## STRATIFIED-CHARGE TWO-STROKE STEPPED-PISTON ENGINE

## ZULKARNAIN BIN ABDUL LATIFF

A thesis submitted in fulfilment of the requirements for the award of degree of Doctor of Philosophy (Mechanical Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > DECEMBER 2011

To my beloved late father and mother, Your love brings me the happy and successful life

To my beloved wife and children, Your encouragement and patience always give me spirit to achieve success

#### ACKNOWLEDGEMENT

In the name of Allah S.W.T. that the Most Gracious and Most Merciful. May the peace and blessing of Allat S.W.T. be upon Prophet Muhammad S.A.W.. Alhamdulillah, first of all, my greatest gratitude goes to Allah S.W.T. for showing me ways of success which make me possible to complete the project report. I would like to extend my acknowledgement to all who were involved either directly or indirectly in completing this work, whether their names were mentioned or otherwise in the following list: All my family members especially my mother Rohani Che Tak and my late father Abdul Latiff Alang; my beloved wife Noorlida Ali, my children: Iskandar, Khairunnisa and Abdul Hafiz, my only sister: Rozmel; my outstanding supervisor: Prof. Ir. Dr. Azhar Abdul Aziz; my sponsor: UTM; brilliant advices from Hishamudin Mohd Jamil, Sazali, Aidid and Hj. Sairaji Suhadi; continuous support from Automotive Laboratory personnel: Subki, Wan Mazian, Sadid, Samsuri; Aeronautic Laboratory: Johari; Material Science Laboratory: Ayub, Jefri; Azri; Metrology Laboratory: Khalid; Sukari: Central Store: Hamid, Ayob; Fellow Production Laboratory: researchers: Mazlan, Fawzi, Ariffanan, Ng Tee Neng, Fong Kok Weng, Mohd Farid, Nurudin, Zakaria, Bambang; Undergraduate colleagues: Balan, Ahmad Nazar, Prabakaran; the good vendors: Fadli (AZMA), Lewis (Kistler); and all the authors cited in the reference section. Thank you for your contribution in making this study a success.

#### ABSTRACT

A two-stroke stepped-piston prototype engine, in carbureted version was designed and developed. It incorporates a unique three-port transfer system with an accumulator for high induction efficiency, so as to perform very much like a two-stroke engine but equipped with a four-stroke crankcase lubrication system. GT-Power software was used in the development stage to predict the engine output. The data predicted was then compared with the experimental results. A computational fluid dynamic software, COSMOS/Floworks, was used to develop a computational model to investigate the scavenging and compression processes of the prototype engine. The prototype was subjected to a series of laboratory trials for engine performance and emissions tests. Emission characteristics were established for regulated and unregulated gases. From the engine performance test, maximum pressures attained from GT-Power simulation and prototype engine were 54.62 bars at 5000 rpm and 26.12 bars at 4500 rpm respectively. Maximum indicated power produced is 11.25 kW at 8000 rpm and 3.86 kW at 4500 rpm for *GT-Power* simulation and prototype engine respectively. Torque, brake power and brake fuel consumption were also determined. For comparative reason, a Yamaha 125Z engine was selected as the cylinder capacity with similar working principle as the prototype engine. Torque produced by Yamaha 125Z was highest, followed by GT-Power simulation and prototype engine. The average difference of torque between Yamaha 125Z and GT-Power simulation was about 13.06%. The minimum values of brake specific fuel consumption for Yamaha 125Z, GT-Power simulation and prototype engine were 280.42 g/kWh at 3500 rpm, 351.08 g/kWh at 5000 rpm and 510 g/kWh at 3500 rpm respectively. The maximum peaks differences were attributed to the differences of combustion chamber design used and assumptions made in *GT-Power*.

#### ABSTRAK

Dalam kajian ini sebuah enjin prototaip dua lejang omboh bertangga telah direkabentuk dan dibangunkan dalam versi karburetor. Ia digabungkan dengan sistem tiga liang hantaran dan pengumpul yang unik untuk kecekapan aruhan yang tinggi dan berkelakuan seperti enjin dua lejang tetapi sistem pelinciran bersifat seperti kotak engkol empat lejang. Perisisan GT-Power digunakan di peringkat pembangunan untuk meramal keluaran enjin. Data teramal kemudian dibanding dengan keputusan ujikaji. Perisian dinamik bendalir berkomputer, COSMOS/Floworks, digunakan untuk membina model komputer untuk mengkaji proses menghapus sisa dan pemampatan enjin prototaip. Kemudian prototaip menjalani satu siri ujian makmal untuk menentukan prestasi dan emisi enjin. Emisi enjin ditentukan untuk gas terkawal dan tidak terkawal. Daripada ujian prestasi enjin, tekanan maksimum simulasi GT-Power dan enjin prototaip masingmasing adalah 54.62 bar pada 5000 ppm dan 26.12 bar pada 4500 ppm.. Kuasa tertunjuk maksimum adalah 11.25 kW pada 8000 ppm dan 3.86 kW pada 4500 ppm untuk simulasi GT-Power dan enjin prototaip. Dayakilas, kuasa brek dan pengunaan bahan api tentu brek juga ditentukan. Bagi tujuan perbandingan, sebuah enjin Yamaha 125Z dipilih memandangkan kapasiti silinder dan pinsip kerja yang sama dengan enjin prototaip. Yamaha 125Z menghasilkan dayakilas tertinggi diikuti simulasi GT-Power dan enjin prototaip. Perbezaan dayakilas purata antara Yamaha 125Z dan simulasi GT-Power adalah 13.06%. Nilai minimum penggunaan bahan api tentu brek untuk Yamaha 125Z, simulasi GT-Power dan enjin prototaip masing-masing adalah 280.42 g/kWh pada 3500 ppm, 351.08 g/kWh pada 5000 ppm dan 510 g/kWh pada 3500 ppm. Perbezaan puncak maksimum yang terhasil adalah disebabkan oleh perbezaaan rekabentuk kebuk pembakaran dan andaian yang digunakan dalam GT-Power.

## TABLE OF CONTENTS

TITLE

CHAPTER

1

| DECLARATION           | ii   |
|-----------------------|------|
| DEDICATION            | iii  |
| ACKNOWLEDGEMENTS      | iv   |
| ABSTRACT              | v    |
| ABSTRAK               | vi   |
| TABLE OF CONTENTS     | vii  |
| LIST OF TABLES        | xii  |
| LIST OF FIGURES       | xiii |
| LIST OF SYMBOLS       | xvii |
| LIST OF ABBREVIATIONS | xxii |
| LIST OF APPENDICES    | xxiv |

| INTR | ODUCTION                  | 1 |
|------|---------------------------|---|
| 1.1  | Introduction              | 1 |
| 1.2  | Background of the Problem | 3 |
| 1.3  | Research Challenges       | 4 |
| 1.4  | Research Questions        | 4 |
| 1.5  | Hypothesis                | 5 |
| 1.6  | Purpose of the Study      | 5 |
| 1.7  | Importance of the Study   | 5 |

PAGE

2

6

| LITE | RATURE REVIEW                                   | 9  |
|------|-------------------------------------------------|----|
| 2.1  | Historical Background of Two-Stroke Engines     | 9  |
|      | 2.1.1 Two-Stroke Engines Development            | 9  |
| 2.2  | Characteristics of the Two-Stroke Cycle Engine  | 13 |
| 2.3  | The Fundamental Method of Operation of a Simple |    |
|      | Two-Stroke engine                               | 15 |
| 2.4  | Drawbacks of Two-Stroke Applications            | 18 |
| 2.5  | The Future and Advances of Two-Stroke Engines   | 21 |
|      | 2.5.1 Gasoline Direct Injection                 | 22 |
|      | 2.5.2 Homogenous Charge Compression Ignition    | 26 |
| 2.6  | Future Applications of Two-stroke Engines       | 28 |
| 2.7  | Stepped-Piston Engine                           | 29 |
|      | 2.7.1 Stepped-Piston Engine Concept             | 30 |
| 2.8  | The Proposed Two-Stroke Stepped Piston Engine   | 32 |

# 3DESIGN AND SIMULATION343.1Introduction34

| 5.1 | muou  | detion                            | 51 |  |
|-----|-------|-----------------------------------|----|--|
| 3.2 | Simul | Simulation for Flow               |    |  |
|     | 3.2.1 | Computational Domain              | 35 |  |
|     | 3.2.2 | Initial and Boundary Conditions   | 35 |  |
|     | 3.2.3 | Meshing                           | 36 |  |
|     | 3.2.4 | Solving                           | 36 |  |
|     | 3.2.5 | Results Generation                | 37 |  |
|     | 3.2.6 | Engine Parameter and Data Setting | 37 |  |
|     |       | 3.2.6.1 Input Data                | 38 |  |
|     |       | 3.2.6.2 Simulation Results        | 40 |  |
|     | 3.2.7 | Discussions                       | 40 |  |

| 3.3 | Performance Simulation |                                              |    |
|-----|------------------------|----------------------------------------------|----|
|     | 3.3.1                  | Computer Simulation                          | 50 |
|     |                        | 3.3.1.1 The Stepped-Piston Engine Modeling   | 51 |
|     |                        | 3.3.1.2 Intake and Exhaust Manifold Modeling | 51 |
|     |                        | 3.3.1.3 Intake Port Modeling                 | 52 |
|     |                        | 3.3.1.4 Combustion Modeling                  | 52 |
|     |                        | 3.3.1.5 Engine Cylinder Geometry             | 53 |
|     |                        | 3.3.1.6 Piston Geometry                      | 53 |
|     |                        | 3.3.1.7 Cylinder Head Geometry               | 54 |
|     |                        | 3.3.1.8 Emission Modeling                    | 54 |
|     |                        | 3.3.1.9 The Engine Model                     | 55 |
|     | 3.3.2                  | Simulation Results                           | 59 |

## 4 DEVELOPMENT OF PROTOTYPE ENGINE AND ENGINE AUXILIARY SYSTEMS 65

| 4.1 | Introd | uction                                | 65 |
|-----|--------|---------------------------------------|----|
| 4.2 | The E  | ngine Design                          | 67 |
|     | 4.2.1  | Critical Components                   | 68 |
|     |        | 4.2.1.1 Stepped-Piston                | 68 |
|     |        | 4.2.1.2 Connecting Rod and Crankshaft | 69 |
|     |        | 4.2.1.3 Piston Pin                    | 71 |
|     |        | 4.2.1.3 Cylinder Head                 | 72 |
|     |        | 4.2.1.4 Cylinder Liner                | 73 |
|     |        | 4.2.1.5 Cylinder Block                | 74 |
|     | 4.2.2  | Materials Selection                   | 75 |
| 4.3 | Basic  | Engine Design Parameters              | 76 |
| 4.4 | Engin  | e Auxiliary System                    | 76 |
|     | 4.4.1  | Breathing System                      | 77 |
|     |        | 4.4.1.1 Breather Schematic diagram    | 77 |
|     |        | 4.4.1.2 Breather System Assembly      | 78 |
|     |        |                                       |    |

|       | 4.4.1.3 Testing for Performance     | 79 |
|-------|-------------------------------------|----|
|       | 4.4.1.4 Experimental Results        | 81 |
| 4.4.2 | Capacitive Discharge Ignition (CDI) | 84 |
| 4.4.3 | Add-on Module                       | 86 |

| 5 | ENG | INE PE | RFORMANCE AND DATA ANALYSIS                                 | 89  |
|---|-----|--------|-------------------------------------------------------------|-----|
|   | 5.1 | Introd | uction                                                      | 89  |
|   | 5.2 | Exper  | Experimental Work                                           |     |
|   | 5.3 | Engin  | e Testing Approach                                          | 90  |
|   |     | 5.3.1  | Engine Performance Test Facilities                          | 91  |
|   | 5.4 | Engin  | e Performance Test Results                                  | 93  |
|   |     | 5.4.1  | Yamaha 125Z Engine Performance Results                      | 95  |
|   |     | 5.4.2  | Prototype Engine Test Results                               | 97  |
|   | 5.5 | Regul  | ated Emission Test                                          | 98  |
|   |     | 5.5.1  | Results of Yamaha 125Z                                      | 100 |
|   |     | 5.5.2  | Results of Prototype Engine                                 | 101 |
|   | 5.6 | Unreg  | ulated Emission Test                                        | 103 |
|   |     | 5.6.1  | Test Results                                                | 103 |
|   |     |        | 5.6.1.1 Variable Engine Speed Test                          | 104 |
|   |     |        | 5.6.1.2 Constant Speed and Variable Load Test               | 106 |
|   |     |        | 5.6.1.3 Constant Speed and Variable Lubrication             |     |
|   |     |        | Oil (2-T) Content                                           | 106 |
|   | 5.7 | Comp   | arison of Test Results                                      | 110 |
|   |     | 5.7.1  | In-Cylinder Pressure and Indicated Power                    | 111 |
|   |     | 5.7.2  | Torque, Brake Power and Brake Specific Fuel                 |     |
|   |     |        | Consumption                                                 | 113 |
|   |     | 5.7.3  | Concentration of CO <sub>2</sub> , CO and HC in Exhaust Gas | 116 |

| 6 | CON | CONCLUSIONS AND RECOMMENDATIONS  |     |  |
|---|-----|----------------------------------|-----|--|
|   | 6.1 | Conclusions                      | 119 |  |
|   | 6.2 | Recommendations for Further Work | 120 |  |
|   |     |                                  |     |  |
|   |     |                                  |     |  |

| REFERENCES |     | 122     |
|------------|-----|---------|
| APPENDICES | A-D | 129-209 |

## LIST OF TABLES

TABLE NO.

## TITLE

## PAGE

| 2.1 | Chronology of two-stroke engine cycle development                 |    |
|-----|-------------------------------------------------------------------|----|
|     | Characteristics                                                   | 11 |
| 2.2 | Advantages and drawbacks of a simple crankcase-scavenged          |    |
|     | two-stroke engine over a four stroke engine (Blair et al, 1999)   | 16 |
| 2.3 | Development of two-stroke cycle SI engines (Blair et al, 1999)    | 33 |
| 3.1 | Specifications of the engine model                                | 38 |
| 3.2 | Case Study of the flow pattern at different transfer port opening | 38 |
| 4.1 | Engine specifications                                             | 68 |
| 4.2 | Mass of lubrication oil trapped                                   | 82 |
| 4.3 | Petal lifts data                                                  | 83 |
| 5.1 | Performance test result for prototype engine                      | 97 |

## LIST OF FIGURES

| FIGURE NO. | TITLE | PAGE |
|------------|-------|------|
|            |       |      |

| Concepts of current/future engine design                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overall perspective of research program                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Chronology of development for two-stroke diesel engines          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (Blair, 1999)                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Processes representing the two-stroke cycle engine               | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Problems of two-stroke engine in comparison with similar         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| four-stroke counterparts (Heywood, 1988;Blair, 1996;             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Stone; 1999)                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Principles of the FICHT-PDS Injection System (SAE, 1998)         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| The Orbital's direct fuel-injection system for small engines     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (SAE, 2006)                                                      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| The Honda AR HCCI engine (U.S. Department of Energy, 2001)       | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Basic configuration of the stepped-piston engines                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Concepts of stepped-piston engine illustrated by                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Heywood et al (1999)                                             | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Two-stage compression stepped-piston engine (Sher et al, 1994)   | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Stepped-piston engine with rotary and poppet valve               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (Sher <i>et al</i> , 1994)                                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sectional front view of flow vector (velocity) during scavenging |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| process                                                          | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                  | Overall perspective of research program<br>Chronology of development for two-stroke diesel engines<br>(Blair, 1999)<br>Processes representing the two-stroke cycle engine<br>Problems of two-stroke engine in comparison with similar<br>four-stroke counterparts (Heywood, 1988;Blair, 1996;<br>Stone; 1999)<br>Principles of the <i>FICHT-PDS Injection System</i> (SAE, 1998)<br>The <i>Orbital</i> 's direct fuel-injection system for small engines<br>(SAE, 2006)<br>The Honda AR HCCI engine (U.S. Department of Energy, 2001)<br>Basic configuration of the stepped-piston engines<br>Concepts of stepped-piston engine illustrated by<br>Heywood <i>et al</i> (1999)<br>Two-stage compression stepped-piston engine (Sher <i>et al</i> , 1994)<br>Stepped-piston engine with rotary and poppet valve<br>(Sher <i>et al</i> , 1994)<br>Sectional front view of flow vector (velocity) during scavenging |

| 3.2  | Flow vector in the compression chamber during scavenging  |    |
|------|-----------------------------------------------------------|----|
|      | process                                                   | 44 |
| 3.3  | Flow vector in the compression chamber during compression |    |
|      | process                                                   | 47 |
| 3.4  | The suggestion of the improvement of the transfer port    | 50 |
| 3.5  | Stepped-piston engine modeling                            | 55 |
| 3.6  | GT-Power engine model of stepped-piston engine            | 58 |
| 3.7  | Engine torque against engine speed                        | 60 |
| 3.8  | Engine power against engine speed                         | 60 |
| 3.9  | Specific fuel consumption against engine speed            | 61 |
| 3.10 | Brake mean effective pressure (BMEP) against engine speed | 61 |
| 3.11 | The effect of engine speed on the P-V diagram             | 62 |
| 3.12 | Cumulative heat release variation with engine speed       | 62 |
| 3.13 | Rate of heat release variation with engine speed          | 63 |
| 3.14 | The effect of engine speed on in-cylinder pressure        | 63 |
| 3.15 | Upstream and downstream pressure of reed valve            |    |
|      | (valveConn:356)                                           | 64 |
| 3.16 | Mass flow rate at reed valve (valveConn:356)              | 64 |
| 4.1  | 125 cc two-stroke stepped-piston engine developed by UTM  |    |
|      | (Aziz <i>et al</i> , 2005)                                | 67 |
| 4.2  | Major dimension of the stepped-piston                     | 70 |
| 4.3  | Dimension of connecting rod and crankshaft                | 70 |
| 4.4  | Dimension of piston pin                                   | 72 |
| 4.5  | Dimension of cylinder head                                | 73 |
| 4.6  | Dimension of the cylinder liner                           | 74 |
| 4.7  | Dimension of cylinder block                               | 75 |
| 4.8  | Breathing flow actions                                    | 78 |
| 4.9  | Exploded view of breather system                          | 80 |
| 4.10 | Assembled parts of breather system                        | 80 |
| 4.11 | Pressure testing setup                                    | 81 |
| 4.12 | Pressure and petal valve lift reading                     | 81 |

| 4.13   | Graph of speed versus mass of lubrication oil trapped                         | 82  |
|--------|-------------------------------------------------------------------------------|-----|
| 4.14   | Petal on breather cover                                                       | 83  |
| 4.15   | Graph of petal valve lift versus pressure                                     | 84  |
| 4.16   | The ignition system for the prototype engine                                  | 85  |
| 4.17   | The exploded view showing the ignition system                                 |     |
|        | enclosed in the engine's front cover                                          | 86  |
| 4.18   | Photographs showing the ignition system embedded                              |     |
|        | on the engine                                                                 | 87  |
| 4.19   | The add-on module                                                             | 87  |
| 4.20   | The close-up of the add-on module                                             | 88  |
| 4.21   | The prototype engine                                                          | 88  |
| 5.1    | Schematic arrangement of engine test set-up                                   | 94  |
| 5.2    | Torque and brake power versus engine speed                                    | 96  |
| 5.3    | bsfc and AFR versus engine speed                                              | 97  |
| 5.4    | Torque and brake power versus engine speed for                                |     |
|        | prototype engine                                                              | 99  |
| 5.5    | Brake specific fuel consumption and air-fuel ratio versus                     |     |
|        | engine speed for prototype engine                                             | 99  |
| 5.6    | CO <sub>2</sub> , CO, O <sub>2</sub> and HC emissions from Yamaha 125Z engine | 102 |
| 5.7    | CO <sub>2</sub> , CO, O <sub>2</sub> and HC emissions from prototype engine   | 102 |
| 5.8(a) | Concentration against engine speed for prototype engine                       | 105 |
| 5.8(b) | Concentration against engine speed for Yamaha 125Z                            | 105 |
| 5.8(c) | Concentration of benzene against engine speed                                 | 105 |
| 5.8(d) | Concentration of MTBE against engine speed                                    | 105 |
| 5.8(e) | Concentration of toluene against engine speed                                 | 105 |
| 5.8(f) | Concentration of 1,3-Butadiene against engine speed                           | 105 |
| 5.8(g) | Concentration against torque for prototype engine                             | 107 |
| 5.8(h) | Concentration against torque for Yamaha 125Z                                  | 107 |
| 5.8(i) | Concentration of benzene against torque for prototype engine                  | 107 |
| 5.8(j) | Concentration of MTBE against torque for prototype engine                     | 107 |
| 5.8(k) | Concentration of toluene against torque for prototype engine                  | 107 |
|        |                                                                               |     |

| 5.8(1) | Concentration of 1,3-Butadiene against torque for                 |     |
|--------|-------------------------------------------------------------------|-----|
|        | prototype engine                                                  | 107 |
| 5.8(m) | Concentration against percentage of 2-T for prototype             |     |
|        | engine without load                                               | 109 |
| 5.8(n) | Concentration against percentage of 2-T for prototype             |     |
|        | engine with load at 5Nm                                           | 109 |
| 5.8(o) | Concentration of benzene against percentage of 2-T at 1000rpm for | or  |
|        | prototype engine                                                  | 109 |
| 5.8(p) | Concentration of MTBE against percentage of 2-T at 1000rpm for    |     |
|        | prototype engine                                                  | 109 |
| 5.8(q) | Concentration of toluene against percentage of 2-T at 1000rpm for | -   |
|        | prototype engine                                                  | 111 |
| 5.8(r) | Concentration of 1,3-butadiene against percentage of 2-T          |     |
|        | at 1000rpm for prototype engine                                   | 111 |
| 5.9    | In-cylinder pressure from GT-Power simulation                     | 112 |
| 5.10   | In-cylinder pressure versus crankangle for prototype engine       | 112 |
| 5.11   | P-V diagram from <i>GT-Power</i> simulation                       | 113 |
| 5.12   | P-V diagram developed by prototype engine                         | 113 |
| 5.13   | Torque developed by GT-Power simulation, Yamaha 125Z              |     |
|        | and prototype engine                                              | 114 |
| 5.14   | Results of indicated power and brake power for both               |     |
|        | GT-Power simulation and prototype engine testing                  | 115 |
| 5.15   | Results of brake fuel consumption for GT-Power simulation,        |     |
|        | Yamaha 125Z and prototype engine                                  | 116 |
| 5.16   | Major gas concentration versus engine speed                       | 118 |
|        |                                                                   |     |

## LIST OF SYMBOLS

| A <sub>p</sub>              | - | Piston area                        |
|-----------------------------|---|------------------------------------|
| AFR                         | - | Air-fuel ratio                     |
| AFR <sub>s</sub>            | - | Stochiometric air-fuel ratio       |
| AFR <sub>t</sub>            | - | Trapped air-fuel ratio             |
| a                           | - | Crankshaft offset                  |
| В                           | - | Bore                               |
| BP                          | - | Brake power                        |
| $\mathbf{B}_{\mathrm{fin}}$ | - | Breadth of single fin              |
| b                           | - | Cylinder wall thickness            |
| bmep                        | - | Brake mean effective pressure      |
| bsfc                        | - | Brake specific fuel consumption    |
| С                           | - | Specific heat                      |
| C <sub>p</sub>              | - | Specific heat at constant pressure |
| $C_v$                       | - | Specific heat at constant volume   |
| C <sub>D</sub>              | - | Coefficient of discharge           |
| CR <sub>cc</sub>            | - | Crankcase compression ratio        |
| CRg                         | - | geometric compression ratio        |
| CR <sub>t</sub>             | - | trapped compression ratio          |
| $C_{\mathrm{fl}}$           | - | Low calorific value for fuel       |
| D <sub>cw</sub>             | - | Counter weight diameter            |
| $D_{\mathrm{fw}}$           | - | Flywheel diameter                  |
| E                           | - | Energy                             |
| F                           | - | Force                              |
|                             |   |                                    |

| Fgas                      | - | Force of gas                        |
|---------------------------|---|-------------------------------------|
| Fi                        | - | Inertia force                       |
| F <sub>res</sub>          | - | Total force acting on the piston    |
| g                         | - | Gravitational acceleration          |
| Н                         | - | Piston height form TDC              |
| h <sub>c</sub>            | - | Heat transfer coefficient           |
| Ι                         | - | Inertia                             |
| IP                        | - | Indicated power                     |
| isfc                      | - | indicated specific fuel consumption |
| j                         | - | Cylinder perimeter                  |
| Ks                        | - | Coefficient of fluctuating speed    |
| k                         | - | Thermal conductivity                |
| k <sub>x</sub>            | - | Thermal conductivity in X direction |
| $\mathbf{k}_{\mathbf{y}}$ | - | Thermal conductivity in Y direction |
| kz                        | - | Thermal conductivity in Z direction |
| L <sub>st</sub>           | - | Stroke length                       |
| L <sub>ts</sub>           | - | Trapped stroke length               |
| L <sub>cr</sub>           | - | Connecting rod length               |
| L <sub>ct</sub>           | - | crank throw length                  |
| $L_{\mathrm{fin}}$        | - | Length of single fin                |
| $l_c$                     | - | Clearance volume height             |
| m <sub>air</sub>          | - | Mass of air                         |
| m <sub>ca</sub>           | - | Mass of cooling air                 |
| $m_{\rm f}$               | - | Mass of fuel                        |
| m <sub>fw</sub>           | - | Mass of flywheel                    |
| m <sub>cp</sub>           | - | Mass of crank pin                   |
| m <sub>crbe</sub>         | - | Mass of connecting rod (big end)    |
| m <sub>crm</sub>          | - | Mass of connecting rod (main)       |
| m <sub>crse</sub>         | - | Mass of connecting rod (small end)  |
| m <sub>cw</sub>           | - | Mass of counter weight              |
| m <sub>p</sub>            | - | Mass of piston                      |
|                           |   |                                     |

| m <sub>pp</sub>              | - | Mass of piston pin                             |
|------------------------------|---|------------------------------------------------|
| m <sub>ppb</sub>             | - | Mass of piston pin bearing                     |
| m <sub>tcrbe</sub>           | - | Total mass of connecting rod (big end)         |
| m <sub>rot</sub>             | - | Mass of rotating components                    |
| m <sub>rec</sub>             | - | Mass of reciprocating components               |
| m <sub>ta</sub>              | - | Mass of trapped air                            |
| m <sub>tf</sub>              | - | Mass of trapped fuel                           |
| m <sub>tr</sub>              | - | Total mass of charge                           |
| Ν                            | - | Speed                                          |
| n                            | - | Number of cylinder                             |
| Р                            | - | Pressure                                       |
| Q                            | - | Volumetric heat generation rate                |
| $\mathbf{Q}_{\mathrm{cool}}$ | - | Heat to be cooled                              |
| Q <sub>R</sub>               | - | Heat released from combustion                  |
| q                            | - | Heat flux                                      |
| R                            | - | Ratio of connecting rod length to crank radius |
| R <sub>a</sub>               | - | Gas constant for air                           |
| R <sub>tr</sub>              | - | Gas constant at trapped point                  |
| $r_{\mathrm{fw}}$            | - | Flywheel radius                                |
| S <sub>p</sub>               | - | Mean piston speed                              |
| S <sub>exh</sub>             | - | Exhaust perimeter                              |
| $\mathbf{S}_{main}$          | - | Main port perimeter                            |
| S <sub>side</sub>            | - | Side port perimeter                            |
| sfc                          | - | Specific fuel consumption                      |
| Т                            | - | Temperature, torque                            |
| $T_{\mathrm{f}}$             | - | Tangential force                               |
| $T_i$                        | - | Indicated torque                               |
| To                           | - | Specified temperature                          |
| T <sub>s</sub>               | - | Surface temperature                            |
| T <sub>at</sub>              | - | Ambient temperature                            |
| $T_{tr}$                     | - | Trapped temperature                            |

| $T_{\infty}$            | - | Ambient temperature      |
|-------------------------|---|--------------------------|
| t                       | - | Time                     |
| t <sub>cw</sub>         | - | Counter weight thickness |
| $t_1$                   | - | Thickness cylinder liner |
| U                       | - | Thermal load             |
| V                       | - | Volume                   |
| V <sub>cc</sub>         | - | Crankcase volume         |
| $V_{cv}$                | - | Clearance volume         |
| $V_{cw}$                | - | Counter weight volume    |
| $V_{sv}$                | - | Swept volume             |
| V <sub>ts</sub>         | - | Trapped swept volume     |
| V <sub>tr</sub>         | - | Trapped volume           |
| $\overline{V}_{\rm fw}$ | - | Flywheel velocity        |
| Х                       | - | Piston position          |

## **Greek Symbols**

| Φ                      | - | Angle of obliquity        |
|------------------------|---|---------------------------|
| γ                      | - | Specifics heat ratio      |
| 3                      | - | Emissivity                |
| ω                      | - | Angular velocity          |
| ρ                      | - | Density                   |
| $\rho_{at}$            | - | Air density               |
| $\rho_{\rm cw}$        | - | Density of counter weight |
| σ                      | - | Stefan-Boltzmann constant |
| $\sigma_{\mathrm{fw}}$ | - | Stress of the flywheel    |
| $\sigma_{c}$           | - | Stress of cast iron       |
| θ                      | - | Crank angle               |

- $\eta_c$  Combustion efficiency
- $\eta_i$  Indicated thermal efficiency
- $\eta_t$  Thermal efficiency

## LIST OF ABBREVIATIONS

| AC   | - | Alternate current                   |
|------|---|-------------------------------------|
| AFR  | - | Air-fuel ratio                      |
| ATDC | - | After top dead center               |
| A/D  | - | analogue/digital                    |
| BDC  | - | Bottom dead center                  |
| BTDC | - | Before top dead center              |
| CA   | - | Crank angle                         |
| CAD  | - | Computer-aided design               |
| CCD  | - | Charge-coupled device               |
| CDI  | - | Capacitive discharge ignition       |
| CFD  | - | Computational fluid dynamics        |
| CI   | - | Compression ignition                |
| СО   | - | Carbon monoxide                     |
| CPU  | - | Central processing unit             |
| CVT  | - | Continuous variable transmission    |
| DAS  | - | Data acquisition system             |
| DFI  | - | Direct fuel injection               |
| DHA  | - | Detail hydrocarbons analysis        |
| ECU  | - | Electronic control unit             |
| EFIC | - | Electronic fuel injector controller |
| EGR  | - | Exhaust gas recirculation           |
| EPA  | - | Environmental Protection Agency     |
| EMS  | - | Engine management system            |
|      |   |                                     |

| xxiii |
|-------|
|       |

| FEA             | - | Finite element analysis                      |
|-----------------|---|----------------------------------------------|
| GDI             | - | Gasoline direct injection                    |
| HC              | - | Hydrocarbons                                 |
| HCCI            | - | Homogenous charge compression ignition       |
| HPSGDi          | - | High pressure swirl gasoline direct injector |
| ICE             | - | Internal combustion engine                   |
| I/O             | - | Input/output                                 |
| MAP             | - | Manifold absolute pressure                   |
| MTBE            | - | Methyl tertiary-butyl ether                  |
| NO              | - | Nitric oxides                                |
| NO <sub>x</sub> | - | Nitrogen oxides                              |
| PCB             | - | Printed circuit board                        |
| PFI             | - | Port fuel injection                          |
| PID             | - | Proportional, integral and differentiate     |
| PM              | - | Particulate matter                           |
| PRV             | - | Pressure relief valve                        |
| PWM             | - | Pulse-width modulation                       |
| RAM             | - | Read-access memory                           |
| ROM             | - | Read-only memory                             |
| R&D             | - | Research and development                     |
| SI              | - | Spark ignition                               |
| SMD             | - | Sauter mean diameter                         |
| SOI             | - | Start of injection                           |
| TDC             | - | Top dead center                              |
| TPS             | - | Throttle position sensor                     |
| UTM             | - | Universiti Teknologi Malaysia                |
| ULEV            | - | Ultra low emission vehicle                   |
| 2-T             | - | Lubrication oil                              |

## LIST OF APPENDICES

APPENDIX NO.

## TITLE

## PAGE

| A1 | Input data for flow simulation                            | 129 |
|----|-----------------------------------------------------------|-----|
| A2 | Conversion of engine geometry to modeling objects         |     |
|    | and windows of input data                                 | 134 |
| B1 | Typical design and operating data for internal combustion |     |
|    | engines                                                   | 139 |
| B2 | Materials Properties                                      | 140 |
| B3 | Thermodynamics and dynamics analysis                      | 145 |
| C1 | Yamaha 125Z engine specifications                         | 195 |
| C2 | Engine Performance Test Hardware Specifications           | 196 |
| C3 | Engine test set-up                                        | 206 |
| C4 | Roundness test results for the combustion and compression |     |
|    | chambers                                                  | 207 |
| C5 | Unregulated test condition and results                    | 208 |
| D  | List of publications                                      | 209 |

### **CHAPTER 1**

### **INTRODUCTION**

## 1.1 Introduction

Internal combustion engine (ICE) technologies have undergone changes through a series of phases since the 18<sup>th</sup> centuries. In the old days ICE was purely on mechanical principles. With the advancement of technology, ICE had change from totally mechanical dependent to electronic and computerized controlled system. No matter what new technology was incorporated onto the engine, the main objective is to improvise and develop a more efficient ICE in terms of output and emissions.

The improvement is basically to reduce fuel consumption or in other words to utilise fuel efficiently. To achieve this goal, several concepts can be implemented. The concepts are briefly shown in Figure 1.1. Particularly for combustion efficiency, the combustion concepts basically based on flow pattern are swirl, forward tumble and reverse tumble. Some of these concepts have already been commercialized while others are still in research stage.

In the last twenty years, the environmental implications of ICE exhaust emissions have resulted in greater effort in reducing harmful pollutants to meet stringent legislation. The investigation and the study on combustion and pollutant formation processes in ICE are clearly necessary to increase their efficiency and economic of operation. This lead to the evolution and invention of new engines with emphasise on increased efficiency and emissions reduction.

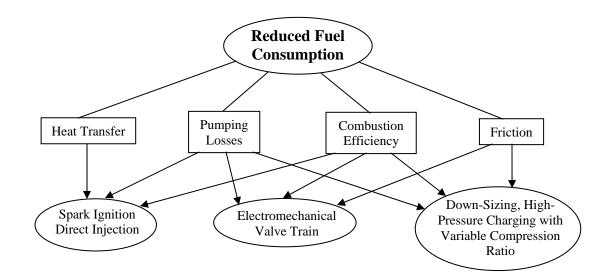



Figure 1.1: Concepts of current/future engine design

Motorcycles and motorised scooters are popular form of transport throughout the world. They are particularly popular in congested cities in Asia and Europe. In Asian regions they are dominant mode of transport because of their low initial and ongoing costs. Traditionally, two-stroke engines have powered the most popular models of motorcycles and scooters. Powered tools such as chainsaw, trimmer, fruit harvester, grass cutter and even bicycle utilised the two-stroke engine as their prime mover.

Two-stroke engines are popular because they produce relatively high power from a small size and are also inexpensive to manufacture and maintain. This is because the two-stroke engine requires no valvetrain which contribute in major cost, weight and complexity.

The current two-stroke designs are inefficient and impart environmental implications to human and plants in urban and non-urban areas where they operate. In Asian cities, they constitute the bulk of the engines for use in motorcycles and three-wheelers. With the hazardous nature of the pollutants emitted by the vehicles they are banned in Taipei, while in Bangkok the authority is seriously considering doing the same. The somewhat low combustion efficiency of today's two-stroke engine design can be improved through various means, making it possible to compliment the four stroke version. The latter is a more complicated engine configuration having lesser power-to-weight ratio characteristic. During the last decade, there have been many improved versions of the two-stroke engines produced. A few have found commercial ventures while many are still at the prototype level or even on the drawing board.

#### **1.2 Background of the Problem**

The simplistic nature of the design of a two-stroke engine, with relatively simple machining process (compared to four stroke engine), will provide improved power-to-weight ratio characteristic and lower production cost. Development of new two-stroke engines must address scavenging and emission problems. This can be achieved through improvising the scavenging process. By means of multi-ports intake system and eliminating crankcase compression, better scavenging process could be

achieved. The integration of transfer ports design to create better flow angle for blowdown and loop scavenging of exhaust gases will help improve fuel consumption and exhaust emissions in general. In this study the three numbers of ports was selected due to the constraints of surface area. As for the eliminating of the crankcase compression, stepped-piston configuration was selected in order to prepare the compress air-fuel mixture for the scavenging process.

#### **1.3** Research Challenges

The key research challenge that must be resolved is can a multi-port intake system improve the performance and emission of a stratified-charged two-stroke stepped-piston gasoline engine.

#### **1.4 Research Questions**

Some of the persistent questions at this juncture would be:

- i) How multi-ports intake system and stepped-piston can fit in a two-stroke engine?
- ii) How is the optimise condition be achieved?
- iii) What effect will it have on performance and emission?
- iv) What aspect of performance (torque, brake power, sfc, etc)?
- v) What speed regime? Low speed? Typically idle to maximum speed?
- vi) What load range?
- vii) What are the impacts towards the unregulated and regulated exhaust emission?

## 1.5 Hypothesis

- i) Multi-ports and stepped piston provides an effective mean of discarding exhaust gases by introducing fresh charge through the circumference of the cylinder.
- ii) It also improves the scavenging process by reducing the short-circuiting of fresh charge air-fuel mixture.

#### **1.6** Objectives of the Study

By introducing the multi-ports concept into the design of stratified-charged stepped-piston engine the associated problems of the conventional design of two-stroke engine can be addressed. The objectives of this research are as follows,

- i) to analyse the impact of multi-ports and stepped-piston configuration towards improving engine performance and emission,
- ii) to determine the appropriate ports design configuration and location, and
- iii) to compare the deviation between simulation and experimental results.

## **1.7** Importance of the Study

The study could benefit toward enhancing stratified-charged, two-stroke, stepped-piston gasoline engine design with the potential for application in transport, industrial and agriculture sectors. Furthermore, the future of the two-stroke engine will depend upon how far a successful combination of scavenging, charging, combustion technology improvement (this study) can be made without jeopardising its classical advantages in terms of power density and simple construction.

#### **1.8** Scope of the Study

Scopes of the study are as follows:

i) Design and simulation.

Preliminary study of the workability of the device is vital before the actual device is being fitted to the actual engine. The best configuration of the device will be design based on the actual boundary condition from the actual engine operation.

ii) Development and testing the prototype engine in laboratory for performance and emission.

A two-stroke engine will be developed to distinguish the workability of the system.

iii) Engine testing for performance and emission.

In this exercise two intensive testing will be conducted. Firstly the developed engine characteristic will be defined and secondly an engine which is available in the market which has the same capacity will be undergoing the same testing for comparative study.

iv) Data analysis.

All the data obtained from the testing will be analysed in order evaluate engine performance and emission.

In general, the outline constitutes three major areas in meeting the objectives and they are:

i) Simulation of flow and engine performance

To observe the flow characteristic during scavenging of exhaust gases and also the compression of fresh air-fuel mixture by the steppe-piston. As for the engine performance simulation is to observe the typical engine characteristics based on the engine geometry.

ii) Engine development

To look into the appropriate design features in order to have a optimize engine. This exercise will involve decision making in choosing the right method in producing each component of the engine without compromising with the vital features.

iii) Engine performance testing.

The testing comprises of conventional two-stroke and prototype engine. The purpose of the conventional engine testing is intended for comparative study.

The overall perspective of the research program is shown in Figure 1.2.

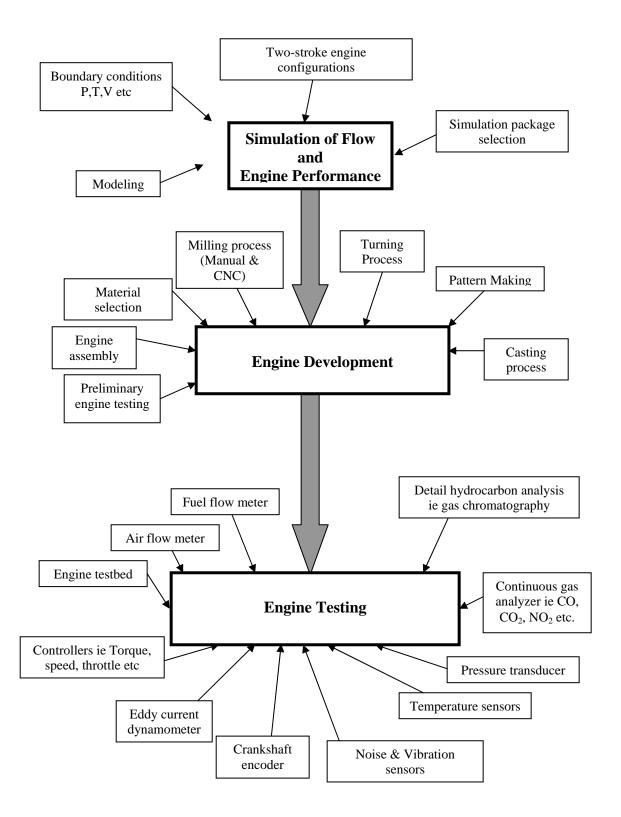



Figure 1.2: Overall perspective of research program

#### REFERENCES

- ADB (2003). *Policy Guidelines for Reducing Vehicle Emissions in Asia*. Philipines: Asian Development Bank.
- Adler, U. (1989). Automotive Handbook: 18th Edition., Stuttgart: Robert Bosch.
- AK Steel (2000). *316/316L Stainless Steel* (Product Data Sheet). Ohio, USA: AK Steel Corporation.
- Alger, T, Hall, M and Ronald, D (2000). Effects of Swirl and Tumble on In-Cylinder Fuel Distribution in a Central Injected DISI Engine, SAE Technical Paper, No. 2000-01-0533, 2000.
- Aziz, A. A., Latif, Z. A., Mohamad, M. F. M., and Ming, G. L. (2005). Development of a 125 cc Two-stroke, Step-piston Engine Using a One-dimensional Engine Code. Journal of KONES Internal Combustion Engines 2005, Vol. 12, 1-2, pp. 23-30.
- Badami, M., Marzano, M. R., Millo, F., and Nuccio, P. (1999). Comparison between Direct and Indirect Fuel Injection in an S.I. Two-Stroke Engine. SAE Technical Paper, No. 1999-01-3311.
- Blair, G.P. and Ashe, M.C. (1976). *The Insteady Gas Exchange Characteristics of a Two-Stroke Cycle Engine*. SAE Paper No.: 760644.
- Blair, G.P. (1990). The Design of Two-Stroke Engines, Society of Automotive Engineers, Warrendale, Pennsylvania, USA, pp 672, SAE ref no.: R-104, ISBN 1-56091-008-9

- Blair, G.P. (1985). Patent Number 4,522,163. Design and Simulation of Two-Stroke Engines. USA: United State Patent (SAE Publications).
- Carney, D. (2003). *Toyota launches the Camry PZEV*. American Enterprise Institute Article (page 39). USA: A.E.I.
- Casarella, M. V., Syvertsen, M. L., Martin, J. K., Hoffman, J. A., Ghandhi, J. B., Coates,
  S. W., and McGinnity, F. A. (1997). Spray Combustion and Emissions in a Direct Injection Two Stroke Engine with Wall-stabilization of an Airassisted Spray. SAE Technical Paper, No. 970360.

COSMOS (2001). COSMOS/FloWorks User's Guide Revision 8. U.S.: COSMOS.

- Fleck, R. (1990). *Three-Cylinder, Natural Aspirated, Two-Stroke Automotive Engines A Performance Potential Evaluation.* SAE Technical, Paper No.: 901667.
- Franz, J. L. (1991). The Low Emissions High Output Two-Stroke S.I. Engine with Catalyst. Paper presented at the Seminar and Workshop on Design and Development of Two-Stroke Engines for Automotive Applications. Belfast: University of Queensland.
- Fox, R.W. and McDonald, A.T. (1985), *Introduction to Fluid Mechanic. (Third Edition)*.U.S.: John Wiley and Sons Inc..
- Gentili, R., Zanforlin, S., Frigo, S., Cozzolino, F., Dell'orto, P., and Doveri, C. (2002). Optimization of a Stratified Charge Strategy of a Direct Injected Two Stroke Engine. SAE Technical Paper, No. 2002-32-1785.
- Heywood, J.B. and Sher, E (1999), *The Two-Stroke Cycle Engine: Its Development, Operation and Design.* USA: SAE International Publications.

- Heywood, J.B. (1988). Internal Combustion Engine Fundamentals. New York: McGraw Hill Inc.
- Irwing, P.E. (1967). *Two-Stroke Power Units, Their Design and Application*. Temple Press Books for Newnes: London.
- Hooper, B. (1985). *Stepped Piston and Stepped Piston Engine*. Patent No. 4,522,163 USA: USA. Patent)
- Hull, W., Beu, J., Jorenby, J., Lentz, J., Hoss, J., Pickard, G., Jamison, F., Mathis, T., and Willson, B. (2003). *Optimization of a Direct-Injected 2-Stroke Cycle Snowmobile*. SAE Technical Paper, No. 2003-32-0074.
- Kang, J.M., Chang, F.C., Chen, J.S. and Chang, M.F. (2009). Concept and Implementation of a Robust HCCI Engine Controller. SAE Technical Paper, No. 2009-01-1131.
- Masahiko, F. and Michihiko, T. (1993). Effect of Swirl Rate Formation in a Spark Ignition Based on Laser 2-D Visualization Techniques. SAE Technical Paper, No. 931905.
- Metals Handbook (1964). *Properties and Selection of Metals Vol. 1*. Metal s Park: OH: American Society for Metals.
- Mitianiec, W. (2003). *Reduction of Exhaust Gas Emission in a SI Two Stroke Engine with Direct Fuel Mixture Injection*. SAE Technical Paper, No. 2003-32-0048.
- Morikawa, K., Takimoto, H, and Ogi, T. (1999). A Study of Direct Fuel Injection Twostroke Engine for High Specific Power Output and High Engine Speed. SAE Technical Paper, No. 1999-01-3288.

- Nishimoto, K and Kamimoto, K. (1984). A Study on the Influence of inlet Angle and Reynolds Number on the Flow-Pattern of Uniflow Scavenging Air. SAE Paper. No.: 841056.
- Nuccio, P., and Marzano, M. R. (2003). Performance Improvement of Two-Stroke SI Engines for Motor-Gliders and Ultra-Light Aircraft By Means of a GDI System. SAE Technical Paper, No. 2003-32-0002.
- *Oil-Hydraulics (1982). Fluid Power Technical Manual.* Hydro-Pneumatic Technical Centre, Japan: The Japan Oil Hydraulics Association.
- Pontoppidan, M., Nuti, M., Caponi, D., de Maio, A., and Andreassi, A. (1999). Experimental and Numerical Approach to Productionizing a GDI 2-Stroke Spark Ignited Small Displacement Engine Design. SAE Technical Paper, No. 1999-01-3290.
- Preussner, C., Döring, C., Fehler, S. and Kampmann, S. (1998). GDI: Interaction between Mixture Preparation, Combustion System and Injector Performance. SAE Technical Paper, No. 980498.
- Ramakrishanan, E., Nagalingam, B. and Gopalakrishnan, K. V. (2001). Improving the Performance of Two-Stroke Spark Ignition Engines by Direct Injection. SAE Technical Paper, No. 2001-01-1843/4262.
- Blair, G.P. (1998). *Two-Stroke Engines: Technology and Emissions*. United State: SAE International.
- SAEJ1832 (2001). Low Pressure Gasoline Fuel Injector. SAE Surface Vehicle Recommended Practice, No. SAEJ1832v002

- SAE (2006). Focus on Electronics, Managing for Software Success, Automotive Engineering International, SAE International, August 2006.
- Seong, S.K (1995). Effects of Swirl and Spark Plug Shape on Combustion Characteristic in a High Speed Single-Shot Visualized SI Engine. SAE Technical Paper, No. 951003.
- Sher, E. and Zeigerson, M. (1994). A Stepped-Piston Two-Stroke Engine for High Altitude Application. SAE Paper, No. 9404400.
- Sher, E. and Zeigerson, M. (1999). A Stepped-Piston Two-Stroke Engine for High Altitude Application., SAE 9404400, 1994. Patent Number 5,870,980, United Sates Patent, 16<sup>th</sup> February 1999.
- Sherman, E.R. (1997). *Outboard Engines: Maintenance, Troubleshooting and Repair*. United States: McGrawhill.
- Sherman, D. (2009), The Two-Stroke Engine's Revival. Automobile Magazine. December Issue. U.S.
- Shigley, I.E. (1977). *Mechanical Engineering Design, 3rd Edition, International Student Edition*. Singapore: McGraw-Hill International.
- Shigley, E.S. and Mitchell, L.O. (1983). *Mechanical Engineering Design, International Student, 4<sup>th</sup>. Edition.* Singapore: McGraw-Hill International.
- Stan, C. C., Lefebvre, J. L., and Lebrun, M. (1999). Development, Modeling and Engine Adaptation of a Gasoline Direct Injection System for Scooter Engines. SAE Technical Paper, No. 1999-01-3313.

- STMicroelectronics (1999). BDX53B/BDX53C/BDX54B/BDX54C Complimentary Silicon Power Darlington Transistor. Electronics Components Datasheet. Italy: STMicroelectronics
- Sweeney, M.E.G., Kenny, R.G., Swann, G.B.G., and Blair, G.P. (1985). *Single Cycle Gas Testing Method for Two-Stroke Engine Scavenging*, SAE paper No. 850178.
- US Department of Energy (2001). Homogenous Charge Compression Ignition (HCCI) Technology: A Report to the U.S. Congress. United States: U.S. Department of Energy.
- Valentine, A.S. and Nicole, B. (1999). Variable Intake System for Tumble Motion Stratified Charge in Spark Ignition Engine. JSAE Yokohama 1999, Presentation No. 74.
- Wang, Z., Wang, J.X., Shuai, S.J. and Ma, Q.J. (2005). Effects of Spark Ignition and Stratified Charge on Gasoline HCCI Combustion With Direct Injection. SAE Technical Paper, No. 2005-01-0137.
- Willard.W.P. (2004). Engineering Fundamentals of the Internal Combustion Engine.Pearson Prentice-Hall. Upper Saddle River, New Jersey.
- Wilhemsson, C., Tunest, P. and Johansson, B. (2007). Operation strategy of a Dual Fuel HCCI Engine with VGT. SAE Technical Paper, No. 2007-01-1855.
- Winterbone, D.E. (1987). *The Application of Gas Dynamics for the Design of Engine Manifolds*, IMechE Paper No.: CMT8701.

- Zhao, F. Q., Lai, M. C., and Harrington, D. L. (1997). A Review of Mixture Preparation and Combustion Control Strategies for Spark-Ignited Direct- Injection Gasoline Engines. SAE Technical Paper, No. 970627.
- Zhoa, H and Ladommatos, N (2001), *Engine Combustion, Instrumentation and Diagnostic*, SAE Inc., Warrendale, Pa.
- Zhao, F. Q., Harrington, D. L., and Lai, M. C. (2002). *Automotive Gasoline Direct-Injection Engines*. Warrendale, PA, USA: SAE Publications.