
3
VIEW-DEPENDENT

SIMPLIFICATION ON OUT-OF-
CORE DATASETS IN 3D REAL-

TIME GAME ENGINE
DEVELOPMENT

Tan Kim Heok, Daut Daman, Abdullah Bade,
Mohd Shahrizal Sunar

INTRODUCTION

apid technology growth in modern 3D scanning
technology and the high complexity of computer
simulations have led to a boost in the size of geometry data
sets. Even the most powerful graphics hardware also is not
able to handle the rendering of the extremely massive data.
Noticeable delay or jagged effects always bother the
rendering quality. It is significant especially in real-time
and interactive application. The conventional simplification
approaches are no more sufficient to handle it. Thus, out-
of-core approach is invented. Besides, in many
applications, surface attributes are important to show the
details of the mesh. Therefore, automatic simplification is
done on massive datasets while preserving its surface
attributes. In this chapter, we present a preliminary
approach to represent the data in an Octree structure and
then to simplify the model using modified memory
insensitive technique. During run-time, the portion of the
visible mesh will be rendered view-dependently.

R

36

LEVEL OF DETAIL (LOD)

Since the mid nineteen-seventies, programmers have used
Level of Detail (LOD) techniques to improve the
performance and quality of their graphics systems. The
LOD approach involves retaining a set of representations of
each polygonal object, each with different levels of triangle
resolution (Figure 3.1).

Figure 3.1 Three levels of detail of the Ludwig model. Left,
4998 faces; center, 1250; right 250 faces (Ribelles,
et al. 2001)

ALGORITHM FRAMEWORK

This section introduces an approach for end-to-end and out-
of-core simplification and view-dependent visualization of
large surfaces. Besides, appearance preservation will be
proposed as well. Here, the arbitrarily large datasets, which
are larger than memory size, can now be visualized by
giving a sufficient amount of disk space (ie. a constant
multiple size of the input mesh). The preprocess work starts

37

with data preprocessing and then an Octree is constructed
to partition the space efficiently. Consequently, a modified
memory insensitive simplification is preceded (Lindstrom
& Silva 2001). Finally, the view-dependent rendering on
output mesh will be carried out during run-time. The off-
line phases are performed on secondary memory whilst the
run-time system only pages in the needed parts from the
mesh in a cache coherent manner for rendering purpose.
The framework overview is shown in Figure 3.2.

Figure 3.2 Framework overview

Preprocessing (Step 2)

Octree Construction

Preprocessing (Step 3)

Simplification

Run time

View dependent

Preprocessing (Step 1)

Data Processing

38

 Algorithm starts with data processing process. It
involves data loading into our system and dereferencing of
triangle indices to their corresponding vertices. The
experimental data is in PLY data format. It is one of the
common file formats in storing the large datasets. However,
these raw data are in indexed mesh. Even though the format
is compact, the processing time is slow. Thus, it needs to be
further processed before proceeding to simplification
process. Therefore, we dereference a list of triangle to its
vertices so that a triangle soup mesh is generated.
 Secondly, an Octree is constructed to divide the
loaded data into spatial space. The purpose is to make sure
the data processing step becomes easier and neater. The
triangular mesh is subdivided into its appropriate location.
Because of the datasets size is too large for the available
main memory size on commodity computer; hence the data
in each Octree node is kept in its end node file. The end
node files size is small enough to fit in main memory and
are stored in an organized directory format. Thus, the file
searching is easier to be performed.
 In the run-time phrase, the visible nodes are
extracted from Octree. Each of them is considered as active
nodes and the vertex information is loaded into a dynamic
data structure. The active nodes are expanded and collapsed
based on view-dependent criteria. Besides all above, the
rendering and refinement stages are run in parallel.

DATA PROCESSING

PLY data file has a header and followed by a vertex list and

39

face list. The file header starts with PLY and ends with
END_HEADER. The Following is the general header
structure:

ply
format ascii 1.0
comment …
element vertex num_of_vertices
property float32 x
property float32 y
property float32 z
element face num_of_faces
property list uint8 int32 vertex_index
end_header

 A vertex list consists of num_of_vertices, a triangle
list and num_of_faces. It is in indexed format which is
space efficient. However, it slows down the processing
time because the indexed triangle list needs to be converted
to triangle soup style.

OCTREE CONSTRUCTION

From previous data processing step, the complete triangle
soup file is loaded portion by portion into our Octree.
Octree is chosen as it eliminates the computation time spent
on processing on the empty space in a data model. Each
time, the space is divided into eight cubes recursively until
the tree is fully subdivided. Each internal node stores their
directory path, so that end node file searching becomes

40

easier. Only the leaf nodes hold the triangle list.
 Since the datasets could not fit into main memory,
the vertices in each leaf node are written into every end
node file. The file is small and is kept in organized
directory structure. Each child node is contained in their
parents’ node directory (previous parents’ directory).
Hence, the tracking of every end node file is simple and
better organized.
 By using the constructed Octree as our spatial data
structure, it makes our view-dependent rendering faster in
general. It contains the whole world information. Every
detail mesh in it is small and stored in end node files, thus
makes the simplification easier to be performed.

CONCLUSION

There is some future works, including performing pre-
fetching to accelerate the data paging and enhancing on-
disk data handling. Besides, application like in medical
visualization needs very accurate visualization and that
requires better quality of simplified mesh. We can also
extend this application to be used in network game.

 REFERENCE

LINDSTROM, P. AND SILVA, C. 2001. A Memory Insensitive
Technique for Large Model Simplification. In IEEE
Visualization 2001, San Diego, CA, 121-126.

41

LINDSTROM, P. 2000. Model Simplification using Image
and Geometry-Based Metrics. Ph.D Thesis, Georgia
Institute of Technology.

RIBELLES, J., LÓPEZ, A., BELMONTE, O., REMOLAR, I. AND
CHOVER, M. 2001. Variable Resolution Level-of-detail
of Multiresolution Ordered Meshes. In Proc. of 9-th
International Conference in Central Europe on
Computer Graphics, Visualization and Computer
Vision (WSCG 2001), Plzen: Czech Republic, 299-306.

