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Abstract: Controlling engine speed corresponding to load variations and road condition has always been a challenge to automotive 
engineers. However, with the introduction of electromechanical CVT, maintaining constant engine speed based on its optimum control 
line characteristic could be made possible. This paper describes the simulation work in this area carried out by the Drivetrain Research 
Group at the Automotive Development Center, Universiti Teknologi Malaysia, Skudai Johor. The developed drive train model is 
highly non-linear, it could not be controlled satisfactorily by common linear control strategy such as PID controller. To overcome the 
problem, the use of Artificial Neural Network (ANN) is employed to indirectly control the engine speed by adjusting pulley CVT 
ratio. Computer simulations showed that applying artificial neural network (ANN) into drive train model could select a proper 
transmission ratio where the engine could be maintained to run at certain desired speed.  
Keyword: Artificial neural network, CVT control, electromechanical CVT 
 

1.0 Introduction 

One of the major challenges faced by car industry to day is the reduction of the fuel consumption. One 
alternative for achieving this goal is to increase the fuel efficiency of the engine by running the engine along its optimum 
operating line (OOL), Figure 1. Within the available operating range of internal combustion engine, continuously 
variable transmissions (CVT) is able to achieve more efficient operating levels than conventional automatic step gearbox, 
thus improving operational capability and fuel economy. The classical way to control CVT was the use of some 
information on the gear ratio or on the transmitted torque, which was then fed back by a PID type controller, [Guzzella 
,1995]. He also stated that based on his experience with this approach the outcome was not very encouraging, unless 
reinforced with a gain scheduled controller with typically 100 difference gain points.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Masayuki Fuchino and his partner Kouhei Ohsono, both of them came from Honda R & D Co. Ltd. They started 
controlling CVT with very basic control system by giving read data obtained through out their company experiment 
involving CVT since 1962. In 1962, the company introduced the first mass production hydraulically operated CVT into 
the market with the Juno, a scooter with a 0.175 liter engine generating 8.8 KW. Until the end of 1996 this company has 
successfully developed a new generation CVT for the 1.6 liter economy car, Civic series. 

 

Figure 1. Engine torque curve and optimal operating line. 
(Sharon Liu and Anna G. Stefanopoulou) 
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The performance of the engine and the power train takes the most important part in car’s fuel efficiency and drive 
ability. Thus, it is very important to maintain engine being the optimal working point according to car’s moving 
resistance by regulating the ratio and changing the throttle opening, the so-called synthesized control method can be used 
for this purpose, [Wang Hongyan et al. 2001]. Because the characteristic of the engine and the transmission is greatly 
change under different conditions, it is very difficult to control the ratio and the throttle opening to meet such demand. 
Fuzzy control strategy was investigated to solve this problem, the simulation done by Wang Hongyan et al shows that the 
synthesized controller realized by the fuzzy strategy can maintain engine operating at the maximum efficiency point at 
any power demand level. 
 
 
2.0 Drive train Model. 

 
To model the desired engine speed based on modelling, it is necessary to determine the drive train parameter. 

The dynamic vehicle is divided into three parts, engine, CVT, and wheel, Figure 2. It is assumed that there is no wheel 
slip; those vehicle speed is equivalent to wheel speed. The analysis begins with the engine speed dynamics, modelled as a 
single inertia system, given as: 
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where Te (t) is the torque generated by the engine and Te,CVT (t) denotes the torque applied to CVT by the engine. 
Secondly for the CVT, it is modelled as single integrator with a lumped inertia placed on the engine side of the CVT.  
 
The wheel side of the vehicle was modelled as single inertia with 
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Using kinematics relation 
 ew ωυω =  3. 
and the power balance in the CVT 

CVTeewCVTw TT ,, ηωω =  4. 
The above equations can be represented into a single equation: 
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Figure 2. Drivetrain model 
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Where Te is the engine torque, which is a function of, throttle angle, θthrottle, and engine speed, ωe and can be represented 
as: 
 ),( throttleee fT θω=  6 
Iw and Ie are Vehicle inertia and engine inertia respectively, where as, ωw is the vehicle speed with the torque on wheel Tw 
is function of drag force, rolling resistance, gradient resistance as well as acceleration resistance. 
 
The external torque could be modelled as 
 rRiRgRrRaTw ∗+++= )(  7 
Where the first term on the right hand side represent the drag, which is equal 
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Rr is rolling resistance, where the type of tyre will influence its value, but there is a standard equation of rolling 
resistance and represented as follow. 
 θcos)( mgvbaRr +=  9 
The drag resistance, Rg, represent road gradient in the form of  
 θsinmgRg =  10 
And the last term is acceleration resistant which equal to 

 
dt
dvmRi =  11 

 
 
 
4.0 Neural Network Architecture 
 

An artificial neural network consists of a number of very simple and highly interconnected processors, also 
called neurons, which are analogous to the biological neurons in the brain. The neurons are connected by weighted links 
passing signals from one neuron to another. Each neuron receives a number of input signals through its connections: 
however, it never produces more than a single output signal. The output signal is transmitted through the neuron’s 
outgoing connection, which in turn, splits into a number of branches that transmit the same signal.  

 
The single unit of the neural network (also called a neuron, or perceptron) is just a function applied to the 

weighted sum of inputs. The perceptron shown in Figure 7, implements the function: 
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where f is the activation function, w0 is the constant threshold value (called weighting factor), and b is a bias. Even a 
specific network structure and the activation function for each unit are given, the expressive power of the neural network 
would be meaningless, unless can figure out the correct weights for the connection. Fortunately, there is an algorithm 
called back-propagation that allows the network to learn the weights [Rumelhart, 1986]. Usually, the neuron in the back-
propagation network uses a sigmoid activation function, which is simple equation. The sigmoid activation function is 
expressed as: 
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The learning in the neural network works by back-propagating [Bryson and Ho, 1969] the error that occurs at 
the output units. At each step, an input is presented to the network and the output is compared to the correct target value. 
The weights of the units and bias are then readjusted so as to minimise the error they have made. The error is defined as 
the sum of square errors over all output units and it is expressed as: 
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where k is the number of iteration. Consider to above neural network architecture, Figure 7, the following algorithm is 
top adapt the weights between the output (l) and hidden (k) layers:  
 )1()()1( +∆+=+ twtwtw lklklk  15 

where )()1( twtw lklk ∆=+∆ α  16 
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Expanding the expression by chain rule, equation 17 become 
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Here δo is the error signal from the neural network output to the hidden layer. By chain rule again: 
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Equation 20, δl, which is the error signal between layer k and l becomes: 
 )1()( lllll OOOr −−−=δ   24 
Thus equation 17 becomes 
 klllllk OOOOrw )1()( −−=∆  25 
Similar rule to the hidden layer and output layer, the adaptation of weights between hidden (k) and input (j) layers have 
the value of: 
 )1()()1( +∆+=+ twtwtw kjkjkj  26 

where )()1( twtw kjkj ∆=+∆ α  27 

and jkklklkj OOOww )1( −=∆ δ  28 
Substitute with equation 24, equation 28 becomes 
 jkklllllkkj OOOOOOrww )1()1()( −−−−=∆  29 
By adapting the weights and bias, the error between the threshold and the output can be minimised. In this paper, the NN 
will be applied to the vehicle plant to control the CVT ratio so that the actual engine speed will follow the engine 
reference. The equation 5, for vehicle model with dynamic motion, is used to develop control strategy which will be 
explained in the next sub-chapter. 
 
 
 
3.0 Proposed Control Scheme 
 
Simulink tools were used to simulate the above equation. The drive train plant could be modelled as follows: 
 
 
 
 
 
 
 
 
 
 
Based on the equation 3 where ew ωυω =  and Te was function of ωe and throttle opening, θthrottle, it could be understood 
that behavior of the engine speed depend on gear ratio as throttle opening remain constant.  
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Figure 4. Vehicle dynamic plant 
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When the throttle opening was kept at constant value: 
 
 The engine speed ωe would increase while the gear ratio υ  increases 
 The engine speed ωe would decrease while the gear ratio υ  decreases 
 
The basic control scheme the author proposed is described in the following Figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The engine speed desired could be plotted based on optimum control line or engine speed at maximum power or 
maximum torque in engine power map. Engine power map could be carried out experimentally as shown in Figure 6. The 
engine 660 cc Daihatsu was coupled with hydro water break dyno as load variator. The opening throttle angle, θthrottle   
was set at constant angle and hydro water break dyno was loaded, hence the engine torque could be plotted by using data 
acquisition system. Figure 7 shows the experimental results of engine torque uses 660 cc Daihatsu engine. Every line in 
the graph represents torque of engine for certain throttle opening and start from very small throttle angle, 3%, up to 
99.9%. This graph was applied to the model plant by equation 6 and equation 5 became drivetrain plant with gear ratio, 
υ , throttle angle, θthrottle, and engine speed, ωe, as input. By controlling gear ratio, υ , the engine speed can be maintain 
constant on its trajectory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The online adaptive neural network is applied to find out the suitable CVT ratio. The error between the output 

and the reference will then be sent back to adjust the weights and bias by back-propagation rule.  The result of controller 
is the ratio desired and will be sent to CVT inner controller as desired ratio. This ratio then compensates a torque 
delivered by the engine to the wheel so that the engine runs closed to engine speed desired.  

Figure 6: Experimental rig of 660 cc Daihatsu engine with Hydro water break dyno as load factor 
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5.0 Results and Discussion 
 
 The engine output torque is the function of engine throttle opening, θthrottle, and its speed ne, which is modelled 
as numerical table through the calibrated experimental at certain condition, Figure 6b. In this simulation, the target line is 
represented with 3rd order polynomial: 
 4throttle3

2
throttle2

3
throttle1 cc +++= θθθ ccne  30 

where c1= -0.00000098825264, c2=-0.00023266280965, c3=0.05409118539876 and c4=1.19385322086360 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The design criterion for the ANN controller is to maintain engine speed at desired engine speed i.e. target line based on 
the opening throttle angle, θthrottle. To evaluate the performance of the ANN controller, the engine speed was adjusted by 
setting throttle angle, θthrottle, at certain value or plot the θthrottle according to sinusoidal line, Figure 8 (a) top, equation 30, 
which would calculate the engine speed desired, had value such as plotted in Figure 8 (a) bottom.  
 

(a) (b) 

Figure 8. (a) Simulation on throttle angle and engine RPM desired. (b) Simulation results of online ANN with learning rate, 
α, 0.0000000875 

Figure 7. Engine 660 cc Daihatsu torque performance 
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In order to explore the working of the back propagation, which was applied, to online ANN, the author adjusted 
various learning parameters until a number of learning rates had obtained. To find the exact learning rate, which can be 
used in difference set point, the author had try to applied in 2 difference situation. Firstly, the set point of engine speed 
was based on the sinusoidal line between 15% to 90% throttle opening then calculate with 3rd order polynomial, equation 
30, the engine speed was obtained as engine speed referent, Figure 8(a). With learning rate, α, of 0.0000000875 the 
results shown that the actual engine speed can follow the referent after 20 sec, Figure 8(b).  
 

Figure 9. (a) Error system (b) Response of inner CVT controller using PID 

Figure 9. Response of online ANN with different road gradient 



 9

The responses of the starting vehicle to move was slow almost 20 sec before steady state. In the reality, starting 
the vehicle to move will use another controller and will not be discussed in this work. Figure 8(b) shows that when the 
engine speed is in the top of graph before slowing down or in the bottom graph before it is speed-up, the error is high as 
seen in Figure 9(a). This phenomenon caused by the changing direction of DC motor in the inner CVT controller as seen 
in Figure 9(b). Because the gear ratio between motor to the power screw used in the CVT is high (1:128.57), the response 
of power screw to return is slow.  
 

Secondly, throttle angle, θthrottle, was kept in constant value, hence the engine speed reference remain in constant 
value, and then the road gradient in the simulation was set based on the highway road condition that average road 
gradient between 3-5%, Figure 10. With learning rate, α, of 0.0000000875, the result of the simulation shown that the 
controller was able to keep the engine speed in its reference condition. 
 
 
6. 0 Conclusion 

 
The control strategy for CVT ratio control to maintain engine speed follow a desired engine speed has been 

developed. Online ANN is used to control behaviour between the engine and vehicle dynamic due to road condition, 
whereas the PID is used to control inner CVT ratio by controlling two DC motor synchronously to achieve its ratio 
desired. The control model is implemented in Matlab/Simulink environment and is capable of simulating ratio and engine 
speed during ratio change due to external disturbance such as road gradient. This serial control is working well and it is 
clear that online ANN is able to maintain engine speed to its referent by changing the ratio of the CVT.  
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