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ABSTRACT 

 

 

 

 

A two-stroke stepped-piston prototype engine, in carbureted version was 

designed and developed. It incorporates a unique three-port transfer system with an 

accumulator for high induction efficiency, so as to perform very much like a two-stroke 

engine but equipped with a four-stroke crankcase lubrication system. GT-Power 

software was used in the development stage to predict the engine output. The data 

predicted was then compared with the experimental results. A computational fluid 

dynamic software, COSMOS/Floworks, was used to develop a computational model to 

investigate the scavenging and compression processes of the prototype engine.The 

prototype was subjected to a series of laboratory trials for engine performance and 

emissions tests. Emission characteristics were established for regulated and unregulated 

gases. From the engine performance test, maximum pressures attained from GT-Power 

simulation and prototype engine were 54.62 bars at 5000 rpm and 26.12 bars at 

4500 rpm respectively. Maximum indicated power produced is 11.25 kW at 8000 rpm 

and 3.86 kW at 4500 rpm for GT-Power simulation and prototype engine respectively. 

Torque, brake power and brake fuel consumption were also determined. For comparative 

reason, a Yamaha 125Z engine was selected as the cylinder capacity with similar 

working principle as the prototype engine. Torque produced by Yamaha 125Z was 

highest, followed by GT-Power simulation and prototype engine. The average difference 

of torque between Yamaha 125Z and GT-Power simulation was about 13.06%. The 

minimum values of brake specific fuel consumption for Yamaha 125Z, GT-Power 

simulation and prototype engine were 280.42 g/kWh at 3500 rpm, 351.08 g/kWh at 

5000 rpm and 510 g/kWh at 3500 rpm respectively. The maximum peaks differences 

were attributed to the differences of combustion chamber design used and assumptions 

made in GT-Power. 
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ABSTRAK 

 

 

 

 

 Dalam kajian ini sebuah enjin prototaip dua lejang omboh bertangga telah 

direkabentuk dan dibangunkan dalam versi karburetor. Ia digabungkan dengan sistem 

tiga liang hantaran dan pengumpul yang unik untuk kecekapan aruhan yang tinggi dan 

berkelakuan seperti enjin dua lejang tetapi sistem pelinciran bersifat seperti kotak engkol 

empat lejang. Perisisan GT-Power digunakan di peringkat pembangunan untuk meramal 

keluaran enjin. Data teramal kemudian dibanding dengan keputusan ujikaji. Perisian 

dinamik bendalir berkomputer, COSMOS/Floworks, digunakan untuk membina model 

komputer untuk mengkaji proses menghapus sisa dan pemampatan enjin prototaip. 

Kemudian prototaip menjalani satu siri ujian makmal untuk menentukan prestasi dan 

emisi enjin. Emisi enjin ditentukan untuk gas terkawal dan tidak terkawal. Daripada 

ujian prestasi enjin, tekanan maksimum simulasi GT-Power dan enjin prototaip masing-

masing adalah 54.62 bar pada 5000 ppm dan 26.12 bar pada 4500 ppm.. Kuasa tertunjuk 

maksimum adalah 11.25 kW pada 8000 ppm dan 3.86 kW pada 4500 ppm untuk 

simulasi GT-Power dan enjin prototaip. Dayakilas, kuasa brek dan pengunaan bahan api 

tentu brek juga ditentukan. Bagi tujuan perbandingan, sebuah enjin Yamaha 125Z dipilih 

memandangkan kapasiti silinder dan pinsip kerja yang sama dengan enjin prototaip. 

Yamaha 125Z menghasilkan dayakilas tertinggi diikuti simulasi GT-Power dan enjin 

prototaip. Perbezaan dayakilas purata antara Yamaha 125Z dan simulasi GT-Power 

adalah 13.06%. Nilai minimum penggunaan bahan api tentu brek untuk Yamaha 125Z, 

simulasi GT-Power dan enjin prototaip masing-masing adalah 280.42 g/kWh pada 

3500 ppm, 351.08 g/kWh pada 5000 ppm dan 510 g/kWh pada 3500 ppm. Perbezaan 

puncak maksimum yang terhasil adalah disebabkan oleh perbezaaan rekabentuk kebuk 

pembakaran dan andaian yang digunakan dalam GT-Power. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Internal combustion engine (ICE) technologies have undergone changes through 

a series of phases since the 18th centuries. In the old days ICE was purely on mechanical 

principles. With the advancement of technology, ICE had change from totally 

mechanical dependent to electronic and computerized controlled system. No matter what 

new technology was incorporated onto the engine, the main objective is to improvise 

and develop a more efficient ICE in terms of output and emissions. 

 

 

The improvement is basically to reduce fuel consumption or in other words to 

utilise fuel efficiently. To achieve this goal, several concepts can be implemented. The 

concepts are briefly shown in Figure 1.1. 
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Particularly for combustion efficiency, the combustion concepts basically based 

on flow pattern are swirl, forward tumble and reverse tumble. Some of these concepts 

have already been commercialized while others are still in research stage. 

 

 

In the last twenty years, the environmental implications of ICE exhaust 

emissions have resulted in greater effort in reducing harmful pollutants to meet stringent 

legislation. The investigation and the study on combustion and pollutant formation 

processes in ICE are clearly necessary to increase their efficiency and economic of 

operation. This lead to the evolution and invention of new engines with emphasise on 

increased efficiency and emissions reduction. 

 

 
Figure 1.1:  Concepts of current/future engine design 

 

 

Motorcycles and motorised scooters are popular form of transport throughout the 

world. They are particularly popular in congested cities in Asia and Europe. In Asian 

regions they are dominant mode of transport because of their low initial and ongoing 

costs. Traditionally, two-stroke engines have powered the most popular models of 

motorcycles and scooters. Powered tools such as chainsaw, trimmer, fruit harvester, 

grass cutter and even bicycle utilised the two-stroke engine as their prime mover. 
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Two-stroke engines are popular because they produce relatively high power from a 

small size and are also inexpensive to manufacture and maintain. This is because the 

two-stroke engine requires no valvetrain which contribute in major cost, weight and 

complexity. 

 

 

The current two-stroke designs are inefficient and impart environmental 

implications to human and plants in urban and non-urban areas where they operate. In 

Asian cities, they constitute the bulk of the engines for use in motorcycles and 

three-wheelers. With the hazardous nature of the pollutants emitted by the vehicles they 

are banned in Taipei, while in Bangkok the authority is seriously considering doing the 

same. The somewhat low combustion efficiency of today’s two-stroke engine design can 

be improved through various means, making it possible to compliment the four stroke 

version. The latter is a more complicated engine configuration having lesser 

power-to-weight ratio characteristic. During the last decade, there have been many 

improved versions of the two-stroke engines produced. A few have found commercial 

ventures while many are still at the prototype level or even on the drawing board. 

 

 

 

 

1.2 Background of the Problem 

 

 

The simplistic nature of the design of a two-stroke engine, with relatively simple 

machining process (compared to four stroke engine), will provide improved 

power-to-weight ratio characteristic and lower production cost. Development of new 

two-stroke engines must address scavenging and emission problems. This can be 

achieved through improvising the scavenging process. By means of multi-ports intake 

system and eliminating crankcase compression, better scavenging process could be 
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achieved. The integration of transfer ports design to create better flow angle for 

blowdown and loop scavenging of exhaust gases will help improve fuel consumption 

and exhaust emissions in general. In this study the three numbers of ports was selected 

due to the constraints of surface area. As for the eliminating of the crankcase 

compression, stepped-piston configuration was selected in order to prepare the compress 

air-fuel mixture for the scavenging process. 

 

 

 

 

1.3 Research Challenges 

 

 

The key research challenge that must be resolved is can a multi-port intake 

system improve the performance and emission of a stratified-charged two-stroke 

stepped-piston gasoline engine. 

 

 

 

 

1.4 Research Questions 

 

 

Some of the persistent questions at this juncture would be: 

i) How multi-ports intake system and stepped-piston can fit in a two-stroke engine? 

ii) How is the optimise condition be achieved? 

iii) What effect will it have on performance and emission? 

iv) What aspect of performance (torque, brake power, sfc, etc)? 

v) What speed regime? Low speed? Typically idle to maximum speed? 

vi) What load range? 

vii) What are the impacts towards the unregulated and regulated exhaust emission? 
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1.5 Hypothesis 

 

 

i) Multi-ports and stepped piston provides an effective mean of discarding exhaust 

gases by introducing fresh charge through the circumference of the cylinder. 

ii) It also improves the scavenging process by reducing the short-circuiting of fresh 

charge air-fuel mixture. 

 

 

 

 

1.6 Objectives of the Study 

 

 

By introducing the multi-ports concept into the design of stratified-charged 

stepped-piston engine the associated problems of the conventional design of two-stroke 

engine can be addressed. The objectives of this research are as follows, 

i) to analyse the impact of multi-ports and stepped-piston configuration towards 

improving engine performance and emission, 

ii) to determine the appropriate ports design configuration and location, and 

iii) to compare the deviation between simulation and experimental results. 

 

 

 

 

1.7 Importance of the Study 

 

 

The study could benefit toward enhancing stratified-charged, two-stroke, 

stepped-piston gasoline engine design with the potential for application in transport, 

industrial and agriculture sectors. Furthermore, the future of the two-stroke engine will 
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depend upon how far a successful combination of scavenging, charging, combustion 

technology improvement (this study) can be made without jeopardising its classical 

advantages in terms of power density and simple construction. 

 

 

 

 

1.8 Scope of the Study 

 

 

Scopes of the study are as follows: 

i) Design and simulation. 

Preliminary study of the workability of the device is vital before the actual device is 

being fitted to the actual engine. The best configuration of the device will be design 

based on the actual boundary condition from the actual engine operation. 

 

ii) Development and testing the prototype engine in laboratory for performance and 

emission.  

A two-stroke engine will be developed to distinguish the workability of the system. 

 

iii) Engine testing for performance and emission. 

In this exercise two intensive testing will be conducted. Firstly the developed 

engine characteristic will be defined and secondly an engine which is available in 

the market which has the same capacity will be undergoing the same testing for 

comparative study. 

 

iv) Data analysis. 

All the data obtained from the testing will be analysed in order evaluate engine 

performance and emission. 
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In general, the outline constitutes three major areas in meeting the objectives and 

they are: 

i) Simulation of flow and engine performance 

 To observe the flow characteristic during scavenging of exhaust gases and also the 

compression of fresh air-fuel mixture by the steppe-piston. As for the engine 

performance simulation is to observe the typical engine characteristics based on 

the engine geometry. 

ii) Engine development 

To look into the appropriate design features in order to have a optimize engine. 

This exercise will involve decision making in choosing the right method in 

producing each component of the engine without compromising with the vital 

features. 

iii) Engine performance testing. 

The testing comprises of conventional two-stroke and prototype engine. The 

purpose of the conventional engine testing is intended for comparative study. 

 

 

The overall perspective of the research program is shown in Figure 1.2. 
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