EFFECT OF ZINC ADDITION ON THE PROPERTIES OF MAGNESIUM ALLOYS

SAMIR SANI ABDULMALIK

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Mechanical-Advanced Manufacturing Technology)

Faculty of Mechanical Engineering

University Technology Malaysia

JANUARY 2012

To my mother for her tireless prayers

To Engr Isyaku Jibrin Sani for his Financial Support

ACKNOWLEDGEMENT

I would like to say thank you very much to my supervisor Assoc. Prof. Dr. Mohd Hasbullah Bin Hj. Idris for his wonderful supervision style and encouragement throughout the project work

My special regards also goes to my mother for her tireless prayers, and to Engineer Jibring Isyaku Sani for his tremendous financial support

Finally I want to appreciate the effort of all those who have directly or indirectly contributed to the successful completion of this project work, thank you all.

ABSTRACT

Magnesium alloys are currently used in many structural applications. It is believed that magnesium and its alloys may also find applications in biomedical application. In this study, the effects of Zinc (Zn) addition on the properties of magnesium (Mg) alloys, i.e. Mg–xZn (x = 2, 4, 6, 8, and 10) were investigated. Optical microscopy, scanning Electron Microscope (SEM), tensile and Vickers hardness testing were used for the characterization and evaluation of the microstructure and mechanical properties of the alloys. Electrochemical corrosion measurement was also employed to determine the corrosion resistance of the alloys. The results show that magnesium alloy with 6 wt. % zinc content (denoted as Mg- 6Zn) shows good corrosion resistance and mechanical properties).

ABSTRAK

Pada masa ini aloi magnesium (Mg) telah digunakan dalam pelbagai aplikasi struktur. Dipercayai bahawa magnesium dan aloinya telah digunakan dalam bidang bioperubatan. Dalam kajian ini, kasan pertambahan zink (Zn) (2, 4, 6, 8 dan 10% berat) tehadap sifat mekanikal dan kakisan aloi magnesium, Mg-xZn telah dikaji. Analisis menggunakan mikroscop optik, *Scanning Electron Mikroscopy (SEM)*, ujian ketegangan dan kekerasan Vickers telah digunakan bagi pencirian dan penilaian mikrostructur dan sifat mekanikal aloi yang dikaji. Ujian kakisan electrokimia juga telah digunakan untuk menilai sifat rintangan kakisan aloi. Keputusan ujikaji menunjukan bahawa aloi magnesium dengan kandungan 6% berat zink (diwakili dengan Mg-6Zn) memberikan sifat kakaisan dan mekanikal yang baik.

TABLE OF CONTENTS

CHAPTER

|--|

PAGE

DECLARATION	ii
DEDICATION	iv
ACKNOWLEDGMENT	v
ABSTRACT	vi
ABSTRAK	vii
LIST OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF APPENDICES	XV

1 INTRODUCTION

1.1	Background	1
1.2	Statement of Problem	3
1.3	Objectives	3
1.4	Scopes	4

2 LITRETURE REVIEW

2.1	Overview of Biomaterials	5
	2.1.1 Uses for Biomaterials	6

		2.1.1.1 Orthopedics	6
		2.1.1.2 Cardiovascular Applications	7
		2.1.1.3 Ophthalmic	7
		2.1.1.4 Dental Applications	7
	2.1.2	Types of Biomaterials	7
		2.1.2.1 Metallic materials	8
		2.1.2.2 Polymers	9
		2.1.2.3 Ceramics	9
		2.1.2.4 Composites	10
	2.1.3	Natural Biomaterials	11
	2.1.4	Application of Biomaterials	11
2.2	Natura	al Bone	12
	2.2.1	Desirable Properties of Artificial Bone Material	13
		2.2.1.1 Body Condition	13
		2.2.1.2 Mechanical Properties	15
		2.2.1.3 Corrosion Resistance	15
2.3	Conve	entional Metallic Materials Used For Medical Devices	16
	2.3.1	Stainless steels	17
	2.3.2	Cobalt-Base Alloys	17
	2.3.3	Titanium and Titanium-Base Alloys	18
2.4	Mag	nesium	18
	2.4.1	Properties of Pure Magnesium	19
	2.4.2	Melting and casting of magnesium	20
		2.4.2.1 Melting	20

	2.4.2.2 Casting and working of magnesium	22
	2.4.3 Magnesium Alloys	22
	2.4.3.1 Common Alloying Elements	23
	2.4.3.1.1 Aluminum	23
	2.4.3.1.2 Calcium	23
	2.4.3.1.3 Manganese	23
	2.4.3.1.4 Rare Earths	24
	2.4.3.1.5 Zinc	24
2.5	Zinc Metal	24
	2.5.1 Zinc Biological role	24
2.6	Researched Biodegradable Magnesium Alloys	25

3 RESEARCH METHODOLOGY

3.1	Introd	uction	28
3.2	Reseat	ch Design	30
	3.2.1	Casting	30
	3.2.2.	Microstructural Characterization	33
	3.2.3	Hardness Test	35
	3.2.4	Tensile Test	37
	3.2.5	Electrochemical Measurement	38

4 **RESULTS AND DISCUSSION**

4.1	Selection of optimum zinc addition	39
	4.1.1 Nominal Composition Analysis	39

5	CONCLUSION	47
	4.1.5 Corrosion Electrochemical Test	46
	4.1.4 Tensile Test	44
	4.1.3 Hardness Test	43
	4.1.2 Microstructural Characterization	40

REFERENCES	48
APENDIX A-C	51

xi

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Example of Medical and Dental Material and their Application	ons 8
2.2	Example of Polymers used as Biomaterials	9
2.3	Example of Biomaterial Ceramics	10
2.4	Summary of the mechanical properties and porosity of human	1
	bone	5
2.5	Raw Materials for Magnesium Production	19
4.1	Nominal chemical composition of the Mg-Zn alloys	39
4.2	The Tensile strength, Yield, and Elastic Modulus value	
	for Mg-Zn alloys	45

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Implant material requirements in orthopedic applications	6
2.2	Hip joint replacement	12
2.3	Details of the bone structure	13
2.4	Closed packed structure of pure magnesium	20
3.1	Flowchart showing the summary of research methodology	29
3.2	(a) Magnesium Ingot (b) Pure Zinc	30
3.3	(a) Mg-Zn Melting, (b) Pouring into steel mold,	
	(c) Designed Mold, (e) cast sample (f) the mold used	31
3.4	(a) Olympus BX60, (b) Philips XL 40, (c) Supra 35VP,	
	used for the characterization of the microstructure	34
3.5	(a) Matsuzawa DVK-2 used for the hardness testing	
	(b) location of the test on the sample	36
3.6	Instron universal tensile testing machine used in the tensile	
	testing of the samples	37
3.7	Electrochemical test (Parstat-2263) set up used for the corrosion	
	Measurement	38
4.1	Microstructure of the as cast (a) pure magnesium, (b) Mg-2Zn,	
	(c) Mg-4Zn, (d) Mg-6Zn, (e) Mg-8Zn, (f) Mg-10Zn	40

4.2	FE-SEM micrographs of (a) Mg-8Zn alloy,	
	(b) Mg-10Zn Alloy, (c) (Mg, Zn)-containing phase in the grain,	
	(d) (mg, Zn)-containing phase at the grain boundary	41
4.3	EDS analysis of the secondary phases (a) on the grain,	
	(b) at the grain boundary	42
4.4	The hardness value of Mg-Zn alloys as a function	
	of zinc addition	43
4.5	The Tensile strength value of Mg-Zn alloys as a function	
	of zinc addition.	45
4.6	Electrochemical polarization curves of Mg-Zn alloys	
	under investigation	46

LIST OF APPENDICES

APPEN	DIX TITLE	PAGE
А	Compositional Analysis of the as- cast Samples	51
В	The Stress/Strain Graphs for the alloys Samples	61
С	Polarization Curves of the Samples	66

CHAPTER 1

INTRODUCTION

1.1 Background

Biomaterial implants are used as a replacement of a bone part or as a support in the healing process. Replacement of a bone part requires implants to stay in the body permanently, while support only requires that the implant remain in the body for a shorter period. When permanent implant is used for a temporary application, additional surgeries are required to remove these devices after the healing process. Thus, removal process increases the patient grim and cost of health care. In contrast, biodegradable materials require no additional surgeries for removal as they dissolve after the healing process is complete. This also eliminates the complications associated with the longterm presence of implants in the body. Finally, after these materials degrade within the body, it is important that the body can metabolized the degradation products, and thus are bioabsorbable.

The first materials to be used as commercial biodegradable and bioabsorbable implant materials were polymers. The most commonly and earliest used absorbable materials include polyglycolic acid (PGA), poly-lactic acid (PLA), and poly-dioxanone (PDS). However, low mechanical properties and radiolucency are the limitation with these materials. Applications of polymeric materials in load-bearing and tissue supporting applications is severely restricts due to low strength, because the mechanical needs of the body required a greater amount of material.

Metals due to their relatively high strength and fracture toughness possesses desirable mechanical properties, however, most of the metals are biologically toxic. Studies revealed that conventional implant, like cobalt, stainless, chromium, and nickel-based alloys produce corrosion products, which are harmful to the human body [1] [2] [3] [4].

Magnesium and its alloys are biodegradable metals and exhibit improved mechanical properties and corrosion resistance. However most of the reported biomedical magnesium alloys contain aluminum and/or rare earth (RE) elements. It is well known that Al and rare earth elements are harmful to neurons, osteoblasts, and also associated with dementia and could lead to hepatotoxicity. Consequently, Al and RE are unsuitable alloying elements for biomedical magnesium materials, particularly when they are above certain levels [5]

Pure magnesium was indicated as suitable candidate for temporary implant; however, the major drawback of Mg is its low corrosion resistance which results to low mechanical strength in the physiological environment. Alloying elements can be added to increase the strength of pure Mg but alloying elements should be selected carefully to maintain the Mg's biocompatibility.

With the purpose of searching for suitable alloying elements for biomedical magnesium alloys, researchers demonstrated that Calcium (Ca), Manganese (Mn), and Zinc (Zn) could be appropriate candidates. Zinc is one of the essential elements in human body that also provide mechanical strengthening in Mg-based alloys.

Zinc can improve the corrosion resistance and mechanical properties of magnesium alloys, Zinc additions increase the strength of Mg-based alloys primarily through precipitation strengthening. Furthermore, zinc is one of the most abundant nutritionally essential elements in the human body, and has basic safety for biomedical applications [6] [7].

1.2 Statement of Problem

The mechanical properties and corrosion resistance of magnesium alloys must be sufficiently investigated for medical application. Magnesium is essential to human metabolic functions and is the fourth most abundant cation in human body. In vitro cytotoxicity of pure magnesium metal showed positive cell proliferation and viability with no sign of growth inhibition. The fracture toughness of magnesium is greater than that of ceramics, but pure magnesium corrodes too quickly in the physiological environment (pH 7.4–7.6), losing mechanical integrity before tissue healing. In an effort to maintain the mechanical integrity, and biocompatibility, more alloying compositions are necessary.

1.3 Objectives

The objectives of this project are:

- 1. To establish optimum material composition Mg-Zn
- 2. To establish the effect of Zinc addition on the properties of Mg alloy as biodegradable material

1.4 Scopes

This project was conducted within the following boundaries:

- 1. Mg-Zn alloys was prepared and cast using gravity die casting process
- 2. The effect of zinc addition was characterized and measured through:
- (a) Microstructure observation
- (b) Mechanical properties test, and
- (c) Electrochemical corrosion tests