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8.0 INTRODUCTION 

 
Fibre reinforced composite (FRC) is an important material to be 
considered in the design of structures that require high strength to 
weight ratio. Examples of these structures are high performance 
aerospace vehicles such as high speed aircrafts, rockets and launch 
vehicles. To enhance this property of high strength to weight 
ration, FRC components are usually made thin and curvy. As a 
result, one important mode of failure to be considered in these FRC 
component designs is buckling failure which can be due to 
compressive mechanical or thermal loading. For the mentioned 
high performance aerospace vehicles, thermal loading is 
unavoidable. Thermal loading here is caused by aerodynamic 
heating which is due to the supersonic or hypersonic flight. This 
heating will provide the structure’s external skin with thermal 
compressive load since the inner part of the skin remains cooler 
and thus restrains the free expansion of the skin. Consequently the 
outer skin will be subjected to thermal buckling because of the 
mentioned typical low thickness in the FRC components [1]. It is 
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well known that thermal buckling of plate structures is a sudden 
huge lateral deflection that occurs when the temperature of the 
plates increases above the critical temperature, Tcr. It is also known 
that buckling in a plate structure is not a snap-through type that can 
result in a total collapse of the structure. It is rather of a huge 
deflection of the plate that requires attention on how much can the 
plate withstands further loading after buckling occurs. The 
understanding of the post-buckling behaviour that occurs after the 
occurrence of critical buckling is thus important in maximizing the 
usage of the structures. The determination of these patterns of 
behaviours of thermal post-buckling of laminated composite plates 
is the objective of this study.  
    Thermal buckling of laminated composite plates was studied 
using the finite element method by Prabhu, M.R. and Dhanaraj, R 
[2]. The parametric studies of the thermal buckling analysis on the 
symmetric angle-ply and cross-ply and the quassi-isotropic 
laminates were conducted. The influence of the stress distribution 
on the variation of critical temperature with fibre orientation was 
studied for different boundary conditions. It was found among 
others that the variation of Tcr is not symmetric with respect to θ = 
450 for symmetric angle-ply laminates. A similar study was 
conducted by Shankara, C.A. and Iyengar, N.G.R [3]. They 
however used both the higher order shear deformation theory 
(HSDT) and the FSDT of composites to describe the kinematics of 
the composites. As a result, similar findings to the studies 
conducted by [2] were obtained.  Chen et al [4] enhanced the 
studies on thermal buckling of composite plates by considering the 
non-uniform temperature distribution. It was found that the effects 
of lamination angle, modulus ratio, plate aspect ratio and boundary 
conditions upon the critical temperatures were significant. Studies 
on thermal post-buckling of laminated composite plates using the 
FEM were conducted by Singh, G. and Rao, G.V. [5]. They used 
the nonlinear strain-displacement relations, which include thermal 
strains and allow parabolic variation of transverse shear strain with 
vanishing of transverse shear stress at the top and bottom surfaces 
of the plates. A sequence of linear eigen-value problems was 
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solved to trace the thermal buckling path of symmetric angle-ply 
plates. The investigation revealed that the post-buckling path may 
not remain stable throughout. It was shown that secondary 
instabilities did take place from the post-buckling path. Averill and 
Reddy [6] conducted geometrically nonlinear analysis to compare 
the effect of transverse normal deformation in the FSDT and the 
HSDT on the thermal buckling responses of composite structures. 
It was found that if the transverse normal deformation was 
constrained, the thermal buckling responses predicted by the FSDT 
were completely different from the responses predicted by the 
HSDT. Singha, M.K. et. al [7] extended the study of [5] by 
considering the temperature dependent properties of laminated 
composite plates. The analysis revealed that there exist two 
thermal instabilities in the composite plates.  
 In this study, the total Lagrangian approach of the Newton 
Raphson scheme is used to trace the thermal post-buckling paths of 
anti-symmetric angle-ply laminated composites. The FSDT of 
composites with the added von Karman’s nonlinear moderate 
strain terms was used to describe the kinematics of the composites. 
Combining these strain equations, the constitutive equations of the 
laminated composite and the principle of virtual work equations 
has resulted in the finite element governing non-linear equations 
that represent the buckling and post-buckling behaviour of 
laminated composite plates. The source codes were developed to 
solve these governing non-linear equations.  With this model, 
studies were conducted on the anti-symmetric angle-ply laminated 
composite plates. Several parameters that affect the thermal post-
buckling behaviour of laminated composite plates such as the 
numbers of layers, aspect ratios, side to thickness ratios and 
boundary conditions of the plates were studied. It is hoped that 
these studies on the important thermal post-buckling behaviour of 
laminated composite plates using the developed model can 
improve the current state of understanding on the subject and thus 
become useful in the design of aerospace vehicles. 
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8.1 MODELLING OF COMPOSITE PLATES FOR 
THERMAL POST-BUCKLING PROBLEMS  
 
 
The laminated composite plates to be modelled here are such as 
shown in Figure 8.1. The xyz- coordinate system is the Cartesian 
coordinate system while the 123 – coordinate system is the 
material coordinate system. a and b are the side length of the plate 
while h is the total thickness of the plate. The in-plane constitutive 
relationship that includes the temperature effect for a composite 
plate in the material coordinate system is well known to be 
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   (1a) 
or in a short form, 
 { } [ ]{ } { }111 αεσ −= Q TΔ               (1) 
 
where  [Q] is the reduced stiffness matrix of the composite [8] and 
{σ1 }, {ε1} and {α1} are the vectors of stress, strain and thermal 
coefficient of expansion in the material coordinate system. 
 
 
  
 
 
 
 
 
 
 
 

Figure 8.1.  The laminated composite plate 
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 For the transverse constitutive relationship, refer to [8]. Using 
the transformation matrix [8] we have,  
{ } [ ]{ } { } TQ xxx Δ+= αεσ                        (2) 
where [ Q ] is the transformed reduced stiffness matrix of the 
composites, and {σx }, {εx} and {αx} are the vectors of stress, 
strain and thermal coefficient of expansion in the Cartesian  
coordinate system (x-y-z). Using the Mindlin’s FSDT [9], 
displacements at any points in laminated composite plates can be 
expressed as, 
u(x,y,z,t) =  uo (x,y,t) +  z θx(x,y,t)     
v(x,y,z,t)  = vo (x,y,t) +  z θy(x,y,t)                (3) 
w(x,y,z,t)  = wo

 (x,y,t) 
where uo, vo and wo are the mid-plane displacements in the x, y and 
z directions respectively while θx and θy are the normal rotations in 
the xz-plane and  yz-plane respectively and t is the time variable. 
By including the von Karman’s strain, the strain can be expressed 
as  
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or  
{ε} = {εp} + z{κ} 
       = {εm} +{εnl}  + z{κ}              (5) 
 
where  {εm}, {εnl} and {κ} are the in-plane linear strain vector, the 
in-plane nonlinear strain vector and the curvature strain vector, 
respectively. The transverse shear strain vector is as the following 
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 Defining stress resultants in the usual ways [9] for the 
laminated composite, we have constitutive relationship regarding 
the in-plane stress 
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and for the out of plane stress, 
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where [A], [B], [D] and [A’] are the laminate material matrices 
while {N} and {M} are the force and moment resultant vectors, 
respectively. {NT} and {MT} are the resultant force and moment 
vectors due to the change in temperature respectively such as 
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 Applying the finite element method, eight noded 
isoparametric quadrilateral elements are used here. Each node 
carries 5 degrees of freedom. 
{a} = [N]{q}             (8a) 
{q}T = {u1,v1,w1,θx1, θy1, u2,.. ,w8,θx8, θy8}           (8b) 

where {a} and {q} are the generalised and nodal displacement 
vectors and  [N] is the shape function matrix. The principle of 
virtual works can be stated as  

δW =δWint - δWext = 0                    (9a)  
δWint= { }Tqδ { } { } { } { }NN T

nl

T

A
m δεδε +∫ { } { } { } { }QM T

s
T

b εε ++ dA     (9b) 

 Inseting equations (5)-(8b) into (9b) and following the 
standard FEM modelling procedures [8], we have 
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δWint= { } [ ] [ ] [ ] [ ] [ ] [ ] { }qNNKKKKq GTsL
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 Since there are no external loads,  
δWext= 0                       (11) 
Inserting equations (10) and (11) into equation (9a), the FEM 
governing equation for the geometric nonlinear buckling problem 
of composite plates can be obtained as in the following. 
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where [KL], [Ks], [KG] and [KT] are the linear, shear, geometric and 
thermal stiffness matrices and [N1]and [N2] are the first and second 
order nonlinear stiffness matrices. Equation (12) is a nonlinear 
equation. One way to solve this equation is by using the Newton 
Raphson’s scheme and here the total Lagrangian approach is used. 
Introducing a function of residual forces, {ψ}. 
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Due to the Taylor’s approximation [8], 
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so that 
 
[ ]{ } nn qqK )(tan ϕδ −=          (16) 
 
and displacements are incremented such as 
   
{ } { } { }nnn qqq δ+=+1          (17) 
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Figure 8.2:  Flow-chart for the development of the source codes 
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 FEM source codes for solving equations (15)-(17) were 
developed. To detect the bifurcation point, linear thermal buckling 
was conducted initially on the composite plates. By this process, 
the critical temperature, ΔTcr and its associated eigen-vector, {φ} 
can be determined. The eigen-vector was used as the initial trial 
value of the initial transverse displacement. The initial 
displacement vector is set to be 
{q} = 0.5

maxw
h {φ}           (18) 

for each increment of temperature until a significant value of 
displacement can be achieved which means that the post-buckling 
has occurred. {q} here is the vector of generalised displacement 
and h is the total thickness of plates. The flow-chart of this 
algorithm is shown in Figure 8.2. Following this, the results of the 
post-buckling of SMA composite plates are given next. 
 

8.2 RESULTS AND DISCUSSIONS  
 
The effects of several parameters on post-buckling behaviours of 
composite plate are studied for anti-symmetric angle-ply 
composite plates. The angle of orientation for most cases is [45/-
45]2. Referring to Figure 8.1, the aspect ratio, a/b is 1.0 with 
a=b=0.1m and the side to thickness ratio, a/h is 100 unless 
specified differently. Two typical mechanical properties of 
graphite- epoxy composites are used here:  

Property 1 (P1):  
E1= 155.0E9, E2= 8.07E9, v12= 0.22,  G12= 4.55E9, G23= 4.55E9, 
G13=3.25E9, α1= -0.07E-6, α2= α3=  30.1E-6 
 
Property 2 (P2): 
E1/E2=40, E2=6.25, G12/E2=0.8, G12=G13, G23/E2=0.52, v12=0.24, 
α2/ α1=10. 
In most cases, the hinged boundary condition (HH) is used. 
However as for comparison, the boundary conditions of simply 
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supported (SS) and clamped (CC) at all edges are applied too. The 
conditions for these three boundary conditions are shown below. 

HH -  at x=0, a : u=v=w=θy=0, at y=0, b : u=v=w=θx=0 
S S -  at x=0, a : u =w=θy=0,     at y=0, b : v=w=θx=0 
CC -  at x=0, and y=0, b : u=v=w=θx=θy=0  

 
8.2.1. Validation 
 
Convergence tests are conducted for the linear thermal buckling 
analysis. Three composite configurations are used: [30/30]2, 
[30]30]s and [0/90]2. The P2 property is used here. Table 8.1 shows 
that the results from the current analysis are in good agreement 
with the results available from the literature. It was decided to use 
the 6x6 elements in this study. 
 
 

Table 8.1: Convergence test for the linear thermal buckling analysis 
  

 [8] 4x4 5x5 6x6 8x8 
(30/-
30)s 

8.396 9.200 8.735 8.580 8.431 

(30/30)2 10.169 10.210 10.178 10.168 10.162 
(0/90)2 21.166 24.468 22.219 21.743 21.570 

 
 
 Post-buckling analysis was conducted on a qussi-isotropic 
and an orthotropic plates. In the former analysis, the composite 
configuration is [45/-45/0/90]s. The plate is 0.15m x 0.15m with 
the length to thickness ratio, a/h = 150. The P1 property is used 
here. In the latter case, the configuration of the composite plate is 
[45/-45]2 and the P2 property is used. The plate is 0.1m x 0.1m 
with the length to thickness ratio, a/h=100. Figure 8.3 and 8.4 
show that the results of the two analyses agree excellently to the 
finding of the past literatures. 
 



 

 

134 Thermal buckling of Anti-symmetric composite plates with geometric non-
linearity using finite element method  
 

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5

dT/dTcr

w
m

ax
/h

Present Averill&Reddy

 
 

Figure 8.3.  The thermal post-buckling of a quassi-isotropic plate 
 

 

0

0.4

0.8

1.2

0 0.5 1 1.5 2 2.5

dT/dTcr

W
m

ax
/h

Present Singh et al

 
Figure 8.4.  The thermal post-buckling of anti-symmetric angle-ply 

composite plate 
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8.2.2. The effect of the number of layers 
 
This study is conducted on composite configuration of [45/-45]n 
where n represents the number of layers of the composites. 
Material property of P1 is used here. The total thickness of the 
composites remains the same as the numbers of layers are 
increased. Figure 8.5 shows that in all cases, buckling starts to 
occur at ΔTcr values as were predicted by the linear buckling 
analysis. Critical thermal buckling loads (λn) increased as the 
numbers of layers are increased. The post-buckling paths are stable 
throughout the range of applied ΔT. Figure 8.5 also shows that as 
the number of layers is increased from four to six, the ratios of 

crT
T

Δ
Δ  

decreased for the same amount of lateral deflection. However this 
decreasing trend reduced as more layers are increased. The reason 
for this is the well known existence of the composite property 
where as the number of layers is increased, the bending-
extensional coupling effects of the laminated composite that 
contributes to this trend decreased at the same time.  
 
 
8.2.3. The effect of the plate thickness 
 
In this study, the thickness of plates, h are changed for the same 
amount of side length, a=0.1m. The plates with configuration [45/-
45]2 and P1 material property are used here. As expected, Figure 
8.6 indicates that the critical loads decreased as the thickness is 
decreased. However, Figure 8.6 also shows that similar to the 
previous study of the effect of the number of layers on the post-
buckling of plates, the ratios of 

crT
T

Δ
Δ  decreased as the ratios 

h
a are 

increased. As such, the same reason is applied here where, as the 
number of layers is increased, the bending-extensional coupling 
effect of the laminated composite that contributes to this trend 
decreased at the same time. In all cases, buckling can be seen to 
start occurring at the values of ΔT as were predicted by the linear 
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analysis. Furthermore, all post-buckling paths are stable within the 
range of applied ΔT. 
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Figure 8.5.  The thermal post-buckling of [45/-45]n  composite plates 
(λ1=55.3oC λ2= 86.4oC λ3=90.6 oC λ4=92.1 oC λ5=92.7 oC) 
 



 

 

137 Advances in Mechanical, Manufacturing and Materials Engineering 

0

1

2

3

4

0 0.5 1 1.5
wmax/h

ΔT
/ Δ

Tc
r

a/t=10 a/t=50

a/t=100 a/t=500

 
Figure 8.6.  The thermal post-buckling of [45/-45]2 composite plates 
with different side length to thickness ratios.  (λ10=6915.2oC λ50= 
453.0oC λ100=115.7 oC λ500=4.8 oC ) 
 
 
 
8.2.4. The effect of the boundary conditions 
 
The three types of boundary conditions were applied on composite 
plates with the configuration of [45/-45]2. Figure 8.7 shows that the 
lowest critical buckling (λSS=105.7oC) occurs when the SS 
boundary condition is used while the CC boundary condition gives 
the highest critical buckling (λCC=232.8oC). As in previous studies, 
buckling in all cases start to occur at the values of ΔTcr as were 
predicted by the linear analysis. In addition, all post-buckling paths 
are stable within the range of applied ΔT. 
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Figure 8.7.  The Thermal Post-Buckling Of [45/-45]2 Composite 
Plates With Different Boundary Condition.(λSS=105.7oc 
λHH=115.7oc λCC=232.77 Oc ) 
 
 
 

8.2.5. The effect of the aspect ratios 
 
 
In this study, the aspect ratios (a/b) are changed to see its effect on 
the thermal post-buckling behaviour of composite plates. It is 
noted in Figure 8.8 that as the aspect ratios are increased, the 
critical loads increased too. This is expected since as the aspect 
ratios are increased, the plates become less slender and the side 
where loading occurs is longer than the other side. Figure 8.8 also 
shows that in each case of a/b ratio, buckling starts to occur at Δcr 
as predicted by the linear analysis.  It also shows that the ratios of 

crT
T

Δ
Δ  are higher for the same amount of lateral deflection if the 

aspect ratios are different from 1.  
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Figure 8.8.  The Thermal Post-Buckling Of [45/-45]2  Composite 
Plates With Different Aspect Ratios.  (λ0.5=60.3oc λ0.75=87.1oc 
λ1=105.7 Oc, λ1.25=144.4.1oc λ1.5=173.8 Oc ) 
 
 
 

8.2.6. The effect of the lamination angles 
 
 
This study is conducted on the composites with configurations of 
[θ/-θ]2 where θ can be 0o, 15o, 30o, 45o, 60o, 75o and 90o. The 
results for the θ of 60o, 75o and 90o are not shown in Figure 8.9 
because they coincided with the curves for the θs of 30o, 15o and 0o 
respectively.  
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Figure 8.9.  The thermal post-buckling of [45/-45]2 composite plates for 
different boundary conditions.  (λ1=68.2oC λ2=71.4oC λ3=115.7 oC ) 
 
 
 
The graphs in Figure 8.9 shows that even though the [45/-45]2 
configuration gives the highest critical buckling (λ3=115.7 oC), its 

ratio of
crT
T

Δ
Δ is the lowest ratios compared to other configurations 

for the same value of lateral displacements. 
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