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ABSTRACT

A versatile compound to replace petroleum-based compound for generating fuel 

and fine chemicals, 5-Hydroxymethylfurfural (HMF), was derived from biomass in this 

study. Catalytic hot compressed water (HCW) and ionic liquid processeswere 

investigated for HMF production from glucose.Anatase titanium dioxide (a-TiO2) and 

ytterbium (III) triflate (Yb(OTf)3)  was employed as catalyst for HCW and ionic liquid, 

respectively. 1-butyl 3-methyl imidazolium chloride ([BMIM]Cl) was used as solvent in 

ionic liquid process. Complete glucose conversion was achieved at 100 % by using ionic 

liquid process while the highest glucose conversion for HCW process wasgained at 87.7 

%. Yield for HMF was up to 56.5 % and 8.7 % by using ionic liquid and HCW, 

respectively. The process parameters for both processes were optimized by using 

STATISTICA 7. Interaction among the process variables and its effects such as reaction 

temperature, time and catalyst loading were investigated using central composite design 

(CCD) and response surface methodology (RSM) approach. It was revealed temperature 

has significant effect for converting glucose to HMF in both processes.The study found 

that by applying optimum condition, 2.7 % HMF yield was gained at 146oC within 5 

min with 1078 mg of a-TiO2 for HCW process. On contrary, ionic liquid process gave 

52.8 % HMF yield at 106oC with 39.7 mg of Yb(OTf3)in 165 min. This study proved 

that CCD and RSM approach was applicable for HCW and ionic liquid processes in 

order to optimize the process condition.



ABSTRAK

Satu sebatian yang serba boleh untuk menggantikan sebatian berasaskan 

petroleum untuk menjana bahan api dan bahan kimia, 5-Hydroxymethylfurfural (HMF), 

telah diperolehi dari biojisim dalam kajian ini. Air termampat panas bermangkin (HCW) 

dan prose cecair ionic telah disiasat untuk pengeluaran HMF dari glukosa. Anatase 

titanium dioksida (a-TiO2) dan ytterbium triflate (Yb(OTF)3), masing-masing telah

digunakan sebagai pemangkin untuk proses HCW dan proses cecairionik. 1-butil 3-metil 

imidazoliumklorida ([BMIM]Cl) telah digunakan sebagai pelarut di dalam proses 

cecairionik. Penukaran glukosa yang lengkap telah dicapai iaitu pada 100% dengan 

menggunakan cecair ionik manakala penukaran tertinggi glukosa bagi proses HCW 

hanya dicapai pada 87.7%. Hasil HMF tertinggi dicapai sehingga 56.5% dan 8.7% untuk 

proses cecair ionic dan proses HCW, masing-masing. Pembolehubah proses untuk

kedua-dua proses telah dioptimumkan dengan menggunakan STATISTICA 7. Interaksi

dan kesan pemboleh ubah seperti suhu tindakbalas, masa dan beban pemangkin disiasat

menggunakan pendekatan reka bentuk komposit pusat (CCD) dan kaedah respon

permukaan(RSM). Ia didedahkan bahwa suhu mempunyai kesan penting untuk 

menukarkan glukosa untuk HMF dalam kedua-dua proses. Kajian mendapati bahawa

dengan keadaan optimumyang telah digunakan diperolehi hasil HMF sebanyak 2.7%

pada 146oC dalam masa 5 minit dengan 1078 mg a-TiO2 untuk proses HCW. 

Sebaliknya, proses cecair ionic menunjukkan hasil HMF sebanyak 52.8% pada 106oC

dengan 39.7 mg Yb(OTf3) selama 165 minit. Kajian ini membuktikan bahawa

pendekatan CCD dan RSM terpakai untuk proses HCW dan proses cecair ionic untuk

mengoptimumkan keadaan process.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The dependence on chemical-based petroleum is moving slightly towards

renewable bio sources. Soaring petroleum price has accelerated the urgency to dig out 

alternative renewable source, while the biomass abundance has become an attractive 

option because of its sustainability. Renewable biomass materials grow in forest, 

plantation and field. This propelled the exploitation of biomass using new technologies 

and methods (Saka and Ueno, 1999).

Biomass has attracted researchers to explore more about its use and the benefit 

due to the limitation of fossil fuel as a major source for fuel and fine chemicals. Biomass 

has emerged as a new power to replace petroleum source as energy resources. The most 

abundantly available biomass materials are forests; waste products from agricultural 

crops, energy plants, biodegradable wastes, landfills and others. These biomass materials 

can be efficiently converted to different form of energy based fuel such as transportation
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fuel, electricity, and cooking oil. Also, for chemical feedstock such as glycerin, 5-

hydroxymethylfurfural (HMF), levoglucosan, phenol, levulinic acid, etc. 

Cellulose is a polysaccharide consists of hundreds to over thousand of �-1,4

glycosidic bonds linked by �-glucose subunit. Hemicellulose has structures with 

complex carbohydrates such as hexoses, pentose and xylan. It is a sugar that consists of 

6-carbon and 5-carbon. Glucose as sugar can be assumed as a representative of cellulose 

and hemicelluloses. Glucose has been used as raw materials by many researches to 

search for a new invention. Besides using as fuel, glucosecan be utilized for producing 

5-hydroxymethylfurfural (HMF), 2-5 DMF, levoglucosan, 2-5 furan dicarboxylic acid 

and other chemicals. HMF is a derivative of furan that can be obtained from dehydration 

of sugars without fermentation. HMF is also an intermediate compound used to generate 

levulinic acid. Furfural and other anhydroglucose, such as levoglucosan also have the 

potential to be a building-block matter for chemical and resin. HMF is used for

producing chemicals, fuel, fiber, and other useful things.

As mentioned in Energy Efficiency and Renewable Energy report, HMF is 

identified as a versatile intermediate matter between petroleum-based building blocks

and biomass-based carbohydrate chemistry. HMF ease the conversion into 2,5-

furandicarboxylic acid (FDCA), poly(ethylene terephthalate) (PET) and 2,5-

dimethylfuran (DMF), etc. PET has the potential as replacement of terephthalic acid for 

polyester, while DMF has gained attraction for transportation fuel, which has 40 percent

greater energy density than ethanol (Su et al., 2009).

Since the end of 19th century, HMF has attracted the researcher’s attention for 

generating chemical compound that they called “oxymethylfurfurol”. Basically, HMF is 

produced from dehydration of hexoses. Polysaccharides and oligosaccharides are the 
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variety of substrate that is mostly used.  Antalet al. (1990) had proven that fructose is the 

appropriate substrate to engender HMF.

In addition, Asghari and Yoshida (2006) had synthesized HMF in water or 

organic solvent mixture by using acid-catalyzed dehydration process.In the beginning,

the methods for syntheses of HMF were practiced by using oxalic acid and now critical 

water has been employed as the alternative methods(Watanabe et al., 2005a-b; and 

Asghari & Yoshida, 2006). Homogeneous or heterogeneous catalysts have been studied

to improve the HMF yield such as heteropoly acid, zeolite, acidic acid, ZrP, H2S04,

TiO2, and ZrO2 (Shimizu et al., 2009; and Asghari and Yoshida, 2006; Watanabe et al,

2005a-b).

1.2 Problem Statement

Biomass is an attractive feedstock for energy and chemicals since it is renewable, 

zero carbon emission and has low sulphur character. This resource, especially cellulose 

is a potential raw material for future and many researches are working to utilize them 

efficiently. For examples, empty fruit bunches (EFB) comprise 18.1 wt% of lignin, 22.1 

wt% of hemicelluloses and 59.7 wt% of cellulose (Misson et al., 2009). Cellulose can be 

converted into fuel and other chemicals using several methods. Breaking down the 

linkage of cellulose, hemicelluloses and lignin will provide a good substrate for 

producing chemical feedstock such as HMF, 2-5 dimethyl furfural, levoglucosan, etc. In

this study, glucose is utilized as raw material to investigate as a sugar representative of 

cellulose.
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A number of researches have been studied for generating HMF from fructose 

instead of using glucose as raw material. Whereas, fructose is an edible raw material and 

using it leads to food competition, which become disadvantages for human need. On the 

other hands, biomass consists of cellulose and hemicelluloses, which have sugar content

within it. HCW and ionic liquid process are used to produce HMF with different catalyst 

and condition operation. Ionic liquid is identified as green solvent, which comprise of 

cations and anions that are weakly matched. The combination of cation and anion 

structure defined by physicochemical and thermodynamic properties of the ionic liquid 

(Simmons et al., 2010). Ionic liquid has the ability to disrupt the hydrogen bonding of 

the lignocellulosic complex compound (Olivier-Bourbigou et al., 2010).  Hot 

compressed water will be applied for the comparison of the process. Watanabe et al.

(2005a) showed that by using base catalyst in hot compressed water promoted 

dehydration and condensation reaction.

However, the application of response surface methodology (RSM) with central 

composite design (CCD) approach has not been employed to assess the optimum 

condition for HCW and ionic liquid process. This study ascertained optimum condition 

for both processes using RSM with CCD approach and provide a maximum HMF yield.
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1.3 Objectives of the Study

The objectives of study are given as below:

(i) To convert glucose into HMF by using catalytic process of HCW and ionic liquid 

process

(ii) To find an optimum condition for catalytic of HCW and ionic liquid process,

hence generate a good yield of HMF.

(iii) To investigate potential of EFB as raw material for producing HMF at optimum 

condition.

1.4 Scope of the Study

The scopes of this study were:

(i) Characterization of biomass, which were glucose and EFB, by using FTIR and 

TGA were elucidated in Chapter 4.

(ii) Catalytic HCW and ionic liquid process to produce HMF. This study focused on 

temperature, reaction time and catalyst loading as process variables. Liquid 

products of HMF were identified and analyzed by FTIR and HPLC, while solid 

products using FTIR.
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(iii) Utilization of response surface methodology (RSM) with central composite 

design (CCD) approach to obtain optimum condition for HCW and ionic liquid 

process. Results of optimization were presented in Chapter 4.

1.5 Significance of the Study

In this study, ionic liquid process produced higher HMF yield than HCW 

process. RSM and CCD approach provided acceptable modeling equations that are 

generated from optimum condition for both processes. Glucose and EFB were utilized as 

feedstock in optimum condition for both processes.

 




