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ABSTRACT 

 Settlements of lightly loaded structures are frequently caused by changes in 
matric suction causing shrinkage or swelling of soils. These structures are often not 
designed to deal with influences of these changes. This study explores issues related 
to ground displacement due to changes in matric suctions induced by root water-
uptake by tree. Numerical simulations of moisture migration patterns in the 
unsaturated zone and in the vicinity of established tree were performed. The moisture 
flow model used is based on Richard’s equation with incorporated sink term and 
integrated with appropriate water-uptake models in 2D and 2D axi-symmetric form.  
The numerical solution was derived from a finite element approach for spatial 
discretisation along with a finite difference time-marching scheme.  A series of 
numerical simulations have been performed by the model to assess functionality of 
stress-deformation analysis partially coupled to flow equation. The model is capable 
of estimating matric suction changes and accompanying volume change profiles due 
to water-uptake over a full-annual cycle.  Time dependent boundary conditions based 
on rainfall data effects have also been explored. Results of sensitivity and parametric 
analyses shows that the predicted ground displacements are sensitive to all the 
parameters tested.  On the other hand, all initial time step sizes used for testing the 
convergence criterion on the simulation works was found to converge and the 
simulated results shows difference of not more than ±5 %, which is considered 
satisfactory. The research also provides an assessment of the significance of trees 
induced suction changes on unsaturated soil slopes. The model is capable of 
estimating ground displacements due to matric suction changes on sloping ground.  
The magnitude of the ground displacement on the sloping surface depends on the 
relative position of trees on the slope. A relatively straight forward simple approach 
to model the matric suction changes and accompanying volume change profiles 
beneath tree as a result of water-uptake has been developed. The resulting model is 
potentially valuable for a range of geotechnical engineering problems situated on the 
vadose zones containing trees.  



vi 
 

ABSTRAK 
 
 
 
 

 Enapan yang dialami struktur ringan selalunya disebabkan oleh sedutan 
matrik yang menyebabkan pengembangan dan pengecutan tanah. Pengaruh 
perubahan ini biasanya tidak diambilkira dalam rekabentuk struktur. Penyelidikan ini 
dilakukan untuk mengkaji isu yang berkaitan dengan pergerakan tanah disebabkan 
penyerapan air oleh tumbuh-tumbuhan. Simulasi berangka corak pergerakan 
lembapan dalam zon tak tepu dan kawasan berhampiran tumbuhan matang telah 
dilakukan. Model yang digunakan adalah berasaskan persamaan Richard yang 
digabungkan dengan ‘sink term’ dan model penyerapan air yang sesuai dalam bentuk 
dua-dimensi dan dua dimensi paksi-simetri. Penyelesaian berangka dicapai 
menggunakan kaedah unsur terhingga untuk pemisahan ruang di samping kaedah 
unsur kebezaan bagi skima ‘time marching’. Satu siri simulasi berangka telah 
dijalankan untuk menilai fungsi analisis tegasan-ubahbentuk yang sebahagiannnya 
digandingkan dengan persamaan aliran. Model ini berupaya untuk menganggar 
perubahan sedutan matrik dan profil perubahan isipadu akibat dari pengambilan air 
oleh tumbuhan bagi satu kitaran lengkap setahun. Keadaan sempadan yang 
bergantung kepada masa dan data hujan juga dikaji. Keputusan analisis kepekaan  
dan parametrik menunjukkan pergerakan tanah yang diramal adalah peka terhadap 
semua parameter yang diuji. Kesemua saiz langkau masa awalan yang digunakan 
untuk menguji kriteria penumpuan simulasi menunjukkan perbezaan hasil simulasi 
kurang dari 5%, satu nilai yang memuaskan. Kajian ini juga memberikan penilaian 
terhadap kepentingan perubahan sedutan oleh tumbuhan di kawasan tanah lereng tak 
tepu. Di samping itu, model yang dibangunkan berkeupayaan menganggar enapan 
disebabkan perubahan sedutan matrik di kawasan bercerun. Magnitud anjakan tanah 
didapati bergantung kepada kedududukan relatif tumbuhan di sesuatu cerun. Satu 
pendekatan mudah ke arah permodelan perubahan sedutan matrik dan profil 
perubahan isipadu tanah yang berlaku di bawah tumbuhan akibat penyerapan air oleh 
tumbuhan tersebut juga telah dibangunkan. Model yang dihasilkan berpotensi untuk 
digunakan bagi menyelesaikan permasalahan berkaitan kejuruteraan-geoteknik yang 
terletak dalam zon vados yang terdapat tumbuhan. 
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CHAPTER 1 

INTRODUCTION

1.1 Research Background 

Buildings and the environment are key elements of quality of life. Trees are 

an integral and critical part of urban landscapes providing important aesthetic and 

environmental contributions that makes towns and cities more pleasant, safer and 

healthier to live in. Many trees are situated close to structures; such as buildings, 

road pavements and footways.  These trees give shelter from noise and wind, reduce 

chemical and particulate air pollution, provide shade and add value to nearby 

property (Building Research Establishment (BRE), 2004). Trees also benefit urban 

ecosystems, by sustaining biodiversity and in addition, they reduce storm water run-

off and prevent soil erosion.  

 
 
Justifiably, trees contribute so much to our environment however, trees and 

buildings in close proximity can lead to problems, either restricting light or causing 

damage due to their root activities and matric suction changes (BRE, 2004). These 

suction variations occur in the presence of tree and indeed also can occur on removal 

of tree.  The planting of trees close to infrastructures needs to be planned and 

undertaken from a sound science based research (BRE, 2004).  One the other hand, 

removal of city trees will lead to a decline in the quality of urban landscapes and 

large-scale felling of trees would not be acceptable to the public at large.   
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Structural damage is frequently associated with the close proximity of trees to 

especially low-rise buildings. Trees can extract water from below the foundations 

causing some particular clay sub-soils to shrink, ultimately leading to failure of the 

foundations and cracks in superstructure (BRE, 2004).   It is known that trees add to 

the drying of soil at depth and only few geo-structures are design to deal with their 

influences.  These suction changes have an important role in the analysis of a number 

of geotechnical engineering problems. Meanwhile, trees are becoming increasingly 

recognized as a vital factor causing a substantial moisture migration through 

evapotranspiration (Ali, 2007).  

 
   

 Cycles of shrinkage and swelling can also have significant effects on the 

properties and behavior of soils.  The volume changes that result from both shrinkage 

and swelling of fine-grained soils are often large enough to cause damage to small 

buildings and highway pavements.  Jones and Holtz (1973) estimated that shrinking 

and swelling soils caused about $2.3 billion in damages annually in the United States 

(US) alone.  This is more than twice the annual cost from floods, hurricanes, 

tornadoes, and earthquakes combined together.  A more recent estimate is about $9 

billion in damages annually to buildings, roads, airports, pipelines and other facilities 

(Jones and Jones, 1987).  Proper functionality of clay barriers may also be affected 

negatively by swelling or shrinkage.  A clay barrier that has swollen may lose its 

integrity upon heaving, or it may shrink and crack later when the water is removed 

(Goldman, 1988). 

 
 

In United Kingdom (UK) the cost of repairing the damage caused by the 

failure of domestic house foundations, due to subsidence, was in order of £300-£400 

million annually (Building Research Establishment (BRE), 2004; BRE, 1999).  Not 

all of this can be attributed to the presence of tree roots.  However, most of the 

subsidence incidents in the UK are found to occur in areas with clay soils.  In these 

areas, tree roots are claimed to have an effect on subsidence incidents in 73% of 

cases (Loss Prevention Council, 1995).  Currently, no existing methods that would 

reliably predict which trees may cause damage and not all trees near buildings are 

implicated. Decreasing water uptake by trees may lessen subsidence risk by 

conserving soil moisture and reducing clay soil shrinkage (BRE, 2004). 
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The effect of stresses induced due to transpiration driven root water-uptake 

by vegetation was incorporated in the current research.  It is worthwhile to 

investigate the safe distance between geotechnical structures in terms of L: H ratios. 

These can be used to predict soil movements and thereby improving the future 

designs of geotechnical structures.  In the same vein, Geotechnical Engineers will be 

better informed on potential effects of trees in geotechnical structures. 

 
 
Rees and Thomas (1991) explored experimental and numerical one-

dimensional moisture transfer and volume change behavior of a partially saturated 

soil.  The investigation constitutes a component of seasonal ground movement 

effects on buried services.  A seasonal water variation as a result of root water-uptake 

was measured by Biddle (1998). This prompted a two-dimensional simulation of 

seasonal variation of moisture migration due to root water-uptake to be carried out by 

Rees and Ali (2006) which was in good agreement with the measured variation by 

Biddle (1998).  A treatise moisture variation was carried out by Rees and Ali (2006) 

without coupling the effect of stresses induced as a result of vegetative moisture 

variation.  This forms the basis of this current research; moisture variation as a result 

of root water-uptake was simulated and then partially coupled to stress-deformation 

to evaluate vertical ground displacements.   

 
 
 
 
1.2 Problems Statement 

Shallow seated geotechnical structures are often constructed on unsaturated 

soil and have to resist deformation associated with external loads as well as matric 

suction changes in the soils.  Some of these types of structure are lightly loaded and 

therefore, displacements are mostly resulted from changes in matric suction.  

Moreover, they are often not designed to deal with influence of these matric suction 

changes.  Changes in matric suction can occur as a result of variation in climatic 

conditions, depth of water table, water uptake by tree, removal of tree or infiltration 

as result of rainfall.  Therefore, a predictive capability that will enable the extent and 
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magnitude to which vegetation causes matric suction changes, ground displacements 

and how it affects geotechnical structure is clearly of great importance.  

 
 
 
 
1.3 Aim and Objectives 

 The work is aimed at determining tree-induced deformation in unsaturated 

soils through the application of numerical techniques.  In line with the major aim of 

the research, the following are the objectives the study: 

 
 
1. To develop stress–deformation model for two-dimensional axi-

symmetric water uptake processes associated with an established tree 

with finite element formulation. 

2.  To develop partial coupled 2-D axi-symmetric root water-uptake and 

stress-deformation analysis for unsaturated soil due to vegetative 

induced matric suction changes.  

3. To verify and validate the proposed model using simulations results 

published in this area and comparison with site data respectively. 

4. To demonstrate the effects of changing the soil types, trees and 

climatic parameters on the numerical predictions and assess and 

determine the key parameters that influence ground displacements due 

to root water uptake by tree. 

 5. To provide an assessment of the role of tree on slope settlement due to 

  ground water-uptake by tree. 

 
 
 
 
1.4 Scope and Limitations of the Research 

The underlying principle of maintaining simple acceptable approach would 

be adopted.  The research will be limited to: 
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i. Simulation of tree induced vertical ground displacements as a result of 

water-uptake within a vicinity of matured tree, so root growth are not 

to be considered. 

ii. Two-dimensional axi-symmetric formulation and radial symmetry is 

assumed to exist, since a single isolated tree would be considered, 

with no adjacent trees within the vicinity. More complex behaviour 

will occur when adjacent trees interact. 

iii. Non-deformable unsaturated flow would be considered and non-

deformable soil fabrics exist with deformation due to change in pore 

water pressure only. 

iv. The stress deformation would be partially coupled to the flow 

equation through appropriate theoretical formulation and FORTRAN 

subroutines. 

v. Oxygen diffusion can only occur in a non-saturated soil, which is 

necessary for most root growth. Therefore, moisture flow in an 

unsaturated soil is considered. 

vi. Unsaturated flow is described by a partial differential equation and 

shall be solve by numerical methods, finite element for spatial 

discretization and finite difference for time discretization shall be 

used. 

vii. The temperature dependent flow parameters, which is second order 

partial differential equation are not considered, therefore isothermal 

conditions are assumed to exist. 

viii. Field soil often exhibit heterogeneity, however, isotropic and 

homogenous conditions are assumed to exist throughout the depth of 

the soil profile. 

ix. Grasses are not given separate attention, since tree use more water 

than most other types of tree. 

x. In the current research, the primary interest is to relate the predicted 

matric suctions to ground displacements. The predicted matric suction 

variation as a result soil water-uptake by tree root is used as an input 

for stress-deformation analysis. 

xi. Macroscopic approach for root water-uptake model was used. 
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xii. The model was verified and validated with field data from Canada, 

  Australia and United Kingdom respectively. 

 
 
 
 
1.5 Significance of Research 

 Many trees are located close to geotechnical structure such as foundation, 

earth dam, slopes, retaining wall, levees and structure such as building and road 

pavement.  Trees influences the moisture migration in the soil, hence causes changes 

in matric suction.  The ability to predict the influence of tree induced moisture 

movement which causes structural deformation as a result of shrinkage and/or 

heaving is a potentially important planning and management tools in geotechnical 

engineering design and analysis. 

 
 
 
 
1.6 Framework of the Research 

The research explored tree-induced deformation pattern in the unsaturated 

soils zone due tree root water-uptake.  This study focuses on issues related to vertical 

ground displacements due to root water-uptake by plant.  The numerical simulation 

of moisture migration patterns in the unsaturated zone as well as accompanying 

ground displacements within the vicinity of established tree was analyzed. The flow 

model is based on Richard’s equation and Darcy’s law of conservation of mass.  The 

moisture flow model used is incorporated with sink term and integrated with 

appropriate water-uptake models; 2D, and 2D axi-symmetric form.  A numerical 

solution was achieved by the finite element method for spatial discretisation along 

with a finite difference time-marching scheme for time discretization.   

 
 
The current research required significant development and extension of this 

in-house FORTRAN code which was set-up for two-dimensional, cartesian flow 

problems to incorporate deformation and partial coupling of the water-uptake and the 
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deformation. A stress-deformation formulation is included by adopting groundwater 

field concept with two stress state variables for unsaturated soils. The stress-

deformation is partial coupled to 2-D axi-symmetric root water-uptake for 

unsaturated soil through the stress state variables and effective stress concept.  At the 

start of this research programme an existing finite element solution of the Richard’s 

equation for unsaturated soil was made available (Ali, 2007 and Rees and Ali, 2006).  

 
 
 
  

1.7 Thesis Organization 

 
An overview of related research work to the analysis of root water uptake, 

suction, effective stress and deformation in unsaturated soil is presented in Chapter 2.  

The review provides a commentary on the general significance of the water-uptake 

process.  It then provides a summary of the key mechanisms involved and aims to 

provide some background information that can be utilized in subsequent simulation 

work. The review also summarizes developments in modelling the stress-

deformation analysis.   

 
 
The theoretical basis for describing moisture flow in an unsaturated soil is 

presented in Chapter 3.  Some of the fundamental concepts used to describe moisture 

flow due to water uptake plant by roots are also introduced. This chapter is divided 

into two main parts. The first part describes the derivation of the moisture flow 

equation from referential element of soil from conservation of mass.  A relationship 

between flows and the appropriate driving force or potential for moisture flow was 

established through Darcy’s Law and incorporating root water-uptake extraction 

function, the sink term. The second part describes the derivation and theoretical 

formulation of stress-deformation development considering unsaturated soil 

mechanics concept in ground water field concept. The stress-deformation is partial 

coupled to 2-D axi-symmetric root water-uptake for unsaturated soil through the 

stress state variables and effective stress concept.  The elastic moduli and constitutive 

relationships are required are also described.  
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Chapter 4 presents an approximate numerical solution of the theoretical 

model framework presented in Chapter 3.  The problem addressed is one in which 

both spatial and time variations of the unknown variable, capillary potential in this 

case, are required.  A numerical solution is then described to achieve discretisation of 

a two-dimensional axi-symmetric space domain and the time domain.  An 

assessment of the theoretical formulation in the context of stress-deformation 

analysis was carried out to assess the robustness of the stress-deformation 

formulation. This chapter considers stress-deformation model by carrying 

verification exercise.  The aim is to provide confidence in the implementation of the 

new stress-deformation formulation.  The performance of the model is checked 

against independent results for a range of test problems. 

 
 
Chapter 5 then moves on to explore the numerical simulation of patterns in 

the vicinity of mature trees and the accompanying ground displacement using the 

developed stress-deformation formulation.  In particular the axi-symmetric form and 

stress-deformation model presented in Chapter 3 and 4 is explored here.  The model 

is applied to simulate site measurements recorded by others for a mature Lime tree 

located on a Boulder Clay sub-soil.  Non-linear hydraulic properties are obtained 

from independent published data.  This first application of the full model aims to 

simulate only a spring/summer drying period and does not include a full seasonal 

wetting/drying cycle for Leyland Cypress tree. This second application of the full 

model aims to simulate only a spring/summer drying period UK case study and does 

not include a full seasonal wetting/drying cycle for Lime tree but, in more details 

than the first simulation. The third simulation presented covers a full annual cycle 

starting from field capacity in winter, extending through a full spring/summer drying 

period and including the subsequent autumn recharge for also a Lime tree.  The 

simulation attempts to include time dependent variations in boundary conditions 

based on daily rainfall patterns.  

 
 

 Chapter 6 develops the work presented in Chapter 5 with the aim of exploring 

the sensitivity and parametric analysis of some of the variables involved in the 

simulation. Sensitivity and parametric analysis was carried to check the effect of 

elapse time on matric suctions and ground displacements, effect elapse time on 
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capillary potential and effect elapse time on volumetric moisture content. Initial time 

step size of six hours initial time step size, twelve hours initial time step size and 

twenty four hours initial time step size are also investigated.  Effect of actual 

transpiration rates, unit weights of the soils, soil initial void ratios and soil re-

compression indexes are simulated and evaluated.  

 
 

Chapter 7 considers how the stress-deformation formulation may be 

employed to provide an assessment of the significance suction changes on the 

stability of unsaturated soil slopes and subsequent slope settlement due vegetative 

ground water-uptake. Typical slope geometry and a range of initial conditions and 

tree locations are considered.  The corresponding variation of slope settlement as the 

location of the tree is changed is simulated. 

 
 
Overall conclusions and recommendations for further research are presented 

in Chapter 8. 

 
 



 
 

REFERENCES 

Abbaspour, K.C. (2004). Modelling soil processes for modelling flow and transport, 

EAWAG, pp. 15. 

Aitchison, G. D. (1965). Soil properties, shear strength, and consolidation. Proc., 6th 

Int. Conf. Soil Mech. Foud. Eng., Montreal, Canada, 3, pp. 318-321. 

Aitchison, G. D. (1965) Moisture equilibria and moisture changes in soil beneath 

covered areas. A symp. In print, Aitchison, G. D. Eds. Australia: Butterworths, 

pp. 278. 

Ali, N. (2007). The influence of vegetation induced moisture transfer on unsaturated 

soils. Doctor Philosophy, University of Wales, Cardiff. 

Almeida, M.S.S., Britto, A.M. and Perry, R.H.G. (1986). Numerical modeling of a 

centrifuged embankment on soft clay. Can. Geotech. J., 23(20), pp. 103-114.  

Angali, S. V. and Entz, M. H. (2002). Root system and water use patterns of different 

height sunflower cultivars. Adv. Agron. J., 94, pp. 136-145. 

Alonso, E. E., Gens, A. and Josa, A. (1990). A constitutive model for partially 

saturated soils. Geotechnique, 40, pp. 405-430. 

Alonso, E. E., Batlle F., Gens, A. and Loret, A. (1988). Consolidation analysis of 

partially saturated soils. Proceedings of the 6th International Conference on 

Numerical Methods in Geomechanics, Vol. 2. Innsbruck, pp. 1303-1308. 

Alonso, E. E., Gens, A. and Hight, D. W. (1987). Special problem soils. Ninth 

Europ. Conf. on Soil Mechanics and Foundation Engineering, pp. 1087-1146. 

Bear, J.  (1979). Hydraulics of Groundwater. London: McGraw-Hill. 

Bell, J. P.  (1976). Neutron Probe Practice.  Institute of Hydrology, Wallingford.   

Biddle, P. G. (2001). Tree root damage to buildings. ASCE Geotech. Special 

Publication. 115, pp. 1-23. 

Biddle, P. G. (1998). Tree Root Damage to Buildings. Willowmead Publishing Ltd, 

Wantage. 

 



217 
 
Biddle, P. G. (1983). Patterns of soil drying and moisture deficit in the vicinity of 

trees on clay soils. Geotechnique, 33(2), pp. 107-126. 

Biot, M. A. (1941). General theory of three-dimensional consolidation. J. Appl. 

Phys., 12, pp. 155-164. 

Bishop, A. W. (1959). The principle of effective stress. Tecknish Ukebland; 106(39), 

pp. 859-863. 

Bishop, A. W. and Blight, G. E. (1963). Some aspects of effective stress in saturated 

and unsaturated soils. Geotechnique, 13, pp. 177-197. 

Bishop, A. W. and Henkel, D. J. (1962). The Measurement of Soil Properties in the 

Triaxial Test. (2nd edn). Edward Arnold: England, London, pp. 227. 

Blight, G. E. (2005). Dessication of clay by grasses, bushes and trees. Geotechnical 

and Geological Engineering 23, pp. 679-720. 

Blight, G. E. (2003). The vadose zone soil-water balance and transpiration rate of 

vegetation. Geotchnique, 53(1), pp. 55-64. 

Bolzon, G., Schrefler, B. A. and Zienkiewicz, O. C. (1996). Elastoplastic soil 

constitutive laws generalised to partially saturated states. Geotechnique 46, pp. 

279-289. 

Bouma, J., Jongmans, A. G., Stein, A. and Peek, G. (1989).  Characterising Spatially 

Variable Hydraulic Properties of a Boulder Clay Deposit in the Netherlands.  

Geoderma, 45, pp. 19-29. 

Bozozuk, M. (1962). Soil shrinking damages shallow foundations at Ottawa, Canada. 

Res. Paper 163, Div.Building Research, Canada NRCC. 

Bozozuk, M. and Burn, K. N. (1960). Vertical ground movement near Elm trees. 

Geotechnique, 10, pp. 19-32. 

Brackley, I. J. A. (1971). Partial collapse in unsaturated expansive clay. Proc., 5th 

Regional Conf. SMFE, South Africa, pp. 23-30. 

Broadbridge, P. and White, I. (1988). Constant rate rainfall infiltration: A versatile 

nonlinear model. 1. Analytical solution. Water Resources Research, 24 (1), pp. 

145-154. 

Brooks, R. H. and Corey, A. T. (1964). Hydraulic properties of porous media. 

Colorado State University Hydrology Paper no. 3, Fort Collins, pp. 27. 

Brown, R. W. (1982). Determination of leaf osmotic potential using thermocouple 

psychrometers. In: Psychrometry in water relations research (eds. Brown R. W. 

and Van Haveren B. P.), Utah Agric. Res.Stn. Utah State Univ.Burland JB. 

 



218 
 

Some aspects of the mechanical behaviour of partly saturated soils. In: 

Proceedings of the Conference on Moisture Equilibria and Moisture Changes 

in Soil Beneath Covered Areas, Aitchison GD (ed.). London: Butterworths, 

1965; pp. 270-278. 

Buckler, L., Lafolie, F., Doussan, C. and Bussieres, F. (2004).  Modelling soil-root 

water transport with non-uniform water supply and heterogeneous root 

distribution. Plant Soil, 260(1-2), pp. 205-224. 

Buckingham, E. (1907). Studies on the Movement of Soil Moisture. US Department 

of Agriculture Bureau Soils, 38, Washington DC, pp. 61. 

Buckingham, E. (1904). Contributions to our knowledge of the aeration of soils. 

Bull. 25, United States.  Department of Agriculture. Washington, DC, pp. 50. 

Building Research Establishment (2004). Controlling Water Use of Trees to 

Alleviate Subsidence Risk. Horticulture LINK project 212, University of 

Cambridge. 

Building Research Establishment (1999). Low-rise building foundations: the 

influence of trees in clay soils. A Building Research Establishment 

Publication. 

Buresh, R. J. and Tian, G. (1998). Soil improvement by trees in sub-Saharan Africa.  

Agroforestry Systems, 38, pp. 51-76. 

Burdine, N. T. (1953). Relative permeability calculation from pore size distribution 

data. AIMME Petroleum Transactions, 198, pp. 71-77. 

Burland, J. B. (1965). Some aspects of the mechanical behaviour of partly saturated 

soils. Moisture Equilibria and Moisture Changes in the Soils Beneath Covered 

Areas, G. D. Aitchison, ed., Butterworth, Sydney, Australia, pp. 270-278. 

Cameron, D. A. (2001). The extent of soil desiccation near trees in a semi-arid 

environment. Geotechnical and Geological Engineering 19, pp. 357-370. 

Cameron, D. A. and Walsh, P. F. (1984). Damage to buildings on clay soils. National 

Trust of  Australia (Victoria), Technical Bulletin 5.1. 

Cameron, D. A. and Earl, I. (1982). Trees and Houses: a Question of Function. 

Cement and Concrete Association of Australia, pp. 20. 

Carslaw, H. S. and Jaeger, J. C. (1959). Conduction of Heat in Solids. 2nd Edition. 

Oxford: Oxford University Press, pp. 510. 

 



219 
 
Celia, M. A., Bouloutas, E. T. and Zarba, R. L. (1990). A general mass conservative 

numerical solution of the unsaturated flow equation. Water Resources 

Research, 26, pp. 1483-1496. 

Chang, Y. Y. and Corapcioglu, M. Y. (1997). Effect of roots on water flow in 

unsaturated soils. Journal of Irrigation and Drainage Engineering, pp. 202-209. 

Chahine, M. T. (1992). The hydrological cycle and its influence on climate. Nature 

359, pp. 373-380. 

Chen, F. (1988). Foundation on Expansive Soils. 1st Edtn. NY: Elsevier, pp. 280.  

Childs, E. C. and Collis, G. N. (1950). The Permeability of porous Materials.  Proc. 

Roy. Soc., London, 201, pp. 392-405. 

Chun-Ta, L. and Gabriel, K. (2000). The dynamic role of root-water uptake in 

coupling potential to actual transpiration.  Adv. in Water Res. 23, pp. 427-439. 

Claude, D., Lois P. and Gilles, V. (1998). Modelling of the Hydraulic Architecture of 

Root Systems: An Integrated Approach to Water Absorption Model 

Description, Annals of Botany 81, pp. 213-223.  

Clausnitzer, V. and Hopmans, J. V. (1994). Simultaneous modelling of transient 

three-dimensional root growth and soil water flow. Plant soil 164, pp. 299-314. 

Clemson University (2007). Home & Garden Information Center - Leyland Cypress, 

http://hgic.clemson.edu/factsheets/hgic1013.htm. Clemson University 

cooperating with U.S. Department of Agriculture, South Carolina. 

Clough, R. W. (1960). The finite element method in plane stress analysis. Paper 

presented at The 2nd Conference on Electronic Computation, American Society 

of Civil Engineering, New York. 

Coppin, N. J. and Richards I. J. (1990). Use of Vegetation in Civil Engineering. 

London: Butterworths. 

Coussy, O. (1995). Mechanics of porous continua. New York: JohnWiley. 

Cowen, I. R. (1965). Transport of water in the soil-plant atmosphere system. Journal 

of Applied Ecology. 2, pp. 221-239. 

Croney, D. (1977). The design and performance of road pavements.  London: 

HMSO Publication, pp. 647. 

Cutler, D.F., Gasson, P.E. and Farmer, M. C. (1990). The wind blown tree survey: 

Analysis of results.  Arboricultural Journal, 14, pp. 265-286. 

Cutler, D. F. and Richardson, I. B. K. (1989). Tree roots and buildings. Singapore: 

Longman Scientific and Technical. 

 



220 
 
Cutler, D. F. and Richardson, I. B. K. (1981). Trees and Buildings. London: 

Construction Press. 

Dawson, L. A., Duff, E. I., Campbell, C. D. and Hirst, D. J. (2001). Depth 

distribution of cherry (Prunus avium L.) tree roots as influenced by grass root 

competition. Plant and Soil, 231, pp. 11-19. 

de Boer, R. and Ehlers, W. (1990). The development of the concept of effective 

stresses. Acta Mech., 83, pp. 77-92. 

Debnath,  K. and Chaudhuri, S. (2010). Laboratory experiments on local  scour 

around cylinder for clay and clay–sand mixed beds, Engineering Geology, Vol. 

111, issue 1-4. Pp. 51-61. 

Dekker, S. C., Bouten, W. and Verstraten, J. M. (2000). Modelling forest 

transpiration from different perspectives. Hydro. Proc. 14, pp. 251-260. 

 Derbaum. (2005). Lime. http://www.flickr.comphotos/derbaum/15318101. 

Flickr Blog.  

Dobson, M. C. (1995). Tree root systems.  Arboriculture Research and Information 

Note. Arboricultural Advisory and Information Service, Farnham. 

Dobson, M. C. and Moffat, A .J. (1993). The potential for woodland establishment 

on landfill sites.  Department of the Environment. London: HMSO Publication. 

Doussan, C., Gilles, V. and Lois, P. (2008). Modelling of the Hydraulic Architecture 

of Root Systems: An Integrated Approach to Water Absorption-Distribution of 

Axial and Radial Conductances in Maize, Annals of Botany 81, pp. 225-232. 

Driscoll, R. (1983). The influence of vegetation on the swelling and shrinkage of 

clays in Britain, Geotechnique, 33 (2), pp. 93-105. 

Dunin, F. X., Mcilory, I. C. and Oloughlin, E. M. (1985). A lysimeter 

characterization of evaporation by eucalypt forest and its representativeness 

for the local environment. Forest-Atmosphere Interaction. Dordrecht: D.Reidal 

Publishing Company, pp. 271-291.  

Erkki, A. (1996). Modelling non-uniform soil water uptake by a single plant root 

 Plant and Soil 186. pp.  237-243. 

Fan, C. H. and Su, C. F. (2008). Role of roots in the shear strength of root-reinforced 

soils with high moisture content. Ecol. Eng. 33, pp. 157-166. 

Fasong, Y. and  Zhiming, L. (2005). Analytical solutions for vertical flow in 

unsaturated rooted soils with variable surface fluxes. Vadose Zone J. 4, pp. 

1210-1218. 

 



221 
 
Fatahi, B., Khabbaz, H. and Indraratna, B. (2010). Bioengineering ground 

improvement considering root water uptake model. Ecological Engineering 36, 

pp. 222-229. 

Fatahi, B., Khabbaz, H. and Indraratna, B. (2009). Parametric studies on 

bioengineering effects  of tree root-based suction on ground behavior. 

Ecological Engineering 35, pp. 1415-1426. 

Feddes, R. A., Hoff, H., Bruen, M., Dawson, T., Rosnay, P., Jackson, R. B., Kabat, 

P., Lilly, A. and Pitmank, A. J. (2001). Modelling root water uptake in 

hydrological and climate models. American Metrological Society 82(12), pp. 

2797-2809. 

Feddes, R. A., Kowalik, P. J. and Zaradny, H. (1978). Simulation of field water use 

and crop yield. Wageningen Center for Agriculture and Documentation, 

Wageningen, pp. 189. 

Feddes, R. A., Kowalik, P. J., Malinka K. K. and Zaradny H. (1976). Simulation of 

field water uptake by plants using a soil water dependent root extraction root 

extraction function. Journal of Hydrology, Vol. 31, pp. 13-26. 

Feddes, R. A., Bresler, E. and Neuman, S. P. (1974). Field test of a modified 

numerical model for water uptake by root systems. Water Resources Research, 

10(6), pp. 1199-1206. 

Francis, P. E. and Pidgeon, J. D. (1982). A model for estimating soil moisture 

deficits under cereal crop in British I: Development. J. Agric. Sci. 98, pp. 651-

661.  

Fredlund, D. G. and Hung, V. Q. (2001). Predictive of volume change in an 

expensive soil as a result of vegetation and environmental changes. Pro. Of 

ASCE Conf. on expansive clay soils and vegetative influence on shallow 

foundations, Geotechnical Special Publication. Houston, Texas, Reston, Vol. 

115, pp. 24-43.  

Fredlund, D. G. and Rihardjo, H. (1993). Soil Mechanics for Unsaturated Soil. New 

York: John Wiley and Sons, pp. 346-373. 

Fredlund, D. G. (1979). Appropriate concepts and technology for unaturated soils. 

Can. Geotech. J., 16, pp. 121-139. 

Fredlund, D. G., Morgenstern, N. R. and Widger, R. A. (1978). The shear strength of 

unsaturated soil. Can. Geotech. J., 15, pp. 313-321. 

 



222 
 
Fredlund, D. G. and Morgenstern, N. R. (1977). Stress state variable for unsaturated 

soils, ASCE Journal of Geotechnical Engineering, 103, pp. 447-466. 

Fredlund, D. G. and Morgenstern, N. R. (1976). Constitutive relation for volume 

change in unsaturated soils. Can. Geotech. J., Vol. 13, No. 3, pp. 261-276. 

Freeze, R. A. and Witherspoon P. A. (1966). Theoretical analysis of regional ground 

water flow 1. Analytical and numerical solutions to the mathematical model. 

Water Resources Research, 2 (4), pp. 64-656. 

Gardner, W. H. (1988). A Historical Perspective on Measurement of Soil and Plant 

Water Status. Irrig. Sci. 9, pp. 255-264. 

Gardner, W. R.  (1974). The Permeability Problem. Soil Sci. J., 117(5), pp. 243-249.  

Gardner, W. R. (1964). Relation of root distribution to water uptake and availability. 

Agronomy Journal, 56, pp.4-45. 

Gardner, W. R. (1960). Dynamic aspects of water availability to plants. Soil Science, 

89 (2), pp. 263-273. 

Gardner, W. R. (1957). Some steady-state solutions of the unsaturated moisture flow 

equation with application to evaporation from a water-table, Soil Science, 85 

(4), pp. 228-232. 

Gardner, W. R. and D. Kirkham, D. (1952). Determination of soil moisture by 

neutron Scattering. Soil Science, 73, pp. 391-401. 

Gardner, W., Israelsen, O. W., Edlefsen, N. E. and Clyde, D. (1922). The capillary 

potential function and its relation to irrigation practice. Physics Review, 20, pp. 

196, Abstract. 

Gowda, P., Chavez Eguez, J.L., Colaizzi, P.D., Evett, S.R., Howell, T.A., Tolk, J.A. 

(2008). ET mapping for agricultural water management: Present status and 

challenges. Irrigation Science. 26, pp. 223-237. 

Gens, A.  (1995). Constitutive modelling: application to compacted soils. In: Alonso 

E. E., Delage P (eds). Proceedings of 1st International Conference on 

Unsaturated Soil, vol. 3. Balkema: Rotterdam, pp. 1179-1200. 

Gens, A. and Alonso, E. E. (1992). A framework for the behavior of unsaturated 

expansive soil. Can. Geotech. J. 29, pp. 1013-1032. 

Genuchten, M. T. V. and Nielsen, D. R. (1985). On describing and predicting the 

hydraulic properties of unsaturated soils. A. Geophysicae, 3 (5), pp. 615-628. 

Genuchten, M. T. V. (1980). A closed-form equation for predicting the hydraulic 

 conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, pp. 892-898. 

 



223 
 
Goldman, L. J., Greenfield, L. I., Damle, A. S., Kingsbury, G. L., Northeim, C. M. 

and Truesdale, R. S. (1988). Design, Construction, and Evaluation of Clay 

Liners for Waste Management Facilities, EPA/530/SW-86/007F, U.S. 

Environmental Protection Agency, Cincinnati, OH, Chapter 6. 

Gong, D., Kang, S., Zhang, L., Du, T. and Yao, L. (2006). A two-dimensional model 

of root water uptake for single apple trees and its verification with sap flow 

and soil water content measurements.  Agricultural Water Management, 83, 

pp. 119-129. 

Green, S. R., Vogeler I., Clothier, B. E., Mills, T. M. and Dijssel, C. (2003). 

Modeling water uptake by a mature apple tree.  Aust. J. Soil Res. 41 (3), pp. 

365-380. 

Green, R. E. and Corey, J. C. (1971). Calculation of Hydraulic Conductivity: A 

further Evaluation of Some Predictive Methods. Soil Sci. Soc. Am. J., 35, pp. 

3-8. 

Gui-Rui Y., Zhuang J., Nakayama K. and Jin Y. (2007). Root water uptake and 

profile soil water as affected by vertical root distribution. Plant Ecol., 189, pp. 

15-30. 

Hao, X., Zhang, R. and Kravchenko, A. (2005). Effects of root density distribution 

models on root water-uptake and water flow under irrigation. Soil Sci., 170(3), 

pp. 167-174. 

Hills, R. G., Porro, I., Hudson, D. B. and Wierenga, P. J. (1989). Modeling one 

dimensional infiltration into very dry soils: 1. Model development and 

evaluation. Water Resources Research, 25 (6), pp.1259-1269. 

Hillel, D., Beek, V. and Talpaz H. (1975). A microscopic-scale model of soil water 

uptake and salt movement to plant roots. Soil Science 120(5), pp. 385-398. 

Hinton, E. and Owen, D. R.  J. (1989). Finite Element Programming.  London: 

Academic Press. 

Holland, J. E. (1979). Trees - how they can affect footings. POAV J., pp. 11-14. 

Homaee, M., Dirksen, C. and Feddes, R. A. (2002a). Simulation of root water uptake 

I. Non-uniform transient salinity using different macroscopic reduction 

functions. Agric. Water Management 57, pp. 89-109. 

Homaee, M., Dirksen, C. and Feddes, R. A. (2002b). Simulation of root water uptake 

II. Non-uniform transient water stress using different macroscopic reduction 

functions.  Agric. Water Management 57, pp. 111-126. 

 



224 
 
Homaee M., Dirksen C. and Feddes R. A. (2002c). Simulation of root water uptake 

III. Non-uniform transient combined salinity and water stress using different 

macroscopic reduction functions.  Agric. Water Managt. 57, pp. 127-144. 

Hopkins, W. G. (1999). Introduction to Plant Physiology. USA: John Wiley and 

Sons Inc. 

Hung, V. Q. and Fredlund, D. G. (2000). Volume change prediction in expansive 

soils using a two dimensional finite element method. Proceeding of Asian 

Conference on unsaturated soils in Singapore, pp. 231-236. 

Hung, V. Q. and Fredlund, D. G. (2006). Challenges to modeling of heave in 

expansive soil, Can. Geotech.l J., 43, pp. 1249-1272. 

Indraratna, B. and Khabbaz, H. (2008). Conceptual Development and Numerical 

Modelling of  Vegetation Induced Suction and implications on Rail Track 

Stabilisation. The 12th International Conference of International Association 

for Computer Methods and Advances in Geomechanics (IACMAG) 1-6 

October, Goa, India, pp. 4335-4344. 

Indraratna, B., Fatahi, B. and Khabbaz, H. (2007). Finite element modeling of soil-

vegetative interaction. In: Schanz (eds) Theoretical and numerical unsaturated 

soil mechanics. Springer Proc. in Physics 113, pp. 211-223. 

Indraratna, B., Fatahi, B. and Khabbaz, H. (2006). Numerical analysis of matric 

suction effects of the roots. Geotechnical Engineering 159, pp. 77-90. 

Jackson, R. B., Sperry, J. S. and Dawson, T. E. (2000). Root water uptake and 

transport: using physiological process in global predictions. Trends Plant Sci. 

5, pp. 482-488. 

Jackson, P. C., Cavelier, J., Goldstein, G., Meinzer, F. C. and Holbrook, N. M. 

(1995). Partitioning of water  resources among plants of a lowland tropical 

forest. Oecologia 101, pp. 197-203. 

Jackson, D. and Rushton, K. R. (1987). Assessment of Recharge Components for a 

chalk aquifer unit. Journal of Hydrology, 92, pp. 1-15. 

Jaksa, M. B., Kaggwa, W. S., Woodburn, J. A. and Sinclair, R. (2002). Influence of 

large gums trees on the soil suction profile in expansive clays. Aust. 

Geomechanics, Vol. 71, No. 1, pp. 23-33. 

Javandel, I. and Witherspooon, P. A. (1968). Application of the finite-element 

method to transient flow in porous media. Society of Petroleum Engineers 

Journal, 8, pp. 241-252. 

 



225 
 
Jennings, J. E. B. and Burland, J. B. (1962). Limitations to the use of effective 

stresses in unsaturated soils. Geotechnique, 12, pp. 125-144. 

Jones and Jones (1987). Treating Expansive Soils. Civil Engineering Magazine, 

ASCE, Vol. 57, No. 8. 

Jones, D. E. and Holtz, R. D. (1973). Expansive Soil- The Hidden Disaster. Civil 

Engineering, ASCE, Vol. 43, No. 8, pp. 49-51. 

Justo, J. L. and Saertersdal R. (1979). Design parameters for special soil conditions. 

General Report, Proc. 7th Eur. Conf. SMFE 4, pp. 181-208. 

Karen, J. E. and Philip, W. R. (1999). Comparative patterns of phenology and growth 

form diversity in two winter rainfall deserts: the Succulent Karoo and Mojave 

Desert ecosystems. Plant Ecology, 142, pp. 97-104. 

Kayadelen, C. (2008). Estimation of effective stress parameter of unsaturated soils 

by using artificial neural networks, Int. J. Num. Anal. Meth. Geomech. 32(9) 

pp. 1087-1106. 

Khalili N., Habte, M. A. and Zargarbashi, S. (2008). A full coupled flow deformation 

model  for cyclic analysis of unsaturated soils including hydraulic and 

mechanical hysteresis, Computers and Geotechnics 35, pp. 872-889. 

Khalili, N., Geiser, F. and Blight, G. E. (2004). Effective stress in unsaturated soils: 

review with new evidence. International Journal of Geomechanics (ASCE), 

4(2), pp. 115-126. 

Khalili, N. and Loret, B. (2001). An elasto-plastic model for nonisothermal analysis 

of flow and deformation in unsaturated soils: Formulation. Int. J. Solids Struct., 

38, pp. 8305-8330. 

Khalili, N. (2000). Application of the effective stress principle to volume change in 

unsaturated soils. In: Rahardjo H, et al., (eds). Unsaturated Soils for Asia, 

Balkema: Rotterdam, pp. 119-124. 

Kirkham, D. and Powers, W. L. (1972). Advanced Soil Physics.  New York: Wiley 

Inter-science. 

Klute, A. (1972). The determination of the hydraulic conductivity and diffusivity of 

unsaturated soils.  Soil Sci. J. 113 (4), 264-276. 

Klute, A. (1952). A numerical method for solving the flow equation for water in 

 unsaturated soil. Soil Sci. 20, pp. 317-320. 

Knox, B., Ladiges, P. and Evans, B. (1995). Biology. Australia: McGraw-Hill. 

 



226 
 
Knoch, B. C., Slack, D. C. and Larson C. L. (1984). Predicting direct recharge of 

surficial aquifers. Transactions of the ASAE, pp. 1739-1744. 

Kohgo, Y., Nakano, M. and Miyazaki, T. (1993). Theoretical aspects of constitutive 

modelling for unsaturated soils. Soils and Foundations, 33, pp. 49-63. 

Kozlowski, T. T. (1982). Water supply and tree growth. Forestry Abstracts, 43, 2, pp. 

57-95. 

Krahn, P. J. and Fredlund, D. G. (1972). On total, matric and osmotic suction, Soil 

Science 114, pp.339-348. 

Ladd, C. C. R. and Foott, R. (1974). New design procedure for stability of soft clays. 

ASCE, J. Geotech. Eng. 100 (GT7), pp. 763-786. 

Lai, C. T. and G. Katul (2000). The dynamic role of root-water uptake in coupling 

potential to actual transpiration. Advances in Water Resources 23, pp. 427-439. 

Lambe, T. W. and Whitman, R. V. (1969). Soil Mechanics. New York: John Wiley 

and Sons Inc., pp. 363-365. 

Li, K. Y., Jong, R. D., Coe, M. T. and Ramankutty, N. (2006). Root-Water-Uptake 

Based upon a New Water Stress Reduction and an Asymptotic Root 

Distribution Function. Earth Interactions, 10(14), pp. 1-22. 

Li, K.Y., Jong, R.D. and boisvert, J.B. (2001). An exponential root water-uptake 

model  with water stress compensation J. of Hydrology 252, pp. 189-204. 

Li K. Y., Jong R. D. and boisvert J. B. (1999). An exponential root water-uptake 

model,  Can.  J. of  Soil Science 79, pp. 333-343. 

Li J, and Cameron, D. A. (1995). Finite element analysis of deep beams in expansive 

clays. In: Alonso E. E. and Delage P. (eds). Proceedings of the 1st 

International Conference on Unsaturated Soils, Vol. 2. Balkema: Rotterdam, 

pp. 1109-1115. 

Loret, B. and Khalili, N. (2000). A three phase model for unsaturated soils. Int. J. 

Numer. Analyt. Meth. Geomech., 24, pp. 893-927. 

Loss Prevention Council (1995). Report LPR4. Subsidence and Domestic Housing 

Survey: Analysis of Results. London: Loss Prevention Council. 

Low, P. F. and Margheim, J. F. (1979). The swelling of clay I: Basic concepts and 

 empirical equations. Soil Sci. Society of America Journal 43, pp.  473-481. 

Lu, N. and William, J. L. (2006). Suction Stress Characteristic Curve for 

Unsaturated Soil. ASCE, Journal of Geotechnical and Geoenvironmental 

Engineering, Vol. 132, No. 2, pp. 133-135. 

 



227 
 
Luis, G. (2003). Determination of relative moisture content. Handbook of plant 

ecophysiology Techniques.  

Lytton, R. L. (1994). Prediction of movement in expansive clay. In Vertical and 

Horizontal Deformations of Foundations and Embankments: Proceedings of 

Settlement ‘94, College Station, Texas, 16-18 June 1994. Edited by A. T. 

Yeung and G. Y. Feaalio. American Society of Civil Engineers, Geotechnical 

Special Publication 40, pp. 1827-1845. 

Lytton, R. L. (1977). Foundation on expansive soils. In Numerical methods in 

geotechnical engineering. Edited by C. S. Desai and J. T. Christian. New York: 

McGraw-Hill, pp. 427-457. 

MacNeil, D. J., Steele, D. P., McMahoii, W. and Carder, D. R. (2001). Vegetation 

for slope stability. Prepared for Quality Services, Civil Engineering, Highways 

Agency, pp.48. 

Mathieu, J., Tom, S., Jan V. and Harry, V. (2008). Use of a three-dimensional 

detailed modeling approached for predicting root water-uptake, Vadoze Zone 

Journal, 7 (3), pp. 1079-1088. 

Mathur, S. and Rao S. (1999). Modeling water uptake by plant roots. Journal of 

Irrigation and Drainage Engineering, 125(3), pp. 159-165. 

Mathur, S. (1999). Settlement of soil due to water uptake by plant roots. Int. J. 

Numerical Anal. Mech. Geomech., 23 pp. 1349-1357. 

Matyas, E. L. and Radhakrishna, H. S. (1968). Volume change characteristics of 

partially saturated soils. Geotechnique, 18, pp. 432-448. 

McGinnity, B. T., Fitch T. and Rankin, W. J. (1998). A systematic and cost-effective 

approach to inspecting, prioritizing and upgrading London Underground Earth 

Structures. ICE Proceedings of Seminar, Value of Geotechnics in Construction.  

pp. 309-332. 

McInnes, D .B. (1986). Drying effect of different verge planted tree species on urban 

roads.  Proc. 13 ARRB, 5th REAAA Comb Conf., Vol.13, Partt 4, pp 54-66. 

McKeen, R. G. (1992). A model for predicting expansive soil behaviour. Proc., 7th 

Int. Conference on Expansive Soils, Dallas, Vol 1, pp. 1-6. 

Meteorological Rainfall Data (1979-1980), (2006). Meteorological Office. United 

Kingdom: Exeter.  

Millington, R. J. and Quirk, J. P. (1961). Permeability of Porous Solids. Trans. 

Faraday Soc., 57, pp. 1200-1207. 

 



228 
 
Miranda, A.N. (1988). Behaviour of small earth dams during initial filling. Doctor 

Philosophy, Colorado State University, Fort Collins, Colorado. 

Mohammed, Q. S. S. (2008). Finite element analysis of consolidation problem in 

several types of cohesive soils using the bounding surface model, ARPN 

journal of engineering and applied sciences, Vol. 3, no. 6, pp. 234. 

Modaressi, A. and Abou-Bekr. N. (1994). A unified approach to model the behaviour 

of saturated and unsaturated soils. Proceedings of the 8th International 

Conference on Computer Methods and Advances in Geomechanics. Balkema: 

Rotterdam, pp. 1507-1513. 

Molz, F. J. (1981). Models of water transport in the soil-root system. Water 

Resources Research, 17, pp. 1245-1260. 

Molz, F. J. (1976). Water transport in the soil-root system. Water Resources 

Research, 12(4),  pp. 805-808. 

Molz, F. J. and Remson, I. (1970). Extraction term models of soil moisture use by 

transpiring plants. Water Resources Research, 6, pp. 1346-1356. 

Moreno, G., Obrador, J. J., Cubera, E. and Dupraz, C. (2005). Fine root distribution 

in Dehesas of Central-Western Spain. Plant and Soil, 277, pp. 153-162. 

Moroke, T. S., Schwartz, R. C., Brown, K. W. and Juo, A. S. R. (2005). Soil water 

depletion and root distribution of three dryland crops. Soil Sci. Soc. Am. J. 69, 

pp. 197-205. 

Morris, P. H., Graham, J. and Williams, D. J. (1992). Cracking in drying soils. 

Canadian Geotechnical Journal, Vol. 29, pp. 263-277. 

Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of 

unsaturated porous media, Water Resour. Res. 12, pp. 513-522. 

Naiser, D. D., JR. (1997). Procedures to predict vertical differential soil movement 

for expansive soils. Masters Thesis. Texas A and M Univ., College Station, 

Texas. 

Narasimhan, T. N. (1998a). Hydraulic characterization of aquifers, reservoir rocks, 

and soils: A history of ideas. Water Resources Research, 34 (1), pp. 33-46. 

Narasimhan, T. N. (1998b). Something to think about... Darcy-Buckingham's law. 

Ground Water, 36 (2), pp. 194-195. 

Navarro, V., Candel, M., Yustres, A., Sanchez, J. and Alonso, J. (2009) Trees, soil 

movement and foundation, Computers and Geotechnics 36, pp. 810-818. 

 



229 
 
Neumann S. P., Feddes R. A. and Bresler E. (1975). Finite element analysis of two-

dimensional flow in soil considering water uptake by roots: I Theory, Soil Sci. 

Soc. Am. J. 35, pp. 224-230. 

Neuman, S. P. (1973). Saturated-unsaturated seepage by finite elements. ASCE 

Journal of the Hydraulics Division, 99, pp. 2233-2250. 

Ng, C. W. W. (1998). Observed performance of multi-propped excavation in stiff 

clay, J.  Geoenv. 124(9), pp. 889-906. 

Nielsen, D. R., vanGenuchten, M. Th. and Biggar, J. W.  (1986).Water flow and 

solute transport processes in the unsaturated zone. Water Resour. Res., 22(9), 

pp. 89-108. 

Nisbet, T. R. (2005). Water Use by Trees. Forestry Commission, Edinburgh, pp. 1-8,    

Nimah, M. N. and Hanks, R. J. (1973). Model for estimating soil water, plant and 

atmospheric interrelations. I: Description and sensitivity. Proc. Soil Sci. Soc. 

Am. 37, pp. 522–527. 

Nyambayo, V.P. and Potts, D.M. (2010). Numerical simulation of evapotranspiration 

using a root water uptake model, Computers and Geotechnics 37, pp.175-186.  

Ojha, C. S. P. and Rai, A.K. (1996). Nonlinear root-water uptake model. Journal of 

Irrigation and Drainage Engineering, 122(4), pp. 198-202. 

O’Malley, A. P. K. and Cameron D. A. (2002). The influence of trees on soil 

moisture, dwellings and pavements in an urban environment. University of 

South Australia, School of Geoscience, Minerals and Civil Engineering 

Mawson Lakes Campus, Local Goverment Report, pp. 7-8.  

O’Malley, A. P. K. (2001). Water relations of four urban street tree species using a 

Wescor in-situ hygrometer in the City of Salisbury, South Australia. Honours 

Thesis, University of South Australia, p. 123. 

Parker, J. C., Amos, D. F. and Zelazny, L. W. (1982). Water adsorption and swelling 

of clay minerals in soil systems. Soil Science Society of America Journal 46, 

pp. 450-456. 

Pereira, J. H. F. and Fredlund, D. G. (2000). Volume change behaviour of a residual 

soil of gneiss compacted at metastable-structured conditions. Journal of 

Geotechnical and Geoenvironmental Engineering, ASCE, 126, pp. 907-916. 

Personne, E., Perrier, A. and Tuzet, A. (2003). Simulating water-uptake in the root 

zone with microscopic scale model of root extraction, Agronomie 23, pp. 153-

168. 

 



230 
 
Philip, J. R. (1957). The theory of infiltration 1: The infiltration equation and its 

solution. Soil Sci., 83, pp. 345-357. 

Philip, J. R. (1955). Numerical solution of equation of the diffusion type with 

diffusivity concentration dependent, Transactions of Faraday Society 51, pp. 

885-892. 

Pile, K. C. (1984). The deformation of structures on reactive clay soils. Proc., 5th 

Int. Conference on Expansive Soils, Adelaide, pp. 292-299. 

Polley, H. W., Hyrum B. J. and Charles R. T. (2002). Woody invasion of grasslands: 

evidence that CO2 enrichment indirectly promotes establishment of Prosopis 

glandulosa. Plant Ecology, 164, pp.  85-94. 

Potter, W. (2006). The feasibility of improving rail infrastructure by using native 

vegetation on  clay soils. Master of Engineering by Research Thesis. 

University of South Australia, Australia. 

Powrie, W., Davies, J. N. and Britto, A. M. (1992). A cantiliver retaining wall 

supported by a berm during the temporary work activities, ICE conference on 

retaining structures, Robinson College, Cambridge, pp. 418-428. 

Prasad, R. (1988). A linear root water uptake model. J. Hydrology, 99, pp. 297-306. 

Raats, P. A. C. (1974). Steady flow of water and salt in uniform soil profiles with 

plant roots. Soil Sci. Am. Proc. 38, pp. 717-722. 

Raats, P. A. C. and Klute, A. (1969). One-dimensional simulation motion of the 

aqueous phase and the solid phase of unsaturated and partially saturated porous 

media, Soil Sci. 107, pp. 329-333. 

Rees, S. W. and Ali, N. (2006). Seasonal water uptake near trees: A numerical and 

experimental study. Geomech. Geoeng.Vol. 1, No. 2, pp. 129-138. 

Rees, S. W. (1990). Seasonal Ground Movement Effects on Buried Services, Doctor 

Philosophy, University of Wales, Cardiff. 

Remson, I., Appel, C. A. and Webster, R. A. (1965). Ground-water models solved by 

digital computer, Journal of Hydraulics Division, American Society of Civil 

Engineers, 91(HY3), pp. 243-274. 

Rice, J. R. and Cleary, M. P. (1976). Some basic stress diffusion solutions of fluid 

saturated elastic porous media with compressible constituents. Rev. Geophys. 

Space Phys., 14, pp. 227-291. 

Richards, B. G. (1992). Modelling interactive load-deformation and flow processes 

in soils, including unsaturated and swelling soils. John Jaeger Memorial 

 



231 
 

Lecture, Proceedings of the 6th Asut-NZ Conference on Geomechanics, 

Christchurch, New Zealand, pp.  18-37. 

Richards, B. G., Peter, P. and Emerson, W. W. (1983). The effects of vegetation on 

the swelling and shrinking of soils in Australia. Geotechnique, 33(2), pp. 127-

139. 

Richards, B .G. and Chan, C. Y. (1971). Theoretical analyses of subgrade moisture 

under environmental conditions and their practical implications. Aust. Road 

Research, 4, 6, pp. 32-49. 

Richards, L. A., Gardner, W. R. and Ogata, G. (1956). Physical processes 

determining water loss from soil. Soil Science Society of America Proceedings, 

20, pp. 310-314. 

Richards, L.A. (1931). Capillary conductance of liquids through porous mediums, 

 Physics 1, pp. 318-333. 

Richards, L. A. (1928). The usefulness of capillary potential to soil-moisture and 

plant investigators. Journal of Agricultural Research, 37, pp. 719. 

Ridley, A., Ginnity, M. and Vaughan, P. (2004). Role of pore water pressures in 

embankment stability. Geotechnical Engineering, 157, pp.193-198. 

Rockey, K. C., Evans, H. R., Griffiths, D. W. and Nethercot, D. A. (1983). TheFinite 

Element Method. London: Collins. 

Ross, P. J. (1990). Efficient numerical methods for infiltration using Richards’s 

equation. Water Resources Research, 26 (2),  pp.  279-290. 

Rowse, H. R. Stone, D. A. Gerwitz, A. (1978). Simulation of the water distribution in 

soil II: The model cropped soil and its comparison with experiment. Plant Soil 

49, pp. 533-550.  

Russell, D., Ellis E.  O’Brien A. S.  and McGinnity B. (2000). Role of vegetation on 

the stability and serviceability of railways embankments. 1st Int. Conf. on 

Railway Engineering, United Kingdom: London. 

Russell, A. R., and Khalili, N. (2006). A unified bounding surface plasticity model 

 for unsaturated soils. Int. J. Num. Anal. Meth. Geomech. 30(3) pp. 181-212. 

Samuels, S. G. (1975). Some properties of the Gault Clay from Ely-Ouse Essex 

water tunnel. Geotechnique, 25(2), pp. 239-264. 

Schreiner, H. D. (1986). State of the art review of expansive soils for TRRL. London: 

Imperial College. 

 



232 
 
Schafer, W. M. and Singer, M. J. (1976). Influence of physical and mineralogical 

properties on swelling of soils in Yolo County, California. Soil Science Society 

of America Journal 40, pp. 557-562. 

Science and Plants for Schools (2007). Common Lime. (Tilia x europaea).  Homerton 

College, United Kingdom: Cambridge. 

Silvestri, V., Souliec, M., Lafleur, J., Sarkis, G. and Bekkouche, N. (1992). 

Foundation problems in Champlain clays during droughts II. Case histories. 

Can. Geotech. J., 29, pp. 169-187. 

Simon, A. and Collison, A.  J. (2002). Quantifying the mechanical and hydrologic 

effects of Riparian vegetation on streambank stability. Earth Surface Processes 

and Landforms, 27, pp. 527-546. 

Simon, A., Curini, A., Darby, S. E. and Langendoen, E. J. (2000). Bank and near-

bank processes in an incised channel. Geomorphology, 35, pp. 193-217,  

Simon, A. and Darby, S. E. (1999). The nature and significance of incised river 

channels. In: Incised River Channels: Processes, Forms, Engineering and 

Management, John Wiley and Sons, pp. 3-18. 

Simunek, J., Vogel, T. and vanGenuchten, M. Th. (1992). The SWMS 2D code for 

simulating water flow and solute transport in two dimensional variably 

saturated media, Research ReportvNo. 126, US Salinity Lab., ARS USDA 

Riverside. 

Smiles, D. E. and Rosenthal, M. J. (1968). The movement of water in swelling 

materials, Aust. J. Soil Res. 6. pp. 237-248. 

Sposito, G. (1987). The “physics” of soil water physics. In: History of Geophysics, 

Vol. 3, edited by E. R. Landa and S. Ince. AGU, Washington, D.C., pp. 93-98. 

Srivastava, R. and Yeh, T. J. (1991). Analytical solutions for one-dimensional, 

transient infiltration toward the water-table in homogeneous and layered soils. 

Water Resources Research, 27(5), pp. 753-762. 

Stallman, R. W. (1956). Use of numerical methods for analyzing data on 

groundwater levels. Intern. Assoc. Sci. Hydrol. Publ. 41, pp. 227-231. 

Stephensen, D. B. (1995). Vadose Zone Hydrology. Boca Raton, Florida: CRS Press, 

Inc., Pp. 339. 

Steudle,  E.  (1994). Water transport across roots. Plant Soil, 167, pp. 79-90. 

Stone, W. J. (1999). Hydrology in Practice. New Jersey: Prentice Hall. 

 



233 
 
Sun, H. L., Li, S. C., Xiong, W. L., Yang, Z. R., Cui, B. S. and Yangc, T. (2008). 

Influence of slope on root system anchorage of Pinus yunnanensis. Ecol. Eng. 

32, pp. 60-67. 

Swatzendruber, D. (1968). The applicability of Dacy’s Law. Proc. SSSA, 32, pp. 1-

18. 

Taboada, M. A. (2003). Soil Shrinkage Characteristics in Swelling Soils, Lecture 

given at the College on Soil Physics Trieste, 3-21 March 2003LNS0418038. 

Taylor, C. and Hughes, T. G. (1981). Finite Element Programming of the Navier-

Stokes Equations. Swansea: Pineridge. 

Taylor, H. M. and Klepper, B. (1978). Role of rooting characteristics, Adv. Agron. 

30, pp. 99-128. 

Terzaghi, K. (1936). The shear resistance of unsaturated soil,  Proc., 1st Int. Conf. on 

Soil Mechanics and Foundation Engineering, Harvard Printing Office, 

Cambridge, Mass., pp. 54-56. 

Terzaghi, K. (1925). Principles of soil mechanics: summary of experimental results 

of clay and sand Eng. News Rec., 3, pp. 98.  

Thomas, H. R. and He, Y. (1995). Analysis of coupled heat, moisture and air transfer 

in a deformable unsaturated soil. Geotechnique  45, pp. 677-689. 

Thomas, H. R. and Rees, S. W. (1993). The numerical simulation of seasonal soil 

drying in an unsaturated clay soil. Int. J. for Num. and Anal. Meth. in 

Geomechanics, 17(1), pp. 119-132. 

Thomas, H. R. and Rees, S. W. (1991). A comparison of field monitored and 

numerically predicted moisture movement in unsaturated soil; Int. J. for Num. 

and Anal. Meth. in Geomechanics, 15, Issue 6, pp. 417-431. 

Thorne, C. R. (1990). Effects of vegetation on riverbank erosion and stability. In 

Vegetation and Erosion: Processes and Environments, John Wiley and Sons, 

pp.125-144. 

Tracy, F. T. (1995). 1-D, 2-D, and 3-D analytical solutions of unsaturated flow in 

groundwater. Journal of Hydrology, 170, pp. 199-214. 

Tracy, J. C. and Marino, M. A. (1989). Solute movement through root-soil 

environment. Journal of Irrig. and Drainage Engineering, 115(4), pp. 608-625. 

Tucker, R. L. and Poor, A. R. (1978). Field study of moisture effects on slab 

movements. ASCE, Journal of Geotechnical Engineering. 104(4), pp. 403-415. 

 



234 
 
Tufekcioglu, A., Raich, J. W., Isenhart, T. M. and Schultz, R. C. (1999). Fine root 

dynamics, coarse root biomass, root distribution, and soil respiration in a 

multispecies riparian buffer in Central Iowa. USA. Agroforestry Systems, 44, 

pp. 163-174. 

van Dam, J. C., Wösten, J. H. M. and Nemes, A. (1996). Unsaturated soil water 

movement in hysteretic and water repellent field soils. Journal of Hydrology, 

Volume 184, Issues 3-4, pp. 153-173. 

Veihmeyer, F. J. and Hendrickson, A. H. (1955). Does transpiration decrease as the 

soil moisture decreases? Transactions of American Geophysical Union, 36, pp. 

425-448. 

Verma, P., George, K. V., Singh, H. V., Mathew, T. P. and Singh, R. N. (2004). 

Simulating water movement and its uptake by plant roots in unsaturated zones. 

Intern. J. Environ. Studies, Vol. 61(1), pp. 39-48. 

Vrugt, J. A., Hopmans, J. W. and Simunek, J. (2001a). Calibration of two-

dimensional root water-uptake model. Soil Sci. Soc. Am. J. 65(4), pp. 1027-

1037. 

Vrugt, J. A., Hopmans, J. W. and Simunek, J. (2001b). One , two and three-

dimensional root water-uptake  function for transient modeling. Water 

Resource Res. 37(10), pp. 2457-2470. 

Wang, E. and Smith, C. J. (2004). Modelling the growth and water uptake function 

of  plant root systems: A review, Aust. J. Agric. Res. 55, pp. 501-523. 

Ward, W. H. (1953). Soil movements and weather. Proc. 3rd Int. Conf. Soil Mech., 

Zurich, 2, pp. 477-481. 

Ward, R. C. (1975). Principles of hydrology. 2nd Edition, London McGraw-Hill UK.  

Warrick, A. W. (1975). Analytical solutions to the one-dimensional linearized 

moisture flow equation for arbitrary input, Soil Sci. 120(2), pp. 79-84. 

Wesseldine, M. A. (1982). House foundation failures due to clay shrinkage caused 

by gum trees. Transactions, Inst. of Professional Engrs, N.Z., March, CE9(1). 

Whisler, F. D., Klute, A. and Millington, R. J. (1968). Analysis of steady stste 

evapotranspiration from a soil column. Soil Sci. Soc. Am. J. 32, pp. 167-174. 

Wilcock, D. N. and Essery, C. I. (1984). Infiltration Measurement in a Small 

Lowland Catchment.  Journal of Hydrology, 74, pp. 191-20. 

Wu, J., Zhang, R. and Gui S. (1999). Modeling soil water movement with water 

uptake by roots. Plant and Soil, pp. 215. 

 



235 
 
Xu, F. Y. (2004). Fractal approach to unsaturated shear strength. Journal of the 

Geotech. and Geoenvironmental Engineering (ASCE), 130(3), pp. 264-273. 

Yeagher, A. F. (1935). Root systems of certain trees and shrubs grown on prairie 

soils. Journal of Agricultural Research 51(12), pp. 1085-1092. 

Yeh, T. -C. J., Gelhar, L. W. and Gutjahr, A. L. (1985). Stochastic analysis of 

unsaturated flow in heterogeneous soils 3: Observations and applications. 

Water Resources Research, 21 (4), pp. 465-471. 

Yong, R. N. and Warkentin, B. P. (1974). Soil properties and behavior. Amsterdam: 

 Elsevier Publishing Company. 

Zapata, C. E., Houston, W. N., Houston, S. L. and Walsh, K. D. (2000). Soil-water 

characteristic curve variability. In: Shackeford et al. (eds.) Advances in 

unsaturated geotechnics. GEO-Institute, ASCE, U.S.A. pp. 84-124. 

Zhang, L. L., Fredlund, D. G., Zhang, L. M. and Tang, W. H. (2004). Numerical 

study of soil conditions under which matric suction can be maintained. Can. 

Geotech. J. 41, pp. 569-582. 

Zhuang, J., Nakayama, K., Yu, G. R. and Urushisaki, T. (2001). Estimation of root 

water uptake of maize an ecophysiological perspective. Field Crops Research, 

69, pp. 201-213. 

Zienkiewicz, O. C. and Taylor, R. L. (1989). The Finite Element Method. London: 

McGraw-Hill Book Company.  

Zienkiewicz, O. C. (1977). The Finite Element Methods. London: McGraw-Hill. 

 


	MuazuMohammedAbdullahiPFKA2011A
	MuazuMohammedAbdullahiPFKA2011b
	MuazuMohammedAbdullahiPFKA2011C
	MuazuMohammedAbdullahiPFKA2011d



