control horizon 

(m) and prediction horizon (P) would be found and fixed first by trial and error.  

Then, the effects of moves suppression (Λ) and weighting matrix (Γ) on closed loop 

performance would be investigated to determine which one is more appropriate to be 

used as the principal (active) tuning parameters.                

 

 As a model predictive control approach, the core of the DMC is the FSR that 

used to compute the predicted process variable profile, )(ˆ nkyr + for each of the R 

process variables with n sampling instant ahead of current time instant, k:   
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                       Effect of current & future moves     Effect of past moves 

 

where r      = 1, 2, 3, …, R 

          0,ry   = initial condition of rth process variable 
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        )(ius∆ = changes in sth manipulated variable at the ith sampling instant               

        irsa ,     = ith unit of step response coefficient of the sth manipulated variable to          

                      the rth process variable 

           N     = number of samples of the past manipulated variable moves required to  

                      predict the future process behavior (normally equal to sampling time  

                      required reach steady state)   

 

However, since the second term of equation 4.18 is undetermined yet, the equation 

used to do prediction is reduced to: 

 

                      )()}({)(ˆ
1 1

,0, nkdinkuaynky r

S

s

N

ni
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= +=

     (4.19) 

where dr(k+n ) is computed from the prediction error from the rth process variables.    

 

 The assumption of dr(k+n) is also a significant feature in DMC, in which this 

term is used to conclude all the effect of unmeasured disturbances and plant model 

mismatch and normally a constant step disturbance assumption is made.  For 

example, at the current time instant, k where the n=0; the prediction error can be 

calculated as:        

 

                   ∑∑
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1
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and since the future values of dr(k+n) required in equation 4.19 are not available, 

thus an assumption is made by estimating the prediction error to be equal over the 

future sampling instant or: 

 

                                             )()( kdnkd rr ≈+                                               (4.21) 
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According to Meadow and Rawling (1997), this choice of disturbance model may 

offers a few practical advantages including: 

 

a) Accurately models setpoint changes that often enter feedback loop as step 

disturbances. 

b) Effectively approximates slowly varying disturbances and this would add 

robustness to model error since model error can appear as slowly varying 

output disturbance. 

c) Provides zero offset for step changes in setpoint.  

 

 For the derivation of the control variables or inputs (Garcia and Morshedi, 

1986), normally the objective function used is formed by a minimization of the 

square of deviation of process variables set point and the predicted process output 

over the prediction horizon plus some control variables deviation effect as shown in 

Equation 4.22. 

 

                   )()()](ˆ)([)](ˆ)([min tututytrtytrJ TTTT

u
Λ∆Λ∆+−ΓΓ−=

∆
        (4.22) 

 

where                               r(t) = [r(t+1), r(t+2),…,r(t+P)]T                              

                                        ŷ (t) = [ ŷ (t+1),…, ŷ (t + P)]T                                 

                                        ∆u(t) = [∆u(t),…, ∆u(t+m-1)                                  (4.23)  

 

and the weighting matrix, Γ is in P x P matrix whereas move suppression matrix, Λ 

is in m x m matrix and r is the defined setpoint block. 

 

For the expression of )(ˆ ty : 

 

                                                )1(ˆ)()(ˆ −+∆= tyMtuAty                             (4.24) 

or                                             )(ˆ)()(ˆ tytuAty P+∆=                             (4.25) 

 

and in simple matrix form 
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and dynamic matrix,
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                           (4.28) 

 

where I is an identity matrix but it is merely used to represent the shift operation 

where such matrix does not need to be created in reality. 

 

By substituting equation 4.25 into the equation 4.22, the objective function becomes: 

 

)()()](ˆ)([)](ˆ)([ tututyuAtytyuAtyJ TTPurefTTPuref Λ∆Λ∆+−∆−ΓΓ−∆−=  (4.29) 

 

or written into error function: 

 

)()()]()([)]()([ tututuAtEtuAtEJ TTuTTu Λ∆Λ∆+∆−ΓΓ∆−=                       (4.30) 

where E(t) = yref(t)- ŷ P(t)   

 

Thus, objective function is minimized by taking the derivative of equation 4.30 with 

respect to ∆u(t) and setting the result equal to zero: 

 

        )(2)(2)(20 tutuAAtEA TuTTuTTu Λ∆Λ+∆ΓΓ+ΓΓ−=                            (4.31) 
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Solving the equation 4.31 for ∆u(t) yield: 

 

                               )()()( 1 tEAAAtu TTuTuTTu ΓΓΛΛ+ΓΓ=∆ −                       (4.32) 

 

or equivalently: 

 

                                   )()](ˆ)([)( tEKtytyKtu C
Pref

C =−=∆                            (4.33) 

 

Where Kc is the controller gain matrix: 

 

                                              ΓΓΛΛ+ΓΓ= − TTuTuTT
c AAVK 1)(                    (4.34) 

 

 In this work, however the system is in 2x2. Therefore, a superposition of 

matrix is required to be done. In the equation 4.32, the dynamic matrix, uA  would 

become 22 ⋅×⋅ mP  matrix form and )(tu∆ would be in 12×⋅m  matrix form; E(t) 

would be in 12×⋅P matrix form; ΛΛT would be in 22 ⋅×⋅ mm  matrix form and 

ΓΓT  would be in 22 ⋅×⋅ PP  matrix form.     

 
 
 
 
4.3 NONLINEAR MODEL PREDICTIVE CONTROL 

 

 Neural Network is used as nonlinear model in the Nonlinear Model Predictive 

Control (NMPC) scheme.  The methodology of NMPC can be decomposed into two 

main sections: 1) Neural Network Model Fitting 2) Design of Neural Network based 

Model Predictive Control (NNMPC).  Neural Network Model Fitting procedures 

include the generation of input-output (I/O) data, the determination of the neural 

network structure, the training of network, and validation.  The ideas for the 

automation of distillation column studied using NNMPC originated from Brizuela et 

al. (1996), where two separate NNMPC based control loops are employed. Just like 

in the decentralized PI controller system, reflux ratio, L and boilup rate, VB are the 

manipulated variables to control the top product composition, XD and bottom product 

composition, XB.  Figure 4.4 illustrated the schematic diagram of the proposed 
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NNMPC strategy.  The overall procedure of NNMPC algorithm is summarized as 

follows (same for both control loops): 

 

0. Initial the NNMPC tuning parameters and optimization termination criterion. 

 

1. Sample the process output, y(t), and calculate the process/model mismatch, 

d(t) between y(t) and ty(ˆ | t-1).       

 

2. Using the NNs process model to predict the values of the process output ty(ˆ | 

t+k) for next prediction horizon. (k=n1…n2).  Correct the prediction by 

adding the d(t) from step 1.  Calculate the cost function based on the current 

prediction output to provide a reference cost function that can be subtracted 

in calculating the control actions.       

 

3. Calculate the sequence of manipulated variables over the control horizon, U(t) 

= [u(t),…,u(t + m-1)]T by minimization of the defined cost function. 
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Figure 4.4  Proposed NNMPC control scheme 
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The cost function used in the NNMPC simulation is: 
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where    TmtutuU )]1(),...,1([ −+∆+∆=∆  

           n1, n2 = upper limit and lower limit for Prediction Horizon  

                nu  = Control Horizon 

               ρ j  = Weighting vectors for manipulated variables              

 

The optimization algorithm used is the Modified Levenberg Marquardt algorithm 

(Fletcher, 1987) and it will terminate when one of the following criterion is satisfied. 

 

a) The iteration number reaches a pre-specified value (5 iterations). A iteration 

is counted when there is an improvement in new cost function ( initnew JJ < )         

b) The step size in the updating of the optimization parameters reaches a pre-

specified tolerance value (1x 10-5).  

 
4. Implement the u(t) to the process model. 

 

5. Repeat the step from 1 to 4 to the end of simulation time. 

 

In addition, the selection of initial guess for the optimization parameters, u(t) is very 

important and in this work, and the values of u(t) is set by taking some manipulated 

variables measurement from PI control result. 

 

For initial guesses of u1:  [2.70629, 2.80, 2.98, 3.03, 3.042, 3.049, 3.25, 3.30] 

For initial guesses of u2:  [3.20629, 3.30, 3.47, 3.50, 3.540, 3.546, 3.85, 3.90] 

 

 It must be stressed here that in this NNMPC, because two separate NNMPC 

control loops are employed, the correction of the predicted model output to account 

for process/model mismatch and unmeasured disturbance can only be made in step 2 

while we initialize the cost function.  Thus a small process/model mismatch is 
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unavoidable in this control scheme.  The correction is done by comparing the 

measured output of the process to the model prediction at k to generate a disturbance 

estimate m
kk yyd −=ˆ , in which ky and m

ky  represent the process measurement and 

model prediction respectively.  Consequently, this disturbance term is added to the 

output prediction over the entire prediction horizon. 

 
 
 
 
4.3.1 Neural Networks Model Fitting  

 

 Just like in any other nonlinear empirical model fitting approaches, the neural 

network model fitting is generally a procedure of determining the parameters (θ) or 

be more specific the weight vector that is able to map the regressor vector (ϕ), to 

output space correctly.  Consider a nonlinear system,  

 

                                                        )),(()|(ˆ θϕθ tgty =                                 (4.36) 

 

where )(tϕ = [ zϕϕϕ ,..., 21 ] is the vector of regressor, θ  is a vector containing 

adjustable parameter or the weights in neural network and g is the nonlinear function 

(function realized by neural network).  In this thesis, the neural network model fitting 

procedures are decomposed into four main steps: 

 
1. Data generation and data pretreatment. In the data generation, the design of 

input sequence is very important because the model would display different 

characteristics depend on how the input energy is distributed over different frequency 

and direction (Ljung, 1999). The Pseudo-Random Binary Sequence (PBRS) type 

signal is used in this research as an input signal to excite the plant.  This is due to the 

PBRS- type signals are more persistent exciting (PE) and able to provide more 

information about the process dynamic compare to other common-used input signals.  

For example, the step input signal emphasizes too much on the low-frequency 

excitation whereas the excitation of pulse signal is too widely spread over the whole 

frequency ranges.  The PBRS signal is generated by imposing a + 5% deviation from 

its steady-state values in inputs signal (2.70629 and 3.20629 for u1 and u2 
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respectively) and 200 set of I/O data is logged with the sampling time of 2 min.  In 

addition, the data pre-treatment is also necessary before the starting of network 

training. In this work, each element of an I/O data is scaled between 1 to 0 to avoid 

the saturation of the activation function in every neuron and the scaled I/O data 

vector, vnorm is presented as: 

 

                                             ⎟⎟
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vv
vv

vnorm                                      (4.37) 

 

where vmax and vmin are the declared maximum and minimum of the training vector.   

 

2. Network structure selection.  A two-layer perceptron NNs with hyperbolic 

tangent hidden units and linear output is used in this work due to it has proven that it 

is good enough to approximate all the continuous functions to any desired accuracy 

(Ramchandram and Rhinehart, 1995; Hornik et al., 1989).  Figure 4.5 illustrate the 

proposed MLP structure d inputs, M hidden neurons and c output neuron.   
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Figure 4.5 The architecture of MLP network 

 

where the processing in the network can be expressed as (Baughman and Liu, 1995): 
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The x = [1, x1,..., xd] is the input vector and ψ (u) is a nonlinear activation function.  

In other words, the activation function with respect to the input to hidden weights, 

ψ(ui
0(k)) is a hyperbolic tangent and the activation function with respect to the 

hidden to output weights, ψ(uj
I(k)) is an linear function  The weights form input l to 

hidden neuron j and the weights form the hidden neurons j to the output i is denoted 

as wl
jl and w0

ij respectively.  The biases weights are denoted as wi
j,0 and w0

i,0 .   

 

To express it in simpler matrix form, where: 

 

                                                            h=ψ (WI ⋅ x)                                           (4.40) 

and ypred = ψ (W0 ⋅ h) = f(x,w)                                                                          (4.41)  

 

where WI is the (M, d+1) input-hidden weight matrix and W0 is the (c, M+1) hidden 

output weight matrix and x= {xl} is the (d+1, 1) input vector and h= {hl} is the 

(M+1,1) hidden vector with 10 ≡h and ypred { }iŷ= is the (c, 1) output vector and the 

element by element vector activation is given by ψ (u) = [ψ(u1),…,ψ(un)].  In short, 

this network structure used can be viewed as a nonlinear function f(x, w) of the input 

vector and weight vector w, which contains all the weights.    

 

 On the other hand, for the network’s input vector (x) or regressor vector 

selection, a Nonlinear Auto-Regressive with eXogenous input (NARX) model is 

employed and the regressor vector can be expressed as (Leontaritis and Billings, 

1985): 

 

              T
uy nktuktuntytyt )]1(),..,().(),...,1([(),( +−−−−−=θϕ              (4.42) 

 

where the y(t) and u(t) are the system output and input sampled at time t, ),( θϕ t  is 

the regressor vector and θ is the adjustable parameter or networks weight in this case, 
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k is the system dead time and nu and ny are the number of the delayed system inputs 

and output included in the model.  The NARX model is chosen due to it has shown 

to perform well for predicting system outputs and has been successfully used for 

controlling nonlinear system (Ravi Sriniwas et al., 1995; Pottmann and Seborg, 

1992).  In this research, both of the values for nu and ny are set at 2 as the chosen 

distillation column can be defined well under approximation of 2nd order system.  

The schematic diagram of NARX structure is shown in Figure 4.6 below. 

 

 

            y(t-1)                                                                                                         

               

           y(t-ny)                       MLP NNs 

           u(t-k)                                                        )(ˆ ty                                

                                              

          u(t-k-nu+1) 

 

 
Figure 4.6 The NARX structure 

 

3. Network Training.  Again, the NNS training is actually a process to determine the 

optimal weights (the vector or matrices WI and W0) for a prediction problem and it is 

done by performing the data mapping from a set of training data ZN = {[u(t), y(t)] | 

t=1,..,Ntrain}, to a set of possible weights: ZN →   θ̂  with the objective to produce the 

prediction )(ˆ ty  which is close to the true outputs y(t).  Normally, a cost function is 

pre-defined as a measure of the quality of the output prediction.  In this thesis, a 

classic Prediction Error Method (PEM) is used (Ljung, 1999) and the cost function is 

as usual, the sum of the squared differences between the networks predicted output 

)(ˆ ty and the expected output y(t): 
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However, the ultimate cost function used in this thesis is augmented with a 

regularization term as follow: 

 

                     θθθθ D
N

tyty
N

V T

Train

N

tTrain

train

2
1)]|(ˆ)([

2
1)(

1

2 +−= ∑
=

           (4.44) 

 

where the matrix D is a diagonal matrix which is commonly selected to ID α= and in 

this thesis the α  is set to 1x10-5.   This approach is known as weight decay 

regularization method which is used to smooth the cost function and improving the 

generalization error by eliminate over-fitting and ensure numerical stability (Sjoberg 

and Ljung, 1995).   Finally, the optimal weights are found as: 

 

                                                     )(minarg θθ
θ

V=                                   (4.45) 

 

by employing some iterative optimization algorithm: 

 

                                                  )(1 VJ acii ∇−=+ ηθθ                                 (4.46) 

 

where η is the step size and )(VJac∇ is the gradient respective to cost function. 

 

 The Gauss-Newton based Levenberg-Marquardt algorithm (Fletcher, 1987) is 

used as the network training algorithm in this thesis due to its rapid convergence 

properties and robustness.  As usual, the terminal criterions are required to pre-define 

before starting the training algorithm. These include: 

 

a) The maximum iteration number (500 iterations).       

b) The minimum acceptable criterion value (1x 10-10) 

c) The minimum of criterion difference (previous criterion value minus 

current criterion value) (1x 10-7).  
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 The network training method used in this thesis is originated from Norgaad 

(1997), Gaiceanu et al., (2000) and Xia (2003).  The summary of the procedure is as 

follow: 

 

0. Set the necessary termination criterions and weight decay diagonal matrix, D.  

1. Initial the weight vector, WI and W0 (starting point).  Run the simulation with 

the initial weight vector and calculated the information required like the 

predicted output, )(ˆ ty error vector, ε  and the value of pre-defined cost 

function, )(θV .  

2. set iteration index, k=0, Let LM parameter, 0λ =10-3  

3. Calculate acJ , the Jacobian matrix in respect to the defined criterion in Eq 

(4.44).  

4. Calculate the search direction, f from )(])([ )()()()( iiii GfIR θλθ −=+ , where I 

being a unit matrix, R and G first and second partial derivatives of )(θV , λ is 

a small positive diagonal element added to matrix of second partial derivative 

or so-called Hessian matrix to overcome the non-positive definite problem 

arising in Hessian matrix. 

5. Calculate the ),( )()( Nii ZfW +θ   

6. Calculate the term 
)(),(

),(),(
)()()()(
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fLZW
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7. Set 2/)()( ii λλ =  if 75.0)( >ir  and Set )()( 2 ii λλ =  if 25.0)( >ir  

8. If ),(),( )()()( NiNii ZWZfW θθ −+ then accept  )(
1

i
ii f+=+ θθ as new iterate 

and let )()1( ii λλ =+ and increment k by one, k=k+1 

9. Calculate the stooping criterion, if satisfy, terminate.  If no, go to step 4.  

 

 For updating the weight vector (w) at each iteration as in Equation 4.46, the 

first derivative of cost function with respect to the weight, 
i

T

w
wJ

∂
∂ )(  in each iteration 



 70

is required. In this thesis, it is calculated by updating the weight vector, w through 

the back propagation techniques in which the error signal, ε(k) is propagated 

backward through the network via the error every individual neurons.   

 

 The gradient of the cost function can be written in the form of: 
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By differential with respect to the hidden to output weight gives: 
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This lead to  
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Whereas the derivatives with respect to the input to hidden weights are found by 

using the chain rule: 
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And this has eventually yield the TJ∇  wanted in the form of: 
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 Due to there are two separate NNMPC controllers used (as mentioned in 

section 4.3), the NNs model fitting procedure also has to be done in two times (L and 

XD; V and XB) or in others words the SISO system identification is employed.  

Nevertheless, the I/O data used is taken from MIMO PBRS tests in which both inputs 

variables are changing its values simultaneously.           

 

4. Validation.  In this step, the available data (from data generation) irrespective of 

input and output is divided into two subsets.  The first subset is the training set, 

which is used for computing the gradient and updating the network weights and 

biases.  The second subset is used as the validation set.  Because the principal role of 

identified NNs is to predict the process output over the prediction horizon, thus, the 

accuracy of NNs is validated by evaluating its performance in doing the multi-step 

prediction.  Five samples of test are conducted including 1, 2 3, 4 and 5 step ahead 

prediction and the performance index used is the Sum of Squared Error (SSE) 

between predicted output, ŷ  and true output, y.  

 

                                         ∑
=

−=
N

t

tytySSE
1

)()(ˆ                            (4.53) 

 

where N is the overall samples used for cross validation which is 200 in this work.  

 
 
 
 

4.3.2 The Design of Neural Network based Model Predictive Control 

   

 The Neural Network based Model Predictive Control (NNMPC) algorithm 

implemented here is originated from the work of Sorensen et al. (1999).  They had 

introduced a new idea of developing a controller with extended control horizon based 

on a neural network.  For the predictor, they suggested the k-step prediction by using 

a NARX model: 
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where the nu and ny are the number of the delayed system inputs and output and the d 

is the system dead time. In other words, the k-step ahead prediction is calculated by 

shifting the expression forward in time while substituting prediction for actual 

measurement which does not exist. 

 

As denoted in Equation 4.35, for the NNMPC scheme, the criterion or cost function 

to be minimized is defined as: 
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or in the matrix form: 

 

 )(~)(~)()()(~)(~)](ˆ)([)](ˆ)())[(,( tUtUtEtEtUtUtYtRtYtRtUtJ TTTT ρρ +=+−−  (4.56) 
 

where TNtrNtrtR )]()...([)( 21 ++=  

      TNtyNtytY )](ˆ)...(ˆ[)(ˆ
21 ++=  

     TNteNtetE )]()...([)( 21 ++=  

     T
uNtututU )]1()...([)(~ −+∆∆=                                                            (4.57) 

and )(ˆ)()( 1ktyktrkte +−+=+  for k=N1,…, N2                                          (4.58) 

 

 Just like the neural network model fitting problem, the quasi-Newton 

optimization algorithm or more specifically the Gauss-Newton based Levenberg-

Marquardt algorithm is employed here to determine the control law by minimizing 

the NNMPC cost function (Equation 4.55).  To solve this problem, the calculation of 

the gradient is necessary and this has caused the most difficult part in this NNMPC 

algorithm.  The gradient is given by: 
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and since the )1()()()(~ −−=∆= tutututU  
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The 
)(
)(~

ktU
ktU

+∂
+∂ is a matrix of dimension Nu x Nu and this derivative is independent of 

time and constructed beforehand.  So, the unsolved term left now is only the partial 

derivative of 
)(
)(ˆ

tU
tY

∂
∂  which is a matrix of dimension UN x )1( 12 +− NN  : 
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To calculate the partial derivative of 
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The hidden output is calculated by taking into account for the past and future control 

inputs terms (first three sums depend on future control input and the remaining three 

on past control input): 
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The expression for h(k,l,j) can be reduced to 
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 After obtaining the 
)(
)(ˆ

tU
tY

∂
∂  from equation 4.65, the Gauss-approximate 

Hessian and Gradient is calculated and the Gauss-Newton Leverberg Marquardt 

approach is applied to calculate the control action by minimizing the cost function 

following the same procedure as denoted in Section 4.31.    

 



 
 
 

 
 

CHAPTER 5 
 
 

 
 

RESULTS AND DISCUSSION  

 
 
 
 
 Results are presented and discussed in this chapter.  The first section reports 

the system identification results for both the DMC and NNMPC.  For DMC, the step 

response coefficients derived from step test is presented whereas for the NNMPC, 

the neural network system identification results for both the control loops; XD and LT 

as well as XB and VB is presented respectively.  Second section illustrated and 

discussed the closed loop simulation results for PI, DMC and NNMPC controller in 

dealing with servo and regulatory problems.   Additionally, the selection of tuning 

parameters in DMC and NNMPC is discussed in this section.  Finally, the 

comparison between PI, DMC and NNMPC controller is shown. 

 
 
 
 
5.1 System Identification  

 

 To obtain the SRC, two step tests are performed with 5% step change in LT 

and VB respectively to obtain a11 and a12 (step response coefficient associated with 

G11 and G12) and a21 and a22 (step response coefficient associated with G21 and G22).  

By using equation 3.17, the step response coefficients for a11, a12, a21, and a22 are 

calculated.  

 

 For the NNMPC, two separate feed-forward neural networks are employed to 

represent the nonlinear systems (XD and LT and XB and VB).  These two NNS are 

trained as expressed in section 3.31.  The training I/O data used is generated by using 

the PBRS type input signal as illustrated in Figures 5.1 and 5.2.  By varying the 
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hidden nodes used in both NNS and cross validating the trained NNS with multi-step 

prediction test, the NNS training results are obtained. 
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Figure 5.1 Training data used to model the nonlinear system which correlates LT 

and XD 
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Figure 5.2 Training data used to model the nonlinear system which correlates VB 

and XB 
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5.2 Closed Loop Simulation Results 

 

 In this section, the performance of PI, DMC and NNMPC controller is 

assessed by testing them through the servo and regulatory problem.  For the servo 

problem, a step setpoint change for XD was imposed at t=5 min from 0.99 to 0.995. 

Two types of disturbances were investigated for regulatory problem: a 20% step 

change in feed rate, F (from 1.00 kmol/min to 1.20 kmol/min) and a 20% step change 

in feed composition, ZF (from 0.50 to 0.60).  In addition, to make the simulated 

distillation column model closer to real column, a 1 min measurement delay for XD 

and XB is included in the simulation.    The procedure and rationale used for tuning 

in DMC and NNMPC are discussed in this section.   

 
 
 
 
5.2.1 PI Control Result           

 

 The two-point composition control strategy as described earlier in section 

3.1.2 is implemented to control the distillation column.  PI controller parameters are 

taken from IAE tuning approach (Chiu et al., 1973).  Figure 5.3 show the control 

result for PI controller based on IAE tuning rules for the set point tracking whereas 

Figures 5.5 and 5.6 illustrated the control results for unmeasured disturbances in feed 

rate and feed composition respectively.   

  

 For the setpoint tracking, as can be seen from Figure 5.3, PI controller based 

IAE setting show a rapid responds but very sluggish control actions.  The Reflux rate 

(LT) and Boilup rate (VB) were increased once the setpoint change is introduced with 

a smooth but small magnitude profile.  As a consequence, the control results for IAE 

setting were evident lead to a long settling time.  This can be seen clearly in 

particularly for the bottom composition, XB from Figure 5.3 in which at the end of 

the simulation (t=600 min), the XB from the IAE tuning rules is still unable to settle 

down to its setpoint at 0.01.   
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Figure 5.3 PI controller (IAE setting) for setpoint change (step setpoint change in 

XD at t=5min from 0.99 to 0.995) 
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Figure 5.4 PI controller (IAE) for disturbance rejection (feed rate change 

at t=5min from 1.00 to 1.20) 
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Figure 5.5 PI controller (IAE) for disturbance rejection (feed composition change 

at t=5min from 0.50 to 0.60) 
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 For the regulatory control, it can be seen clearly from Figures 5.4 and 5.5 that 

the step change in feed composition, FZ∆  does not produce a significant deviation in 

XD and XB compare to step change in feed rate, F∆ .  This happens because the 

interactions for the LV configuration (two point control) has strongly amplified the 

effect of feed rate F, and reduce the effect of the feed composition, ZF.  Also, it can be 

observed that the disturbance in ZF is more easily rejected compared to the 

disturbance in F that has more effect on XD and XB.  An increased feed rate goes 

down to the bottom of the column, and this result, through the action of the bottom 

level controller, in a corresponding increase in the bottom flow. This would 

significantly affect the material balance which in turn affected the product 

compositions.  The effect of F is exaggerated particularly when the controller can not 

make fast control in both composition loops as can be seen in the Figure 5.4 where 

the PI controller form IAE setting was unable to provide fast control action and this 

has resulted that the bottom composition still quite far away from its setpoint even at 

the end of simulation time (t=600min).   

 

 In overall, as can be seen from Figures 5.3 to 5.5, the XB composition loop 

obviously took a longer settling time compare to XD composition loop in this PI 

control scheme. The sluggish control movement shown by PI control also resulted a 

long settling time for both the XD and XB and this has caused them unable to settle 

down in setpoint change and feed rate change problem.  Thus, it can be concluded 

that the PI control is able to perform better in a less interactive and nonlinear 

problem. As can be seen in Figures 5.4 and 5.5, PI control is evident able to deliver a 

better control results in counteracting the feed composition disturbance than in feed 

rate change.               

 
 
 
 
5.2.2 DMC Control Results           

 

 For DMC, a selection and determination of the values of tuning parameter 

such as the prediction horizon (P), control horizon (m), move suppression weighting 

(Λ ), weighting for controlled variables (Γ ) is very important and has to be done 

before starting the closed loop control simulation.  Although many detailed studies of 
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DMC tuning parameter has been done (Garcia and Morshedi, 1986; Shridhar, 1998), 

a well-established DMC tuning parameter selection theory has not yet been found 

and the choice of these parameters are generally strongly dependent on the sample 

time and the nature of the process.   

 

 In this work, the selection procedure is performed by testing them through a 

servo problem as mentioned in earlier section.  As can be seen from Figure 5.6, as 

the prediction horizon (P) increases, the control actions became more vigorous and 

thus the corresponding output respond became more oscillatory and can eventually 

become unstable.  In addition, it is also found that the value of prediction horizon (P) 

must be less than 3. This can be seen through the Figures 5.7 and 5.8, if the P is 

bigger than 3, the closed loop control actions either highly oscillatory, or very 

sluggish.  Therefore, the P is not the final tuning parameter used in this work and 

they are set at [3 3] (the first 3 is for XD-LT control system whereas the second 3 is 

for XB-VB).  For a fixed prediction horizon (P), a bigger control horizon would yield 

more aggressive output response (Henson, 1998).  In this case, the maximum values 

available for P is 3 which is not a huge number (computational problem doesn’t exist) 

and thus the values of control horizon, m is set as big as possible in this research and 

it is finally set to [3 3] and [2 2] for setpoint tracking and disturbance rejection 

problems respectively.   

 

 Next, Λ is varied in four different runs with Λ= [1 1], [3 3], [5 5] and [10 10] 

respectively in each run to see its impact on the closed loop performance (1 

inΛ actually equal to 1I in which I is the m x m identity matrix).  As can be seen 

from Figure 5.9, the value of Λ has to be higher than a certain limit (> 3 in this work) 

to give enough suppression onto the amplitude of the input moves in order to prevent 

it from behave unstable and oscillatory as what can be seen when Λ=1.  Therefore, 

in conclusion, the candidate that best suits as the final DMC tuning parameter in this 

work is the weighting for controlled variables (Γ ).  
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Figure 5.6 Effect of the prediction horizon on the closed loop performance 
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Figure 5.7 Closed loop response for P= [4 4]; m= [2 2]; Λ= [5 5] Γ = [5 5] 
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Figure 5.8 Closed loop response for P= [4 4]; m= [2 2]; Λ= [5 5] Γ = [20 20] 
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Figure 5.9 The impact of Λ on closed loop performance (P=3; m=2; Γ =20) 
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Table 5.1: Tuning parameters for DMC 

Control Type Setpoint Tracking Feed Rate Change Feed composition 
Change 

Prediction Horizon, P [3     3] [3     3] [3      3] 
Control Horizon, m [3     3] [2     2] [2      2] 
Move Suppression 
Weighting (Λ ) 

 
[5     5] 

 
[6     6] 

 
[0.5  0.5] 

Weighting for 
Controlled Variables 
(Γ ) 

 
 
[90  100] 

 
 
[130  130] 

 
 
[50   50] 

Sampling time (min) 1 1 1 
*5 in Λ is actually equal to 5I in which I is the P x P identity matrix 

 

 With these final tuning parameters, the best servo and regulatory control 

performed by DMC can be seen from Figures 5.10, 5.11 and 5.12.  As can be 

observed from Figure 5.15 for setpoint tracking, it is evident that DMC is able to 

cope with the interaction problem that occurred between the two composition loops 

by achieving their setpoint in a short time. As can be seen for Figure 5.10, the LT and 

VB were pushed to about 2.9 kmol/hr and 3.3kmol/hr after about 20min that the 

setpoint change is introduced. As a consequence, a large overshoot occurred in DMC 

especially in XD loop (791.81%).  DMC then took about 450min for XD and 330min 

for XB to reach a steady-state.  On the other hand, for the regulatory mode, the 

control results shown by Figures 5.11 have indicated that the DMC is able to deliver 

a superior performance in unmeasured disturbance rejection.  For the feed rate 

change, which is a more interactive and nonlinear process, the DMC took a very 

quick respond once the feed rate change is introduced and very smooth control 

actions are taken as well to counteract the effect of F∆ on top and bottom 

composition loops.   

 

 As a conclusion, the DMC shows a larger overshoot especially in XD loop 

(791.81% for setpoint tracking, 717.58% for feedrate change and 56.736% for feed 

composition change) but a smaller settling time (settled down to steady-state in all 

experiments before the end of the simulation time) compare to PI control and this is a 

typical DMC characteristic.  
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Figure 5.10 Illustration of the best servo control for DMC (step setpoint change in 

XD at t=5min from 0.99 to 0.995) 
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Figure 5.11 Illustration of the best regulatory control for DMC (feed rate change 

at t=5min from 1.00 to 1.20) 
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5.2.3 NNMPC Control Results 

 

 For the NNMPC, there are four available tuning parameters, which are the 

upper and lower limit of prediction horizon, n1 and n2, the control horizon, nu and the 

manipulated variables weighting, jρ .  Thus, to ensure the NNs are able to provide a 

promising model prediction, the maximum values of prediction horizon, n1 is fixed at 

2 and since 1 sample interval or 1 min time delay is included as a measurement delay 

for top and bottom composition, the lower limit of prediction horizon, n2 is fixed at 1.   

 

 The initialization of n1 and n2 has indirectly fixed the value of control horizon 

nu to 1.  In most of the published NNMPC researches found, the nu investigated has 

not greater than one except in Pottmann and Seborg (1997) research, in which the 

control horizon investigated was greater than 1, however it has caused a very 

aggressive control.  In addition, since a maximum 2-step ahead prediction is required, 

the 2-node NNs is employed in both XD - LT and XB - VB control systems to control 

the distillation column although the 4-nodes NNs seen able to provide a more 

consistent performance in doing the multi-step prediction.  In other words, 

manipulated variables weighting, jρ  is the remaining and only choice for the final 

tuning parameter in NNMPC.  After a series of simulation experiments performed to 

establish the appropriate values of jρ , the tuning parameters final results are shown 

as in Table 5.2.                    

 

Table 5.2: Tuning parameters for NNMPC 

Control Type Setpoint Tracking Feed Rate Change Feed composition 
Change 

Upper limit of 
Prediction Horizon, n1  

[2     2] [2     2] [2      2] 

Upper limit of 
Prediction Horizon, n2  

[2     2] [2     2] [2      2] 

Control horizon, nu  
[1    1] 

 
[1     1] 

 
[1      1] 

manipulated variables 
weighting, jρ  

 
 
[0.50   0.30] 

 
 
[1  0.5] 

 
 
[2   0.03] 

Sampling time (min) 1 1 1 
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 For the NNMPC, the closed loop performance for setpoint tracking is 

illustrated by Figure 5.17 while Figures 5.13 and 5.14 shows the control results in 

coping with the feed rate and feed composition change disturbances.  For the servo 

mode, as can be seen from Figure 5.13, NNMPC is obviously able to show a superior 

control performance in handling the setpoints change.  NNMPC displayed a rapid 

respond with smooth control actions in which the LT and VB were increased 

gradually with a small magnitude of overshoot and shorter settling time.  For the 

regulatory problem, the control results shown by Figures 5.14 and 5.15 also 

illustrated that the NNMPC is able to perform well in handling the feedrate and feed 

composition change.  The superiority of NNMPC is evident particularly in handling 

the feed rate change, which is a more interactive and nonlinear process.  Figure 5.13 

shows that a rapid responds with a gradual increasing control actions were taken by 

NNMPC especially in XB loop and this is has drive both the composition to settle 

down to their setpoints in a shorter settling time and with a smaller overshoot..    

 

 As a conclusion, NNMPC is obviously able to display a better control 

performance compared to the previous two control strategies. It exhibited more 

consistent control actions with a smaller magnitude of overshoot and settling time as 

can seen from Figures 5.12 to 5.14.  However, the mismatch between the 

process/model in NNMPC does result a small offset in its control variables. The 

offset problem is significant particularly for the feed rate change problem, as can be 

seen from Figure 5.13 where approximately 0.008-0.009 deviation in XB composition 

setpoint happens.  A small offset also can be observed in XD and XB for both the 

setpoint tracking and feed composition change disturbance problem as can be seen in 

Figures 5.12 and 5.14.  They are just not as significant as in the feed rate change 

problem.                    
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Figure 5.12 Illustration of the best servo control for NNMPC (step change in XD 

at t= 5min from 0.99 to 0.995) 
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Figure 5.13 Illustration of the best regulatory control for NNMPC (feed rate 

change at t=5min from 1.00 to 1.20) 
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Figure 5.14 Illustration of the best regulatory control for NNMPC (feed) 

composition change at t=5min from 0.50 to 0.60) 
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5.3 Overall Comparison between PI, DMC and NNMPC   

 

 For the setpoint tracking, as can be seen from Figure 5.15, NNMPC is 

obviously outperformed over the PI control and DMC.  NNMPC responds 

immediately once the setpoint change is introduced, this has enable both the 

composition settled down towards their setpoints with the comparatively shortest 

settling time and smallest overshoot among these three control strategies.   

 

For the regulatory problems, as can be observed from Figures 5.16 and 5.17, 

the superiority of NNMPC over others two control strategies is still valid.  Almost 

the same conclusion can be made especially in the feedrate change problem.  

NNMPC still able to deliver an outstanding performance by showing a shorter 

settling time and smaller overshoot control results.  DMC also shows its natural 

characteristic by display a large overshoot while PI control keeps its sluggish control 

movements in coping with feedrate change disturbance.  However, in the Figure 5.17 

where a feed composition change disturbance is introduced, the difference in the 

control performance among PI control, DMC and NNMPC became smaller.  This 

happen because the interaction effect for feed composition change is not as severe as 

in feedrate change where the increase in feedrate would in turn affects the material 

balance and consequently brings a significant change in product compositions.           

 

 As a conclusion, the overall comparison between the closed loop responses of 

the PI control, DMC and NNMPC has came out the fact in which the NNMPC is 

more superior over the DMC and PI control.  However, the mismatch between the 

process/model in NNMPC caused by the implementation of two separately-trained 

neural networks in this research has resulted a small steady-state offset even the 

conventional DMC feedback strategy of adding the most current one step prediction 

error to all the future predictions was applied.   
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Figure 5.15 Comparison between the closed loop responses for the PI, DMC and 

NNMPC controllers (setpoint tracking problem) 
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Figure 5.16 Comparison between the closed loop responses for the PI, DMC and 

NNMPC controllers (feed rate change disturbance rejection) 
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Figure 5.17 Comparison between the closed loop responses for the PI, DMC and 

NNMPC controllers (feed composition change disturbance rejection) 

 

 
 
 



 
 
 

 
 

CHAPTER 6 
 
 

 
 

CONCLUSION  

 
 

 
 

The use of DMC and NNMPC to control a solution copolymerization reactor 

a high purity distillation column respectively, was investigated.  An unconstrained 

MIMO DMC and NNMPC algorithms were developed using a step response model 

and two Feedforward Neural Networks respectively.  Additionally, the comparison 

between DMC, NNMPC and PI controller based on IAE tuning rules was conducted.  

Thus, in overall, the primary research aims that were listed in Section 1.3 were 

achieved.         

 

The control results illustrated in Chapter 5 by Figures 5.18 to 5.20 had shown 

that the DMC control scheme is well formulated and effectively implemented to 

control the high purity distillation column although only a simple 5% step input test 

was conducted to derive the step response coefficients.  The outputs seem to 

converge well to the desired set point in both the composition loops for regulatory 

and servo problems.        

 

For the NNMPC control scheme, the use of two separately-trained 

feedforward NNs and the Levenberg-Marquart optimization approach had 

demonstrated the training results that were considerably “applicable” up to 2nd 

prediction step.  Additionally, the use of the ideas originated from Sorensen et al. 

(1999) in performing the multi-step prediction and calculating the gradient of the 

cost function based on NNs was seen able to deliver a satisfactory control 

performance. In overall, NNMPC control scheme had shown a superior performance 

over the DMC and PI controllers by presenting a smaller overshoot, shorter settling 
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and smaller values of SSE and SCE.  However, the use of two separately-trained 

neural networks in this research had caused a small offset in the controlled variable 

responds which can be considered as a small flaw in this control scheme.     

 

 Comparison of the NNMPC with the DMC and PI controller, both are the 

industrially popular and successful control strategies in this research had clarify the 

significant features of NNMPC.           
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