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ABSTRACT 

 

 

Orthogonal Frequency Division Multiplexing (OFDM) is a Multi Carrier 

Modulation (MCM) technique which has been known as a powerful tool to overcome 

Inter Symbol Interference (ISI) caused by a dispersive channel. Since optical 

communication channels are dispersive environments, during last decades optical 

OFDM has been proposed for compensating modal and chromatic dispersion in the 

optical communication systems. The purpose of this study is to analyze and compare 

the performances of DC biased Optical Orthogonal Frequency Division Multiplexing 

(DCO OFDM) and DC biased Optical Wavelet based Orthogonal Frequency 

Division Multiplexing (DCO WOFDM) systems in Multi Mode Fiber (MMF) optical 

links. Mach Zehnder Modulator (MZM) was utilized as the optical modulator. The 

simulations were carried out using Optisystem software. Bit Error Rate (BER) versus 

transmission distance curves as well as Optical Signal to Noise Ratio (OSNR) versus 

transmission distance curves were used as criterions for evaluating the performances 

of the simulated systems. Simulation results show that DCO WOFDM system offers 

considerable improvement in BER performance compared to DCO OFDM system. It 

was found that error free transmission distance for DCO OFDM and DCO WOFDM 

occurred at 330 m and 360 m, respectively. The achieved BER by DCO WOFDM at 

a 375 m link distance is 23 times smaller than the achieved BER by DCO OFDM at 

the same link distance. Even though, the bandwidth of DCO WOFDM signal is twice 

the bandwidth of DCO OFDM signal. Sensitivity of DCO WOFDM signal to noise is 

slightly better than the sensitivity of DCO OFDM signal to noise. These benefits are 

due to the fact that the Power Spectral Density (PSD) of DCO WOFDM signal is 

more compatible with the channel frequency response in contrast to the PSD of DCO 

OFDM signal.  
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ABSTRAK 

 

 

Pemultipleksan Pembahagian Frekuensi Ortogon (OFDM) adalah teknik 

Pemodulatan Pembawa Berbilang (MCM) yang telah dikenalpasti sebagai langkah 

untuk mengatasi masalah Gangguan Antara Simbol (ISI) yang disebabkan oleh 

penyerakan cahaya dalam saluran optik. Oleh sebab itu, saluran optik OFDM telah 

dicadangkan dekad ini dengan bertujuan untuk mengurangkan serakan modal dan 

kromatik dalam sistem komunikasi optik. Objektif projek ini adalah untuk 

menganalisis dan membandingkan prestasi system Pemultipleksan Pembahagian 

Frekuensi Ortogon Optik dipincang DC (DCO OFDM) dan Riak Optik dipincang DC 

berdasarkan Pemultipleksan Pembahagian Frekuensi Ortogon (DCO WOFDM) 

dalam Gentian Berbilang Mod (MMF) optik. Pemodulat Mach Zehnder (MZM) telah 

digunakan sebagai pemodulasi optik. Simulasi dijalankan dengan menggunakan 

perisian Optisystem. Kadar Ralat Bit (BER) melawan jarak penghantaran serta 

Nisbah Hingar kepada Isyarat Optik (OSNR) melawan jarak penghantaran digunakan 

sebagai kriteria untuk menilai prestasi sistem tersebut. Keputusan simulasi 

menunjukkan bahawa sistem DCO WOFDM menawarkan peningkatan yang cukup 

besar dalam prestasi BER berbanding dengan sistem DCO OFDM. Didapati bahawa 

jarak penghantaran bebas ralat untuk DCO OFDM dan DCO WOFDM berlaku 

masing-masing pada 330 m dan 360 m. BER yang dicapai oleh sistem DCO 

WOFDM pada jarak 375 m adalah 23 kali lebih kecil daripada BER yang dicapai 

oleh DCO OFDM pada jarak yang sama. Walaupun, lebar jalur isyarat DCO 

WOFDM adalah dua kali lebar jalur isyarat DCO OFDM, kepekaan isyarat DCO 

WOFDM terhadap hingar lebih baik sedikit daripada kepekaan isyarat DCO OFDM. 

Manfaat yang diperolehi ini berikutan fakta bahawa Ketumpatan Spektral Kuasa 

(PSD) dari isyarat DCO WOFDM lebih serasi dengan respon frekuensi saluran 

berbanding dengan PSD isyarat DCO OFDM. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

Orthogonal Frequency Division Multiplexing (OFDM) is a Multi Carrier 

Modulation (MCM) technique in which data is simultaneously carried over many 

low rates subcarriers. Two of the main advantages of OFDM are its robustness 

against channel dispersion and its ease of phase and channel estimation in dispersive 

environments. 

 

 

1.2 Problem statement 

 

Dispersion is one of the most important constraints in optical communication 

systems, which reduces the data rate and respectively the useful bandwidth of the 

optical channels. Recently researchers have shown that OFDM is an effective tool to 

overcome dispersion in optical communication systems considering the robustness 

properties of OFDM against Inter Symbol Interference (ISI) caused by a dispersive 

channel [1-20]. 

 

In the optical domain, the OFDM signal can be represented either by the 

intensity of the light, called intensity modulation, or by the optical field, called linear 

filed modulation. In the optical OFDM systems which are based on linear field 

modulation, the demodulation of the optical OFDM signal can be realized by means 

of direct detection or coherent detection. Direct Detection Optical OFDM (DDO 
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OFDM) and Coherent detection Optical OFDM (CO OFDM) have been utilized to 

compensate chromatic dispersion in single mode fibers [1-10]. In the optical wireless 

and multi mode fiber systems, intensity modulation should be used to produce optical 

OFDM signals. Direct Current biased Optical OFDM (DCO OFDM) and 

Asymmetrically Clipped Optical OFDM (ACO OFDM) have been proposed to 

combat modal dispersion in multimode fibers and wireless optical links [11-20].  

 

The utilized transform coding technique in the electrical part of conventional 

OFDM systems is the Discrete Fourier Transform (DFT). Wavelet Transform is a 

relatively new transform compared to the Fourier transform. It provides the time 

frequency representation of signals, whereas Fourier transform gives only the 

frequency representation. Additionally wavelet transform offers better orthogonality 

than the Fourier transform. Strong advantages of wavelet transform over Fourier 

transform have caused the replacement of the Fourier transform with wavelet 

transform in the most recent digital communication systems. One of such 

replacements has taken place in the conventional OFDM, which is known as Wavelet 

based OFDM (WOFDM) [21]. 

 

Conventional OFDM signals only overlap in the frequency domain while the 

WOFDM signals overlap in both time and frequency. This overlapping feature 

increases the WOFDM symbol duration hence higher channel dispersion tolerance is 

obtained in comparison with conventional OFDM. In addition, since the duration of 

WOFDM symbol is long enough, WOFDM cannot gain advantage of Cyclic Prefix 

(CP). Lack of CP increases the spectral efficiency of WOFDM, CP contains only 

redundant data. Also, due to the time overlap, WOFDM has significantly lower side 

lobes than conventional OFDM hence higher immunity to Inter Carrier Interference 

(ICI) as well as higher immunity to ISI is achieved. In other words, WOFDM offers 

greater robustness against channel dispersion/fading and higher spectral efficiency 

than conventional OFDM [22-24]. Furthermore it has been proven that WOFDM is 

resilience to impulse noise [25] and to the Doppler spread introduced by the time 

variant channels [26]. Other advantages of WOFDM over conventional OFDM are as 

such: easier implementation, lower circuit cost as fewer carriers than in conventional 
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OFDM, lower complexity and higher flexibility [21-30]. These several advantages 

make WOFDM a candidate for future of OFDM in optical communication systems. 

 

 

1.3 Objectives 

 

The general objective of this thesis is to compare the transmission 

performances of DCO OFDM and DCO WOFDM signals over multi mode fiber 

optical links. For this aim, computer simulation, i.e. Optisystem software, was 

utilized.   

 

Specific objectives are: 

 

 To simulate DCO OFDM system, using Optisystem software. The 

electrical OFDM transmitter and receiver are implemented using 

Matlab software.  

 

 To replace Fourier transform with discrete wavelet transform, using 

haar wavelet family, in the simulated DCO OFDM system.   

 

 To evaluate the simulated systems in terms of Bit Error Rate (BER) 

and Optical Signal to Noise Ratio (OSNR) as two functions of 

transmission distance. 

 

 To discuss on the optimal bias point of Mach Zehnder Modulator 

(MZM) in intensity modulation applications.   
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1.4 Organization of the Thesis 

 

This thesis consists of six chapters. Chapter one briefly introduces this project 

by explaining the project background, objectives and overview of this thesis. 

 

Chapter two was written based on the literature review carried out. It provides 

an introduction to OFDM principles including, a historical perspective of OFDM, its 

basic mathematical formulation, DFT implementation of OFDM, cyclic prefix, 

channel estimation in OFDM, Peak to Average Power Ratio (PAPR) property and 

OFDM sensitivity to the frequency offset and phase noise. At last a complete 

description of optical OFDM is given by this chapter. A brief discussion on linearity 

between optical domain and electrical domain, and various types of optical OFDM 

are the issues which are elaborated in the last part of this chapter. 

 

In chapter three, WOFDM is studied. This chapter provides an introduction to 

WOFDM fundamentals including, a historical perspective, basic idea for wavelet 

transform, implementation of discrete wavelet transform with digital filter banks, 

wavelet packet transform, wavelet basis functions, and architecture and design of 

various types of WOFDM. 

 

Chapter four includes the simulation models of DCO OFDM and DCO 

WOFDM systems. All simulation parameters which were used in these OFDM 

simulations are explained in this chapter. 

 

The simulation results and their analyses are presented in chapter five along 

with conclusions. 

 

The thesis is concluded with chapter six describing the conclusions and 

suggestion for further work. 
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