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ABSTRACT 

 

3D spatial data modeling is one of the key research problems in 3D GIS. More and more 

applications depend on these 3D spatial data. Mostly, these data are stored in Geo-DBMSs. 

However, recent Geo-DBMSs do not support 3D primitives modeling, it only able to describe a 

single-attribute of the third-dimension, i.e. modeling 2.5D datasets that used 2D primitives (plus 

a single z-coordinate) such as polygons in 3D space. This research focuses on 3D topological 

model based on space partition for 3D GIS, for instance, 3D polygons or tetrahedron form a 

solid3D object. Firstly, this report discusses formal definitions of 3D spatial objects, and then all 

the properties of each object primitives will be elaborated in detailed. The author also discusses 

methods for constructing the topological properties to support object semantics is introduced. 

The formal framework to describe the spatial model, database using Oracle Spatial is also given 

in this report. All related topological structures that forms the object features are discussed in 

detail. All related features are tested using real 3D spatial dataset of 3D building. Finally, the 

report concludes the experiment via visualization of using AutoDesk Map 3D.  

 



 
 

ABSTRAK 

 

Permodelan data spatial 3D merupakan salah satu masalah dalam GIS 3D. Banyak aplikasi GIS 

dan gunapakai GIS semakin memerlukan kepada data spatial 3D dan kebanyakan data seperti ini 

disimpan dalam Geo-DBMS. Tetapi kebanyakan Geo-DBMS ini tidak menyokong primitif data 

spatial 3D. Penyelidikan ini menfokus kepada pembangunan topologi yang menyokong data 

spatial 3D dan seterusnya digunapakai dalam permasalahan analisis 3D bagi data spatial 3D. 

Untuk ini, beberapa tool sedia ada telah digunakan, seperti Autodesk 3D Map dan Oracle Spatial. 

Projek ini juga telah menerbitkan satu model data spatial 3D, iaitu Condedensed Spatial Model 

(CoS). Model ini berguna untuk mendapatkan topologi 3D bagi data spatial 3D. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1 Introduction 

 

Currently, a very strong development in the field of software applications is 

moving towards web-enabled systems. The reason for this is because information 

technology and its infrastructure are offering more and more possibilities to share data, 

applications and their logic within networking environments. Here, the most obvious 

example is the success of the Internet as a platform for communication in all kind of 

variants. Within the last years, it has been proven that Internet applications are working 

effectively and everybody is able to benefit from it. Among many others, the success of 

e-commerce is reflecting this story of success. However, not only the Internet is 

considered as “web-enabled”. For example, there are a large number of web-applications 

within local area networks (LAN), like an enterprise communication platform. In the 

context of web-enabled applications, the science of information technology deal with 

distributed computing. 

 

The field of geo-informatics profits by adopting these developments as well. The 

advantages are obvious, web-enabled applications are saving resources and making geo 

information accessible to everyone who can benefit from it. The increasing number and 

the popularity of Internet applications related to geo-information are reflecting this 

evolution. Favored services are including for instance interactive city guides, location 

finders or online-routing. Furthermore, great efforts among the “big players” of the GIS 

community towards web-orientated GIS are reported on several newsletters and 
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magazines monthly. Such systems are called web-enabled- or Internet GIS. Recently, the 

general term of “Distributed GIS” is becoming more and more popular as well. Here, the 

OpenGIS Consortium (OGC) plays an important role. As an organization of many 

companies and institutes, the OGC is standardizing data sources and interfaces for geo-

related Web Services – in this context called “GeoServices” (ESRI, 2001). Presently, 

there are already GeoServices available and accessible. However, most of the current 

web-orientated applications are mainly restricted to visualization (Peng and Tsou, 2003). 

Less comprehensive GeoServices are available for the second dimension - three-

dimensional (3D) GIS is limited to visualization only. Systems which are offering core 

3D functionality including data management, -edition, -analysis and interactive user 

interfaces are only available for single desktop use. 

 

 

 

1.2 Problem Background 

 

In terms of possible applications, especially managers are able to benefit from 3D 

GIS as a base for their work. Their duty is to cover the whole process of planning 

complex city centers, for instance construction simulation, emission/waste control, 

disaster management or telecommunication/energy supply. Beside, tourism and facility 

management are able to benefit from virtual worlds as well (Altmaier and Kolbe, 2003). 

Laurini points out, that different authorities can benefit from information systems for 

urban planning. Furthermore, the public participation in decisions around this topic can 

also be improved. Here, especially 3D applications are able to assist users and to simplify 

complicated workflows (Laurini, 2001). Therefore, the demands for web-orientated 3D 

information systems will be increasing in future. 

As a conclusion to the discussed tendency towards distributed systems, the general 

research question follows: 
 

Can the Web be a reasonable medium to host 3D GIS with its tasks for urban environment? 
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In order to give an appropriate answer, the research is considering the four principles of 

GIS. Here, the topics of 3D data management, analyzing and querying data as well as 

publishing/visualizing 3D maps within a web environment are considered, whereas 3D 

data acquisition will not be the main target of the research itself. Coors (2003) points out 

that the processing of 3D geo-data within GIS still has to improve (Coors, 2003). Figure 

1 is showing the four main stages within GIS in conjunction to their present availability 

for the third dimension. 

 

 
Figure 1: The 3D Geo-Data Workflow within GIS 

 

As shown in Figure 1, the data management respectively the storage is most important 

for further processes like 3D analysis and 3D visualization as well as for providing 

interactivity. In fact, it is regarded as the base of any further step. In contrast to a 2D 

environment, the third dimension is requesting different aspects. One important topic 

which can not be the same is the underlying data management. Previous and current 

research is concluding that the underlying spatial data for web-enabled 3D GIS is by far 

more complex than 2D geo-information (Coors, 2003). For this reason different 

characteristics in terms of data modeling and –management in order to integrate 3D GIS 

analysis and to visualize results have to be addressed. 
 

Can the Web be a medium to manage 3D spatial data in databases? 
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Fundamental research in the field of 3D spatial data modeling for urban environments has 

been done mainly by Molenaar (1990), Pigot (1992), Tempfli and Pilouk (1994), Pilouk 

(1996), Zlatanova (2000), Pfund (2001), Shi et al (2003) and Coors (2003). The specific 

task of web-orientated systems has been covered by Zlatanova (2000), Coors (2003) and 

Vries and Stoter (2003) before. However, more web-specific research has been demanded 

as a conclusion. 

 

Although the most recent efforts are considering 3D visualization on the Web, 

applications which are dynamically serving interactive 3D geo-worlds are not fully 

available yet. Functionality like 3D data analysis - on top of a reasonable data 

management - in terms of GeoServices is still missing (Coors, 2003). Therefore, another 

research question will be: 
 

Is it possible to realize GI-Services for complex 3D spatial data tasks? 

 

Previous studies on the dynamic creation of interactive 3D worlds from spatial databases 

have been done by Kofler (1998), Zlatanova (2000), Coors (2003) and de Vries and 

Stoter (2003). Their prototype systems have shown solutions which have been integrated 

into web architectures. Standalone as well as browser-based user agents were used to 

create intuitive graphical user interfaces which are able to interact with 3D geo-

information. Here the main question will be: 

 

Until now, common results of “so-called” 3D applications are static 3D views in form of 

images, 3D animations like fly-through movies or interactive 3D scenes using techniques 

like the Virtual Reality Modeling Language (VRML) or Java3D. Whereas the first two 

cases are rendered “offline” (rendered to images/movies before viewed), the later one is 

rendered in real-time and offers 3D user-interaction. There is no doubt that up-to-date 

computers offer a reasonable environment to reconstruct and visualize virtual worlds very 

close to reality. However, the following questions are rising: 



 16

 

Are current web-visualization techniques able to visualize 3D spatial data in real-time? 

Are there reasonable interfaces to access and interact with the data? 

 

The research will give a scientific view about 3D GIS. Therefore, the right answers will 

show the research results. In addition, the summary and conclusion will face towards 

further discussion around the topic of web-enabled 3D GIS. 

Therefore, useful existing research and approaches has to be evaluated first. Here, web 

integrity of 3D geo-information and its visualization are among the most critical topics. 

More precisely, 3D spatial data and its complex structure as well as its huge amount of 

information have to be considered since web-orientated applications have some 

limitations in terms of performance – especially band-width. Based on a reasonable data 

management concepts of real 3D analysis functionality and 3D visualization methods will 

be discussed. Regarding the data management, there is still a lack of proven concepts. 

Whereas the storage of 3D geometry can be realized easily, 3D topological modeling is 

most critical. It is among the most problematic aspects how to model complex buildings 

and transform their geometry into databases. Therefore, one research question is “what 

are the existing 3D topological models which can be used for 3D GIS in Web 

environments?” 

 

Furthermore, the issue around storing corresponding attributes and textures has to be 

addressed. Besides, a concept for implementing spatial operators has to be constructed. 

Here, the question is if there are any spatial operators for 3D GIS in Web environment. In 

addition, the question whether methods of 3D spatial analysis have to be implemented on 

database or application level is an issue. In order to access, query and visualize 3D data, 

the integration of user agents to do so has to be evaluated. Here, the tasks on an 

interactive 3D GUI which is able to be integrated in a web environment are very high. It 

has to offer interactive 3D visualization as well as possibilities to query the database and 

data editing. Because geo-information and its data attributes is sensitive as well as 

expensive and under complicated copyright laws, issues around security and privacy of 

distributed GIS have to be addressed as well. 
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In order to prove web-integrity of 3D geo-information, this research will include an 

implementation which is showing the proposed concepts of 3D data management, 3D 

analysis and 3D visualization using state-of-the-art techniques. The solution should be 

harmonized with common standards like the OGC or World Wide Web Consortium 

(W3C) recommendations. Furthermore, the implementation should show if recent web-

technologies are suitable for web-orientated 3D GIS. In order to introduce practical 

applications specific use cases for solving problems in the field of urban environment 

will be set up. 

 

 

 

1.3 Problem Statement 

 

The aim of this research is to design and develop a 3D spatial model and also 

discover current issues regarding web-orientated 3D GIS and to develop concepts to 

solve untouched problems on 3D web-based GIS.  

 

The following research questions are addressed to solve the problem: 

 

a) How to properly manage the 3D spatial data together into a database? 

 

b) How to manage 3D spatial data relationships? 

 

c) How effectively Spatio-temporal queries can be handled by a model using object-

relational approach. 

 

 

1.4      Goal of the Study 

 

The goal of this research is the design and development of a data model for 

management of 3D spatial data and their relationships on a 3D web-based environment. 
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1.5 Objective 

 

 Objectives of this research can be divided into the main intentions which should 

be achieved through short-term goals. The research objectives are to: 

 

1- Investigate current and existing concepts and approaches for web-enabled 

3D GIS. 

 

2- Design and develop a practical spatial data model for web-orientated 3D 

geo information in urban environments and setup a reasonable system 

architecture for a 3D GIS. 

 

3- Develop and implement a prototype system including necessary web-

based 3D GI-Services based on the developed spatial data model and the 

constructed system architecture. 

 

4- Evaluate and test the designed and implemented prototype in a web 

environment. 

 

 

 

1.6 Scope of Research 

 

Overall, this research concentrates on web-enabled 3D GIS. Because this topic is 

too general and broad, the research concentrates on specific topics. The following 

limitations and requirements outline the research in detail. 

 

a) Reviews and comparisons of the existing data models in the area of 3D spatial 

data modeling and other related areas of geographical information system. 

 

b) Design and develop the proposed 3D spatial data model and their relationships. 
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c) Define a set of 3D Spatial queries to evaluate the proposed 3D Spatial data model 

with the specified parameters based on the handling of 3D spatial data, 

effectiveness in terms of space, less data redundancy and consistency. 

 

d) Analysis and evaluation of the results of 3D Spatial queries after applying them 

on the proposed 3D spatial data model.  

 

 

 

1.7 Thesis Contribution 

 

 In this thesis, data model is designed for 3D geographical information system, 

which can handle the 3D spatial data and its relationships. It provides an applicable 

platform for the efficient synthesis of 3D spatial data and related queries. 

 

In General, the major contribution described in this thesis can be summarized as follows: 

 

a) Design of general structure for modeling 3D spatial data in 3D geographical 

information system. 

 

b) Defining the relationship rules for 3D spatial data such and also their applications 

on 3D GIS. 

 

c) Efficient query handling for Spatio-temporal data by using the measures such as 

how better model support the analysis of spatio-temporal data, efficiency in terms 

of time, less data redundancy and consistency. 

 

d) Minimize the data redundancy and data inconsistency in the 3D spatial data 

model. 
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1.8 Thesis Organization 

 

The aim of this proposal is to introduce the research subject in detail. The thesis is 

divided into the following chapters.  

 

Chapter 2 is based on the core literature review. The second chapter gives detailed 

information about the background and the state-of-the-art of web-orientated 3D GIS. 

Here, fundamental information about developments in the field of Information 

Technology and about 3D topology will be covered. Furthermore, recent research around 

the topic of 3D data management as well as 3D modeling of spatial data will be 

discussed. Here, already available approaches will be discussed.  

 

Chapter 3 – Methodology - the research methodology - proposes how the goals will be 

achieved. Therefore, the four phases of literature review, conceptual design of the system, 

implementation as well as testing and evaluating the system are differentiated. The last 

Chapter of this proposal sets expected results of the project. The appendix is including 

the research schedule and a draft of the thesis structure. 

 

Next, Chapter 4 is the design and architecture of the developed system. In this Chapter 

we have explained our designed 3D topological model along with the architecture of the 

system developed in this research. 

 

Afterwards - in Chapter 5 – This chapter describes the results and experiments performed 

for this research to by implementing proposed methodology to get the desired results. 

 

Chapter 6 – This chapter concludes our research performed on 3D topological modeling 

for 3D GIS. 
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CHAPTER 2 

 
 
 

LITERATURE REVIEW 

 

 

 
2.1 Background and State-of-The-Art 

 

As stated before, the topic of web-enabled 3D GIS has already been discussed by several 

people. Based on the literature review, the following sections give a brief overview about 

the status of current activities and technologies related to the research. 

 

2.1.1  Developments in the Field of Information Technology 

 

Information Technology is the base field for any computer-related tasks. 

Therefore, it can be seen as the key which is affecting many different fields of the 

society. At the moment, the terms of “Internet” and “Web” are being widely used. In fact, 

the new technologies and its corresponding web-orientated applications are simplifying 

workflows everywhere. Previously, communication was mainly possible through the 

telephone or fax. Today, applications like e-commerce platforms have transformed these 

advantages into completely new fields of profitable applications. The success of this 

evolution has several reasons. On the one hand, there are the fast-paced developments 

regarding the introduction of new innovative techniques. On the other hand, one is able to 

recognize a general acceptance of new and useful solutions. Both sides are indicators for 

this huge progress and finally the success. The following paragraphs provide an overview 

on recent developments in the field of what one can call “The Web”. They are regarded 

as the fundamentals for this research. 
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2.2 An Introduction into Distributed Computing 

 

The increasing penetration of computers changed the way of working in many 

ways. One idea computerization brought up was the task of Electronic Data Interchange 

(EDI). In fact, the beginning of distributed computing is originated here, because the 

requirements of EDI were concluding in applications we are recognizing as distributed 

systems today. At the beginning of this “new age”, the intention was only to share text 

data more easily through networks. Other media elements, like images, have already been 

served since the early nineties. Later, more functionality e.g. in terms of user-interaction 

was added to web sites. For example, users were already able not only to retrieve data. 

Furthermore, they could edit and manipulate data stored somewhere else. On the 

technical side, client-server architectures were the base for these operations. 

 

Today, while the technical base can be still a client-server model, the evolution reached 
another level. In addition to share data, users are able to offer applications and their logic 
as well. Most recently, the development is more and more including a process oriented 
Web. In this context, we are talking about web-enabled information systems or 
distributed systems/computing. Distributed means, the locality of the components or 
objects comprising an application can be on different computers connected through a 
network.  
Figure 2 is showing the principal architecture of distributed systems (Nagappan et al, 

2003). 

 
 

Figure 2: Distributed Computing 
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This very general figure is showing a distributed computing architecture with including 

several objects and clients. The amount of the objects and users is indefinite and therefore 

the value can be very high in large-scale systems. Distributed computing is inheriting the 

concepts of Object-Oriented Programming (OOP). Because of that, all the advantages of 

OOP are transformed into distributed systems as well. 

 

In some cases, the term of distributed computing is not defined in the same way 

(Erlanger, 2002). It is bothering the field of grid computing as well and one can get 

confused about it. However, these terms in are generally different and defined as the 

following. In contrast to distributed computing, grid computing is facing the use of many 

machines – combined to a computer grid - in order to perform large-scale processing 

tasks. Within a computer grid, the resources of many computers are merged to a more 

powerful machine to run certain tasks more quickly. 

 

Distributed computing changed many things in the field of software application 

development. Whereas traditional software was designed for the use on certain machines 

only, distributed components are more flexible and open. Beside the usual advantages of 

OOP, the following characteristics are showing why distributed programming became so 

popular and why it is unique (Nagappan et al, 2003): 

 

- Distributed computing is supporting the idea of the collaboration of multiple 

applications. Hence, the construction of core systems using different components of 

other “expert” systems is possible more easily. 

 

- The availability of services is high through clustering on multiple machines. For 

example if one server is failing to process the request it can be forwarded to another 

machine which is processing the task or hosting a copy of the service in order to 

process. Besides, with the extension to grid computing, the performance of large-

scale processes can be increased as well. In order to do so, distributed systems are 

providing an environment to run them on several CPUs. 
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- Scalability and Extensibility: as stated before, within a distributed computing 

environment, there are no limits regarding the use for components. Applications can 

be extended easily, whereas certain objects can be reused as well. This means that 

distributed components of system are not only restricted to this one. Other systems 

are able to benefit from them as well. 

 

- Because distributed systems are recognized as decentralized, usually massive 

applications are split into smaller components automatically. As a result, the 

development cycle time of distributed systems is lower compared to traditional 

mainframe applications. 

 

- Cutting costs: once the infrastructure has been set up, there are nearly no further costs 

incurring. Reusing components, especially those ones which are not used at certain 

times, is the base for efficient use of the infrastructure. 

 

However, distributed systems have to be deployed for the right purpose. For example, as 

stated before, there is no need to process small-scale tasks within distributed systems. 

Furthermore, if networking infrastructure is not available, distributed computing fails 

from the roots. Beside this, other problems are occurring while the realization of 

distributed computing. These are especially security and privacy questions, service 

payment possibilities and common standard implementations. 

 

Typical distributed computing systems are located in the field of e-commerce. Here, for 

example business-to-business (B2B) solutions like online marketplaces are realized using 

distributed computing technologies. Other applications are Content Management Systems 

(CMS) of big enterprises or Customer Relationship Systems (CRS). Another big field of 

applications is distributed computer games, like multi-player games. In fact, nearly any 

industry is able to take profits out of distributed systems. The following chapters are 

giving technical details about the different system architectures of distributed systems. 

The main focus is set on the state-of-the-art technology around the XML family. 
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2.3 Traditional Client-Server Architectures 

 

A very important milestone towards distributed programming was the 
introduction of client-server systems. Such systems were offering advanced possibilities 
within computer networks for the first time. Client-Server models are used until now. 
Whereas the client is responsible for handling the presentation and the logic of the user 
application, the server is organizing the application and is hosting or accessing the data. 
Data source can be hosted on the same machine or retrieved from another component In 
terms of physical abstraction a client-server system is containing at least two-layers - 
known as two-tier systems as well. Within a two-tier application, there are two computers 
involved. One is hosting the client and the other one is playing the server role.  

Figure 3 is showing the general architecture of a client-server system. 

 

 
 

Figure 3: General Architecture of a Client-Server System 

 

Clients - or in other words user agents - are providing the graphical user interface (GUI) 

for the human-machine interaction. In this case, they are offering possibilities to interact 

with servers. In order to do so, the client is sending requests to a server and is handling 

the server’s response in form of information representation. Clients are also able to host 

certain parts of the application itself (see below). In contrast to the client, the server is 

hosting application logic which is able to handle the client’s request. These can include 

for example running certain threads in a Java environment which are retrieving 

information from a database. Furthermore, the server is responding the requested 

information to the client. The communication between the components is based on 
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response/request protocol models. As transport layer the usual types of protocol for 

certain networks are used. Protocols like TCP/IP offer services for the transportation … 

 

In client-server architectures, the most critical aspect is the balance between the client 
and the server. This means, a server can provide more or less application logic – the 
client is behaving correspondingly. Peng and Tsou are calling this act of balance 
“Client/Server System Partition” (Peng and Tsou, 2003). Therefore, the centroid of the 
bubble representing the “Application Logic” in  
Figure 3 can be relocated horizontally. If the majority of the application logic is hosted by 

the server it is recognized as “thick”. Consequently, the client can be regarded as “thin”. 

Similarly, if the server is hosting less application logic, it will be called “thin” – the client 

in such system would be regarded as “thick”. 

 

Typical examples are web-enabled systems. Here, the client is using a Web browser to 

represent the data, whereas on the server-side there is a Web-server taking care of the 

communication. As transport layer, so called Web-protocols like the HyperText Transfer 

Protocol (HTTP) are used. Other typical examples are the generic database server like 

Oracle. Here, the data itself it accessible through the database server. The database client 

can be any application which has the ability to connect to the database server. 

 

The introduction of client-server architectures brought significant improvements. In 

contrast to mainframe systems in which clients are “dumb”, clients and servers are able to 

share application logic. Therefore, servers are able to process more requests – even 

several servers can be in use. This aspect is marking the beginning of decentralized 

systems (Peng and Tsou, 2003). 

 

However, today we know about the weakness of this kind of client-server systems. First, 

distributed computing is not fully available since client-side logic is only available for the 

client itself and not for other users as well. Second, a client-server system is hard to 

maintain. If software which is hosted client-side has to be updated, every machine has to 

be refreshed separately. This process can be complicated to organize as well as time and 

cost expensive. Furthermore, client-server systems are difficult to extend. In some cases, 
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it is even impossible due to the fact that some systems are getting very complex 

(Nagappan et al, 2003). 

 

2.3.1 Component Object Servers 

 

The introduction of Component Object Servers was marking a new period of 

distributed computing. Its systems which can be regarded as advanced client-server 

systems are unifying the concepts of Object-Oriented Modeling (OOM) and Distributed 

Computing Environment (DCE). The concept is proposing that different interfaces are 

specifying methods which are allowing the use within heterogeneous systems. Therefore, 

systems based on Components Object Servers are by far more flexible and interoperable 

than usual client-server architectures. Software components and its objects can be 

accessed, instantiated and therefore used remotely from other computers. In order to call 

functions on different machines, communication is based on Remote Procedure Call’s 

(RPC). Roughly, RPC works similar to ordinary function calls in software development 

(Gisolfi, 2001). 

 

In addition to communicating through the request/response model, many Component 

Object Server Systems support interaction through “messaging” which is based on 

passing/queuing. Here, the server and the client do not necessarily have to run at the same 

time. This is the reason why this type of communication is characterized as 

“asynchronous”. For example, if the server is not accessible, messages are able to be 

queued until the server can handle them. Therefore, there is a guarantee that the call is 

delivered (Nagappan et al, 2003). 

 

Most famous contributors for the implementation of distributed systems are the open 

standard Common Object Request Broker Architecture (CORBA), the distributed 

extension of Microsoft’s Common Object Model (DCOM) and Sun’s Java RMI (Remote 

Method Invocation). All of them have been proven in the field of distributed computing. 

Applications implementing Component Object Servers are generally belonging to the 

field which is known as “middleware”. Systems, using communication through 
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“messaging” are categorized as Message Oriented Middleware (MOM) (Peng and Tsou, 

2003). 

 

In contrast to simple client-server architectures, Component Object Servers have brought 

significant improvements in the field of distributed computing. One important 

characteristic is such systems are by far more comfortable to maintain than usual client-

server systems. Characteristics like scalability, interoperability have made progress, too. 

Cross-platform applications are possible. However, there are still many things missing 

which are required in order to offer proper distributed computing. First, Component 

Object Servers depend on single implementations. Although they have been developed 

for several platforms respectively different implementations and they claim 

interoperability. This condition is not reaching higher-level services. Gisolfi is showing 

the reality and concluding that certain protocols are propriety developed and therefore not 

interoperable in practice (Gisolfi, 2001). Related to this problem, Nagappan et al is 

pointing out that for example Microsoft’s DCOM technology is limited to Microsoft’s 

application environment and therefore platform locked-in (Nagappan et al, 2003). 

Second, many distributed computing implementations are very complex in practice. Very 

deep knowledge of the specific implementation is compulsory. Therefore existing 

developing resources can hardly be used. As a conclusion at this stage of the evolution, 

distributed computing needs standards and agreements in order to become more open and 

more interoperable (Nagappan et al, 2003). 

 

Regarding the topic of distributed virtual worlds, Diehl discusses how to implement 

CORBA and Java RMI based multi-user worlds. His approach proves that these 

technologies are able to achieve the tasks of distributed virtual worlds (Diehl, 2001). 

 

 
 
2.3.2 XML and Web Services 

 

Recently, the main push towards distributed systems has been contributed by the 

introduction of the Extensible Markup Language (XML) and very close related to that 
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“XML Web Services”. In fact, XML-based applications are spreading everywhere. This 

new family of technologies is used to share data between different applications, platforms 

or computers. Furthermore, XML Web Services are offering the possibility to share 

applications throughout a network of computers like the Internet. Therefore, one is able 

to conclude that XML is offering the possibility to improve the interoperability of 

information systems. In addition, XML is helping to decentralize those systems. In order 

to lighten the mystery around XML, the following paragraph is showing some 

characteristics. 

 

XML is a standard - recommended by the W3C - which is setting rules and guidelines for 

describing structured data. Perhaps the most important feature of XML is its text-based 

way of storing data. Furthermore, another characteristic of XML is the strict 

differentiation between content (elements and attributes), structure (schema) and styling. 

In fact, the success of XML is showing the need for non-proprietary ways of storing any 

kind information. Therefore, many XML derivates – which can be standards as well - 

were developed over the last years. This is the reason why the hype around XML as a 

keyword should be re-named in the “XML family”. In order to mention a few of these 

corresponding technologies, there is XSLT (Extensible Stylesheet Language for 

Transformations) for transforming one XML document into a different structured XML 

file. Furthermore, there is XSD (XML Schema Definition) to define the structure of a 

XML document even with following the rules of XML itself. Related to visualize data, 

there is SVG (Scalable Vector Graphics) and X3D (Extensible 3D) available. In order to 

define geographic data according to the XML definitions, the OGC introduced the 

Geographical Markup Language (GML). As stated before, all these are markup languages 

and are according to the set of rules given by XML. And one can recognize, the XML 

standard can be used to store/organize/share and visualize data as well as to construct 

applications. Since XML became a “Web Recommendation” – which means nothing else 

than “Web Standard” - in 1998, its ideas have been adopted by almost every software 

vendor. 

 

In order to understand XML and its role within web services  
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Figure 4 is showing the concept of web services as a simple operational model. 

 

 
 

Figure 4: The Operational Model of XML Web Services (based on Nagappan et  

            al, 2003; Maruyama et al, 2002) 

 
As shown in  
Figure 4, three important components are involved in every Web Service operation. 

These are namely, the user or service requestor, the repository or registry (service broker) 

and the service provider. In this model, the client is finding and requesting the service. 

The repository registers and lists the Web Services with its attributes whereas the 

provider is processing the Web Service and publishing XML-conform data. Transformed 

into the client-server model, the user is acting as client and the service provider as server. 

Because the service broker is located between the client and the server, it is regarded as 

middleware. In order to implement more complex structures, services can be chained 

(Open GIS Consortium, 2004b). 

 

In order to share data, XML is the base for any format. As transport layer common 

Internet protocols like HTTP or FTP can be used. On top of them, the Simple Object 

Access Protocol (SOAP) is the key standard. As it is a protocol which is standardized and 

XML-based as well, SOAP is responsible for the communication between the 

components. SOAP supports both, messaging and request/response communication 

models. Like protocols in Component Object Server architectures, SOAP also defines 

ways to perform remote procedures calls. In order to describe and connect to Web 

Services, the Web Service Definition Language (WSDL) and UDDI (stands for Universal 
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Description, Discovery and Integration) are used. Whereas WSDL is responsible for 

describing network services, UDDI defines standard interfaces for dynamically finding 

other web services. The big advantage of XML Web Services compared to the 

technologies mentioned before is that it can communicate with any kind of object 

infrastructure (Coyle, 2002). 

 

Despite the described ways of implementing Web Services, there is the possibility to use 

ebXML for creating global electronic marketplaces as well. This standardized solution 

provides a core possibility - by defining the necessary protocols – to implement an 

electronic marketplace. Therefore, it fits better into B2B processes and it is just 

mentioned as a sake of completeness (Nagappan et al, 2003; ebXML, 2004). 

 

Because all the different protocols and standards sound confusing, unfortunately we still 

face some problems around XML Web Services. Some protocols/recommendations did 

not become open standards yet and are not recognized by the main vendors. Even 

important standardization committees and the software industry sustain a common Web 

Services model, specific implementations are proprietary developed – one example is the 

definition of a common security model for XML Web Services. At this stage enterprises 

even compete and do not cooperate at all (Open GIS Consortium, 2004b). 

 

Nevertheless, in order to realize and host useful Web Services, among others the 

frameworks of .NET (Microsoft) and Java and its derivates (SUN) are used. Whereas 

“Microsoft = Microsoft”, Java has been adopted by companies like IBM, Oracle and 

Hewlett Packard. Now, the common thing is that all of them are facing towards XML 

Web Services (Coyle, 2002). 

 

As a conclusion, one can claim that XML Web Services are providing many important 

characteristics for implementing distributed systems. In fact, distributed computing is 

becoming reality. In addition, the GIS community can take advantages out of this 

development and implement Distributed GIS (see next Chapter). 
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2.4  3D Spatial Data on the Web: The Development towards Web-Enabled Geo- 

Informatics 

 

2.4.1 History of GIS: From Monolith Systems to Distributed GIS 

 

30 years ago, mainframe computer systems were offering geo-functionality and 

geo-data. At this time, only these huge and expensive systems were offering the 

execution of the complicated tasks of Geoinformatics. Although computer networks have 

already been involved, these systems are recognized as monolith or centralized systems. 

All Geo-Information logic and the spatial data where hosted on a mainframe computer. 

Dumb clients could access the system through a computer network, however too many 

users were slowing down the processing speed enormously. At this time, such systems 

were very expensive and therefore only affordable by big enterprises or institutions. This 

is the reason for a low general accessibility. 

 

In the eighties, concluding to the introduction of Personal Computers (PC), the period of 

Desktop GIS began. A Desktop GIS consists of a PC which is hosting its own GIS and 

the data locally. Later, geo-information could be retrieved through computer networks, 

too. Because of its relatively cheap asset cost, Desktop GIS was spreading out quickly. 

Henceforth, by far more users were able to take advantage out of GIS. Although every 

single GIS installation had to be licensed separately. However, the increasing number of 

individual users was raising new issues. Because GIS were hosted on different platforms 

and networks interaction became very complex and sometimes was not even possible any 

more. Especially the communication between applications and sharing data were 

demanding better concepts of Distributed GIS. 

 

With the introduction of new and more innovative networking technologies – here 

especially the Internet and its protocols - the situation changed again. As stated before, 

the progress of IT influenced the field of Geo-Information highly. The terms of Web-

GIS, Internet GIS or Distributed GIS are throughout everywhere now. Basically these 
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systems are using the network’s components or objects to store, process and visualize 

geographic information. Therefore, one can recognize such systems as open and 

accessible in better ways. The modern characteristics of Distributed GIS are going 

towards interoperable systems. This means, they should not depend on certain devices, its 

platforms and further restricted technologies and data formats. However, this 

development is still in progress (Peng and Tsou, 2003). 

 

2.4.1.1 Distributed GIS 

 

Distributed GIS is describing a selection of GIS nodes or objects using computer 

networks as the primary medium to access, manage, analyze and visualize geographic 

information. The objects together are achieving a GIS comparable to a centralized 

desktop or mainframe systems. However, the physical aspect is completely missing since 

the components are used within a networking environment. In addition, characteristics of 

Distributed GIS are accessibility and extendibility – experts are talking about 

interoperable systems, too. Main intentions are the integration of spatial information in 

different systems. This is including the dissemination of GeoServices and the strong need 

of sharing geo-information so everyone can benefit. In contrast to other “networking 

GIS” like webmapping in usual client-server architectures, distributed GIS is taking all 

the advantages of state-of-the-art distributed computing. Therefore, the most recent 

technology of XML Web Services fits nearly perfectly. Figure 5  is showing the scenario 

of a Distributed GIS realized by using the OGC Web Service model. 
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Figure 5: Distributed GIS scenario using the OGC Web Service architecture (Open 

GIS Consortium, 2004b) 

 

The vision shown in Figure 5 is proposing a system which can be accessed by users from 

any device and many different applications – independent of its location. Furthermore, 

the server should provide certain GIS components which are fitted into a Web Service 

infrastructure. Corresponding objects are offering methods to access different data 

sources and to process geo-information, e.g. to perform spatial analysis. Therefore, it 

does not matter how complicated the processes are. They can be either a simple 

coordinate transformation or complicated spatial analysis. The geo-information 

community is calling these services as “GeoServices” (ESRI, 2001) or “GIServices” 

(Peng and Tsou, 2003) in favor. In order to provide a useful application which is capable 

to publish, find and bind, many GeoServices even on different machines have to be 

integrated. In theory, there are no restrictions regarding the implementation of Distributed 

GIS. However, the reality is telling us that performance, stability, security and privacy 

are most critical and still barriers on the track to Distributed GIS (Open GIS Consortium, 

2004b). 
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Because many people are concerned about these critical aspects, general questions like 

“How can anybody benefit from Distributed GIS?” are occurring – here, anybody is 

including the GI-community as well as the public. In order to find the right answers – 

besides inheriting the advantages of distributed computing in general (see Chapter 0) -, 

problems appearing in current GIS solutions have to be realized. At the moment, one is 

able to differentiate between several causes of non-interoperability which are isolating 

spatial data. These can be summarized into technical and semantic non-interoperability. 

Whereas the first one is facing propriety GIS solutions including internal data formats, 

the later one is dealing with problems around internal data structures and schemas. All of 

them can be solved by developing web-orientated GIS. Beside general web standards, 

special “geo-related” rules and standards have to be settled to achieve interoperable 

systems. Most recently, standardization organizations like the OGC or the ISO/TC 211 

(ISO/TC 211, 2004) are working hard to define the necessary spatial standards (see next 

section). If the community – here especially the main GIS vendors – are taking care of 

these regulations, the chances are very high to establish real web-enabled GIS. The 

general tendency is more and more GIS software is implementing standards and working 

towards interoperable systems. Hence, the OGC is predicting the so-called “Spatial Web” 

(Open GIS Consortium, 2004b). As one important result the value of geo-information and 

its technologies will be increasing. Everybody in the field of geo-information can take 

profits out of the development towards web-enabled interoperable systems (Open GIS 

Consortium, 2004b). 

 

Beside these theories, certain components of Distributed GIS have already been 

established. Whereas – obviously - there is no recent overview about internal enterprise 

solutions, among the most popular examples are Microsoft’s MapPoint Web Service 

(Microsoft Corp. 2004) or ESRI’s Geography Network portal (ESRI, 2001). However, 

web services implementing the third dimension –here especially urban environments – 

have not been fully realized so far (the discussion about realized approaches, see Chapter 

0). 
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Moreover, the following thoughts are providing some expressions which communities are 

able to benefit from Distributed GIS. Most recently, especially e-government scenarios 

that are proposing Spatial Data Infrastructure (SDI) can take advantages of interoperable 

systems. Distributed GIS is regarded as a reasonable way to achieve SDI. In many 

countries and even across continents, there are ongoing efforts to disseminate spatial data 

in order to use them. Since the Web became the dominant platform even a global SDI is 

not an illusion anymore. Common scenarios of a Spatial Data Infrastructure are including 

connected GI nodes which are provided by government agencies, universities, 

enterprises, organizations and others. The different “data provider” updating and maintain 

the certain information. Such a model is proposing a decentralized data management. 

Furthermore, the distributed objects spread the spatial data and offer certain geographic 

processes like spatial analysis as well. Any constellation could be possible. A common 

Spatial Data Infrastructure obviously has many advantages. First, costs can be cut for 

example through the reuse of data. Therefore it is not necessary any more to spend that 

much money and time on data acquisition by several parties at the same time. If more and 

more people are using the data, it will become cheaper and cheaper, too (Lake, 2004). 

Furthermore, the dissemination of spatial data is the base for many useful applications. 

Not only the GI-community is taking profits out of SDI, moreover everyone would 

benefit from better accessible data. Here, location services and street routing for car 

navigation are typical example which the public has already accepted and using of spatial 

data. Third, the advantage of higher GIS customization in terms of usable GI-modules is 

obvious as well. Since distributed computing is based on modularity GIS benefits out of 

this characteristic. Whereas today, core monolith software kits have to be purchased even 

if only one small component is needed, Distributed GIS are offering the possibility to 

purchase only the needed components (Peng and Tsou, 2003). 

 

2.4.1.2 Open Geo-Standards and their Value for “The Spatial Web” 

 

Since components in distributed systems are likely to be heterogenic, open 

standards to communicate properly are most important. In order to call a standard open 
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important characteristics have to be fulfilled. Reichardt (2003) is introducing them in 

detail. Among others, the most important ones are: 

 

Standards should be open and accessible freely by everyone. Furthermore, standards 

should be created by non-propriety and not-profit organizations. In most cases, these are 

consortia including main vendors, government agencies and research institutions as their 

members (Reichardt, 2003). 

 

The reasons why open standards are necessary should be obvious to everyone, too. 

Beside the requirements for general agreements in distributed systems there are other side 

effects. In the past, GIS vendors have competed to establish their products and its linked 

data formats. As a result of establishing standards, vendors can concentrate more on 

security and other application aspects like analysis (Lake, 2004). 

 

In the past, client-server systems – especially vendor based webmapping solutions – were 

facing a lack of interoperability. Kolodziej talks about “technology islands” and describes 

a corresponding scenario (Kolodziej, 2003). Frankly, these islands were not able to 

communicate and therefore to share information between them. However, he points out 

that the situation has already improved (Kolodziej, 2003). 

 

As a conclusion, for distributed systems standards or common agreements are a must. As 

stated before, it is known that different platforms and applications are “troublemakers” in 

terms of sharing data and resources efficiently. Beside the general computing standards, 

geo-information needs its specific rules for defining characteristics like data semantic, 

interfaces and processing services. Furthermore, architectures for the concrete 

implantations are important. Therefore, mainly two standardization organizations have to 

be recognized. First, the recommendations and specifications developed by the OpenGIS 

Consortium (OGC) are considered as common standards. Furthermore, the ISO/TC211 

and its standards are widespread as well. These two organizations are the key players in 

the field of Geo-Information. Both are cooperating in order not to compete with each 

other (Oestensen, 2001). Peng and Tsou (2003) are giving a detailed overview about the 
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overlapping and different parts of the specifications. In relation to this research (see next 

Chapter), Oosterom et al are pointing out that both standards are well harmonized in 

terms of defining the same geometric and topological primitives (Oosterom et al, 2002). 

 

The reason for different developments can be found in the background of these two 

committees. Whereas the ISO/TC211 has its members in the public and government 

sector, the OGC is a consortium by mainly companies and institutions. Because of this 

different background, the history of the standard development was different. The OGC is 

mainly focusing on interoperable systems which are combining existing GIS solutions. 

The ISO/TC211 has its origin in constructing a Spatial Data Infrastructure for nations and 

certain regions (Peng and Tsou, 2003). In the case of this research, mainly the 

specifications of the OGC will be recognized. The reason for this is, nearly every 

important company and many research institutions are members of the OGC – therefore it 

is recognized as the de-jure standardization organization in the field of Geoinformatics. 

Beside, as stated before OGC and ISO/TC211 are cooperating more and more and the 

standards are even merging. 

 

The OGC is categorizing its catalog of specifications into two groups. First, there are the 

OpenGIS Abstract Specifications. Its purpose is to define conceptual models in order to 

specify implementation interfaces. The different abstract specifications are divided into 

16 topics. Among others, the most important topic of the OpenGIS Abstract 

Specifications for this research is “Topic 1”, the “Feature Geometry”. The corresponding 

“Simple Feature Specification” is defining the schema of geometric features and their 

topological relationships. 

 

Second, the OpenGIS Implementation specifications are focusing on software 

specifications which are adopting the OpenGIS Abstract Specifications. Therefore, 

software vendors are able to propose their specifications. Table 1 gives an overview 

about the research related OpenGIS Implementation Specifications which already have 

been accepted by the technical committee of the OGC. 
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Table 1: Research Related OpenGIS Implementation Specifications 

Volume Name Explanation 

Web Map Service 

(WMS) Implementation 

Specification 

Part1: defines the interface to 

request maps from a server 

Part2: discussion paper. It is 

facing towards XML-enabled map 

service implementations 

Web Feature Service 

(WFS) Implementation 

Specification 

Web interface definition for 

inserting, deleting and manipulating 

data 

Web Coverage Service 

(WCS) Implementation 

Specification 

service for accessing raster images 

Web Terrain Service 

(WTS) Implementation 

Specification 

extend the WMS with 3D terrain 

functionality like elevation models, 

texture images and viewpoint definitions 

– raster-based 

Simple Feature 

Specification for SQL 

defines a SQL schema to interact 

with simple features stored in a database  

Geographic Markup 

Language (GML) 

Implementation Specification 

– Version 3 

specified XML-based exchange 

format for geographical data 

 

 

Whereas the first four ones defines methods and properties to request and serve data 

between a client and a server, the fives one standardizes the interaction with a spatial 

database. In addition, GML is a standard for sharing and exchanging geographical 

datasets. Regarding the system design and construction, the OGC is proposing its own 

vision which is based on a client-server architecture including XML Web Services (see 

Figure 5). At the moment, the implementation specifications of Web Map Service, Web 
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Feature Service, Web Coverage Service and most recently the Web Terrain Service are 

not only separately existing specifications. Furthermore, the can be used complementary 

(Kolodziej, 2003). Kolbe and Altmaier are showing one possible system architecture for 

using these services. Furthermore, they discuss the raising issues by implementing 3D 

worlds using existing OGC Implementation Specifications. As a result, they propose the 

W3DS portrayal service for 3D spatial data. The reason is, because so far there is no 

standard to visualize interactive 3D models. The WTS is restricted to static images only. 

Furthermore, there is no standardized way to implement necessary 3D features like 

backgrounds or characteristics of the atmosphere (Kolbe and Altmaier, 2003). 

 

In order to realize the vision of the “Spatial Web”, the OGC has set up the OGC Web 

Service Phase 2. The intention is, to build up a core framework of implementations in 

order to achieve interoperable GIS (Open GIS Consortium, 2004a). 

 

Beside the specifications and initiatives, the OGC is publishing other documents like 

discussion- and white papers as well as reports. The main purpose of them is to introduce 

and explain new thoughts and technologies related to geo-information. In order to cover 

all necessary standards for this research, the certain specification will be mentioned 

within its specific chapter. 

 

 

2.5 3D Spatial Data Management 

 

The data management considers mainly where to store and how to organize geo-

information. In contrast to the 3D data modeling (see below) it is not necessarily related 

to web-oriented systems. The following paragraphs give a brief overview about general 

database concepts theories and its use in the field of Geoinformation. Furthermore, tasks 

of spatial data management with the interests in the third dimension will be discussed. 

 

2.5.1 Database Concepts 
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Any complex GIS project consists of a Database Management System (DBMS). The 

reasons why DBMS are more appropriate have been discussed for decades already. 

Connolly and Begg (2002) have provided a brief overview why DBMS have many 

advantages compared to the data storage within files (Connolly and Begg, 2002). 

Databases offer a more efficient way to store data. Characteristics include the control of 

data redundancy which is reducing the risk of inconsistency as well and the possibility of 

sharing information. The later aspect is very important because DBMS are offering multi-

user accessibility. In general, the data accessibility is improved through querying e.g. 

through the Structured Querying Language (SQL). Therefore, data manipulation 

processes like updating and deleting are by far easier to achieve. Important side effects 

are the positive querying performance, data security/backup possibilities and the 

integratability into different system environments. Although DBMS have some 

disadvantages like complexity and high costs, the advantages the field of Geoinformation 

can take are preponderating. As stated before, complex GIS projects request the storage 

within databases and a proper management of them. 

 

Although the diagrams are good ways to keep the track of concepts, intricate models can 

become very complex and obscure. Furthermore, Rigaux et al points out that the 

relational model is not suitable to host geographic data properly because of its inherent 

spatial component. Whereas usual business applications are containing large but simple 

datasets, geographic information has the characteristic to be large and very complex 

(Rigaux et al, 2002). 

 

In contrast to the relational model, the object-oriented (OO) approach to model databases 

is using a completely different concept. As the name implies – the corresponding 

expression for its management systems is OODBMS-, this model is adopting object-

oriented concepts. Therefore the conceptual model is defining objects and its properties 

as well as the corresponding behaviors called methods. Objects are able to inherit from 

other objects – an object model has the shape of a tree. The logical model is creating 

instances and is populating them with information. The motivation for the development 

of object-oriented database models is obvious. Since state-of-the-art software 
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development adopted OOP, the need for keeping data in similar ways on database level 

increased. Whereas relational database models have to be transformed into the object 

models of applications in order to achieve GIS, the object-oriented conceptual database 

schema can be mapped directly to the object-oriented application. Since this 

transformation is chore, object-oriented databases have a big advantage compared to 

relational ones (Shekar and Chawla, 2003). Furthermore, Franklin points out, that object-

oriented models are by far more elegant to design than relational ones (Franklin, 2001). 

Shekar and Chawla add that especially spatial entities like lakes, road networks and cities 

are perfectly fitting in an object-based approach (Shekar and Chawla, 2003). Gruber is 

going one step further and claims that state-of-the-art urban data management deals with 

complex data and requirements and therefore has to replace the relational model on 

database level (Gruber, 1999). One example for the implementation of an object-oriented 

data model has been developed by Abdul-Rahman (2000). Briefly, he converted the 

Pilouk’s Tetrahedral Network (TEN) into an OODBMS (Abdul-Rahman, 2000). 

 

However, in association with the object-oriented approach there are several 

disadvantages as well. These are mainly the missing overall accepted querying standard 

and the lack of experience. Other problems like the lack of implementations are 

associated to them. On the market of OODBMS, there is less competition compared to 

the one of RDBMS. In order to improve the quality of the implementations, fair and open 

competition is one fundamental aspect (Connolly and Begg, 2002). Another disadvantage 

is that many applications have already been realized in a RDBMS and their migration to 

OODBMS is among the biggest challenges (Franklin, 2001). 

 

Applications of Geoinformation are using both concepts. Whereas more simple projects 

are fine with adopting the relative model, more complex spatial data is able to benefit 

from the object-oriented as well. Thus, the modular approach – named object-relative 

database - has become popular in the field of Geoinformation over the last years. Shekar 

and Chawla are proposing an architecture including an object-related database 

management system (OR-DBMS) for the use within GIS. They circumscribe it by the 

term of “Spatial Database”, which basically is a database extended by spatial data types 
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and associated functionality (see below). This is most appropriately done by using an 

object-relative database backend (Shekar and Chawla, 2003). In this context Rigaux et al 

talks about an integrated approach (Rigaux et al, 2002); Oosterom et al propose the 

integrated architecture as well; in conjunction with a corresponding DBMS they are  

using the term “Geo-DBMS” (Oosterom et al, 2002). Object-relational databases are 

offering the possibility to define individual spatial data types as well as implementing 

pre-defined data types through objects. These objects will be stored in the cells of a 

certain table. The tables are located in a relational model. The objects are regarded as the 

extension of relational databases. The advantage of using objects as data types compared 

to store spatial data for instance in a pure relational model is obvious. The spatial 

information becomes handier and complicated transformation can avoided in favor. 

Furthermore, certain standard object behaviors are represented by an object’s methods. 

Thus, typical spatial operations like an area calculation can be performed on the database 

level rather than developing certain functionality for each system. In this context, 

Connolly and Begg are circumscribing this characteristic with the terms of “reuse” and 

“sharing”. Among usual database requirements, spatial extensions should implement 

spatial indexes (Shekar and Chawla, 2003) as well as topology in order to offer 

reasonable ways to query data. As a conclusion one can claim that advanced data 

management applications - like GIS - are able to benefit from OR-DBMS (Connolly and 

Begg, 2001). 

 

However, there are a couple of problems which have to be considered. First, OR-DBMS 

can become very complex and obscure. Beside, most problematic with the use of spatial 

OR-DBMS is the missing common standards. At the moment, still some inconsistency 

between the object-relational extensions of different database vendors remains. Here, the 

missing implementation of a standardized querying language has to be mentioned. 

Although SQL3 - which standardizes for instance the creation of individual abstract data 

types – has been published long time ago (in 1999), many of the current implementations 

are using proprietary techniques. However, SQL itself is not covering any “spatial” 

features since it is developed for general querying purpose. Therefore, the OGC 

published a recommendation - Simple Feature Specification for SQL - for extending SQL 
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(see before). It is defining certain spatial data types and functions for spatial data 

querying (Shekar and Chawla, 2003). Oosterom et al points out that only simple features 

are covered. The recommendation – or in OGC language the implementation 

specification - for abstract features like sophisticated topology is still missing (Oosterom 

et al, 2002). 

 

Comprising different models to store data, the four-quadrant view proposed by 
Stonebracker, 1996 is very useful (see  
 
 

Figure 6). Whereas the x-axis is reflecting the degree of data complexity, the y-axis 

shows the search as well as the multi-user support possibilities. 

 

 

 

 

Figure 6: The Stonebreaker View (Connelly and Begg, 2001) 

 

Referring to  
 
 

Figure 6, GIS applications are fitting best in the object-relational approach. In fact, 

spatial data is in most cases intricate and has to be updated frequently. Furthermore, 

multi-user support is a requirement for GIS as well. 

 

The following paragraph deals with the integration of 3D spatial data in these database 

models. 
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2.5.2 Spatial Databases and 3D Geo-information 

 

Spatial databases which are gathering the third dimension are considered as 3D 

Spatial Databases. Therefore, the Spatial-DBMS (SDBMS) should offer a core 

implementation of storing 3D geo-information. The general requirements for spatial 

databases can be defined as follows (based on Güting, 1994): 

- offering spatial data types and its implementation 

- providing a corresponding query language 

- creating spatial indexes 

- processing of spatial analysis 

 

Oosterom et al extend these requirements by the topological aspect (Oosterom et al, 

2002). The requirements are at least valid for multi-dimensional data as well. 

 

In order to look closer on 3D spatial data, Geo-information has to be divided into the geo-

data itself and their associated attributes. Since storing attributes is not that critical, a 

closer look at the geo-information itself is necessary. As mentioned before, the aspects of 

3D geometry and 3D topology have to be considered while dealing with 3D spatial data. 

This is a must because spatial functionality strongly requires them as a base for 

calculations (see 0). Compared to the second dimension, 3D data is much more complex. 

Whereas 3D geometry is easy to implement, 3D topology is most critical. In order to 

implement topology spatial operations are necessary, too. These important topics will be 

discussed in detail later (see below). 

 

The second requirement is the provision of an associated querying language. Since SQL 

is a general querying standard, there is no feature for spatial querying. Thus, the 

geometrical and spatial part has to be integrated. In General, a spatial query language has 

to provide fundamental spatial operations and reasonable ways of representing the result 

(Güting, 1994). Egenhofer adds that the combination of both, spatial and non-spatial 

types of queries is a basic guideline for a spatial query language implementation 
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(Egenhofer, 1994). Beside the query, especially the representation of the result has to be 

considered (Güting, 1994). Most important, standards for accessing, querying the 

database and displaying the results are important. Thus, in 1999, the Open GIS 

Consortium has set up the “Simple Feature Specification for SQL” which is proposing 

spatial data types and operations (see before). The later one can be categorized into basic 

operations for all geometric data types, operations for simple topological queries and 

general operations for spatial analysis. However, the standards lacks of sophisticated 

integration of topology and metric spatial relationships like directional queries (Shekar 

and Chawla, 2003). Furthermore, query results should be represented in standardized 

ways as well – e.g. GML as a XML derivate can be used. In the practice, spatial querying 

languages are implemented through the DBMS. Therefore, examples are provided 

through Oracle Spatial or PostgreSQL/PostGIS. 

 

In order to support spatial selections the use of spatial indexes is required. A spatial index 

- as indexes in general - is taking profit of approximations. The index structures data into 

simpler geometric objects than the object itself by creating spatial keys. During the query 

process, index values are used to browse the data faster. There is a large variety of spatial 

indexes available (Shekar and Chawla, 2003). One good example – especially for real 3D 

objects - is the use of 3D bounding boxes, called “R-Tree”. In the third dimension a 

bounding box is representing the smallest axis parallel cuboid enclosing the object. The 

R-Tree is constructing a hierarchical tree of these boxes. The science of databases 

mentions different variants of R-Trees. They are mainly differing in their grouping 

strategies (Kofler, 1998). In conjunction with 3D visualization, R-trees are common in 

order to implement hierarchical levels of details (LOD). Therefore, the index structure is 

used to represent different levels of detail (Coors, 2003). Among others, Kofler (1998), 

Zlatanova (2000) and Coors (2003) have proven that R-trees are a proper method to 

implement hierarchical LOD. Whereas Kofler (1998) implemented the R-tree in an 

OODBMS, Coors (2003) and Zlatanova (2000) chose the relational and object-relational 

model to do so. Another indexing method is called Quadtree or in the case of the third 

dimension Octree. This approach is based on tiling the space into a grid of cubes. In 

contrast to the basic R-Tree, 3D objects of an Octree are not overlapping. Whereas R-
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Trees can be used in order to implement LOD, Octrees are mainly utilized to speed up 

spatial queries. Besides, the object-relational database “PostgreSQL” and its spatial 

extension PostGIS are implementing its own indexing method called GIST (Generalized 

Search Trees). However, it has been not proven for the third dimension. Because of the 

PostgreSQL page size, objects larger than 8K are not supported in R-trees (Ramsey, 

2003). 

 

The third requirement is the integration of spatial analysis and operations. Therefore, the 

database level should provide basic GIS operations like spatial selection, spatial join, 

spatial function application like intersect and other spatial set operations. Whereas the 

first two are not that critical and can be achieved by usual queries, the later tasks have to 

be considered more complicated. They do not fit into a “SELECT … FROM … 

WHERE” routine because they are on a more abstract level of spatial operations. As 

stated before the “Simple Feature Specification for SQL” is standardizing the most 

common operations. An overview can be found by Shekar and Chawla (Shekar and 

Chawla S., 2003). The task of spatial analysis - linked to the associated querying 

language as well - is already reaching application level. Many GIS application are 

implementing these methods already by itself (Güting, 1994). However, providing 

common tasks already on database level has many advantages. Overall, an intelligent 

implementation can improve the performance of certain processes. The reason for this is 

because the user access on the database will be reduced and therefore the critical 

bottleneck of the database interface is bypassed (Jansen, 2003). Furthermore, the term 

around Geo-information is becoming more accessible without purchasing specific and 

expensive GIS. As a conclusion, a more simple system integration of Geo-information is 

one major advantage. 

 

Today, spatial database implementations are wide spread. Nearly every main database 

vendor is providing spatial extensions in order to penetrate into the GIS market. 

However, Stoter and Zlatanova point out, that current implementations are not yet fully 

compatible with the third dimension (Stoter and Zlatanova, 2003a). Whereas the second 

dimension has been integrated in proper ways – 2D spatial data types, 2D geometry, 
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partly 2D topology as well as 2D spatial indexes-, 3D spatial data is not fully integrated 

yet. Unfortunately not many DBMS are offering support for 3D indexing – however, 

Zlatanova (2000) shows that R-trees can be implemented into non-spatial databases as 

well. Furthermore, the integration of 3D topology is still missing (Stoter and Zlatanova, 

2003b). However, Oracle recently announced the integration of topology and R-trees up 

to 4D in its database Spatial Extension of Oracle 10g (Lopez, 2003). In addition, Ravada 

is giving a detailed introduction about Oracle’s topology implementation (Ravada, 2003). 

On the research side, Arens (2003) is extending spatial databases with an individual 

spatial (volumetric) data types, namely the 3D polyhedron primitive (Stoter and 

Oosterom, 2002; Arens et al, 2003). 

 

In conjunction with the management of 3D data, the possibilities of manipulating data 

including the creation, the edition and the query of stored information is significant as 

well. Here, proper access to the DBMS is most important. The database interface can be 

an important bottleneck in systems – especially once one is dealing with the third 

dimension. Furthermore, applications have to be provided in order to create the spatial 

data types and populate the database. Especially the complexness and abstractness of 3D 

geo-data are requesting reasonable graphical user interfaces therefore. Although, the 

newest product lines of CAD respectively GIS software are supporting these tasks quite 

well, there is no implementation which is using a real web environment (Stoter and 

Zlatanova, 2003b). For instance, Nebiker presents the DILAS approach which is offering 

3D visualization on the Web (see below). However, the data edition is only possible 

through an Intranet solution (Nebiker, 2003). 

 

Finally, in order to transform real-world 3D objects into database system different 

concepts for 3D data modeling have to be used. The following paragraph is giving a deep 

introduction about recent literature and research around the concepts of 3D data 

modeling. 

 

2.6 Concepts for 3D Data Modeling 
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3D data modeling deals mainly with certain ways to transform real-world 3D objects into 

spatial databases. Therefore, specific concepts have been introduced and several 

implementations have proven to be sufficient for modeling real-world 3D objects within 

spatial databases. Without regarding the dimension, there are several possibilities to store 

the geometry of spatial objects. 

 

First, the Spaghetti Model is able to hold spatial objects. Here, the geometry of a vector-

based object is stored in collection which can contain any kind of feature like points or 

lines. Furthermore, objects are stored independently of others. Therefore, data 

redundancy is not implied. For instance a line used by several objects is represented twice 

or more. The only advantage is its simplicity. Geo-information modeled as “Spaghettis” 

can be extended easily and the reconstruction in order to visualize is not critical as well. 

However, very limited GI-functionality can be processed on top or the data has to be re-

modeled to other models like the topological one (Rigaux et al, 2002). Concluding, data 

stored in the Spaghetti Model can be regarded as “dumb” and therefore less useful for 

any spatial analysis. 

 

Second, the topological model is most important. As stated before, topology is dealing 

with the relationships between spatial objects. Due to the fact that geographical data can 

be raster- or vector based we have to distinguish between two completely different kinds 

of topological concepts. First, and less important for this research, there are the 

topological relations between raster cells. Molenaar stated that these are necessary for 

window and filter operations (Molenaar, 1998). Second, 2D topology of vector data is 

based on the geometrical objects of point, line and polygon objects. Extending a 

topological model to the third dimension, a body object has to be introduced. Each 

element is represented by its predecessor. For instance, a line is represented by two points 

- a body by at least three polygons. Overall, GIS and especially its analysis part require 

topological data models in order to perform efficient. Previous research showed that 

different ways for topological modeling are possible (Rigaux et al, 2002). The following 

paragraphs of this chapter are giving a detailed overview about realized topological 

models. 
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In order to get used to common expressions around 3D modeling of geographic 

information, Table 2 gives a brief overview. 

 

Table 2: Expressions according to their Status Modeling Level 

Graphi

cal 

Representati

on 

Geom

etric / 

Elementary 

Objects 

Primiti

ves 

(Constructive 

Objects) 

Topol

ogical 

Primitives 

Defi

nition 

Level 

 point node node 
0-

simplex 

line 
arc/edge

/curve 
edge 

1-

simplex 

surfac

e 
face face 

2-

simplex 

body 
edge/fac

e 
solid 

3-

simplex 

 

 

All objects shown in Table 2 are considered as “simple objects” or short as “simplex”. 

Molenaar defined certain rules for simplexes (Molenaar, 1998). Complex features - in a 

more urban context – for example houses or buildings can be modeled in different ways. 

In order to avoid application-dependent ways to store 3D objects, several concepts have 

been discussed before. Pfund is categorizing them as “Solid Models” (Pfund, 2001). 

Table 3 represents the most important ways for modeling urban objects like buildings in 

3D GIS. 
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Table 3: Modeling Concepts in 3D GIS (based on Pfund, 2001) 

Boundary 

Representation 

(B-REP) 

Constructive Solid 

Geometry 

(CSG) 

 

The object is described 

through its boundary 

elements like edges and 

faces. These are 

represented by vector 

data. 

One 3D object is modeled 

with other objects which 

are on a hierarchical lower 

level. Certain operators 

are connecting the objects 

to a 3D object. 

 

 

The B-REP approach is using common objects like nodes, edges and surfaces in order to 

model buildings. In order to include topological relations, the body object has to be 

added. The B-REP approach is becoming very close to proper implementation of a 

topological model. Only some more constraints have to be added in order to fulfill the 

requirements of a 3D GIS. In contrast to the B-REP, the CSG is using space primitives in 

order to construct buildings. These are geometrical elements like cuboids, cones, spheres 

etc. The CSG can not host topology – it has to be computed every time (Pfund, 2001). 

 

In order to model 3D objects, the OGC is proposing a differentiation between geometrical 

and topological models. The next paragraphs about 3D Geometry and 3D Topology are 

giving an introduction what has already been done in past research. 

2.6.1 3D Geometry 
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The geometry of an object is mostly composed by its coordinated. Here - dealing 

with the third dimension - the three coordinate values of x, y and z are necessary to 

describe an object. In reality, most of the available DBMS are supporting the common 

geometric objects like point, line and polygon. Because, in most cases these are only 2D 

objects predefined, 3D objects have to be represented by multiple 2D objects with 3D 

coordinates. In practice, one should be able to differentiate two possibilities for the 

implementation. First, 3D objects are represented by simple geometry types, i.e. a set of 

polygons represented by 3D coordinates. Second, one 3D object can be represented by a 

collection geometry type, for example 3D collection and 3D multi-polygon. Spatial 

operations implemented on top of a geometrical model can be area, volume or length 

computations. However, most of them are performing slow compared to the processing 

on top of topology (Zlatanova et al, 2003). 

 

2.6.2 3D Topology 

 

As stated before, topology is a must in this research because real 3D or multi-

dimensional functionality on top of the data has to be integrated - geometry is only able 

to host very limited analysis functionality and corresponding calculations are 

computationally expensive. In general, topology is dealing with combinatorial structures 

or relationships between objects. Therefore, topology is used to convert constructional 

geometric algorithms into combinatorial processes (Open GIS Consortium, 2003). Most 

common spatial operations which require topology on 2D data are for instance network 

analysis, intersecting or union. In order to achieve these on 3D geo-information, solving 

the critical aspect of an accurate topology management is a requirement for spatial 

operations. Whereas geometry is represented simply by an objects x-, y- and z-

coordinates, topology has to be defined in different ways. Therefore, each topological 

model has it own conventions. Moreover, these directives can be very complicate, too. As 

stated before, base for most topological models is the Boundary Representation (B-REP). 

Despite of the fact that the literature mentions other frameworks to define spatial 

relationships as well, the common conclusion is that the topologic one is the most 

appropriate for geo-related tasks. The reason for this is its foundation on the 
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neighborhood of the objects regardless of the distance between them (Zlatanova et al, 

2004). 

 

In order to realize a topological model, general frameworks of topology have to be 

utilized. In the literature, there are mainly two mathematical frameworks for defining 

spatial relationships available. First, there is the 9-intersection model introduced by 

Egenhofer and Herring (1990). This popular model can be regarded as the standard 

considering spatial relationships since it has been adopted by the OGC (OpenGIS 

Consortium, 2001). Here, spatial relationships are determined by distinguishing empty 

and non-empty intersections of the topological primitives. Overall, eight relationships 

between 3D and 3D objects are possible. These are disjoint, meet, contains, covers, 

inside, covered by, equal an overlap. As a conclusion, this framework can be regarded as 

systematic and simple. However, not all the relations make sense in reality and can be 

realized. Furthermore, the basic spatial object has to be very simple, e.g. without holes 

and intersecting parts (Billen et al, 2002). Second, Billen et al introduced the 

Dimensional Model. Originally introduced as a model for dealing with convex spatial 

objects, it has been extended to topological n-manifolds. It uses a complete different 

approach of defining spatial relationships. Whereas the 9 intersection model is based on 

the intersection of topological primitives, the Dimensional Model is looking at the in 

intersections of the dimensional elements. Three groups of relations can be provided – the 

total-, partial- and non-existent relation. The Dimensional Model offers by far more 

possibilities of spatial relationships and the framework is more flexible compared to the 

9-intersection model. However, similar to the 9-intersection model only a few of the 

theoretical relationships can be realized in practice (Billen et al, 2002). 

 

As stated before, topology is mentioned within several OGC abstract specifications. For 

example the OGC has been adopted the 9-intersection model in order to define a 

topological framework. However, there is no implementation specification for a DBMS 

environment like it exists for geometry (Oosterom et al, 2002). Previous research is 

providing us the following topological models: 3D FDS (Molenaar, 1990), cell tuple 

model (Pigot, 1992), TEN (Pilouk, 1996), SSM (Zlatanova, 2000), SOMAS (Pfund, 
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2001), UDM (Coors, 2003), OO3D (Shi et al, 2003). Table 4 gives an overview about 

different implemented topological models and their characteristics. 

 

Table 4: Characteristics of Realized 3D Topological Models (based on Oosterom et al, 2003) 

Name Primitives 
Topological 

Tables 

Explicit 

Relationships 

3D FDS 
node, arc, edge, 

face 
arc, edge, face 

node-on-face 

node-in-volume 

arc-part of-line 

arc-on-face 

Cell-Tuple 
0-cel, 1-cell, 2-

cell, 3-cell 
cells no 

TEN 

node, arc, 

triangle, 

tetrahedron 

arc, triangle, 

tetrahedron 

triangle-part of-

surface 

arc-part of-line 

SSM node, face 
face, line, surface, 

body 

node-in-volume 

face-in-volume 

SOMAS 
vertex, edge, 

face, body 

point, line, polygon, 

body 
unknown 

UDM node, face 
point, line, surface, 

volume 
no 

OO3D 
node, segment, 

triangle 

point, line, surface, 

volume 
unknown 

 

 

Table 4 gives an overview about the most common 3D topological models in 

chronological order due to their publication - the latest one can be found on the bottom of 

the table. Be aware of that the column “No. of Tables” can differ between certain 

implementations of one model. The following paragraphs are describing each model 

briefly (according to their description in certain publications): 
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The 3D Formal Data Structure (3D FDS) by Molenaar (1990) is based on a single-value 

map. Here, the space is divided into non-overlapping objects. In order to achieve this, 12 

conventions are setting the frame in order to model data correctly. For instance, arcs and 

faces cannot intersect. The model consists of three fundamental levels, namely feature, 

elementary objects and primitives. Therefore, it is possible to integrate attributes, e.g. 

textures of face. However, one face has to be textured with exactly one image – the 

common task to drape one image across many faces can not be realized. Among others, 

Zlatanova is facing some further issues, e.g. the missing explicit relation face-part-of-

body (Zlatanova, 2000). Coors (2003) added that the storage of edges is not necessary 

since most topological queries for city models are based on adjacent edges (Coors, 2003). 

Overall, the model has proved to be suitable for urban applications (Zlatanova, 2000). 

 

The Cell-Tuple model, introduced as an extended version by Pigot (1992), defines cells 

and cell complexes on top of the fundamental properties of a manifold. The k-complex is 

the union of all the k-dimensional and lower cells, whereas k is the dimension of the cell. 

For complex real objects, this model can lead to huge representations. Therefore, it can 

reach unmanageable amounts of data for complex city models (Zlatanova, 2000). 

 

The TEN model by Pilouk (1996) is using triangles as its base in 2D. The corresponding 

body in the third dimension is the tetrahedron. Therefore, every object has to be divided 

into a set of tetrahedra. Shi et al realized that this process is very critical and especially 

architectural objects, like buildings are difficult to model. By the way, a TEN for 

buildings is causing big amounts of data. The TEN is especially useful for computation 

and querying which are applied in geologic applications (Shi et al, 2003; Pilouk M., 

1996). 

 

Zlatanova (2000) introduced the Simplified Spatial Model (SSM). The basic objects are 

point, line, surface and body. As primitives, the model is restricted to node and face only. 

The relations arc-in-face and face-in-body are explicitly defined in order to fulfill the 

requirements of complex urban objects. Furthermore, the model was specifically 
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designed for web-oriented applications with a strong tendency to visualization queries. 

(Zlatanova, 2000). 

 

The prototype of the 3D vector-GIS called Solid Object Management System (SOMAS) 

has been presented by Pfund (2001). The model is using the primitives of vertex, edge, 

face and body in order to store the geometry of a 3D object. Within SOMAS, the data 

model is transformed into a relational database. Therefore, data redundancy is kept very 

low only a small number of topological relations are saved explicitly (Pfund, 2001). 

 

Coors (2003) proposed the Urban Data Model (UDM) which is quite similar to the SSM. 

However, it has been developed separately. In this model, edges are not explicitly stored. 

Therefore, one-dimensional constructive objects like edges are not supported. However, 

they can be modeled by defining two successive points. Thus, only polyhedra can be 

represented by the UDM. Furthermore, “additional representations” (Coors, 2003) or 

attributes are stored different from the geometry. The advantage of UDM is that is an 

effective way to store data. Concluding, the implementation – which is web-based - of 

this query-orientated model has proven that the Internet is a possible medium to access 

3D city models (Coors, 2003). 

 

Shi et al (2003) proposed an object-oriented data model for complex objects in 3D GIS 

called OO3D. It is using object-oriented data modeling concepts for storing the 

information. Furthermore, it has been implemented in a 3D GIS called SpaceInfo. 

However, on the logical level, the OO3D has been implemented as a relative database 

model (Shi et al, 2003). 

 

Overall, Shi et al (2003) and Zlatanova et al (2004) provide brief comparisons of the 

mentioned topological models even with additional performance tests. 

 

2.7 3D Geo-Visualization on the Web 
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The preceding chapters have discussed how to manage and organize data respectively 

how to model 3D objects for urban environment. These are the base for a reasonable 

visualization of 3D city models. 

 

First, the overall process of visualizing data has to be regarded. Therefore, the OGC 
introduced the visualization pipeline ( 
Figure 7) – based on Haber and McNabb (1990) (Doyle and Cuthbert, 1998). 

 
 

Figure 7: The Visualization Pipeline (based on Haber and McNabb; 1990; Doyle and  

   Cuthbert, 1998) 

 

As shown in  
Figure 7, the visualization process is divided into several stages. At the bottom, there is 

the “Data Source”-level which is including the data itself and managing functionality. 

The second stage is the “Features”-level. Here, the data is already pre-assembled by 

running through a filter like a data query. At third, there is the “Display Elements”-level. 

At this stage, the data has already been reconstructed to the requirements of the 

visualization format. For instance, styles have been added to the objects – this process is 

called “Mapping”. Last, on the “Image”-level the data is rendered in conjunction to the 

characteristics of the device display. 

 

Second, in order to regard visualization in a web-enabled environment, this process has to 

be transform into the certain objects of a web-architecture. As mentioned before, the 

client-server architecture is most common here. In order to achieve an appropriate 

performance, system designers are able to choose different setups. Here, the balance 
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between the client and the server is an important topic. Regarding the third dimension, 

Altmaier and Kolbe mention that an interactive real-time 3D world has to be rendered on 

the client. This stands in contrast to fly-through movies which can be rendered on the 

server as well. Whereas the process of rendering for interactive real-time 3D worlds is 

restricted to the client, the processes of filtering and mapping can be hosted by any object 

of a web environment. As stated before, this should be achieved through state-of-the-art 

technologies like XML Web Services. In this case, one can talk about interoperable Web 

3D geo-visualization (Altmaier and Kolbe, 2003). In order to implement these Web 

Services in standardized ways, the OGC has introduced the WFS, WCS and WMS (see 

Chapter 0). However, Kolbe and Altmaier mention that a fully 3D portrayal service is 

still missing. At the moment, only static images of 3D scenes can be served in 

standardized ways (Kolbe and Altmaier, 2003). 

 

Third, the usual requirements of creating virtual worlds are important. Among others, the 

scene has to become closed to reality. This means, the rendered images have to be 

“photo-realistic”. However, the overall performance has to be regarded as well. 

Therefore, data can not just be as detailed as possible since the rendering speed and 

smoothly interaction on client level is most important. Furthermore, because geographic 

data is very complex and usually big in terms of data size, the overall amount of rendered 

polygons has to be reduced as best as possible by the user agent. Here, - not to mix up 

with the spatial simplification or generalization of the modeled objects on database or 

application level – e.g. invisible polygons should not be rendered. Therefore, 

implementing LOD and culling algorithms are widely used. Whereas LOD is taking care 

of the data accuracy according to the distance between avatar and an object, culling is 

making sure that invisible back-faces of objects will not be rendered. Both of them are 

able to reduce the rendering speed significantly. Furthermore, progressive rendering 

techniques and dynamic content adjustments like streaming are suitable for increasing the 

performance (Kofler, 1998). 

 



 59

All these important topics should be considered in order to fulfill the goals for 3D 

visualization. Döllner comprises them into communication, explorative- and confirmative 

analysis and edition of data, concepts and models (Döllner, 2002). 

 

2.7.1 Graphical User Interface 

 

In order to interact and communicate with information, a graphical user interface 

(GUI) has to be designed and created. A GUI is located on top of the user agent. Because 

geographic information is usually very complex, this task is difficult to achieve. The GUI 

has to offer efficient access to the application logic and finally the data. Moreover, the 

user interface is most critical due to the fact that this is the “main gate” to the application. 

If a GUI is implemented poorly, an application will not be accepted by the user. In 

contrast to user interaction in 2D, a GUI for the third dimension has to be different. The 

reason for this is, because in most cases users have a poor imagination associated with 

multi-dimensional representations (Cöltekin, 2002). The following paragraphs are giving 

a brief introduction to necessary parts of a GUI. 

 

To develop a GUI for 3D visualization on the Web, different aspects are important. First 

of all, as stated before, the virtual world has to be sufficient. To do so, core features of 

creating a 3D world are needed. The technique of visualization has to cover state-of-the-

art possibilities. In the case of 3D these are reasonable modeling of physical objects, 

lightning and shadowing, definition of viewpoints, photo-realistic texturing. As soon as 

interaction has to be involved, techniques like events, linking and internal/external 

scripting are becoming more important. Real-time interactive navigation in a virtual 

world is another requirement. To explore virtual worlds a user wants to be put into this 

space very close. Therefore navigational characteristics like in computer games are very 

popular. These are for instance walkthrough, flying, panning and sliding. If the target is a 

singular object, rotating is another important real-time navigation attribute. In order to 

achieve an acceptable navigational performance, advanced characteristics of virtual 

worlds have to be implemented on the GUI side. As stated before, these can be Levels of 

Detail (LOD) or multi-resolution texturing. In order to do so, core concepts in 
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conjunction with the application and database have to be developed. The GUI’s 

responsibility is it to support the interaction with different data resolutions. These 

techniques are required to save system resources and increase performance (Kofler, 

1998). Furthermore, LOD and image texturing are associated to each other. For example, 

Gröger et al proposes five LOD in order to achieve a core geo-related virtual world. 

Whereas the LOD 0 is textured by cartographic representations the proposed LOD 3 can 

be textured by images retrieved from aerial and terrestrial Photogrammetry. Other levels 

do not necessarily need raster-based textures. However, the number of LOD can vary 

individually to a certain project (Gröger et al, 2004). 

 

In terms of integrated 3D visualization, Altmaier and Kolbe are specifying two 

approaches. First, the mosaic model is embedding neighbored cities and site models in a 

core regional world. Second the hierarchy scenario in which different locations contribute 

3D spatial data. Therefore, different models in varying resolution are integrated to a 

scene (Altmaier and Kolbe, 2003). 

 

Another sophisticated topic is the intuitive editing of 3D data. In order to provide a 

human readable GUI for data edition, high efforts have to be done. This is the reason why 

mainly common CAD or GIS software products are used as front-ends at the moment. 

These applications have been proven on the market for years already (Stoter and 

Oosterom, 2002; Zlatanova et al, 2002). 

 

In terms of the third dimension, a couple of technologies are suitable for the visualization. 

Among others, VRML/X3D and Java3D have already proven their ability to deal with 

geo-information in many applications. The following paragraphs are giving a 

comprehensive preface on them. 

 

2.7.2 VMRL/X3D 

 

VRML (Virtual Reality Modeling Language) respectively its successor X3D 

(Extensible 3D) were introduced by the Web3D Consortium to distribute interactive 
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virtual worlds on the web. Both are mark-up languages and standardized. Whereby X3D 

is fulfilling the concepts of XML. Besides X3D is specified more modular. The rendering 

concept is mainly based on a scene graph definition and a node structure (Web3D 

Consortium, 2004). VRML andX3D are accomplishing the basic concepts for a 3D GUI 

(Dykes et al, 1999). To list all the features would take too long. Concepts of a core world 

construction and especially the external authoring interface (EAI) grading the techniques 

up. By using the EAI, one can add individual functionality to virtual worlds. Developed 

either by scripting or higher programming languages, 3D scenes can get highly 

interactive. One good example is accessing a database from VRML worlds in order to 

retrieve new data (Zhu et al, 2003; Zlatanova S, 2000). Another proof that VRML/X3D is 

able to handle intricate tasks is shown by Diehl. His implementations show distributed 

virtual worlds, for instance multi-user worlds (Diehl, 2001).  Furthermore, the Web3D 

Consortium is taking care of geographic data as well. Therefore, the GeoVRML 

respectively the X3D GeoSpatial working groups are founded under the Web3D 

Consortium (GeoVRML, 2004; X3D GeoSpatial, 2004). Geo-specific tasks like 

geographic coordinates, geo-elevation grid and geo-LOD are extending the usual VRML 

standard (Reddy et al, 2001). The corresponding specification of geo-related tasks in 

X3D is similar. However, other features like the “GeoViewpoint” are extending the 

standard (see X3D Specification: Part 1, 25, Geospatial component). 

 

Realized VRML clients in combination with HTML have already proven their ability to 

react as GIS user agents in many examples and prototypes (see Chapter 0). However, 

well-known commercial implementations are not available. The most common use of 

VRML is within a client-side browser/plug-in implementation. Unfortunately, plug-in 

vendors are hesitating with shipping X3D browsers. 

 

2.7.3 JAVA 3D 

 

Another instrument for creating 3D world on the Web is Java 3D – an “High-

Level 3D Graphics Subsystem” (Döllner, 2002). The Java3D library is a freely available 

API for developing Virtual Worlds in Java (Sun, 2004). Therefore Java3D classes can be 
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used by Java Applets within HTML pages. Java3D’s functionality is almost the same 

than VRML/X3D are providing. Savarese is introducing them briefly (Savarese, 2003). 

One big advantage compared to plug-in based solutions is that developers have more 

control about rendering and user interaction. Another is the transformability. Compiled 

Java3D classes can either be used as standalone application or applet. In contrast to the 

mark-up languages of VRML or X3D, Java3D requires much more programming 

knowledge (Diehl, 2001). This is probably one reason, why only a few solutions have 

been realized using Java3D. One example for implementing Java3D within a geo-related 

application is the DEMViewer by Taddei (Taddei, 2003). Another Jave3D based 

implementation is the GeoServNet (GSN) 3D Client introduced in Kolodziej (Kolodziej, 

2003). 
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CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

 

3.1 Introduction  

 

In this chapter, the research life cycle and the operational framework with 

the methodology for conducting this research are presented. The aim is to develop a 

simple, complete and open methodology to develop some useful techniques that would 

improve 3D Spatial Modeling. For the development purpose, a standalone 3D building 

model has been designed and the spatial data of this 3D building is installed on the 3D 

databases management system.  

 

This study describes a methodology based on widely available standard tools to build an 

interactive and highly realistic 3D building model where the display is based on 3D 

spatial objects in the environment extracted from the 3D spatial database. This objects 

data is obtained by the use of real-time objects creation algorithms technique. The 

resulting objects act according to the given behavior, which are blended within the 

objects. The objects responses are then transmitted to other users. The 3D building 

application that is used for real-time rendering and visualization is based on standard 

language VRML. Using this process one can create objects, attach responses with objects 

and navigate real-time Virtual Environments (VE) on any operating. The techniques for 

VE’s are modeled for maximum precision and accuracy. 
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3.2 Data Sources and Instrumentations  

 

Figure 3.1 shows the summary of this research in form of flow chart. In the figure, 

all equipments used have been mentioned in this research in terms of software’s and 

hardware’s. Tools such as Oracle 10g as a database management system with spatial 

cartridge, VRML/X3D, JAVA, XHTML and programming software e.g. Autodesk Map 

3D 2005 used for research work are also stated. Research life cycle and Operational 

framework  in the flowing sections present the detail of all phases that have been used for 

this research including the details of problem formulation, system development, 

implementation, integration of different modules and testing of designed system. 

Furthermore, after performing all these tasks the most important task of this research is to 

document this research. Finally, in achievements, some enhancements of previous work 

and designing of new data techniques developed during this research have been 

presented.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Equipments Operational Framework Expectations 

Phase 1: Problem Formulation 
    
• Literature review  
• Current system analysis 
• Research proposal 

Products & New research area:    
 
• Spatial Model Comparisons 
• 3D Web-based environment 
• Oracle 10g Spatial Databases

Products & New research area: 
 
• Databases Oracle 10g   
• Conceptual Design of a CoS  
• Scenario & design for 3D Data

Products & New research area: 
 
• Logical and Physical Design of 
 CoS Model on Web and Standalone 
• Apply and test proposed algorithms 

Software’s & Hardware’s: 
 
MS-Office, Oracle 10g, 
VRML/X3D, JAVA, XML, 
XHTML, Autodesk Map 3D, 
Pentium IV

Phase 2: System Development 
 
• Identify components & elements 
  of the model 
• System Designing 

Phase 3: Implementation &  
 Integration  
 
• Integrated system components  
• System performance test 

Phase 4: Report writing 
    
• Research report 
• Future research 
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Figure 3.1: Data Sources and Instrumentation Used in this Research 
 

 

 

3.3 Research Life Cycle 

 

This research is a significant effort towards the betterment of 3D spatial model and 3D 

web-based GIS System. To conduct this study successfully, a research life cycle plan 

(Figure 3.2) has been designed, applying UML (Unified Modelling Language) sequence 

diagram.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The research life cycle works as an upper-layer over Operational Framework  

Background 
Analysis 

Considerable 
Areas 

Preliminary 
Analysis for 
architectural design 

Discussion 
towards new 
techniques 

Identify areas 
Evaluate 
imperative areas  

Based on the 
evaluation, confer 
& Plan to introduce 
or develop 
techniques 

Improvements 

Upgrading & 
dissertation 

Figure 3.2: Research Life Cycle Sequence Diagram
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End 
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Relocate the areas 

Make another 
study of the 
proposed design  

Uncover the best  
corresponding 
technique  
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(section 3.4) and has guided us to have a Conceptual Outline of our on going effort from 

start to end. On the basis of research life cycle plan, an operational framework (Figure 

3.4) comes into existence to further intricate the research by dividing it into four main 

phases. The research life cycle plan is a milestone to know, understand and manage 

several aspects of conducting this research so as to provide connectivity among different 

segments while working in a consistent and coherent way. The detailed description of the 

above Figure 3.2 is provided below.  

 

 

 

 

3.3.1 Background analysis 

 

3D spatial data modeling and its visualization is an enormous research area. 

Today, a growing number of systems, models and techniques are being fashioned, which 

facilitates the 3D community up-to some level. With the quick growth in 3D systems, 

some significant issues have raised which create complexities for users. This phase, 

however, started to explore and investigate those issues in detail that need attention to be 

addressed. In chapter 2, popular 3D spatial models and 3D web-based systems and their 

approaches have been analyzed. From the analysis of those approaches we get solid idea 

about the intensity of the challenges 3D web-based GIS systems are facing, such as 

relationships among 3D complex object and their analysis. 

 

 

3.3.2 Areas to be evaluated for considerations  

 

Based on above analysis and former work this phase proposes to highlight  

the areas that need consideration or re-consideration. In our case of spatial relationships, 

for instance, it was identified that focus should be put for the analysis, to reduce the data 

redundancy and also data size of the 3D data set that are involved in a complex 3D 

environment at a given time. It was felt that previous models needs some improvement in 
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terms of handling spatial relationships, data consistency and data redundancy and it also 

effect on the storage size of a 3D object. 

 

 

 

3.3.3 Preliminary analysis to architectural design based on the previous  

            evaluation 

 

This segment focuses on initial investigation about the structure of the techniques 

to be improved or extended on a conceptual level. As this research emphasis to reduce 

cost of storage to improve 3D spatial model by egenhoffer i.e. 9i Model, so it addresses 

the issue from lower to upper end i.e. from objects creation, their relationships and data 

storage. 

3.3.4 Discussion towards new techniques  

 

In order to handle the 3D spatial relationships and the analysis on the web, some 

well-designed approaches are needed. This is where; we need to determine what 

methodology to be used for developing the effective techniques based on the findings. 

So, it has been decided to improve the specific algorithms systematically that create 

objects, provide analysis facilities of 3D spatial object on the web. 

 

 

3.3.5 Improvement 

 

In this part, the proposed algorithms or techniques are implemented to evaluate 

the requirements and quality of performance. This step shows whether the developed 

approach and its results are predisposed for usage or still needs some more enhancements 

in research work. 

 

 

3.4     Operational Framework 
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The operational framework of the research mainly consists of problem formulation phase, 

system design phase, system development phase and finally the report-writing phase. In 

the very first phase of the proposed operational framework Figure 3.3 describes the 

problem formulation phase, which includes literature review, current system analysis and 

presenting research proposal, details of this phase is presented in (section 3.4.1). In the 

system design methodology phase (section 3.4.2), 3D GIS considerations, the significant 

components and approaches like objects creation, data access from oracle and are 

described. The System development and integration phase (section3.4.3) presents the 

construction and development of the proposed problem. Finally section 3.5 discusses the 

way, how the report-writing phase goes together with overall research. Figure 3.3 

illustrates the operational framework of this research and is used as basis to draw the 

methodology of this research. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Current System Analysis

Literature Review 

Research Proposal 

Phase 1: Problem Formulation 

Phase 2: System Design Methodology 

Identify Components & Elements 

System Designing 

                                                        
CoS Model 3D Dynamic Scene Generation 3D Analysis 
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Figure 3.3: Research Operational Framework 

 
 

3.4.1 Problem Formulation (Phase 1) 

  

The problem formulation phase is considered a leading step to conducting this 

study. Title selection, setting up basic scope and ranging the core objectives of the study 

are being determined at this stage. In addition to this, literature review is one of the 

important methods that contribute many ideas in developing and designing all kinds of 

study i.e. journal, conference papers, articles, books and Internet libraries are the sources 

of this literature study. Information collected from literature review range from the basics 

of the system development, concept, method, techniques and current trends of 

development in which all of these can be used as references and sources for new 

innovative ideas and developing the proposed system. The literature review conducted for 

this study is already presented in previous chapter but this is a continuously running 

process, and this process is parallel in order to achieve optimum results. 

 

 

3.4.2 System Design Methodology (Phase 2) 

Phase3:  Development    
Implementation and Integration 

System Performance Testing 

Phase 4: Report Writing 

Research Report 
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 In order to develop a well-designed system, a systematic approach is needed. As 

been described earlier, this is where we need to determine which system development 

methodology to use. In the current research case, the whole system can be divided into 

three major parts as: CoS model, dynamic scene generation (objects creation, 

interaction/relationships) and 3D Analysis. After that, based on the previously discussed 

components and elements, system design with the decision of best topological 

architecture is constructed for the development and implementation of 3D web-based GIS 

system. First phase (Figure 3.2) ensures whether requirements regarding 3D web-based 

GIS system considerations are clear measurable, achievable, and complete. 

 

 

3.4.3   Identify components and elements 

 

This section summarizes some focused areas that are realized as important parts 

of the 3D web-based GIS system while discussing about Analysis. The framework has 

composed the component and element for a 3D web-based GIS system into main step, 

categorized as follows: 

 

 

(a) Objects design building (ODB) 

 

As we have mentioned earlier somewhere else that our proposed technique 

includes various operational parameters to establish a real-time creation of object on the 

web through database management system for multi-users. One of them is objects 

creation. One of the main criteria’s to measure the stability of 3D web-based GIS system 

is dynamic objects creation. A virtual environment deserves significance if it creates and 

renders the virtual scene quickly.  

 

 

3.4.4 System Designing  
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System designing phase helps to understand the proposed development of major 

objectives. Based on the identification of the main components and elements, the system 

design phase comes to play role to give a formal shape to this research. This phase is 

focuses to see the possibilities to group the activities of different processes, which are 

functioning independently so as to acquire the maximum success and performance. This 

phase serves as a concurrent-engineer in this research, as this integrates and collaborates 

multi-functional distinct sub-systems i.e. objects creation, interaction/relationship into 

one 3D web-based GIS system. Development, Integration and Implementation (Phase 3)   

 

Several system components that are developed in different phases and at different time, 

need to be integrated so as to provide a coherent output. For quality assurance purposes, 

this includes the investigation of system performance as well. The following sections 

throw light on this note. 

 

 

 

 

3.4.4.1  Integrating system components and Implementation 

 

The described components and elements are functionally integrated at this phase. 

This becomes an important stage as all the efforts made and components (algorithms) 

evolved earlier are grouped together to enable the system to work in an organized way. 

This is essential because for many resources used, the resultant product quality is used to 

measure the assessment of performance and success. 

 

In the on going research, system is be implemented for real time interactivity for multi-

users. Hardware platforms employed by the researcher is a computer machine Pentium 

IV processor with 1GB of memory and running Windows XP Pro. The system is 

connected through a LAN network. 
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The results of the study have been implemented by means of VRML/X3D and Oracle 10g 

Spatial Cartridge that processes the extraction to derive and interact with the geometry of 

the objects to display it into some output. The CoS model has been implemented and 

developed by using Oracle Spatial database.  

 

 

3.4.4.2    System Performance Testing 

 

The performance of the system can be tested by multi-users connected on the 

web. The architecture for objects creation, for relationships and for data preparation to 

send on web can be applied and tested for fundamental experiments. The analysis is 

provided and to recognize each object that which is in the environment, and who is 

interacting with the virtual world. In this way, efficient responses of into web-based 3D 

GIS system can be verified when more than one user performs analysis on the 

environment.  

 

 

 

3.4.5 Report Writing (Phase 4) 

 

Report writing is the last part of the study, which does all the writing up including 

the documentation of the system and user manual. In this research thesis objects creation, 

relationship/interaction to send on web, which have been enhanced and implemented for 

web-based 3D GIS system, are reported. This is the phase where all results and 

discussion regarding the developed techniques with the description of future work are 

presented and concluded. 
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3.5 Summary 

 

To meet the mentioned challenges, the proposed research life cycle plan as well as 

operational framework play a vital role to guide us for the research methodology, 

development flow and results analysis of our web-based 3D GIS system. The proposed 

framework has made it easy to investigate some important issues, to construct design for 

analysis of those issues and to develop virtual environment for web with some experience 

of analysis, dynamic objects creation and 3D analysis. By conducting this research, some 

significant design guidelines have been proposed, which would help the researchers to 

understand different scenarios of real-time interactive visual web-based 3D GIS system.  
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CHAPTER 4 

 

 

 

CONDENSED SPATIAL (CoS) MODEL  

 

 

 

4.1 INTRODUCTION 

 

In GIS, the vector data model that used for geographic phenomena may be 

represented by geometric entities (primitives) like points, lines, polygons, and volumetric 

solid object. With the integrated Geo-DBMS module (such as Oracle Spatial, 2002), 

geometric objects can be stored together with topological information. These vector data 

models that include the description of topology, as well as the location of the spatial 

entities will be stored. In general, topology in GIS requires a data structure, where 

common boundary between two adjacent areas is stored as a single line, simplifying the 

map maintenance. On the other hand, geometric entities require full data insertion of any 

object. For instance, two triangles that share a common boundary stores topological 

information of six lines. However, in geometric condition, they will be stored twice of 

four nodes. Figure 3.1 gives the difference between topological and geometric data 

storage in Geo-DBMS.  

 

 

 

 

 

 

    TOPOLOGICAL DATA         GEOMETRIC DATA            
 
     FaceID           LineID                 FaceID              NodeID 
     ---------           ---------                ---------            ------------- 
         A                 1-2-3                       A            N1-N2-N3-N1  
         B                 4-5-2                       B         N2-N4-N3-N2   

  
Note:  1).    2 represents the common boundary 
         2).    Line 2 represents node N2 to N3 

A B 

1 
2 

3 5

4

N1 

N2 

N3 

N4 
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Figure 3.1: Comparison between topological and geometric data 

Beside reducing data storage, Geo-DBMS allows multi-user control on shared data and 

crash recovery, automatic locks of single objects while using database transactions, 

advanced database protocol mechanisms to prevent the loss of data, data security, data 

integrity and operations that comfortably retrieve, insert and update data (Bruenig and 

Zlatanova (2004), Patel et. al (1997)). In this paper, capabilities of topology in handling 

spatial datasets in GIS will be discussed. It involves spatial primitives that deal with 

spatial data recognitions (semantics) and their relationships among objects. A new 

framework for representing spatial model named Condensed Spatial (CoS) model is 

introduced. The model implements topological mechanism for object semantic and 

relationship that able to represent the real world, i.e. node, line, face, solid3D. This paper 

is organized in the following order. First, the properties of each primitive will be 

described. Then, the main study of topology that involves primitive and feature objects’ 

definitions will be discussed extensively. Later on, the visualization of CoS model will be 

highlighted, i.e. integration between Oracle database and AutoDesk Map 3D module will 

be mentioned. Finally, the paper concludes with experiment and result discussions. 

 

 

 

4.2 GEOMETRIC PROPERTIES 

 

4.2.1 Node 

 

Node is defined as single coordinate triplet represented by (x, y, z) in three-

dimensional space (R3). It appears as 0D object in 3D Euclidean space. It is used to 

represent objects that are best described as shape- and sizeless, single-locality features. 

The location of each different node must be unique. The interior of a point is the empty 

set, denoted by oP . For any cases, interior of point will not be related to any kind of 
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primitives due to the intersection results is an empty set. The boundary of a point, 

denoted by P∂ , is the point by itself. Finally, the exterior of a point is denoted by −P .  

 

 

4.2.2  Line 

 

Line is defined as series of nodes connecting together with an appropriate 

sequence. It is a one-dimensional spatial entity that defines a path through 2D or 3D 

space. The geometry of line is defined by an ordered collection of two or more distinct 

coordinate tuples, as shown in Figure 3.2. The orientation of a line is defined by the 

ordering of its coordinate tuples.  

 

 

 

 

 

 

 

 

 

Figure 3.2: Geometry of a line 

 

 

A line is used to represent one-dimensional objects such as road, railways, canals, rivers, 

or even power lines in 3D Euclidean space. A line connecting two nodes forms an arc. 

However, two end nodes connecting a vertex or more vertices define a line. The straight 

parts of a line (or an arc) between two consecutive vertices are called line segments. 

Collections of (connected) lines may represent as network in real applications. These end 

points are defined as the border of a line, denoted by l∂ . The interior of line is defined as 

the line segment itself, denoted by ol . The exterior of line is denoted by −l .  

 

Start Node 

End Node 

Interval Node 

Orientation / Direction
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4.2.3 Face 

 

Face is defined as a planar areal object. This areal feature is determined by series 

of lines with an appropriate connected sequence, forming a closed boundary. It appears as 

2D object in 3D Euclidean space. A face connects three points forms a triangle, 

otherwise, with at least four points forms a polygon. In most cases, the coordinate tuples 

of the bounding edges of a face are not necessarily coplanar. Any entity nodes that are 

contained within the face also help to define its three-dimensional shape. The starting and 

ending points are the same point that defined as the border of polygon (see Figure 3.3), 

denoted by Po∂ .  

 

 

 

 

 

 

 

Figure 3.3: Geometry of a face 

 

In three-dimensional space, a face shares only between two solid objects. This implies a 

face has two sides. The orientation of a face is defined by the order of the edges that 

make up its outer boundary. The "top" side of a face is the side for which the outer 

boundary is defined in counter-clockwise order; otherwise the inner boundary defines in 

clockwise order. In order to support vertical and overhanging surfaces, the orientation of 

the "top" side of a face must be capable of being defined to be an arbitrary direction, not 

necessarily parallel to the positive Z-axis. Therefore, a face must have an explicit "up" 

vector (refer to Figure 3.3). Either a simple face or face with holes, the properties of face 

will not affect any topological relationship between other objects. The different between 

these two kinds of face is the face with hole consists of two or more borders, whereas the 
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simple face only remains one border. The interior of a face is defined as the area within 

its boundary, denoted by oPo . The exterior of face is denoted by −P . 

 

 

4.2.4 Solid3D 

 

A solid3D is defined as indexed set of faces (polygons) joining together that 

forms a volumetric object. It appears as 3D object in 3D Euclidean space. A solid3D may 

be topologically linked to nodes, edges, and faces (see Figure 3.4). These nodes, lines, 

and faces that form a solid3D are defined as the border of solid, denoted by So∂ . In the 

PR model, either a simple 3D object or solid object with holes, the properties of polygon 

will not affect the topological relationship between other objects. The different between 

these two kinds of solid3D is the one with hole consists of two or more borders, whereas 

the simple solid3D only remains one border. The interior of solid3D is defined as the 

closure of all borders, denoted by oSo . The exterior of solid3D is denoted by −So . 

 

 

 

 

 

 

 

Figure 3.4: Geometry of a solid3D 

 

 

 

4.3 CONDENSED SPATIAL (CoS) MODEL 

 

In this section, the definition of a new spatial model will be given. It will be 

referred to as Condensed Spatial (CoS) model. In order to produce a model that 

implements only the most essential primitives, arc and surface are not used to construct 

Node

Line
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objects. Due to the arcs store multiple nodes information within Geo-DBMS database, 

lines are used to reduce datasets storage and improve the abilities of data retrieval and 

spatial query. Besides, a surface created from multiple faces also omitted from this 

model. This is because a single but planar face may give a common boundary either for 

two solid objects, or topological space and an object. On the other hand, a surface that 

created by faces may or may not represent a common boundary between two solid 

objects. Furthermore, topological relationship that implements surface will become more 

complex, i.e. more relationship will be involved within node-surface, line-surface, 

surface-surface, or even surface-solid (Chen et. al, 2005). Therefore, three primitives are 

given, i.e. node, line, and face. 

 

4.3.1 Definition of primitive objects 

 

In topological space, T,  

 

Definition 1: The node denoted by Ni, where i is the unique index of a node, with the  

                      following property:  

 

a). Ni is represented by coordinate triplet (x, y, z) that denotes a location in R3, 

b). Two nodes could not construct same feature object, i.e. two traffic sighs are               

            always disjoint, 

c). The interior of a node, denoted by N°, is the empty set. The boundary of the node, 

denoted by ∂N,  

is the node by itself. The exterior of a node, denoted by N¯  is everything but not 

the node itself.  

 

 

Definition 2: The set of all the Ni nodes in a topological space, T, is denoted by AN  

                       have the following properties:  
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a).  The intersection of all the nodes (in topological space, T) is the non-empty set, i.e. 

{ANi ∩ ANj }T ≠ ∅, due to nodes may be part of some feature object, i.e. points, or 

lines,  

b). Two nodes, Ni and Nj in R3 are connected, if and only if there is a straight line 

linking them, otherwise they are disconnected. The straight line connecting two 

nodes will be referred to as line segment (or arc) in this context. 

c). There are nodes, which does not constitute point(s). However, these nodes must 

be part of line(s). 

 

Definition 3: A line denoted by L, is an indexed set of x ordered nodes Ni,⊂ ANi,  

 i

x

i
i NL

1=
= U   

 

where x is the total number of node Ni, and i is the index of the node specifying the 

current order in a line, Li, with the following properties: 

 

a). x ≥ 2, (if x = 2, Li represents an arc or line segment), 

b). A line segment fulfils only the linear equation y = mx + c, where m = (yi+1 – yi) / 

(xi+1 – xi), c denotes the y-intercept, and (x,y) denotes any node from that line 

segment. 

c). In the set of nodes cannot exist two equal nodes, i.e. the intersection of the 

nodes (within an ordered set of a line, L) is the empty set, i.e. {Ni ∩ Nj}L = ∅.  

d). The interior of a line, denoted by L°, is a set of line segments. The boundary of a 

line, denoted by ∂L, is the starting and ending node. The exterior of a line, 

denoted by L ¯  is everything but not the line itself. 

 

Definition 4: A set of lines in a topological space, T, is denoted by AL have the  

                      following properties:  

 

a).  The intersection of the lines (in topological space, T) is the non-empty set, i.e. 

{ALi ∩ ALj }T= ∅, 
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b). The intersection of a set of arcs (line segment) of a line, Ar, is empty set, {Ar ∩ 

Ar}L = ∅. 

 

Definition 5: A face denoted by F is an indexed set of x ordered lines, Li ⊂ ALi,  

 i

x

i
i LF

1=
= U  

 

where x is the total number of line Li, and i is the index of the line specifying the current 

order in a face, Fi, with the following properties: 

 

a). 3 ≤ x ≤ n, (if x = 3, Fi represents a triangle), where n is a finite number, 

b). Two equal lines will not exist within a set of a face, Fi  

c). The intersection of the lines (in an ordered set of a face, F) is the empty set, 

i.e. {Li ∩ Lj}F = ∅. 

d). The interior of a face, denoted by F°, is an area inside the lines. The boundary of 

a face, denoted by ∂F, is the set of lines. The exterior of a face, denoted by F¯  is 

everything but not the line and face themselves. 

Definition 6: A set of faces in a topological space, T, is denoted by AF have the  

                      following properties:  

 

a).  The intersection of the faces (in topological space, T) is the non-empty set, i.e. 

{AFi ∩ AFj }T= ∅, 

b). A face shares a common boundary not more than two solid objects.  

 

 

4.3.2 Definition of Feature objects 

 

The geometry of each spatial object can be associated with four abstractions of 

geometric objects, i.e. point, line, face and solid. A point is a type of spatial object that 

does not have shape or size but position is the topological space. A line is a type of a 

spatial object that has length and position. A face is a type of spatial object that has 
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position and area. A solid is a type of spatial object that has a position and a volume. In 

order to construct a spatial object, a new topological framework that involves the design 

of spatial model, named as Condensed Spatial (CoS) model is developed. Figure 3.5 

denotes the conceptual design of CoS model. 

 
 

Figure 3.5: The conceptual design of Condense Spatial (CoS) Model 

 

The three primitive objects are used to compose the four feature objects, i.e. point, line, 

face and solid object. However, the feature objects are constructed using these rules as 

follows: nodes construct points and lines; lines construct faces; faces construct solid 

objects. This section gives formal definitions and specifies the properties of feature 

objects. The possible relations between primitive and feature object and the rules to 

construct topology, which can be derived from the definitions, are discussed.  

 

is in

part of 
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Definition 7: A point denoted by Pi is an indexed set of nodes Ni, if and only if Ni is not 

part of other feature object, i.e. line, face and solid object. 

 

Pi = Ni = {x, y, z}i  

 

where i is the index set of the nodes.  

The topological primitives of a point are:  

 

a). The interior of P, denoted by P° is empty, i.e. Pi
o = Ni

o = ∅, 

b). The boundary of P, denoted by ∂P, is the node itself, i.e. ∂Pi = ∂Ni ≠ ∅, 

c). The exterior of P, denoted by P¯ , is everything but not the node itself, i.e.  

            P¯  ≠ ∅. 

  

Definition 8: In a topological space, T, the set of all the points {Pi} ⊂ T has the following 

properties:  

 

a). The intersection of all the points is equal to the empty set, i.e. Pi ∩ Pj = ∅, i.e. 

only one feature object of a point in the same location. This means that the 

existence of two equal points is not possible in this context. For example, two 

traffic signs are located in different locations. 

 

b). For some reasons that point {Pi} ⊂ T, nodes {Ni} ⊂ T does not constitute {Pi}, it 

must constitute line(s). This means {Ni} ∈ Lj and point Pi may meets the line Lj. 

Otherwise the point Pi and the line Lj are disjoint.   

 

According to the definitions above, a common node may constitute a point and line. 

Points can coincide with the boundary of a line. 

  

Definition 9: A line denoted by L, is an indexed set of x ordered nodes Ni,⊂ ANi,  
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                        i

x

i
i NL

1=
= U  = {Ni, Ni+1, …. Nn} 

 

where x is the index set of nodes Ni, n denotes the total number of nodes, and i s the index 

of the node specifying the current order in a line, Li. 

The topological primitives of a line are:  

 

a). The interior of L, denoted by L°, represents its line segment between first and end 

nodes, is non-empty, i.e. Li
o ≠ ∅, 

 

b). The boundary of L, denoted by ∂L, is the first and end nodes, is non-empty,   

              i.e. ∂Pi = ∂Ni ≠ ∅, 

c). The exterior of L, denoted by L¯ , is everything but not the line itself, i.e.  

            P¯  ≠ ∅. 

 

Figure 3.6 denotes the topological properties of line. 

 

 

 

  

 

 

 

 

Figure 3.6:  Topological properties of line 

 

Definition 10: In a topological space, T, the set of all the lines {Li} ⊂ T has the following 

properties: 

 

a). There is one set of nodes, which defining a line, denoted by first node, N1 and last 

node Nn, and interval nodes, {Ni}. 

Border 

Interior 
Exterior

Topological 
space 
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b). The line is closed if N1 = Nn.  

c). The intersection among nodes (Ni ∈ Li) is the empty set, i.e. Ni ∩ Nj = ∅. 

d). The intersection of all the lines is not equal to the empty set, i.e. Li ∩ Lj ≠ ∅.  

e). A line may be a feature object, e.g. railway route, or transmission line; otherwise 

it is a part of face, Li ∈ Fi.  

 

Definition 11: A face denoted by Fk is an indexed set of x lines Lj, x ≥ 3 (if x = 3 the face 

is called a triangle), 

 

 j

x

j
k LF

1=
= U  = {Lj, Lj+1, ….Ln} 

where k is the index set of a face with the following topological primitives: 

 

a). The interior of F, denoted by F°, represents the area within boundary, is non-

empty, i.e. Fi
o ≠ ∅, 

b). The boundary of F, denoted by ∂F, is the line segments and nodes, is non-empty, 

i.e. ∂Fi = {Ni ∩ Li } ≠ ∅, 

c). The exterior of F, denoted by F¯ , is everything but not the face itself, i.e.  

            F¯  ≠ ∅. 

 

 

 

 

 

 

 

Figure 3.7:  Topological properties of face  

 

Definition 12: In a topological space, T, the set of all the faces {Fi} ⊂ T has the  

                        following properties: 

 

Border 

Interior Exterior 

Topological 
space 
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a). There is one set of lines, which defining a face, denoted by {Li} = {Li, Li+1,…. Ln} 

are closed if both Li and Ln are connected.  

b). The intersection among lines (L ∈ Fi) is the empty set, i.e. Li ∩ Lj = ∅. This 

means lines are not intersecting among themselves from a set of face (see Figure 

3.8), otherwise this face will be split into faces. 

 

 

 

 

 

 

Figure 3.8:  Face separation (follows the rules, Li ∩ Lj = ∅, where L ∈ Fi) 

 

c). The intersection of all the faces is not equal to the empty set, i.e. Fi ∩ Fj ≠ ∅.  

d). A face may be a feature object, e.g. land area; otherwise it is a part of solid object, 

Fi ∈ Soi.  

 

Definition 13: A solid object denoted by Sok is an indexed set of x faces Fj, 4 ≤ x ≤ m (if 

x=4 the solid is called a tetrahedron), 

 

i

x

i
j FSo

1=
= U  = {Fi, Fi+1, …. Fn} 

 

where j is the index set of a solid with the following topological primitives: 

 

a). The interior of So, denoted by So°, represents the volumetric object, is non-

empty, i.e. Soi
o ≠ ∅, 

b). The boundary of So, denoted by ∂So, is the nodes, line segments and faces, is 

non-empty, i.e. ∂Fi = {Ni ∩ Li  ∩ Fi} ≠ ∅, 

c). The exterior of So, denoted by So¯ , is everything but not the solid itself, i.e.  

            So¯  ≠ ∅. 

Face F1 Face F2 Face F0 
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Definition 14: In a topological space, T, the set of all the faces {Fi} ⊂ T has the 

following properties: 

 

a). There is one set of faces, which defining a solid object, is denoted by {Fi} = {Fi, 

Fi+1,…. Fn}.  

b). The intersection among lines (Fi ∈ Soi) is the empty set, i.e. Fi ∩ Fj = ∅. This 

means faces are not intersecting among themselves from a solid object, otherwise 

solid object will be split. 

c). The intersection of all the solid objects (in T) is not equal to the empty set, i.e. Soi 

∩ Soj ≠ ∅.  

d). A solid object must be a feature object, e.g. room in a building.  

e). Two solid objects are joint if they share a common boundary; node(s), line(s), or 

face(s), otherwise they are disjoint. 

The 14 definitions given above complete the description of the Condensed Spatial (CoS) 

model. The model consists of three primitive objects, (nodes, lines, and faces) and four 

geometric objects (point, line, face and solid object). Nodes constitute points and lines. 

Lines constitute faces and faces constitute solid objects. The definitions specify the 

permitted shape of the constructive and geometric objects, as well as establish rules to 

compose geometric object from primitive objects. Each geometric object has specified 

topological primitives as well. All the statements are presented by notation of set theory 

under the assumption that the objects are embedded in Euclidean space.  

 

 

 

4.4 Architecture for Web-Based 3D GIS 

 

4.4.1 VRML and X3D 
 

In 1994 the Web3D Consortium launched VRML (Virtual Modeling Language), 

which became an international ISO standard in 1997. The basis for the development of 
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VRML was to have a simple exchange format for 3D information. This format is based 

on the most used semantics of modern 3D applications: hierarchical transformations, 

illumination models, viewpoints, geometry, fog, animation, material characteristics and 

texture. 

 

The development of VRML has stopped since the Web3D Consortium started to work on 

a XML version of VRML, in order to integrate with other web technologies and tools: 

X3D (eXtensible 3D). The specifications of X3D have only recently become available 

May, 2003. In our research we use both X3D and VRML to visualize 3D geo-

information. The data structure of an X3D document is very much comparable to the data 

structure of a VRML file. So as far as the underlying data model is concerned, X3D must 

be seen as a subset of VRML (Web3D, 2003). The difference lies in the notation (the 

syntax) used. While VRML is text, with accolades for structuring, X3D is coded in XML, 

with 'tags' for structuring. This is a major advantage for on-the-fly retrieval, because of 

the ease of use of XML in Internet applications. 

4.4.2 PHP and VRML/X3D Integration 

 

PHP is becoming very popular language for creating dynamic websites, 

particularly for generating them from databases. However, 2D GIS are outdated, aren't 

they? What we want is a way to harness the power of PHP to create database-driven 

VRML worlds for new 3D GIS system. 

 

PHP can output any text information; the only thing that identifies the file type is the 

MIME type that gets sent by the web server before the file itself. Fortunately, in PHP, 

one has to take control of this very information. This requires sending the VRML MIME 

type (“model/vrml”), and then writing the appropriate VRML nodes.  

The server strips all PHP code when sending a response. So, on lines where only JSP 

code is present, the server simply sends blank lines back to the browser.  

 

it's necessary to include both PHP and VRML headers, and the content type must be 
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changed before we set the VRML header, , so the final result looks like this: 

 

<?php 

   header ("Content-type: model/vrml"); 

   echo "#VRML V2.0 utf8\n"; 

?> 

In this research experimentation objective is to display a 3d Building in VRML code 

using database. But in the start, it has been tested with the same type of data as used in 

Oracle Spatial to display a VRML file. In Figure 3.9 shown below the VRML file 

contains data in itself. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.9: 3D Building’s VRML File 
 
PHP scripting is added to this shape, which lets us use dynamic data to change the 

sphere’s position in space (translation X Y Z), its color (diffuseColor R G B), and its 

radius. 
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4.5 Prototype and Process details 
 

The basic idea of the prototype is to organize 3D geo-objects in a DBMS and to 

query them via an Internet browser. Geo-objects contain both spatial and non-spatial 

(administrative) information. The spatial information can be visualized after conversion 

into VRML or X3D and the non-spatial attribute information can be presented in 

(dynamic) HTML pages. 

 

Figure 3.10 shows a standard request process—the page is requested via a browser. The 

request calls the designated PHP, which interacts with a database. The model given 

below explains the whole prototype process. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After receiving the response, the system follows the flow shown in Figure 3.11. The 

database sends the requested data to the PHP, which formats the data and sends the 

response to the requesting browser. In our case study, the data is returned to the PHP, 

which generates a VRML scene using the data from the database. 

 
 
 

Browser Database 

Request Process 

Figure 3.10: Request Process
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PHP

VRML / X3D

Browser Database 

Response Process 
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On a client request a connection is made to the DBMS and the spatial information of 

interest is selected from the DBMS and converted into X3D/VRML. A browser plug-in at 

the client side makes it possible to view the VRML or X3D output. VRML and X3D 

provide the possibility to start a script when a user clicks on an object. This functionality 

is used to retrieve the non-spatial information that is linked to a 3D geo-object. Via the 

VRML/X3D plug-in a request is sent to a (application) server. The server receives and 

interprets the incoming information and sends a HTML with the required information 

back to the browser. 

 

For retrieving the spatial and the non-spatial information from the DBMS a technique is 

needed to communicate between a client and a database on a server. For this 

communication, several techniques are available such as ColdFusion, ASP.NET, ASP, 

JSP or PHP. The choice of the used technique is dependent on the used web server. 

 

The detailed architecture of publishing a 3D dataset on the web is shown in Figure 3.12 

below: 
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Figure 3.12: Web Publishing Architecture of 3D Data Sets Using 3D-GeoDBMS 
 
To show the possibilities to query 3D geo-objects via an Internet client, first a simple 

prototype was built, based on Microsoft technology.  

 

 

 

4.6 Summary 
 
3D spatial data modeling is one of the key research problems in 3D GIS. More and more 

applications depend on these 3D spatial data. Mostly, these data are stored in Geo-DBMSs. 

However, recent Geo-DBMSs do not support 3D primitives modeling, it only able to describe a 

single-attribute of the third-dimension, i.e. modeling 2.5D datasets that used 2D primitives (plus a 

single z-coordinate) such as polygons in 3D space. This chapter focuses on 3D topological model 

based on space partition for 3D GIS, for instance, 3D polygons or tetrahedron form a solid3D 

object. Firstly, this paper discusses formal definitions of 3D spatial objects, and then all the 

properties of each object primitives will be elaborated in detailed. It also discusses methods for 

constructing the topological properties to support object semantics is introduced. The formal 

framework to describe the spatial model, database using Oracle Spatial is also given in this 

chapter. All related topological structures that forms the object features are discussed in detail. 

All related features will be tested using real 3D spatial dataset of 3D building given in next 

chapter. 
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CHAPTER 5 

 

 

 

EXPERIMENTS AND RESULTS 

 

 

 

5.1 Introduction  

 

In this chapter, model testing is involved the implementation of the model using 

an object-relational database management system. As a part of the test 

implementation, a data set of strata plans (architecture drawing) of an area closed UTM 

campus (Skudai) is utilized. This chapter summarizes and discusses the performance test 

results of the research. 

A number of interesting issues are presented. The discussion of the proposed a model 

is also presented. 

 

 

5.2 Oracle Spatial Geometry Schema 

 

In order to visualize geometrical objects, geometry column for each of the spatial 

primitives, i.e. node, line, face, and solid are created. The purpose of preparing these 

geometry columns is to integrate the spatial database into Map 3D for the purpose of 

displaying object graphics. 

 

A geometry column consists of geometry object that represent a spatial feature, modeled 

as an ordered set of primitive elements, i.e. node, line, and polygon. In Oracle Spatial, the 
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geometry column consists of a schema (MDSYS) that prescribes the storage, syntax, and 

semantics of supported geometric data types. The pre-defined object type 

SDO_GEOMETRY is: 

 

CREATE TYPE sdo_geometry AS OBJECT ( SDO_GTYPE NUMBER, 

SDO_SRID NUMBER, SDO_POINT SDO_POINT_TYPE, 

SDO_ELEM_INFO MDSYS.SDO_ELEM_INFO_ARRAY 

    (SDO_STARTING_OFFSET, SDO_ETYPE, SDO_INTERPRETATION), 

SDO_ORDINATES MDSYS.SDO_ORDINATE_ARRAY) 

    (list of ordinates); 

Note: Not In List (NIL) 

For example (see Figure 5.1): 

 
 

 
 

Figure 5.1: Data set insertion into Polygon table 
 

 

5.3 AutoDesk Map 3D Schema Table 

 

In the AutoDesk Map 3D 2005 (Map 3D), there is a pre-defined Oracle schema 

specification that need to be fulfilled. The imported spatial database for visualization is 

highly depends on this schema. One requires to create the same Map 3D’s schema as; 

 

(i)       Primary schema table, and 

(ii)       Secondary tables’ columns schema. 
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In primary schema described in Table 5.1, tables need to be created as follows: 

 
 
 
 
 

Table 5.2: Autodesk Map Schema in Oracle 10g 
 

TAB_NAME                         TAB_TYPE 
ADMPOSEMETADATA TABLE 
ADMPMETADATA TABLE 
ADMPFEATURELAYER TABLE 
ADMPOPTIONS TABLE 
FACE TABLE 
LINE TABLE 
NODE TABLE 
SOLID TABLE 
ADMPIMPORTSETTINGS TABLE 

 
 
 
 
 
--user-defined table 
--user-defined table 
--user-defined table 
--user-defined table 

 
 
After the primary schema tables are created, each of these tables are filled with specific 

columns that the Map 3D requires.  

 

In order to create user-defined spatial and topological database, i.e. node, line, face, and 

solid tables, we have to add two additional tables such as Geometry and EntityID which 

includes the geometrical data and the specific id for any entity respectively.   

 

 

 

5.4 Synchronization between Oracle and Map 3D schemas 

 

In order to visualize Oracle spatial database successfully within the Map 3D 

environment, synchronization between both Oracle spatial and Map 3D schema is 

required. However, spatial datasets are inserted into Oracle Spatial as follows: 
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Sample spatial datasets: 

 
 

 
 
 

Figure 5.2: Extraction of geometry dataset 
 
 

After datasets are inserted into Oracle database, the first stage of synchronization is to 

login into Map 3D. Later on, the second stage of synchronization is to connect Oracle 

schema table into Map 3D’s schema administration. The Map 3D will prompt user for 

Oracle database login name and password. From the Oracle database lists, select the 

appropriate database for visualization.  
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After the synchronization was included into Map 3D, databases are imported from Oracle 

schema table to Map 3D. Features selection must be identified in order to display the 

appropriate dataset. Figure 5.3 denotes the methodology to extract dataset from Oracle 

database to Map 3D, where Figure 5.4 display the Oracle dataset within Map 3D 

environment. 

 

 
 

Figure 5.3: Import Oracle Records into Map 3D 
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Figure 5.4: Final Oracle datasets display 

 

 

5.5 Querying 3-D Condense Spatial (CoS) Model 

 

Autodesk Map 3D is a tool for visualizing spatial data managed by Oracle Spatial. 

Autodesk Map 3D and Oracle Spatial combined can also serve as a powerful GIS 

platform, in that it not only to directly work on a modern spatial database, but also be 

able to immediately visualize the work they have done in the database and also can 

perform the analysis.  

 

For instance, the following query shows the results of common walls between different 

apartments in a same building. Following screenshot in Figure 5.5 displays a SQL query 

operation and its textual result, followed by a screenshot in Figure 5.6 showing the same 

query result displayed through Autodesk Map 3D.  
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Figure 5.5: Nested SQL query, showing common faces in 3D Solids 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6: Nested SQL query, showing common walls in 3D apartments 
 

 

The screenshot in Figure 5.6 shows complex 3D apartments on ground floor of a building 

which is generated by Autodesk Map 3D. Note this experimental application we built is 

actually also utilizing the geo-coding capabilities of Oracle Spatial. In this particular 

project 3D data of all the floors of building is loaded into Oracle Spatial. 
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5.6 Dynamic 3D Scene Generation on Web 

 

Today, the dynamic generation of HTML pages is a standard functionality of all 

commercial database systems. This feature has been proven to be a very effective and 

practical approach to support the (two-dimensional) visualization of information stored 

within database systems. In this research, we outline how a similar functionality can be 

realized to dynamically generate VRML scenes from a database management system 

(DBMS). This approach overcomes many of the limitations of static VRML scenes, by 

exploiting the persistence, scalability and security mechanisms of database management 

systems (Codd, 1970). In addition, it also provides a direct way to efficiently generate 

three dimensional visualizations from existing information in the database. 

 

In the experiment shown here, a “Geometry” data type allows, for example, to store all 

apartments of a building as VRML scenes together with the walls and its floor 

information along with the its ID. It is possible to select a subset of all apartments with 

certain properties and merge them in a new scene, e.g., in order to display all apartments 

that have already been rented to customers. 
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Figure 5.7: 3D dynamic data visualization of 3D building data on Web 
 
 
 
In the above Figure 5.7, a complete building structure is shown using the VRML client 

application installed as a plug-in with web browser. As it is shown in the above Figure 

5.6 that how complex 3D data is and to generate the dynamic scene through database 

onto the web browser was using the detailed architecture as shown above in the Figure 

5.5. 

 

Dynamic Scene generation in VRML/X3D using the data from the Oracle Spatial 10g has 

done in a way given below: 

 

A database connection is used as a statement inside PHP coding. Here are the strings used 

to connect to the Oracle database: 

 

 

<? 

$connection = OCILogon ("User Name", "Password", "service name")  

or die ("cannot connect to database"); 

?> 

 

The SQL in this case is quite simple—return all data contained in the table after 

execution: 

 

<?  

    $stmt = OCIParse($connection, "select * from building” )  

                 or die ("cannot select"); 

    OCIExecute($stmt, OCI_DEFAULT);  

?> 
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Once the result is assembled, the code loops through all of the records and displays as 

many Floors as there are records in the database. This is the loop: 

 

<? 

$count = 0; 

While (OCIFetch ($stmt)) { 

color = ociresult ($s, "color"); 

radius = ociresult ($s, "radius"); 

?> 

 

DEF Floor <? $count ?> Transform { 

translation <? $count*15 ?> 0 0 

children [ 

Shape { 

appearance Appearance { 

material Material { 

diffuseColor <? $color ?>} 

}  

geometry Sphere { 

radius <?$radius?> 

} } ] } 

<? 

count++; 

}  

 

Notice how the values from the database are inserted into the VRML. Two strings, color 

and radius, are set to the values from the database and then displayed in the VRML code 

as <? $color ?> and <? $radius ?>. 

 

The translation is handled by an integer (count), which keeps track of the number of 

records and displaces the floor by 15 on the x-axis every iteration of the loop. 
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The variable count has another use. As we generate objects, we give them a name: DEF 

Floor1, DEF Floor2, and so on. We do this by inserting the count into the VRML node’s 

definition DEF Floor <? $count ?> 

 

A DBMS supporting three dimensional visualization must be able to generate new 

VRML scenes, both from existing operational business data represented by conventional 

data types and from existing multimedia data represented by specialized media data 

types. Within the Building, statistical data about how many persons can live in one 

apartment could be visualized by an arrow diagram, where the arrow size is proportional 

to the number of family members allowed to live in an apartment. As always, free the 

resources database resources at the end. 

<?  

    OCIFreeStatement ($stmt); 

     OCILogoff ($connection); 

?> 

The VRML client has to be able to directly read and write the DBMS from within a 

VRML scene. For more advanced interaction modes in multi-user environments, this 

mechanism needs to be complemented by an event handling system. This allows 

signaling a change in a scene to all other users actively working on the same scene. The 

VRML event handling of the other users can then react by appropriately updating the 

scene, e.g. by reloading a part or the whole scene.  

 

The most important benefit of the above-outlined approach is that by means of storing 

VRML scenes within a DBMS, we achieve persistence of changes to scenes. 

Furthermore, the multi-user access control enables the sharing of VRML data among 

multiple users, thus we move from isolated, static scenes to shared spaces of dynamically 

generated three-dimensionally visualized information. Scalability is achieved by loading 

and generating scenes and scene components dynamically either at loading time or at run 

time. The corresponding loading/generation schemes can be determined both by physical 

characteristics of the VRML scene and the logical structure of the application. Controlled 



 104

access to scene data is supported by the security and view mechanisms of the underlying 

DBMS. For example, in the "Building" scenario, one might display the rent of an 

apartment only to authorized members or customers but not to visitors. 
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CHAPTER 6 

 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

6.1 Conclusion and Future Work 

 

Spatial data management using Geo-DBMS become one of the leading 

technologies recently. Although its 3D spatial data capability currently does not offer 

wider spectrum of analytical tools, its overall flexibility enables user to implement at 

least some of it with little effort, i.e. spatial queries, and dataset retrieval. Spatial data 

types for 2D are currently available in mainstream DBMSs and now geo-science is 

focusing on support for 3D, 4D and topology in DBMSs. The next step is to make the 

data organized in a geo-DBMS available within and between organizations and for 

individual users via Web technology.  

 

This thesis contributes to these developments, since it illustrates how 3D visualization 

techniques and techniques to query DBMSs via a web server can be combined. We 

showed how 3D geometry stored in an Oracle database can be converted into VRML or 

X3D, and how the 3D objects can be presented in a 'simple' Internet browser together 

with their non-spatial attribute information. Future work will focus on a number of 

research issues. 

 

The described data model presented in this thesis could make a basic development of 

facilities management system of almost any scale, i.e. building management, 
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underground construction, or 3D strata title databasing; enabling user to perform  basic 

spatial, attribute and temporal analysis (or any combination of these) without the need to 

extensively further develop it. Its topologically structured spatial component ensures high 

data consistency with low redundancy.  

 

Further research should be oriented to extending 3D spatial analytical capabilities either 

by adopting new native functionality such as spatial operators, or by user programmed 

extensions. It should also be tested which of current 3D data modeling standards like 

GML and X3D suits better for similar systems needs. Both technologies enable 

combination of spatial and non- spatial data enabling system a better client-server load 

balancing which is at this point mostly sever oriented and requires a round trip for most 

of additional queries. 

 

We have discussed some of the VRMLX3D and Geo-DBMS’s features which we used 

for animation and user interaction with the rendered 3D model. With our approach, we 

have achieved the most of the requirements for dynamic information visualization 

support we have identified. Security and persistence are provided as a basic property of 

the DBMS.  

 

Although experience with the prototype looks promising with respect to performance, 

serious tests on larger data sets will be set up. Fast rendering of 3D objects is of course 

critical when displaying data via the Internet. One option is the use of compression 

techniques. Other strategies have to do with navigation and zoom-levels. First data with 

low Level of Detail can be presented, and only when the user zooms in the Level of 

Detail is increased (Kofler, 1998). This touches the fundamental research issue of storing 

multi-representations in DBMS’s or performing generalizations on the fly. 

 

Another issue is that of visualization constraints. X3D and VRML environments were 

originally meant to visualize all kinds of objects. Therefore, constraints should be 

implemented in the prototypes to meet specific conditions for visualizing geo-

information, e.g. one should not be able to turn the data set upside down. 
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The prototype described in this thesis form a contribution to accessing 3D geo-objects 

organized in a DBMS. Our experiences show potentials for the use of common Web 

technology in GIS and more specific in 3D GIS applications, which should be further 

elaborated in future research. 
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