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ABSTRACT 

 

 

 

 Processes exhibit complex behavior in chemical industries which makes the 

development of reliable theoretical models a very difficult and time consuming task. 

The resulting models are also often complex which poses additional problem for 

robust on-line process fault detection, diagnosis and control of these processes.  

Efficient process fault detection and diagnosis in processes is important to reduce the 

cost of producing products with undesired specifications.  Multivariate Statistical 

Process Control (MSPC) uses historical data of processes to develop useful process 

fault detection, diagnosis and control tools.  Thus, the availability of theoretical 

models is not an important factor in the implementation of MSPC on processes.  The 

present fault detection and diagnosis (FDD) method based on MSPC uses statistical 

control charts and contribution plots.  These charts are efficient in fault detection but 

ambiguous in diagnosis of fault cause of detected faults due to the absence of control 

limits in the contribution plots.  In this research work, an FDD algorithm is 

developed using MSPC and correlation coefficients between process variables.  

Normal Correlation (NC), Modified Principal Component Analysis (PCA) and 

Partial Correlation Analysis (PCorrA) are used to develop the correlation coefficients 

between selected key process variables and quality variables of interest.  Shewhart 

Control Chart (SCC) and Range Control Chart (RCC) are used with the developed 

correlation coefficients for FDD.  The developed FDD algorithm was implemented 

on a simulated distillation column which is a single equipment process.  Results 

showed that the developed FDD algorithm successfully detect and diagnosed the pre-

designed faults.  The implementation of the developed FDD algorithm on a chemical 

plant can reduce the operational cost due to early detection and diagnosis of faults in 

the process and improving the performance of the plant.   
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ABSTRAK 

 

 

 Proses dalam industri kimia mempamerkan kelakuan yang rumit. Ini 

menyebabkan pembangunan model yang berkesan amat menyusahkan dan 

mengambil masa yang panjang.  Model-model yang dibangunkan sering kali rencam 

dan mengemukakan banyak masalah tambahan dalam pengesanan kecacatan, 

diagnosis dan kawalan bagi proses-proses ini.  Pengesanan dan diagnosis kecacatan 

yang cekap adalah penting dalam suatu proses bagi mengurangkan kos penghasilan 

produk dengan spesifikasi yang tidak diingini.  Kawalan Proses Multipembolehubah 

Statistik (MSPC) menggunakan data proses masa lampau dalam pembangunan 

kaedah pengesanan kecacatan, diagnosis dan kawalan proses.  Oleh sebab itu, 

kehadiran model-model teori adalah faktor yang tidak penting dalam pelaksanaan 

MSPC di dalam proses.  Pengesanan dan diagnosis kecacatan (FDD) berdasarkan 

MSPC pada masa kini menggunakan carta-carta kawalan statistik dan carta-carta 

sumbangan.  Carta-carta ini adalah cekap dalam pengesanan kecacatan tetapi tidak 

meyakinkan dalam diagnosis punca kecacatan disebabkan ketiadaan had kawalan di 

dalam carta-carta sumbangan.  Dalam kerja penyelidikan ini, algoritma FDD 

dibangunkan menggunakan MSPC dan pekali-pekali korelasi antara pembolehubah-

pembolehubah proses.  Korelasi Normal (NC), Komponen Analisis Prinsipal yang 

diubah suai (PCA) dan Korelasi Analisis Separa (PCorrA) diguna untuk menerbitkan 

pekali-pekali korelasi antara pembolehubah-pembolehubah kunci proses dengan 

pembolehubah-pembolehubah kualiti yang dikaji.  Carta Kawalan Shewhart (SCC) 

dan Carta Kawalan Julat (RCC) diguna bersama dengan pekali-pekali korelasi yang 

telah diterbitkan untuk tujuan FDD.  Algoritma FDD yang telah dibangunkan 

dilaksanakan menggunakan sebuah alat iaitu turus penyulingan tersimulasi.  

Keputusan menunjukkan bahawa algoritma FDD ini berjaya mengesan dan 

mendiagnosis kecacatan-kecacatan yang dimasukkan ke dalam proses.  Pelaksanaan 

algoritma FDD ini dalam sebuah loji kimia boleh mengurangkan kos operasi kerana 

pengesanan dan diagnosis kecacatan yang awal dan meningkatkan prestatsi loji.  
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CHAPTER I 
 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

Chemical industries are facing a lot of challenges.  The industries have to 

keep sustainable production and within the quality specifications for the products.  

The whole production process has to operate at the minimum production of waste, 

minimum consumption of utilities, minimum cost of re-work and re-processing.  In 

order to achieve these targets, modern chemical plants need to operate as fault free as 

possible because faults that present in a chemical process increase the operating cost 

due to the increase in waste generation and products with undesired specifications.  

Therefore, an efficient fault detection and diagnosis algorithm need to be developed 

to detect faults that are present in a process and pinpoint the cause of these detected 

faults. 

 

 This research is aimed to formulate a fault detection and diagnosis algorithm 

based on Multivariate Statistical Process Control (MSPC).  The objectives of this 

algorithm are to ensure safe operation, better understanding of the process behaviour 

and to prevent continuously producing off-specification products. 
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1.2 Research Background    

 

Multivariate Statistical Process Control (MSPC) is an extension of univariate 

Statistical Process Control (SPC).  This extension enables MSPC to become 

applicable in chemical industries which are multivariable in nature.  MSPC 

monitoring method consists of collecting nominal operation condition process data, 

building process models by using multivariate projection methods and comparing the 

incoming process measurements against the developed process models.  

 

The present MSPC method has several weaknesses in detecting and 

diagnosing faults.  According to Yoon and MacGregor (2000), MSPC is a very 

powerful tool for fault detection but its main limitation lies in the ability to isolate or 

diagnose the actual causes of the detected fault.  Although contribution plots are use 

to diagnose the faults, they tend to be noisy and ambiguous.  The contribution plots 

also do not have confidence limit, making it difficult to determine whether a situation 

is normal or abnormal.    

 

From the previous paragraph, the major weakness of MSPC lies in its ability 

to diagnose the actual causes of the detected faults.  Therefore, this research is trying 

to solve this problem by introducing new elements into the fault detection and 

diagnosis method in MSPC.  The new elements are: 

 

a) A new fault detection procedure based on correlation coefficient between the 

quality variables of interest and the selected key process variables. 

b) Fault diagnosis using statistical control charts with control limits showing 

clearly the status of a situation. 

c) Formulation of the correlation coefficient based on Normal Correlation (NC), 

Partial Correlation Analysis (PCorrA) and Principal Component Analysis 

(PCA). 
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1.3 Objectives and Scopes of the Research 

 

a) To develop fault detection, diagnosis and control system identification 

using MSPC. 

 

          b)  To develop a program package this contains several analysis strategies  

                  and multiple types of monitoring charts for detecting, diagnosing and   

                           controlling faults in a process. 

 

Scopes of the research consist of: 

 

• A distillation column from plant simulated data (Appendix B) is used as the 

case study. The dynamic models for the column are developed. The 

distillation column models will be used to describe the column behavior. 

 

• A dynamic simulation algorithm is formulated based on the developed 

distillation column dynamics models. Later, the dynamic simulation 

algorithm is developed using Matlab software. 

 

• The performance of the developed dynamic simulation program is assessed. 

The Matlab simulation results are compared to the simulation results from the 

plant simulated data (Appendix B). 

 

• Controllers tuned and installed for stable operation of the column program.  

 

• Selection of quality variables of interest and key process variables 

 Linoleic Acid composition (x8) and Oleic Acid composition (x9) in the  

     bottom stream are chosen as the quality variables of interest. 

 Key process variables selected are process variables that are highly 

correlated with the two selected quality variables of interest.  Process 

variables that have a Normal Correlation (NC) of 0.1 or more with the 

two quality variables of interest are selected as key process variables.  

The selected key process variables are feed flow rate (Lf), feed 
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temperature (Tf), reflux flow rate (Re), pumparound flow rate (P), 

reboiler duty (Qr) and bottom temperature (Tbot).      

 

 Determination of Process Sampling Time, TMSPC  

 An autocorrelation test based on Wetherill and Brown (1991) was 

used to determine the suitable Process Sampling Time, TMSPC of the 

process.  The TMSPC is determined at a value of 4.6 hours.  In this 

research, TMSPC refers to the time used to sample a data from the 

process into the data set used for calculation of correlation 

coefficients.  

 

 Generation of Data 

 Data (values of the selected key process variables and quality 

variables of interest) are sampled from the process using the 

determined TMSPC.  The collected data are mean-centered and 

variance-scaled.  This data are checked of its average, standard 

deviation, kurtosis and skewness to establish its normal distribution 

properties.  Once the data follow the normal distribution, it is further 

checked to determine whether it is the desired Nominal Operation 

Condition Data (NOC).  

 Nominal Operation Condition (NOC) data are a set of data in which, 

the selected quality variables and key process variables have values 

within the statistical control limits of their statistical control charts.  

The statistical control charts used in this research are Shewhart 

Control Chart and Range Control Chart.  For NOC, the statistical 

control limits are ± 3σ for the quality variables and ± 3σ/Cik for 

selected key process variables (Cik is the correlation coefficients 

between the selected key process variables with the quality variables 

of interest).   

 Fault Data (OC) are a set of data in which, the selected quality 

variables and key process variables have values outside the statistical 

control limits of their statistical control charts in certain times.  Fault 

Data are also sampled from the process using the determined TMSPC.     
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• Formulating fault detection and diagnosis (FDD) algorithm based on Normal 

Correlation (NC), Principal Component Analysis (PCA) and Partial 

Correlation Analysis (PCorrA).  The procedures in formulating the algorithm 

are shown as follow: 

 

a) Develop the correlation coefficients using NC, PCA and PCorrA. 

b) Develop the fault detection tools. 

c) Develop the fault diagnosis tools. 

 

 The developed FDD algorithm is used with Shewhart Control Charts (SCC) 

and Range Control Charts (RCC) for fault detection and diagnosis on the 

generated set of Fault Data. 

 

• The performance of the FDD algorithm is evaluated. The results for fault 

detection and diagnosis are discussed in depth. 

 

 

 

1.4 Contributions of the Research 

 

The contributions of this research can be summarized as follows: 

 

a) The introduction of the correlation coefficient between quality variables of 

interest and the selected key process variables in formulating the FDD 

algorithm. 

 

b) The derivation of the correlation coefficient based on Normal Correlation 

(NC), Principal Component Analysis (PCA) and Partial Correlation Analysis 

(PCorrA). 

 

c) The application of Partial Correlation Analysis (PCorrA) as an important  

analysis tool in MSPC. 
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1.5 Summary of Report  

 

  In general the report was organized as follows: 

 

Chapter II elaborates the literature review concept of Multivariate Statistical 

Process Control (MSPC), Principal Component Analysis (PCA), Partial Correlation 

Analysis (PCorrA) and the development of MSPC.   

 

Chapter III presents the dynamic modeling of a distillation column as the case 

study, formulation and establishment of the dynamic simulation program, the tuning 

of controllers in the column and the evaluation of the performance of the developed 

simulation program.  

 

 Chapter IV mainly consists of the procedures in formulating the fault 

detection and diagnosis (FDD) algorithm based on NC, PCA and PCorrA. The 

introduction of the correlation coefficient between the quality variables of interest 

and the selected key process variables were also presented in this chapter. 

 

Chapter V presents the results obtained from the developed FDD algorithm 

and the discussion of these results. 

 

Chapter VI gives the conclusions that can be made from the results obtained 

and also recommendations for future work. 

 

 Papers publishing the results of this research are given in Appendix A. 

 



CHAPTER II 
 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction 

 

 This chapter consists of six parts: Introduction, Techniques in Fault Detection 

and Diagnosis, Principal Component Analysis (PCA), Partial Correlation Analysis 

(PCorrA), The Development in Multivariate Statistical Process Control (MSPC) and 

Summary.  This research focuses on the development of fault detection and diagnosis 

tool via correlation coefficients using PCA and PCorrA.  Hence, the techniques used 

in fault detection and diagnosis are discussed in the next section of this chapter.  

  

   Various techniques are used in MSPC for fault detection and diagnosis such 

as Principal Component Analysis (PCA) (Kresta et al., 1991), Partial Least Squares 

(PLS) (Nomikos and MacGregor, 1994), Principal Component Regression (PCR) 

(Randall, 1997) and Independent Component Analysis (ICA) (Manabu et al., 2002).  

The applications of these techniques in MSPC are to obtain a correlation between the 

quality variables (usually the specifications of a product) with the process variables 

(measurements in the process such as temperature and pressure).  From this 

correlation, the methods of process monitoring for fault and maintaining the process 

in nominal operating conditions are formulated.  Techniques such as PCA, PLS and 

PCR are of great importance in determining the desired correlation.   
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 The details and procedures of PCA and PCorrA are presented in the next two 

sections of this chapter.     

 

 The fifth section of this chapter will be discussing the development in MSPC.  

Finally, the summary of this chapter will be presented in the last section of this 

chapter.  

 

  

 

2.2 Techniques in Fault Detection and Diagnosis  

 

 This section will give a brief explanation on the need for formulation of an 

efficient fault detection and diagnosis method, the definition of fault, noise and also 

the various techniques of fault detection and diagnosis. 

 

 

 

2.2.1 The Need for Fault Detection and Diagnosis 

 

 Currently, chemical plants have large scale operation.  The final products 

have strict requirements on its quality.  Chemical plants need to operate at the 

minimum risk level to ensure the safety of equipments in the plant and the lives of 

the workers in the plants.  Modern chemical plants must be also friendly to the 

environmental be able to handle a wide range of varying feedstock and also facing 

the constant upgrading of product quality in the market. 

 

 Due to these numerous challenges, there is a great need of formulation of an 

efficient fault detection and diagnosis algorithm in the industry.  This algorithm will 

not only helps to maintain the process in the desired operating conditions but also 

reduce the risk level in a chemical plant.  This algorithm should have the capability 

to detect and diagnose any fault that is present in the process.  This will enables the 

operators of the plant to take the appropriate actions before any unwanted event take 

place.  The following sections will discuss briefly about key terms used in fault 
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detection and diagnosis such as fault definition, types of fault, noise definition and 

unstructured uncertainties.     

 

 

2.2.2 Fault Definition 

 

 According to Himmelblau (1978), the term fault is generally defined as a 

departure from an acceptable range of an observed variable or a calculated parameter 

associated with a process.  This defines a fault as a process abnormality or symptom, 

such as high temperature in a reactor or low product quality and so on.  The 

underling cause(s) of this abnormality, such as a failed coolant pump or a controller, 

is (are) called the basic event(s) or the root cause(s).  The basic event is also referred 

to as malfunction or failure (Venkata et al., 2003a).   

 

 

 

2.2.3 Types of Fault 

 

 Generally, one has to deal with three classes of faults (Venkata et al., 2003a).  

The first type of fault, parameter failures, arises when there is a disturbance entering 

the process from the environment through one or more independent variables.  An 

example of such fault is a change in the concentration of the reactant from its steady 

state value in reactor feed.  Here, the concentration is an independent variable, a 

variable whose dynamics is not provided with that of the process. 

 

 The second type of fault, structural changes, refers to changes in the process 

itself.  They occur due to hard failures in equipment.  Structural faults result in a 

change in the information flow between various variables.  An example of a 

structural fault would be failure of a controller.  Other examples include sticking 

valve, a broken or leaking pipe. 

 

 The third type of fault is malfunctioning in sensors and actuators.  Gross 

errors usually occur with actuators and sensors.  These could be due to a fixed failure,  
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a constant bias (positive or negative) or an out of range failure.  In a chemical 

process, some instruments provide feedback signals which are essential for the 

control of the process.  A fault in one of the instruments could cause the plant state 

variables to deviate beyond acceptable limits unless the fault is detected promptly 

and corrective actions are accomplished in time. 

 

 

 

2.2.4 Unstructured Uncertainties, Process Noise and Measurement Noise 

 

 Unstructured uncertainties are mainly faults that are not modeled a priori.  

Process noise refers to the mismatch between the actual process and the predictions 

from the model equations.  Measurement noise refers to high frequency additive 

component in sensor measurements (Venkata et al., 2003c).  In Multivariate 

Statistical Process Control (MSPC), process noise and measurement noise are 

classified as common cause variations of a chemical process.  Common cause 

variations refer to Nominal Operating Condition (NOC), conditions where the 

process is operating at its desired range of operation.  Faults are classified as causal 

cause variations.  Causal cause variations refer to conditions where there are 

abnormalities in the process and cause(s) of the observed abnormalities can be found.      

The next section will discuss briefly about the various techniques in fault detection 

and diagnosis. 

 

  

 

2.2.5 Fault Detection and Diagnosis Techniques 

 

 There are few desirable attributes of a diagnostic system according to 

Sourabh and Venkata (1999): 

 

a) Early detection and diagnosis 

b) Isolability 

c) Robustness 

d) Multiple fault identifiability 
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e) Explanation facility 

f) Adaptability 

g) Novelty identifiability 

 

Diagnostic methods differ not only in the way the process knowledge is utilized but 

also in the form of knowledge required.  A classification based on the form of 

process knowledge is shown in Figure 2.1. 
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 For process history based methods, only the availability of large amount of 

historical process data is assumed.  There are different ways in which this data can be 

transformed and presented as a priori knowledge to a diagnostic system.  This is 

known as the feature extraction process from the history data, and is done to facilitate 

later diagnosis.  This extraction process can mainly proceed as either quantitative or 

qualitative feature extraction.  In quantitative feature extraction, one can perform 

either a statistical or non-statistical feature extraction (Venkata et al., 2003b). 

 

 Among the various techniques shown in Figure 2.1, only MSPC will be 

discussed in detail since this research focuses on the application of MSPC in 

developing fault detection and diagnosis algorithm. 

 

 

 

2.2.6 Multivariate Statistical Process Control (MSPC) 

 

 MSPC is an extension of Statistical Process Control (SPC).  The univariate 

SPC method in process monitoring for fault ignores the influence or cross-

correlations between the process variables.  Thus, the conventional SPC method does 

not make the best use of data available (Raich and Cinar, 1996) and this often yield 

misleading results on multivariate chemical processes.  Therefore, it is evidently 

shown that SPC is not suitable for multivariate chemical processes.  Due to this, 

MSPC has been developed to overcome the weakness of SPC.   According to Phatak 

(1999), the advantages of MSPC compared to SPC are: 

 

1. Multivariate methods can reduce a lot of dimensions in the process data.  This 

will reduce the burden of constructing too many univariate control charts at 

one time. 

2. MSPC could derive a lot of information from process data than SPC since 

MSPC take account into all process data and not only a single variable as in 

SPC. 

 

 The main techniques in MSPC as mentioned before in the introduction of this 

chapter are PCA and PLS.  In this research, two multivariate techniques are used: the 
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extensively used PCA and the relatively new PCorrA which is widely used in other 

fields but not in MSPC.  Therefore, the details and procedures of PCA and PCorrA 

are discussed in the next two sections. 

 

 

 

2.3  Principal Component Analysis (PCA) 

 

 PCA is a useful tool in MSPC for handling abundant of information from 

process measurements.  This method may be used for regression or similarly to 

Partial Least Square (PLS), reduction of the effective dimensionality of data (Lennox 

et al., 2001).  The variables that need to be analyzed are formed into a data matrix, X.  

These variables are consisting of standardized variables (mean-centered and 

variance-scaled).  This is to avoid the various magnitude of variance of the data sets 

to influence the outcome of the PCA method.  The presence of various measurement 

data such as composition, temperature, pressure, flow rate and so on were the cause 

of the various magnitude of variance in the data as stated as above.  The PCA 

regression builds a linear model by decomposing matrices X into terms as shown in 

Equations 2.1. 

 

 

  X = E                                                                              

( 2.1 )

∑
=

+
a

i

T
ii pt

1

 

Where:            X  =  data matrix in standardized from, 

   ti   = latent score vectors of the i-th PCA factor 

  pi = loading vectors of the i-th PCA factor 

  E = residual matrices of the matrix X  

  a = number of factors in the PCA regression 

  T = transpose vector of the particular vector 

 

 PCA can be performed on a set of data using various approaches such as 

Non-Linear Iterative Partial Least Squares (NIPALS) (Geladi and Kowalski, 1986) 
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and eigenvector-eigenvalue approach using Singular Value Decomposition (SVD) 

(Lam and Kamarul, 2002).  Both methods will produce the same score and loading 

vectors.  Any discrepancies will be due to rounding off error during the calculation 

procedure in each method.  In each method, a set of score and loading vectors will be 

extracted from the data matrix and this step will be repeated to extract the next set of 

vectors.  Equation 2.2 shows how SVD decompose a data matrix into its eigenvalue 

matrix and eigenvector matrices. 

 

  

  X = VSVT                                                                                                                               ( 2.2 ) 

 

Where: X   =  data matrix in standardized from 

    V   =  eigenvector matrix 

  VT  =  transpose eigenvector matrix 

  S    =  eigenvalue matrix 

 

 The number of factors to be used in building the PCA model is determined in 

various techniques.  Among them are the cross-validation procedure (Geladi and 

Kowalski, 1986) and sometimes a threshold is chose for the residual E and once the 

magnitude of this residual is below the threshold chosen, the PCA algorithm is 

stopped.  From the PCA procedure via SVD, it is possible to regress a set of selected 

process variables to a set of quality variables of a process.  Although the PCA 

method is applied for multiple process variables and one quality variable in 

determining the desired correlation, this method can be extended to multiple process 

variables and multiple quality variables.  First, the set of selected process variables 

and the first quality variable of interest are formed into a data matrix X as shown in 

Equation 2.1.  Then, PCA is performed on this data matrix.  The same procedure is 

use for the second quality variable with the column data of the first quality variable 

replaced with column data of the second quality variable and so on for the next 

quality variables.  This method is then particularly useful for this research since the 

case study of this research is a distillation column which has a set of selected process 

variables and a set of quality variables of interest.  The PCA approach in this 

research uses the SVD method and the main objective of PCA is to find the 

correlation between the process variables.   
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2.4 Partial Correlation Analysis (PCorrA) 

 

 Partial Correlation Analysis (PCorrA) is used extensively when there are 

numerous independent variables and a dependent variable. However, PCorrA can 

also be applied to cases where there are multiple independent and dependent 

variables.  PCorrA is used to determine whether the correlation obtained between an 

independent variable with the dependent variables is spurious.  The meaning of 

spurious correlation is when two variables, x and y, have a non-zero (positive or 

negative) correlation, but neither variable directly causes changes in the other 

variable because some other variable, z, is simultaneously causing changes in both x 

and y thus creates a correlation between x and y.  The third variable, z is called an 

extraneous variable (Cliff and Ord, 1973).   

 

 There is another case when x and y are correlated but neither variable have a 

direct effect upon the other because the presence of intervening variables.  These 

intervening variables act as an intermediate in the correlation between x and y.  

Therefore, the correlation between two variables is affected by both extraneous 

variables and intervening variables (Cliff and Ord, 1973).   

 

 PCorrA might not be the complete solution for determining whether a 

correlation really exists between two variables or it is caused by other variables.  But, 

it can be very helpful in determining the correlation between two variables while 

holding other variables at a constant value.  In general, partial correlations between 

variables show the correlation that will be obtained when all the control variables 

(many variables can be statistically control at once) were held constant at their mean 

values.  This aspect of PCorrA will be useful in this research since the correlation 

between the quality variable and the each input variable will be determined while the 

other variables will be held constant at the same time (Kamarul, 1997). 

 

 For a set of input variables (cause variables) like X = [x1, x2, …, xn] and a set 

of output variables (effect variables or quality variables) like Y = [yi, y2, …, yn], the  

correlation between the two set of data can be determined by the procedure as shown 

in Figure 2.2: 
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Figure 2.2: The procedure for using PCorrA to determine the correlation between X   

and Y. 

 

 

 From Figure 2.2, the method for using PCorrA to determine the correlation 

between X and Y is a variable from Y is selected, y1.  Then, PCorrA is used to 

determine the correlation between X and y1.  Then, another variable from Y is 

selected, y2 and the similar procedure is done to obtain correlation between X and y2.  

This method is repeated until all the variables in Y are selected.  

 

 For observations x1i, x2i (i = 1, 2, …, n) of the random variables x1 and x2, the 

correlation, r12, between the two variables is given by Equation 2.3 (McNeese and 

Klein, 1991). 
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 The partial correlation between x1 and x2, after allowing for the effect of 

another variable, x3 is denoted by r12.3 and is as given in Equation 2.4 (Cliff and Ord, 

1973).  
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 Higher order partial correlations are defined in terms of partial correlation of 

the next lowest order.  Higher order means allowing more effect of other variables 

while determining the partial correlation between two variables.  For example, the 

partial correlation between x1 and x2, r12.34, after allowing for the effect of x3 and x4, 

is given in Equation 2.5. 
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 Generally, the partial correlation between two variables, x1 and x2 after 

allowing the effects of j - 2 other variables, r12.(3,4,…,j), is given in Equation 2.6. 
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  The major advantage of using partial correlation in comparison to the normal 

correlation is due to the fact that partial correlation has taken into account the effect 

of other variables while determining the partial correlation between two variables.  

This advantage will be significant in this research due to the presence of numerous 

variables in the case study of this research, a distillation column.  

 

 

 

2.5 The Development in Multivariate Statistical Process Control (MSPC) 

 

 As mentioned earlier on in this chapter that various multivariate techniques 

had been used in MSPC. Among them are Principal Component Analysis (PCA) and 
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Partial Least Square (PLS).  It can be seen that at the early development of MSPC, 

these techniques are mostly used on batch processes such as the application of PCA 

and PLS to a low density polyethylene batch reactor (MacGregor et al., 1992), 

application in a semi-batch reactor (Nomikos and MacGregor, 1994) and application 

in an industrial batch polymerization reactor (Nomikos and MacGregor, 1995).  

 

 In Nomikos and MacGregor (1995), batch systems are hard to monitor due to 

several reasons such as lack of on-line sensors for measuring product quality 

variables, the finite duration of batch processes, the presence of significant non-

linearity, the absence of steady-state operation and the difficulties in developing a 

model that represents the process. Therefore, Nomikos and MacGregor (1995) 

suggested using historical data on measured process variables and final product 

quality measurements to obtain the needed information about a process. The use of 

multivariate projection techniques such as PLS and PCA will be able to extract the 

information needed in developing a good monitoring framework for the process. 

Process monitoring are done using Hotelling’s T2 chart and Square Prediction Error 

chart of the process variables. Any detected fault will be diagnosed using 

contribution plots of the process variables.  Two major assumptions were made in 

this working paper: the method is valid as long as the reference database is 

representative of the process operation and the requirement that event which one 

wishes to detect must be observable from the measurements collected. Therefore, 

there are a few drawbacks of this method.  Continuous processes are present in the 

chemical industry and the behavior of the process continues to change with time. The 

method proposed above will not work well with process exhibiting constant behavior 

change. The numerous faults in a process might not always be observable especially 

those variables that are not within the control loops (Chen et al., 2001).  Therefore, 

the method will not detect all the faults in a process.        

 

 Chen and Kun (2002) have proposed using Dynamic Principal Component 

Analysis (DPCA) and Dynamic Partial Least Square (DPLS) to address the problem 

in Nomikos and Macgregor (1995). The proposed method will incorporate new data 

into the past data collection as an updating procedure. This data matrix will be 

subjected to analysis using PCA and PLS to form the monitoring algorithm of the 

process. An auto-regressive model structure for each batch was developed using a 
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window length of the process. This will construct a time lagged data window of the 

whole measurements for each batch run. The proposed method will be able to handle 

the auto-correlation effect in the series of each batch. In modeling dynamic batch 

processes, one is concerned with both the correlation among batches and also the 

auto-correlation of the process variables during one batch run. The proposed method 

was found to be superior to the conventional static PCA and PLS approach. 

 

 Although the DPCA and DPLS methods proposed by Chen and Kun (2002) 

show improvement over conventional static PCA and PLS approach, there is a major 

disadvantage of these two dynamic methods.  For a highly complex process, there 

will be excessively large number of variables to be incorporated into the updating 

data matrix.  This will cause major computational load on the process monitoring 

system.  Treasure et al. (2004) has proposed using Error in Variable (EIV) 

identification integrated into Subspace Model Identification (SMI) using PCA to 

overcome the previous stated weakness of the DPCA and DPLS methods.  The 

proposed method was applied on a simple simulated continuous stirred tank reactor 

(CSTR) model.  Results show encouraging process monitoring of the proposed 

method over DPCA method.  Two advantages of the proposed method over DPCA 

are lower number of process variables used in constructing the control limits of the 

monitoring charts and more concise model developed compared to DPCA.  However, 

the fault diagnosis of the proposed method is far from satisfactory and there were 

cases where more fault causes diagnosed than pre-designed.    

 

 MSPC has also been applied successfully to continuous processes (Manish et 

al., 2002).  However, in most of the applications, the techniques are implemented on 

data collected at a single scale. In other words, they present a convolved picture of 

events occurring at various time scales. Chemical processes are known to operate at 

different scales and have contributions from events occurring at different scales. 

Manish et al. (2002) proposed using a multi-scale PCA (ms-PCA) to address this 

problem. In the work, wavelets and PCA were combined to capture the correlation 

between sensors and also the correlation within a sensor. The procedure is based on 

data classification prior to further analysis. The process variables that are highly 

correlated go to a regular PCA module for analysis while the variables that are not 

highly correlated are fed directly into a sensor validation module. This procedure 
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uses the conventional Hotelling’s T2 control chart and Square Prediction Error (SPE) 

chart for fault detection.  Fault diagnosis is performed using contribution plots of the 

variables. This method is applied to an industrial reboiler and a tubular reactor 

process.  Results shown that proposed method managed to detect abnormal events 

faster than the conventional PCA or PLS approach.  Although there are 

improvements in detection of fault, the diagnosis procedure is still based on 

conventional contribution plots. The numerous possible suspects in a contribution 

plot still make the isolation of fault difficult to be performed. 

 

 Gertler et al. (1999) have combine parity relations and PCA into a fault 

isolation enhanced PCA method for process monitoring.  The method uses incidence 

matrix developed from PCA and parity relations for fault diagnosis and also 

decoupling of disturbances.  Representation sub-space is used to represent true plant 

variables and residual sub-space used to represent faults.  The residuals were 

threshold tested for process monitoring.  This method was applied to the Tennessee 

Eastman model (only the reactor model).  Fault diagnosis using the developed 

incidence matrix shows encouraging results.  The threshold value in the residuals 

removes any ambiguity in fault detection diagnosis.  For case of multiple faults, the 

incidence matrix will be really complex and this will restrict the application of this 

method in fault isolation.  The observed fault codes isolated in the case study are 

those identified earlier on or in other words, the residuals for these faults were 

designed prior to fault detection and diagnosis.  The major limitation of this method 

when applied to a real plant is that plant data containing faults and fault free data are 

both needed.  This is impractical since the size of faults in a chemical plant is not 

necessarily known.     

 

 Vedam and Venkata (1999) use a combination of PCA and Signed Digraph 

(SDG) for enhancing the fault diagnosis ability of conventional process monitoring 

based on PCA.  The method, PCA-SDG, overcome the weaknesses of SDG in 

previous works such as large number of threshold needed for process monitoring, 

difficulty in selection of these threshold values and lack of resolution in the diagnosis 

ability of SDG.  This method uses PCA for fault detection while SDG is used for 

fault diagnosis.  This PCA-SDG method only needs one threshold value for fault 

isolation.  It was applied on the Amoco Model IV: Fluidized Catalytic Cracking Unit 
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(FCCU).  Both single and multiple faults can be successfully detected and diagnosed 

using the proposed PCA-SDG method.  The main advantages of this method lie in its 

abilities to isolate the faults faster, can diagnosed both single and multiple faults and 

more resolute diagnosis of faults.  The only apparent drawback of this method is the 

selection of threshold value is a trade-off between robustness and the presence of 

false alarms.  The value of the threshold value can made the monitoring system 

become too sensitive even to small process changes (presence of false alarms).  

Therefore, the selection procedure for the threshold value needs to be studied to 

improve the ability of this method.  

 

 Lee et al. (2004b) try to improve the performance of process monitoring 

using Independent Component Analysis (ICA) in the place of the conventional PCA.  

The idea of ICA is to extract latent variables (independent variables in process that 

are not directly measurable) from the process data and these independent components 

(IC) are assumed to be non-Gaussian and mutually independent.  This work proposed 

the combination of ICA and the conventional process monitoring techniques in 

developing a new process fault detection and diagnosis method.  The developed 

method was applied to a benchmark of biological wastewater treatment process.  The 

method based on ICA was superior in fault detection of the pre-designed faults 

compared to the conventional method based on PCA.  The limitation of this method 

is the computational load when establishing the normal operation condition data of 

the study process.  The process faults diagnosis using contribution plots (without 

control limit) is ambiguous since there is no limit to differentiate the situations of 

fault or normal operation.  

 

 According to Kruger et al. (2001), conventional PLS-based fault detection 

and diagnosis algorithm does not detect every kind of abnormal process behavior and 

also insensitive to process changes. The usage of too many charts will be required if 

the retained latent variables in the projection method is greater than two or three. 

These two weaknesses of the previous works have suggested the need of a new PLS 

based fault detection algorithm. An extended PLS approach has been proposed by 

Kruger et al. (2001). In this work, the determination of two new PLS scores which 

are called generalized scores has yield better fault detection performance. These 

scores are calculated by restructuring of the data matrix that resulted from the 
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standard PLS decomposition using both the predictor and response variables. The 

conventional T2 and SPE values are then calculated using these generalized scores. 

The control limits are determined using empirical studies. This method is 

implemented on two case studies: fluid catalytic cracking unit by McFarlane et al. 

(1993) and a real industry process simulation from ICI Plant Polymer Chemicals. 

The proposed method is able to detect all the generated faults including those 

involving variables which are not incorporated in the control loops. The conventional 

PLS approach fails to detect these faults due to their nature of not present in the 

control loops. The usage of only two control charts in this method is far simpler than 

the numerous control charts in other common PLS implementation for process 

monitoring. 

 

 PLS based method has shown satisfactory results for monitoring of simple 

processes.  For complex processes, results obtained from PLS based method are 

often hard to interpret and understand.  Choi and Lee (2005) proposed using a multi-

block PLS (MBPLS) system for complex processes.  The method proposed uses 

super score deflation method for process fault detection and diagnosis.  This method 

uses four kinds of monitoring statistics: Hotelling’s T2 and SPE statistics for block 

and overall process for fault detection and contribution plots using relative 

contribution (contribution value of variables divided by the control limit of 

contribution plots) for fault diagnosis.  The proposed method was applied to a 

wastewater treatment plant with multi-unit operations.  The method was able to 

detect the pre-designed faults in the study process.  The main contribution of this 

work is the introduction of relative contribution in contribution plots with limit 

providing a more effective and confident fault diagnosis method compared to the 

conventional contribution plots which have no limit.  The limitation of this method is 

the limit of the contribution plots is selected arbitrarily and not by any statistical 

method, thus affecting the validity of the limit selected.   

 

 The application of PCA for large-scale processes has been done by Kruger et 

al. (2004).  In this work, the auto-correlation in process variables from a large-scale 

process has been proven to affect the performance of process monitoring using PCA 

because of the increase in the number of false alarms.  Kruger et al. (2004) proposed 

using an auto-regressive moving average (ARMA) filter to filter data processed by 
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PCA earlier on in order to reduce the auto-correlation of the developed PCA 

variables.  The proposed method was applied to the Tennessee Eastman (TE) 

simulation process.  The method was able to reduce the number of false alarms in the 

monitoring method based on PCA thus increasing the performance of the monitoring 

method.  The limitation of the proposed method is this method is only applicable for 

fault detection for the time being.  The selection of the ARMA filters also affect the 

performance of the developed process monitoring method, causing the selection of 

unsuitable filters will yield unsatisfactory results in process monitoring. 

 

 For highly non-linear processes, the application of conventional PCA method 

and its improvement like multi-way PCA, DPCA and so on will yield poor 

performance due to the non-linear behavior of the process.  Lee et al. (2004a) has 

proposed using a novel Kernel PCA (KPCA) approach to model the non-linear 

behavior of certain highly non-linear processes.  The proposed method wish to 

overcome the weakness of the previous KPCA: direct application of KPCA to 

process monitoring problematic because the conventional SPE chart can not be 

generated using the previous KPCA method.  The proposed method addresses this 

problem by introduction of a feature space and the generation of Hotelling’s T2 and 

SPE statistics from this feature space as process monitoring tools.  The method was 

applied on a simple multivariate model and a simulated wastewater treatment process.   

 

 The performance of the new KPCA method was compared to conventional 

linear PCA method.  In the first case study, KPCA shows faster detection of 

abnormal process behavior and good detection of insignificant faults which was 

failed to be detected by the PCA method.  For the second case study, KPCA captures 

the non-linear properties of the process and distinguish well between normal 

operating condition and out of control condition.  The PCA method could not 

differentiate between the two conditions due to non-linearity that present in the 

process behavior.  Fault diagnosis using the proposed KPCA method in non-linear 

situations is very difficult because it is very hard to find an inverse mapping function 

from the feature space to the original data space.  Therefore, the proposed KPCA 

method can be only applied for fault detection for the time being.  
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 Choi and Lee (2004) improve the application of KPCA for non-linear 

processes by considering the dynamic properties of the process data in developing 

the process monitoring method based on KPCA.  The method, dynamic KPCA 

(DKPCA) uses KPCA with Gaussian function as the kernel function and also 

combines the conventional Hotelling’s T2 and SPE statistics into a unified index, Df, 

for process monitoring.  The proposed method was applied to a wastewater treatment 

process.  DKPCA shows good fault detection performance of the pre-designed faults 

(includes bias and drift types of faults in sensors).  This method also improves the 

simplicity of process monitoring by the application of the unified index.  The 

limitation of this method is that the dimension of the feature space in DKPCA 

depends on the type of kernel function and lag time used.  The width of the Gaussian 

function will affect the robustness and sensitivity of the developed process 

monitoring method.  Fault diagnosis using this method will be very difficult since the 

re-mapping from the feature space into the process variables space (input space) is 

very complicated. 

  

 Cho et al. (2005) also applied KPCA with Hotelling’s T2 and SPE statistics 

for process monitoring (both fault detection and diagnosis) on a non-isothermal 

continuous stirred tank reactor (CSTR) process.  The new element in the work of 

Cho et al. (2005) is the derivation of an analytical solution using the gradient of 

kernel function of contribution for kernel PCA.  This is different from the direct 

application of PCA on the feature space by Lee et al. (2004a).  Results show that the 

KPCA method successfully detect and diagnosed the pre-designed faults in the study 

process.  The main advantages here are there is no data reconstruction or 

approximation needed for fault diagnosis, thus reducing the loss of information.  

However, the fault diagnosis charts derived from KPCA is still ambiguous and it 

takes certain time to diagnose the fault causes.   

 

 In the area of on-line process monitoring, constant upgrading or recursive 

updating of process model with new process data are needed for maintaining a good 

process monitoring algorithm. Recursive least squares (RLS) is the most commonly 

used method for recursive on-line estimation of model parameters. RLS has several 

weaknesses such as estimation difficulties when process variables are highly 

correlated and the presence of auto-correlation and cross-correlation in the process 
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variables. Dayal and MacGregor (1997) have proposed a recursive PLS algorithm 

(RPLS) to overcome the previous weaknesses of the RLS technique. The usage of an 

improved kernel algorithm and a variable forgetting factor for updating the 

covariance structure of the model has yield better results than the RLS-based 

updating method. A variable forgetting factor is chosen rather than a constant 

forgetting factor because in the case of no new variation in new data, the old data that 

represent the process well are being discounted for a constant forgetting factor. This 

will make the covariance matrix lose the essential process information and become 

extremely ill-conditioned and the precision of the resulting parameters will be poor 

(Dayal and MacGregor, 1997).  

 

 Most of the past works on fault detection and diagnosis in MSPC uses the 

same method in determining the control limits for the control charts used. The 

Hotelling’s T2 chart is assumed to follow an F-distribution while the SPE chart is 

assumed to follow a χ2-distribution respectively. This method has limitation since the 

assumption that the data obtained are serially independent is made. When process 

data are collected from a dynamic system, serial correlation will generally be present. 

This will lead to resulting in too many false alarms in the fault detection algorithm 

based on this assumption (Vasilopoulos and Stanoboulis, 1978). 

 

 Simoglou et al. (2002) proposed the usage of Empirical Reference 

Distribution (ERD) in determining the control limit for all the control charts. This 

was being carried out on a simulated continuous stirred tank reactor (CSTR) and the 

results are compared to the method using the assumption that both the charts follow 

the above mentioned distribution. The results clearly show that the control charts 

with the limit based on ERD performed better than the control charts based on the 

assumption that the data are serially independent. This is due to the fact that ERD 

takes into account the serial correlation in the measurements. However, this method 

was applied on the assumption that the process exhibit linear behavior. For non-

linear process behavior, future studies need to be carry out.      

 

 MSPC has certainly shown its ability in detection of fault in a process. 

According to Yoon and MacGregor (2001), the fault diagnosis ability of MSPC is 

still far from satisfying. The usages of contribution plots in isolating faults are 
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limited. This is because the faults that are able to be isolated using normal 

contribution plots are those resulting from simple faults like actuator or sensor fault. 

Complex faults like fundamental change in the process and also faults that has effect 

propagated into other variables are hard to be isolated using these contribution charts. 

Therefore, Yoon and MacGregor (2001) have introduced the usage of fault 

signatures in enhancing the isolation ability of MSPC. Faults from process data are 

collected and fault signatures are then developed using PLS or PCA based model 

built from common-cause data. Fault signatures consist of directions of movement of 

the process in both the model space and in the orthogonal residue space during the 

period immediately after the fault has been detected. Any new fault will exhibit 

certain fault signature and this signature is then compared to the signatures from the 

fault signatures databank. The usage of joint angle plots of measurement vectors of 

fault has enabled the isolation of all faults including the complex faults. Although the 

proposed isolation method has shown good results, there is still need to incorporate 

dynamic data into the development of fault signatures (Yoon and MacGregor, 2001).  

  

 From the previous paragraphs, the technique used was still based on PCA and 

PLS.  Although PLS has shown great usage when both quality variables and process 

variables are available, this technique still has its shortcoming.  The inability to hold 

the other process variables constant while determining the correlation between the 

quality variable and one process variable has made the correlation determined 

questionable.  This is due to the fact that the correlation produced between the two 

variables might be caused by the presence of other variables.  Therefore, in this 

research, a new method of analyzing data in MSPC is introduced.  This technique is 

the Partial Correlation Analysis (PCorrA). 

 

 PCorrA has been applied in many applications such as: 

 

• Partial correlation analysis of fuzzy sets: Ding and Nancy (2000) 

• Analysis of mineral content: Quemerais et al. (1998) 

• Analysis of metals concentration: Wang and Chen (2000)  

 

 



 27

Although these applications are not in the field of MSPC, but they show that PCorrA 

has been widely used as analytical tool.  In Kamarul (1997), PCorrA was used in 

deriving a correlation coefficient between the input variables and the control variable 

for a chemical process. This work is one of the few that has used PCorrA in the field 

of fault detection and diagnosis. The application of PCorrA in this research will be 

based on the work by Kamarul (1997).  

 

 The PCorrA technique focuses on determining the correlation between two 

variables while setting the other identified variables that might affect the correlation 

between the two study variables at a constant value (Ding and Nancy, 2000).  

Therefore, this technique will be able to overcome the shortcoming of PLS stated in 

the previous paragraph.  Aside from the novel idea of using PCorrA, this research 

also utilizes a new technique in constructing the control limit of the control charts 

used for fault detection and diagnosis.  

 

 From literature, the conventional control charts used in MSPC for the 

objective of fault detection and diagnosis are the Hotelling’s T2 Statistic control chart 

and the SPE Statistic control chart (Nomikos and MacGregor, 1994, Chen and 

MacAvoy, 1998 and Wachs and Lewin, 1999).  The advantage of both the T2 

Statistic control chart and the SPE statistic control chart over the normal univariate 

control charts is the former could generate one common statistics from the values of 

many variables that can be plotted on a control chart (Ku et al., 1995).  This will 

avoid the condition of data overload which is always the case for normal univariate 

chart such as Shewhart chart.  In addition, normal univariate chart does not function 

well for multi-variable process with highly correlated variables (Manabu et al., 2000). 

 

 The new approach in this research is to use the normal univariate control 

chart with a slight modification that takes into account the correlation between the 

variables of the process.  The correlation between the quality variables of interest and 

the selected key process variables obtained from using Normal Correlation (NC), 

PCA and PCorrA will be used to construct the control limits for the control charts of 

the selected key process variables.  The major advantages of the proposed method 

are any faults that are present in the process is easily detected through the control 
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charts and the present of control limits in the control charts make fault diagnosis 

effective and non-ambiguous. 

 

 

2.6 Summary          

 

 From the previous sections in this chapter, the development of MSPC and the 

various multivariate techniques used in MSPC were discussed.  The techniques used 

vastly in MSPC are PLS, PCA and the modification of these two techniques such as 

Multiway PCA, Multiblock PCA, Multiway PLS, Multiblock PLS, DPLS, DPCA, 

KPCA, MPCA and so on.  These techniques although improve the usage of MSPC to 

various fields and applications, they are still room for improvement.  Thus, in this 

research, a technique that has not been extensively used in MSPC, PCorrA, will be 

used as the multivariate technique analysis for the data obtained together with the 

extensively used, PCA.  A modified approach in determining the control limits of 

control charts for process variables will also be presented in this research.  A 

complete explanation on the application of NR, PCA, PCorrA and the modified 

approach in setting up the control limit of control charts for selected key process 

variables will be presented in the methodology chapter. 

        



CHAPTER III 
 

 

 

 

DISTILLATION COLUMN MODELING AND SIMULATION 

 

 

 

 

3.1 Introduction 

 

 This chapter consists of nine sections: chapter introduction, explanation on 

choosing distillation column as the study unit operation, the study column 

information, degree of freedom analysis prior to column modeling, distillation 

column models formulation, distillation column literature review, dynamic study of 

the study column, performance evaluation and chapter summary.  The proposed fault 

detection and diagnosis algorithm can be applied to any chemical unit operation.  

However, a distillation column is chosen as the case study and explanations 

regarding this choice are given in section two.  The distillation column model based 

on simulated plant data (Appendix B) is selected as the study column.  The details 

and descriptions of the study column are presented in the third section. 

 

 A degree of freedom analysis is needed before the modeling of the column 

and this analysis is presented in the fourth section.  Section five presents distillation 

column dynamic modeling, which involves using Mass balance equations (M-

equations); Equilibrium equations (E-equations); Summation equations (S-equations) 

Heat balance equations (H-equations) and also hydraulic equations to describe the 

behavior of the column bottom, normal tray, feed tray, reflux point, pumparound 

point, sidedraw tray and the reflux tray. 
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The literature review on distillation column dynamic simulation is elaborated in 

details in the sixth section with the aim of selecting the suitable dynamic algorithm.   

The step-by-step formulation of the dynamic simulation algorithm for the case study 

is presented in section seven after the dynamic simulation algorithms in the literature 

have been studied.  Later, a dynamic simulation program using Matlab is developed 

according to the formulated algorithm.  The performance of the written simulation 

program is evaluated in section eight.  The performance evaluation is conducted 

based on the ability of the program to produce results that are close to the data from 

the plant simulated data (Appendix B). 

 

 

 

3.2 Choosing Distillation Column as the Case Study 

 

 Distillation columns are used in the chemical industries for fractionation, 

purification and separation.  The separation process occurs due to the difference in 

boiling point or vapor pressure of the components that present in the liquid mixture. 

The component with the lowest boiling point or the component with the highest 

vapor pressure will be separated first. 

 

 In this research, distillation column is chosen as the case study because of its 

importance in the chemical industries.  Distillation column is energy intensive 

equipment.  According to some statistics, 40% of the energy in a chemical plant is 

consumed by distillation columns (Zhang et al., 1999).  Successful maintenance of 

operation of distillation column enables consistent production and ensures 

sustainable product quality with minimum utility consumption.  Any unwanted event 

happening in the column have to be identified as early as possible for preventing 

continuous production of out-of-specification products or cause serious problems in 

down stream processes.  The assignable causes for the unusual events have to be 

investigated and prompt action has to be taken in order to rectify the situation. 

 

 On the other hand, distillation columns are multivariate, dynamic in nature 

and can operate either continuously or batch-wise.  The process variables are 

correlated and interrelated.  Interpreting either one of the column variables will not 
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give the state of the column behavior.  In order to fully understand the column 

behavior and state, the key process variables like feed stream flow rate, feed stream 

temperature, distillate flow rate, reflux flow rate, pumparound flow rate, reboiler 

duty and other process variables have to be analyzed and monitored simultaneously. 

Therefore, distillation column is selected as the case study for developing a fault 

detection and diagnosis algorithm based on MSPC approach. 

 

 

 

3.3 Information of the Case Study  

 

The column information is based on the information obtained from the plant 

simulated data (Appendix B). From the plant simulated data, the original packed 

distillation column is approximated into a tray column in this research.  The method 

of conversion from packed column to tray column is based on the method found in 

Geankoplis (1995) and additional column information from Wong (2003).  The tray 

column model developed in Matlab is an approximation of the original packed 

column in the plant simulated data.  The summaries of the column are presented in 

Table 3.1: 
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Table 3.1: Specifications of the case study 

Variable Specification 

Number of actual tray 28 

Actual feed position Tray 14 from the top 

Plate spacing (cm) 50 

Plate diameter (cm) 120 

Type of condenser No condenser in the system 

Type of reboiler Total 

Reflux rate (kmole/hr) 10  

Pumparound rate (kmole/hr) 49.6 

Sidedraw rate (kmole/hr) 63.6 

Reboiler duty (kJ/hr) 2.16 x 106

Reference Steady State 

 Composition (kmole/kmole) 

Component Feed stream Distillate stream Bottom stream 

Hexanoic Acid 0.00229 0.02132 0 

Octanoic Acid 0.05106 0.52101 0 

Decanoic Acid 0.04317 0.44283 0.00036 

Dodecanoic Acid 0.52169 0.01484 0.57654 

Tetradecanoic Acid 0.15689 0 0.17387 

Hexadecanoic Acid 0.06793 0 0.07528 

Stearic Acid 0.01456 0 0.01613 

Oleic Acid 0.12191 0 0.13509 

Linoleic Acid 0.02050 0 0.02272 

Temperature (K) 483.15 344.15 512.05 

Pressure (Bar) 2.5 0.11 0.1333 

Flow rate 

(kmole/hr) 

41.557 4.000 37.5 

Plate type Sieve tray 

Weir length (m)  0.912 

Weir height (m) 0.076 
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*The compositions of the pumparound stream, reflux stream and the sidedraw   

  stream are the same as the compositions of the distillate. 

  

 After obtaining the basic data of the column, the modeling of the column is 

performed. Prior to the modeling process, a degree of freedom analysis is initiated. 

The degrees of freedom analysis will be presented in the following section. 

 

 

 

3.4 Degree of Freedom Analysis 

 

Dynamic simulation involves setting an algorithm to solve sets of equations 

that describe the column behavior.  These equations are Mass balance, Equilibrium, 

Summation and Heat balance (MESH) equations and hydraulic equations. In order to 

obtain unique solution to a set of independent equations, the number of independent 

equations must equal to the number of independent variables (Stephanopoulos, 1984).  

This rule must be followed so as to avoid either redundant equations or variable 

conditions because these conditions cause infinite number of solutions or no solution 

at all.  The degree of freedom for a system is determined as in Equation 3.1: 

 

      # df = # Variables - # Equations      

  = number of independent variables  

      – number of independent equations               ( 3.1 ) 

 

For a multi-component distillation column, the degree of freedom analysis is 

presented in Table 3.2 and Table 3.3 as in Luyben (1963).  
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a) Number of trays = 28, 1 total reboiler. Total trays = 29 (N trays) 

b) Number of components = 9 (M components) 

 

Table 3.2: Degree of freedom analysis – number of variables 

Variables General Form No. of Variables 

Tray composition (vapor and liquid) 2MN 2 x 9 x 29 

Tray liquid flow, L N 29 

Tray vapor flow, V N 29 

Tray hold up, molar N 29 

Reflux flow rate 1 1 

Distillate flow rate 1 1 

Sidedraw flow rate 1 1 

Pumparound flow rate 1 1 

Liquid stream flow rate 1 1 

Pumparound point hold-up 1 1 

Reflux point hold-up 1 1 

Side draw composition 2M 2 x 9 

Bottom flow rate 1 1 

Bottom hold-up  1 1 

Vapor flow from reboiler 1 1 

Bottom composition 2M 2 x 9 

Trays temperature and pressure 2N  2 x 29 

Pumparound point temperature and 

pressure 

2 2 

Reflux point temperature and pressure 2 2 

Pumparound stream temperature 1 1 

Reboiler duty 1 1 

Cooler duty 1 1 

Total  720 
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Table 3.3: Degree of freedom analysis – number of equations 

Equations General Form No. of Equations 

Total mass balance (tray, 

reflux point, pumparound 

point) 

N + 2 31 

Component Balance, 

liquid composition 

(N + 2)(M - 1) 31 x 8 

Summation Equation for 

vapor and liquid 

composition 

2(N + 2) 2 x 31 

Hydraulic (liquid flow 

rate) 

N + 2  31 

Equilibrium Equation 

(vapor composition) 

M(N + 2) 9 x 31 

Heat Balance N + 2  31 

Total  682 

Degrees of Freedom =  720 – 682 = 38 

 

 

 The degrees of freedom calculated can be further reduced by specifying the 

value of independent variables or introducing more independent equations.  The 

distillation column is installed with several control loops to ensure stable operation 

of the column. Figure 3.1 shows the distillation column with all the control loops.  

The general properties of each control loops are explained in Table 3.4.  The 

controller of each control loop is tuned using the Cohen-Coon method 

(Stephanopolous, 1984).  The method in determining the controller sampling time 

and controller tuning procedure and the details of the controllers are given in Section 

3.7.4.    
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        Figure 3.1: The control structure of the distillation column 
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Table 3.4: Properties of each control loop 

Control 

Loop 

Local 

Disturbance* 

Control Variable Manipulated 

Variable 

Type of 

Control Loop 

1 Liquid flow 

rate from tray 

28, L28

Liquid level at bottom 

column, 

 LH, B

Bottom flow 

rate, B 

Feed back  

2 Liquid flow 

rate from tray 

28, L28

Bottom temperature Hot utility flow 

rate 

Feed back 

3 Vapor flow rate 

from tray 2, V2

Top column pressure Vapor flow rate 

to vent 

Feed back 

4 Liquid flow 

rate from tray 

1, L1

Side draw tray liquid 

level 

Distillate flow 

rate, D 

Feed back 

5 Liquid stream 

flow rate, LDp

Pumparound 

temperature 

Cooling utility 

flow rate 

Feed back 

6 Liquid stream 

flow rate, LDp

Pumparound flow 

rate, P 

Flow rate prior 

to pumparound 

stream   

Feed back  

7 Sidedraw flow 

rate, Sd 

Reflux flow rate, Re Flow rate prior 

to reflux stream  

Feed back 

 

*The local disturbance of each control loop in Table 3.4 refers to main local   

disturbance  among various local disturbances on each control loop.  The location of   

the variables (control variables, manipulated variables and local disturbance) are 

shown in Figure 3.2.  

 

 The degrees of freedom for the system are 31 (38 – 7) since the 7 control loops 

are equivalent to 7 independent equations.  In order to define the system completely, 

31 independent variables are needed to be specified.  The defined independent 

variables are shown as follow: 
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a) 28 trays pressure. Pressure varies linearly from top tray to bottom column, 

b) Reflux flow rate, 

c) Pumparound flow rate, 

d) Reboiler duty. 

 

 

 

3.5 Distillation Column Models Formulation 

 

The mathematical models used in dynamic simulation should be as general as 

possible so that it could handle wide range of problems and processes.  All models 

start from basic mass and energy balance as well as the equilibrium relationship 

between phases.  Various forms of MESH equations have appeared in the literature. 

The arrangement of the sets of equations depends on the methods adopted in solving 

the problem.  In addition, the equations can be written in transient form or in steady 

state form.  Other terms like tray efficiency, chemical reaction and thermal efficiency 

can also be introduced in these MESH equations.  Beside these MESH equations 

(Wang and Henke, 1966), correlations are also needed to determine equilibrium ratio, 

K’s; liquid enthalpy, h’s; vapor enthalpy, H’s, Francis weir equations and hydraulic 

equations.  The following section presents the distillation column dynamic modeling 

systematically. 

 

 

 

3.5.1 Mass Balance Equations 

  

The mass balance equations involve total flow rate balance and components 

flow rate balance for each tray.  The equations are written in derivative form in order 

to reveal the dynamic behavior of the column.  In order to get a better picture of mass 

balance for reflux point, pumparound point, normal tray, sidedraw tray, reflux tray, 

pumparound tray, feed tray and column bottom, a schematic diagram for the 

distillation column was presented in Figure 3.2. 
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Distillation Column Representation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              
 
 
 
 
 
 
 
 
 
 

 
Figure 3.2: Distillation column schematic diagram 
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3.5.1.1 Bottom Column Model 
 

The bottom column (tray 29) schematic diagram is shown in Figure 3.3. 

 

  

 

 
 
 
 
 
 
 
 

Figure 3.3: Bottom column schematic diagram 
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I) Bottom flow rate has a very close relationship with the bottom liquid 

level.  The equation relating these two variables (Douglas et al., 1996) 

is shown in Equation3.2. 

 

Bottom flow rate, B = 
MW
LC BHv

5.0
,ρ

             ( 3.2 ) 

 

The bottom molar hold-up is related to the bottom liquid level as             

shown in Equation 3.3. 

 

  Bottom molar hold-up, MB = 
MW

AL BBH ρ,            ( 3.3 ) 

 

  Liquid density, ρ =              ( 3.4 ) ∑
=

9

1i
iix ρ

 

II) Bottom height derivative expression. 

 

tcons
BVL

dt
dL NNBH

tan
1, −−

= −             ( 3.5 ) 
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III) Components mass balance in term of mole fraction derivative 

expression. 

 

)tan(,

,,11,

tconsL
BxyVxL

dt
dx

BH

iiNNiNNiN −−
= −−              ( 3.6 ) 

 

constant = 
MW
Abρ  

 

where:  ρ = liquid density 

  MW = molecular weight 

  LH,B  = bottom liquid level 

  Ab = bottom column area 

  Cv = discharge coefficient 

  B = bottom flow rate 

  MB = bottom molar hold-up 

  MN = molar hold-up at tray-N 

  MP = pumparound point molar hold-up 

  MRe = reflux point molar hold-up 

  xi = component liquid mole fraction 

  yi = component vapor mole fraction 

  N = number of trays 

  LN = liquid flow rate at tray-N 

  VN = vapor flow rate at tray-N 

  xf = liquid feed mole fraction 

  xRe = liquid reflux mole fraction 

  xP = liquid pumparound mole fraction 

  xSd = liquid sidedraw mole fraction 
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3.5.1.2 Tray Model 

 

The normal trays (N = 4 to 13 and 15 to 28) schematic diagram are presented 

in Figure 3.4.  

   

 

 

 

 

Figure 3.4: Tray schematic diagram 
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I) Total mass balance 

 

NNNN
N VLVL

dt
dM

−−+= +− 11              ( 3.7 ) 

 

II) Component mass balance 

 

N

iNNiNNiNNiNNi

M
xLyVyVxL

dt
dx ,,,11,11 −−+

= ++−−            ( 3.8 ) 

 

 

 

3.5.1.3 Feed Tray Model 

 

The feed tray (N = 14) schematic diagram is presented in Figure 3.5. 
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     Figure 3.5: Feed tray schematic diagram 

  



 43

I) Total mass balance 

 

NNfNN
N VLLVL

dt
dM

−−++= +− 11                ( 3.9 ) 

 

II) Component mass balance 

 

N

iNNiNNiffiNNiNNi

M
xLyVxLyVxL

dt
dx ,,,,11,11 −−++

= ++−−         ( 3.10 ) 

 

 

 

3.5.1.4 Reflux Point Model 

 

The reflux point model is similar to the bottom column model. The schematic 

diagram for the reflux point is shown in Figure 3.6. 

 

 

  

 

 

 

 

 

Liquid stream, L, 
xL, i

Reflux  
flow rate,  
Re, xRe, i

Sidedraw, Sd, 
xSd, i

Reflux Point 

Figure 3.6: Reflux point schematic diagram 

 
I) The liquid stream flow rate is calculated using Equation 3.11 based on  

(Douglas et al., 1996). 

 

Liquid stream flow rate, L = 
MW
A

MWMCv
5.0

Re

Re )(
ρ

ρ
                       ( 3.11 ) 
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II) The liquid density is calculated as shown in Equation 3.12. 

 

  Liquid density, ρ =            ( 3.12 ) ∑
=

9

1i
iix ρ

 

III) Components mass balance in term of mole fraction derivative 

expression. 

 

     
Re

,Re,,, Re
M

LxxSdx
dt

dx iLiiSdiN −−
=           ( 3.13 ) 

 

          where AR = cross-sectional area of reflux drum   

 

 

 

3.5.1.5 Pumparound Point Model 

 

The schematic diagram for the pumparound point is shown in Figure 3.7. 

 

 

 

 

 

 

 

 

 

Pumparound 
Point 

Distillate 
flow rate,  
D, xD, i

Liquid stream, L, xL, i

Pumparound 
flow rate,  
P, xP, i

       Figure 3.7: Pumparound point schematic diagram 

 

I) The distillate flow rate has a very close relationship with the 

pumparound point molar hold-up. 
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Distillate flow rate, D = 
MW

A
MWMC
P

P
v

5.0)(
ρ

ρ
                       ( 3.14 ) 

 

 

II) The liquid density is calculated as shown in Equation 3.15. 

 

  Liquid density, ρ =            ( 3.15 ) ∑
=

9

1i
iix ρ

 

III) Components mass balance in term of mole fraction derivative 

expression. 

 

P

iDiPiLiN

M
DxPxLx

dt
dx ,,,, −−

=            ( 3.16 ) 

 

          where AP = cross-sectional area of pumparound drum   

 

 

 

3.5.1.6 Pumparound Tray Model (N = 1) 

 

The schematic diagram for pumparound tray (tray 1) is shown in Figure 3.8.  

The major assumption in this tray is that the operating temperature and pressure of 

this tray is such that the flow rate of V1 is very small and very little product is lost in 

V1 as it is vent.  

 

 

 

 

 

P, xP, iV1, y1, i

Tray 1 

V2, y2, i L1, x1, i

Figure 3.8: Pumparound tray schematic diagram 
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I) Total mass balance 

 

112
1 VLVP

dt
dM

−−+=                ( 3.17 ) 

 

II) Component mass balance 

 

1

,11,11,22,

M
xLyVyVPx

dt
dx iiiiPi −−+

=                 ( 3.18 ) 

 

 

 

3.5.1.7 Sidedraw Tray Model (N=2) 

 

The schematic diagram for the side draw tray (tray 2) is shown in Figure 3.9.  

 

 

 

 

 

L1, x1, iV2, y2, i

Tray 2 
Sd, xSd, i

V3, y3, i L2, x2, i

          Figure 3.9: Sidedraw tray schematic diagram 

 

I) Total mass balance 

 

2231
2 VLSdVL

dt
dM

−−−+=                    ( 3.19 ) 

 

II) Component mass balance 

 

2

,22,22,,33,11

M
xLyVSdxyVxL

dt
dx iiiSdiii −−−+

=                ( 3.20 ) 
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3.5.1.8 Reflux Tray Model (N = 3) 

 

The schematic diagram for the reflux tray (tray 3) is shown in Figure 3.10. 

 

 

 

 

 

 

Re, xRe, i

L2, x2, iV3, y3, i

Tray 3 

V4, y4, i L3, x3, i

               Figure 3.10: Reflux tray schematic diagram 

 

I) Total mass balance 

 

3342
3 Re VLVL

dt
dM

−−++=                 ( 3.21 ) 

 

 

II) Component mass balance 

 

3

,33,33Re,,44,22 Re
M

xLyVxyVxL
dt
dx iiiiii −−++

=                ( 3.22 ) 

 

 

 

3.5.2 Equilibrium Equations 

 

 Equilibrium equations involve using appropriate thermodynamic equations to 

determine the phase equilibrium between vapor and liquid phase.  Therefore, E-

equations are used to determine the liquid phase compositions, vapor phase 

compositions and temperature of the tray. 

 

 The study distillation column contains nine components: N-Hexanoic Acid, 

N-Octanoic Acid, N-Decanoic Acid, N-Dodecanoic Acid, N-Tetradecanoic Acid, N-

Hexadecanoic Acid, Stearic Acid, Oleic Acid and Linoleic Acid.  The 
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thermodynamic equations used for describing phase equilibrium and bubble point 

calculations are based on the Wilson correlation (Walas, 1985) for the liquid phase 

and the Virial Correlation (Van Ness et al., 1996) for the vapor phase. 

 

 The Virial Correlation is used to calculate the fugacity coefficient of the 

vapor phase because the system pressure is less than atmospheric pressure.  This 

correlation gives a good approximation in this operating region (Van Ness et al., 

1996).  The Wilson correlation is used for estimating the activity coefficient of the 

liquid phase since the system exhibit non-ideality behavior (Reid et al., 1987).  The 

involved equations for both the correlations are presented as follow: 

 

Virial Correlation: 

 

ln kφ  = ⎥
⎦

⎤
⎢
⎣

⎡
−+ ∑∑

= =

n

i

n

j
ijikjikk

tot yyB
RT
P

1 1
)2(

2
1 δδ            ( 3.23 ) 

 

ikδ  =                ( 3.24 ) kkiiik BBB −−2

 

 ijδ  =               ( 3.25 ) jjiiij BBB −−2

 

with ,0,0 == kkii δδ etc., and ikki δδ = , etc. 
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cij
rij T

TT =                ( 3.29 ) 

 

2
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+
=                ( 3.30 ) 

 
2/1)( cjcicij TTT =               ( 3.31 ) 
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⎜
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⎝
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cij

VV
V               ( 3.34 ) 

 

where: 

 

Ptot = total pressure of the system 

T = temperature of the system 

R = universal gas constant, 83.14 bar.cm3/mol.K 

Tci = critical temperature of component-i 

Pci = critical pressure of component-i 

ωi  = critical accentric factor for component-i 

Zci = critical compressibility factor for component-i 

Vci = critical volume for component-i 

Tri = reduced temperature of component-i 

n = number of components 

yi = vapor mole fraction of component-i 

kφ  = vapor fugacity coefficient for component-i 
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Wilson Correlation: 

 

ln iγ  = 1 – ln∑ ∑
∑= =

=

Λ

Λ
−Λ

n

j
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             ( 3.35 ) 
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i

j
ij exp               ( 3.36 ) 

 

with = 1 for i = j, etc and ijΛ jiij Λ≠Λ . 

 

where: 

 

iγ  = liquid phase activity coefficient for component-i 

xi = liquid mole fraction for component-i 

ijΛ  = Wilson binary interaction parameters for component-i and j 

Vi = liquid molar volume of component-i 

aij = Wilson constant      

 

The liquid mole fraction and vapor mole fraction for component-i are related by the 

following equation: 

 
sat

iiitotii PxPy γφ =                  ( 3.37 ) 

 

where: 
sat

iP  = vapor pressure of component-i 

 

 Equation 3.37 is the fundamental vapor-liquid equilibrium equation that will 

be used in this research.  The bubble point calculation procedure that will be 

presented in the next section is based on this equation. 
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3.5.2.1 Bubble Point Calculations 

 

Liquid phase activity coefficient and vapor phase fugacity coefficient help in 

determining the vapor phase and liquid phase compositions.  The tray temperature is 

depended on the tray pressure, liquid and vapor compositions.  The bubble point 

calculations based on Equation 3.38 are known as the gamma-phi approach because 

the liquid phase coefficient and vapor phase coefficient are determined using two 

different thermodynamic models (Walas, 1985).  The procedures of the bubble point 

calculations are presented in Figure 3.11: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bubble Point Calculation Procedures by using Wilson Correlation 

and Virial Coefficient (gamma-phi approach) 

Objective- for the given pressure and liquid phase compositions,  

                  determine the vapor phase compositions and temperature. 

Fix Pressure, Ptot and liquid phase compositions, xi. Guess temperature, T 

Determine  of each component using Antoine Equation: sat
iP

Log 10
i

i
i

sat
i CKT

BAbarP
+

−=
)(

)(            ( 3.38 )  

where Ai, Bi and Ci are Antoine constants. 

Set all iφ = 1.0 and all iγ  = 1.0. Identify component j. 
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Figure 3.11: Bubble point calculation procedure 

 

Evaluate iγ  using Equations 3.35 - 3.36. 

Calculate  by the following equation: sat
jP
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      ( 3.39 ) 

 
Calculate T  by the following equation: 

 

          jsat
jj

j C
PA

B
T                       ( 3.40 ) −

−
=

10log
 

Reevaluate  using Equation 3.38 and T calculated from 

Equation 3.40. Calculate y

sat
iP

i using Equation 3.37. Evaluate iγ  

using Equation 3.35 – 3.36 and iφ using Equation 3.23 -3.34.

Recalculate  by Equation 3.39 and T by Equation 3.40. 

Check whether the new value of T close to the previous 

calculated T.   

sat
jP

Yes 

No 

Solution Reach 
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3.5.3 Summation Equations 

 

 Summation equations are used to determine the vapor phase and liquid phase 

compositions of the last component (Linoleic Acid).  

 

  x9 = 1 -              ( 3.41 ) ∑
=

8

1i
ix

 

  y9 = 1 -              ( 3.42 ) ∑
=

8

1i
iy

 

 

 

3.5.4 Heat Balance Equations 

 

 Heat balance equations are used to determine the vapor flow rate leaving each 

tray.  The reference temperature is set at 273 K.  The liquid enthalpy and vapor 

enthalpy are calculated by using the following equations (Felder and Rousseau, 

1986): 

 

Liquid enthalpy, h =    dTTDTCTBA
T 3*2*

273

** +++∫
 

         =  
T

TDTCTBTA
273

4*3*2*
*

432 ⎥
⎦

⎤
⎢
⎣

⎡
+++          ( 3.43 ) 

 

Vapor enthalpy, H = h + ∆Hvap               ( 3.44 ) 

 

Heat of Vaporization, ∆Hvap = ∆Hvap, n 
38.0

⎥
⎦

⎤
⎢
⎣

⎡
−
−

bc

c

TT
TT           ( 3.45 ) 

 

Vapor leaving the reboiler, V29 = 
29

28 )(
H

hBLQ BR −+           ( 3.46 ) 
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Vapor leaving each tray, VN = 
N

NNNNNN

H
hLHVhL −+ ++−− 1111           ( 3.47 ) 

 

Where:  A*, B*, C*, D* = constants for liquid heat capacity 

  ∆Hvap  = heat of vaporization 

  ∆Hvap, n    = heat of vaporization at normal boiling point 

  Tb  = normal boiling point  

  L28  = liquid flow rate at tray-28 

  HN  = vapor enthalpy at tray-N 

  hN  = liquid enthalpy at tray-N 

  hB  = enthalpy for bottom stream 

  QR  = reboiler duty  

 

 

 

3.5.5 Hydraulic Equations 

 

Besides MESH equations, Francis Weir hydraulic equations are used to 

determine the liquid flow rate leaving each tray and molar hold-up.  Liquid flow rate 

leaving each tray is depended on the over weir height, how.  The involved hydraulic 

equations are shown as follow (Sinnot, 1984): 

 

Liquid level, LH  = 
)(

)(

t

N

A
MWM

ρ
             ( 3.48 ) 

 

Over weir height, how  = LH - WL           ( 3.49 ) 

 

Tray liquid flow rate, LN = ⎟⎟
⎠

⎞
⎜⎜
⎝
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 Where: how = over weir height 

  WL
 = weir length 

  At = tray active area 
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After the column models and involved equations are formulated, the 

following task is to develop a proper algorithm that arranges the sets of equations in 

correct order so that dynamic simulation can be performed.  The literature dynamic 

simulation algorithms are studied and surveyed in the following section.   

 

 

 

3.6 Distillation Column Dynamic Simulation Literature Review 

 

Multi-stage distillation column simulation basically is to solve the 

combinations of four sets of equations (MESH equations) and hydraulic equations. 

There are a lot of numerical algorithms discussed in the literature for solving MESH 

equations from dynamic state until steady state.  The most widely used algorithms 

are proposed by Luyben (1963) and Gani et al. (1986).  The algorithm developed in 

this research is based on the work of Lee and Kamarul (2001).  The details for these 

algorithms are systematically presented in the following subsections.  

 

 

 

3.6.1 Dynamic Simulation Algorithm Based on Luyben (1963) 

 

The dynamic simulation algorithm proposed by Luyben (1963) is shown as 

follow: 

 

1) Read data on the column size, components, physical properties, feeds and initial   

    conditions (T, x, L).  

2) Calculate the initial tray hold-up and the pressure profile. 

3) Calculate temperature and vapor compositions from vapor-liquid equilibrium  

    thermodynamic calculation method. 

4) Calculate liquid and vapor enthalpies. 

5) Calculate vapor flow rate leaving each tray using energy balance. 

6) Evaluate all derivatives – total and component hold-ups. 

7) Integrate. 

8) Calculate new liquid rates from new hold-ups using Francis Weir equation. 
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9) Go back to step 3 and repeat. 

 

 

 

3.6.2 Dynamic Simulation Algorithm Based on Gani et al. (1986) 

 

The algorithm proposed by Gani et al. (1986) is also known as generalized 

model because the proposed algorithm allows the solution of a wide variety of 

problems, from open- and closed-loop responses of a single (and multiple) columns 

to operability studies (of feed changeover and start-up operations) and column 

instability studies (effect of plate hydraulics during transient operations).  The 

simulation procedures are arranged as follow: 

 

1) Specify the plate pressure.  From initial components molar hold-up and total molar   

    hold-up at time-t, determine the liquid composition on each plate. 

2) From the plate pressure and liquid composition, determine plate temperature and  

    vapor composition. 

3) Determine the vapor and liquid enthalpy. 

4) From the total molar hold-up and total pressure drop, determine the liquid and  

     vapor flow across the plate, weeping, flooding and entrainment rates (if any).    

 

 The above algorithm involves a lot of hydraulic parameters like total head 

loss, head loss due to vapor flow, dry-cab head loss coefficient and other hydraulic 

parameters, in determining the liquid and vapor flow rates.  The hydraulic parameters, 

which depend on types of plate like bubble-cap or sieve plate, are hardly obtained 

from the literature.  The proposed method relies on hydraulic equations to determine 

the liquid and vapor flow rate.  Furthermore, the proposed algorithm has been 

demonstrated on five case studies.  However, the results were not compared to any 

commercial dynamic simulator’s results.  Therefore, the demonstrated debutanizer 

column showed mass non-balance condition and showed infeasible column pressure 

operating condition. 
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3.6.3 Dynamic Simulation Algorithm Based on Lee and Kamarul (2001) 

 

Lee and Kamarul (2001) proposed an algorithm based on the work of Grassi 

(1990) and Luyben (1963).  The proposed algorithm was able to simulate the 

debutanizer column from Gani et al. (1986) dynamically.  The proposed method is 

shown as follows: 

 

1) From the tray hold-up composition and tray pressure, calculate the equilibrium   

    vapor composition and temperature by bubble point calculation.  Equilibrium           

    calculations have to base on suitable thermodynamic method. 

2) Calculate the vapor and liquid enthalpy from their composition and tray  

     temperature. 

3) Calculate the liquid rate leaving the stage from Francis Weir equation.  Liquid  

     flow rate of a tray depends on the height of over weir. 

4) Calculate the vapor flow rate leaving the stage from energy balance. 

5) Calculate the components and total mass derivatives for each stage starting with  

     the bottom and working up the column. 

6) Integrate all derivatives to get tray hold-up and components composition. 

7) Increment time by the integration time step. 

 

 This method was developed to simulate a normal distillation column.  Since 

the study column in this research involves a pumparound system at the top of the 

column, there will be some modifications on the algorithm by Lee and Kamarul 

(2001) before using it to the case study in this research.     

 

 

 

3.7 Dynamic Simulation of the Study Column 

 

Dynamic simulation activities can be divided into four sub-sections: pre-

simulation, algorithm formulation, program development (Lee and Kamarul, 2001) 

and tuning of controllers for the study column.  
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3.7.1 Pre-Simulation 

 

Pre-simulation activities consist of: understanding the assumptions that are 

used in simulating the column, acquiring the inlet stream conditions, simulate the 

study column using commercial simulator Design II and specify the desired 

separation flow rates and fix the degrees of freedom.  The adopted assumptions in 

simulating the column are structured as follow: 

 

1) Liquid on the tray is perfectly mixed and incompressible.  Compositions of the 

    liquid stream leaving the tray will be the same as the tray molar hold-up  

    compositions. 

2) Tray vapor hold-ups are negligible because the column operating pressures are  

     less than 10 bars (Lee and Kamarul, 2001). 

3) Vapor and liquid are in thermal equilibrium.  The temperature for liquid stream 

     leaving the tray and the vapor stream leaving the tray is the same. 

4) Vapor and liquid are in the phase equilibrium. 

5) Pressure is constant on each tray but varies linearly up the column from bottom  

    pressure to the top column pressure.  In another word, pressure drop for each  

    tray is the same. 

6) Coolant and steam dynamics are negligible. 

7) Dynamic changes in internal energy on the trays are negligible compared with  

    the latent heat effects.  Therefore, energy balance on each tray is just algebraic.   

 

 After the assumptions that are used in simulating the column have been 

studied, the following task is to acquire enough information for the inlet feed stream. 

This information is obtained from the plant simulated data (Appendix B).  The given 

data was sufficient enough for the inlet stream. 

 

 The study column is simulated using commercial simulator, Design II, to 

obtain a set of steady state results that comprises the following column parameters 

profile: 

 

1) Column temperature profile. 

2) Column liquid flow rate profile. 
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3) Column vapor flow rate profile. 

4) Trays liquid compositions profile. 

5) Trays vapor compositions profile. 

6) Liquid enthalpy profile. 

7) Vapor enthalpy profile. 

8) Bottom stream flow rate and compositions. 

9) Distillate stream flow rate and compositions. 

10) Sidedraw stream flow rate and compositions. 

11) Pumparound stream flow rate and compositions. 

12) Reflux stream flow rate and compositions. 

 

 The Design II simulation results are used as the initial guess for the dynamic 

simulation of the column in Matlab.  The parameter profiles that are going to be used 

as the initial guesses for the written dynamic simulation are the column temperature 

profile and the liquid compositions profile. 

 

 From the degree of freedom analysis, it is shown that there are 31 degrees of 

freedom.  Therefore, 31 variables have to be fixed in order to achieve the desired 

compositions for the bottom and distillate streams. 

 

These 31 variables are: 

 

1) 28 tray pressure. The tray pressures vary linearly from top column to the bottom   

     of the column. Each tray encounters 0.00095 bar pressure drop.  

2)  Reflux flow rate = 10 kmole/hr. 

3)  Pumparound flow rate = 49.6 kmole/hr. 

4)  Reboiler duty = 2.16 x 106 kJ/hr. 
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 3.7.2 Algorithm Formulation 

 

The column models that describe the column behavior are bottom column 

model, normal tray model, feed tray model, reflux point model, pumparound point 

model, sidedraw tray model, reflux tray model and pumparound tray model.  These 

models are comprised of mass balance equations, equilibrium equations, heat balance 

equations, summation equations and hydraulic equations.  Algorithm formulation 

involved solving these equations in the proper order and sequence so that the column 

behaviors are revealed.  For this research, the dynamic simulation algorithm 

proposed by Lee and Kamarul (2001) are referred.  However, since in this research 

the study column has a pumparound system incorporated at the top of the column; 

some modifications are made before applying the stated algorithm.  

 

The systematic procedures in formulating this research’s dynamic simulation 

algorithm are elaborated as follow: 

 

The algorithm for the bottom column to the 4th tray:  

 

1) Initialize the following derivative variables: 

i) Bottom liquid level and compositions – 9 derivative variables 

ii) Each tray molar hold-up and compositions – 225 derivative variables 

 

There are 234 derivative variables that have to be initialized since there are 234 

derivative equations. 

 

2) Calculate the bubble point from the bottom tray till the 4th tray. 

   The tray pressure is fixed since the pressure drop for each tray is assumed to be the 

same.  The bottom column pressure is fixed at 0.1333 bar and each tray will 

encounters a 0.00095 bar pressure drop.  The tray temperature and liquid 

compositions are guessed.  The guessing values are referred from the Design II 

steady state simulation results.  The bubble point calculation procedures which 

were presented in Section 3.5.2.1 are referred.  The purposes of bubble point 

calculations are to determine the tray temperature and vapor phase compositions. 
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3) Calculate the liquid and vapor enthalpy from bottom tray till the 4th tray.  Based 

on the Tn, xi, n and yi, n as calculated in the previous step, liquid and vapor 

enthalpy for each tray are determined via Equation 3.43 to 3.44. 

 

4) Calculate the liquid flow rate by Francis Weir equations. 

     From the initial bottom liquid level and tray’s molar hold-up, the following 

variables are determined from the bottom stage till the 4th stage: 

i) Bottom flow rate by Equation 3.2. 

ii) Liquid leaving each tray by Equation 3.48 – 3.50. 

 

5) Calculate the vapor flow rate from energy balance. 

     Based on the calculated liquid and vapor enthalpy, the vapor flow rate leaving 

each tray is determined by Equation 3.46 for the reboiler stage and Equation 3.47 

for other trays. 

 

6) Evaluate the molar hold-up and components composition derivative variables. 

     For every time increment h = 0.005 hour, the evaluation for each derivative     

variable is started from the bottom stage till the 4th stage using Runge-Kutta 

fourth order method. 

 

The algorithm for the 3rd tray to 1st tray, pumparound point and reflux point:      

 

7) Start at the reflux point. Initialize the derivative variables as in Step 1.  Perform 

bubble point calculation as in Section 3.5.2.1, calculate the liquid and vapor 

enthalpy for all the streams and the flow rate of the liquid stream is determined 

using Equation 3.11.  Repeat Step 4 to 6. 

 

8) Pumparound point. Calculation procedure as Step 7 with the distillate flow rate 

calculated using Equation 3.14. 

 

9) Tray-3 to Tray-1. The calculation procedure is as Step 1 to 6. 
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10) Increase time step. 

    After all the derivative variables at time = t are evaluated, the calculation steps are 

repeated until time = tfinal.   

 

 

 

3.7.3 Simulation Program Development    

 

The developed algorithm served as the basis in formulating the simulation 

program to perform dynamic simulation.  Matlab software is used to write the 

program. The written program has the following characteristics: 

 

1) Process variables: feed stream flow rate, feed stream temperature, reflux flow 

rate, pumparound flow rate and reboiler duty are having randomly generated 

value. In the commercial simulators, these variables can only accept fixed 

value. 

2) These process variables have autocorrelation effect, which is one of industrial 

data characteristics. 

3) The developed program has a main program and sub-programs.  The main 

program mainly contains the sub-programs executing sequence.  The 

following calculations are written in sub-program: 

a) Bubble point calculations. 

b) Thermodynamic models for vapor-liquid equilibrium calculations. 

c) Liquid and vapor enthalpy calculations. 

d) Runge-Kutta fourth order calculations. 

 

The developed dynamic simulation program is used to perform dynamic 

simulation.  The performance of the developed dynamic simulation program is 

evaluated in the Section 3.8.   
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3.7.4 Controller Tuning  

 

 Prior to the tuning of controllers, the process time constant, τ, the dead time, 

td, and the static gain, Kp, of process sections (the process sections that are to be 

installed with controllers) have to be determined.  The methods of determining these 

parameters are using the process reaction curve method (Stephanopolous, 1984) and 

the method found in Smith and Corripio (1985).  Figure 3.12 shows the process 

reaction curve of a process in a step test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Process reaction curve of a process in a step test 

 

In Figure 3.12, 

        t = time of the process 

m (t) = value of input variable at time t 

 c (t) = value of output variable at time t  

    css = value of output variable at steady-state 

   mss = value of input variable at steady-state 

   ∆m = new mss – mss  

   ∆cs = new css – css
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According to Smith and Corripio (1985),  

 

Kp = 
m
cs

∆
∆             ( 3.51 ) 

 

    τ = )(
2
3

12 tt −             ( 3.52 ) 

 

    td = t2 – τp             ( 3.53 )  

 

 

In tuning the controllers of the column, the first parameter that was 

determined before tuning of any controllers are the controller sampling time, TAPC.  

The method in determining this parameter is shown in the next section.   

 

 

 

3.7.4.1 Controller Sampling Time, TAPC 

 

 The controller sampling time, TAPC, of the study column is determined using 

the guideline proposed by Ogunnaike and Ray (1994).  Ogunnaike and Ray (1994) 

proposed using one tenth to one twentieth of smallest time constant of a process for 

its controller sampling time.  The bottom liquid level-bottom flow rate process 

section of the study column process has the smallest time constant, τ = 0.1 hour.  

Therefore, the controller sampling time of the study column is set at TAPC = 0.01 hour 

(one tenth of the smallest time constant of the study column process).      

 

The controllers of the study column are tuned using the Cohen-Coon method 

(Stephanopolous, 1984).  Equation 3.54 to Equation 3.59 show the formulas to 

calculate the controller gain, Kc, integral time constant, τI, and derivative time 

constant, τD, of different types of controllers. 
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 For proportional controllers, 
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 For proportional-integral controllers, 
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 For proportional-integral-derivative controllers, 
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There are seven control loops in the study column.  The following sections show the 

tuning procedure and controller properties of each control loop.   

 

 

 

3.7.4.2 Bottom Temperature Controller 

 

 The reboiler of the study column is assumed to be a total reboiler with hot oil 

as the heating fluid for the reboiler system.  The control variable in the bottom 

temperature control loop is the bottom temperature and the proposed manipulated 

variable is the flow rate of the hot oil in the reboiler system.  The hot oil is assumed 

to have a heat capacity, Cp = 7.5 kJ/kg.K (Geankoplis, 1995) and a change in 
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temperature, ∆T = 40K.  These two parameters are assumed to be constant and the 

steady-state (SS) value of the hot oil flow rate is 7192 kg/hr.  The flow rate of the hot 

oil is varied (various step changes) and the static gain, Kp, time constant, τ, and dead 

time, td, for each change of the value of the flow rate of the hot oil is recorded and 

shown in Table 3.5. 

 

Table 3.5: The step change results for bottom temperature controller 

Change in flow 

rate of hot oil 

Static Gain, Kp, 

K/(kg/hr) 

Time Constant, τ, 

hour 

Dead Time, td, 

hour 

+5% of SS value 0.03547 0.2 0.05  

+10% of SS value 0.03673 0.2 0.05 

-5% of SS value 0.03615 0.2 0.05 

-10% of SS value 0.03662 0.2 0.05 

Average Value 0.03624 0.2 0.05 

     

 

 The controller used for controlling the bottom temperature is Proportional-

Integral-Derivative (PID) controller.  Using the average value of Kp, τ, and td from 

Table 3.5, the controller parameters such as Kc, τI and τD are calculated using 

Equation 3.57 – Equation 3.59.  The average values are used in order to check the 

linearity of the process response to step changes.  The calculated parameters and 

information of the bottom temperature PID controller are shown in Table 3.6.  

 

Table 3.6: Properties of bottom temperature PID controller 

Controller 

Type 

Control 

Variable 

Manipulated 

Variable 

Local 

Disturbance

Kc, 

(kg/hr)/K 

τI, hour τD, 

hour 

PID Bottom 

temperature, 

Tbot

Hot oil flow 

rate, Fhot

Liquid flow 

rate from 

tray 28, L28

154.050 0.11167 0.0174
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3.7.4.3 Bottom Liquid Level Controller 

 

 The control variable for the bottom liquid level control loop is the bottom 

liquid level while the proposed manipulated variable is the bottom flow rate.  The 

value of the bottom flow rate is varied (various step changes) and Kp, τ, and td for 

each change of the value of the bottom flow rate is recorded and shown in Table 3.7.  

However, only small changes of the value of the bottom flow rate is carried out as 

the developed Matlab program will fail to converged for large changes in the value 

of the bottom flow rate.  

 

Table 3.7: The step change results for bottom liquid level controller 

Change in flow 

rate of bottom 

stream 

Static Gain, Kp, 

m/(kmole/hr) 

Time Constant, τ, 

hour 

Dead Time, td, 

hour 

+0.5% of SS value -1.04750 0.1 0.01  

+1.0% of SS value -1.04754 0.1 0.01 

-0.5% of SS value -1.04753 0.1 0.01 

-1.0% of SS value -1.04754 0.1 0.01 

Average Value -1.04753 0.1 0.01 

 

 

The controller used for controlling the bottom liquid level is Proportional-

Integral (PI) controller.  Using the average value of Kp, τ, and td from Table 3.7, Kc 

and τI are calculated using Equation 3.55 and Equation 3.56.  The calculated 

parameter and information of the bottom liquid level P controller are shown in Table 

3.8.  

 

Table 3.8: Properties of bottom liquid level PI controller 

Controller 

Type 

Control 

Variable 

Manipulated 

Variable 

Local 

Disturbance 

Kc, 

(kmole/hr)/m 

τI, hour 

PI Bottom  

liquid level, 

LH, b

Bottom 

flow rate, B 

Liquid flow 

rate from 

tray 28, L28

-8.6712 0.0275 
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3.7.4.4 Pumparound Temperature Controller 

 

 The control variable for the pumparound temperature controller is the 

temperature of the pumparound stream while the proposed manipulated variable is 

the flow rate of the cooling water in the pumparound cooler system.  The water has a 

heat capacity Cp = 4.184 kJ/kg.K (Geankoplis, 1995) and a change in temperature, 

∆T = 10K.  These two parameters are assumed to be constant and the steady-state 

(SS) value of the cooling water flow rate is 411.57 kmole/hr.  The value of the 

cooling water flow rate is varied (various step changes) and Kp, τ, and td for each 

change of the value of the cooling water flow rate is recorded and shown in Table 3.9.    

 

Table 3.9: The step change results for pumparound temperature controller 

Change in flow 

rate of cooling 

water 

Static Gain, Kp, 

K/(kmole/hr) 

Time Constant, τ, 

hour 

Dead Time, td, 

hour 

+5% of SS value -0.30282 1.1 0.1  

+10% of SS value -0.30287 1.1 0.1 

-5% of SS value -0.30302 1.1 0.1 

-10% of SS value -0.30297 1.1 0.1 

Average Value -0.30292 1.1 0.1 

 

 

The controller used for controlling the pumparound temperature is PID controller. 

Using the average value of Kp, τ, and td from Table 3.9, the controller parameters 

such as Kc, τI and τD are calculated using Equation 3.57 – Equation 3.59.  The 

calculated parameters and information of the pumparound temperature PID controller 

are shown in Table 3.10.  

 

 

 

 

 

 



 69

Table 3.10: Properties of pumparound temperature PID controller 

Controller 

Type 

Control 

Variable 

Manipulated 

Variable 

Local 

Disturbance 

Kc, 

(kmole

/hr)/K 

τI, hour τD, 

hour 

PID Pumparound 

temperature, 

TP

Cooling 

water flow 

rate, Fcw

Liquid flow 

rate, LDp

22.708 0.4579 0.0704 

 

 

 

3.7.4.5 Sidedraw Tray Liquid Level Controller 

 

 The control variable for the sidedraw tray liquid level control loop is the 

sidedraw tray liquid level while the proposed manipulated variable is the distillate 

flow rate.  The value of the distillate flow rate is varied (various step changes) and Kp, 

τ, and td for each change of the value of the distillate flow rate is recorded and shown 

in Table 3.11.    

 

Table 3.11: The step change results for sidedraw tray liquid level controller 

Change in flow 

rate of bottom 

stream 

Static Gain, Kp, 

m/(kmole/hr) 

Time Constant, τ, 

hour 

Dead Time, td, 

hour 

+5% of SS value -0.02299 0.2 0.05  

+10% of SS value -0.02324 0.2 0.05 

-5% of SS value -0.02140 0.2 0.05 

-10% of SS value -0.02177 0.2 0.05 

Average Value -0.02235 0.2 0.05 

 

 

The controller used for controlling the sidedraw liquid level is PI controller.  Using 

the average value of Kp, τ, and td from Table 3.11, the Kc of this controller is 

calculated using Equation 3.55 and Equation 3.56.  The calculated parameter and 

information of the sidedraw tray liquid level PI controller are shown in Table 3.12. 
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Table 3.12: Properties of sidedraw tray liquid level PI controller 

Controller 

Type 

Control 

Variable 

Manipulated 

Variable 

Local 

Disturbance 

Kc, 

(kmole/hr)/m 

τI, hour 

PI Sidedraw 

tray liquid 

level, LH, Sd

Distillate 

flow rate, D 

Liquid flow 

rate from 

tray 1, L1

-164.802 0.1098 

 

 

 

3.7.4.6 Top Column Pressure Controller 

 

 The control variable for the top column pressure controller loop is the top 

column pressure while the proposed manipulated variable is the top vapor flow rate.  

The value of the top vapor flow rate is varied (various step changes) and Kp, τ, and td 

for each change of the value of the top vapor flow rate is recorded and shown in 

Table 3.13. 

 

Table 3.13: The step change results for top column pressure controller 

Change in flow 

rate of top vapor 

stream 

Static Gain, Kp, 

bar/(kmole/hr) 

Time Constant, τ, 

hour 

Dead Time, td, 

hour 

+5% of SS value -9.60095 1.0 0.1  

+10% of SS value -9.60120 1.0 0.1 

-5% of SS value -9.60194 1.0 0.1 

-10% of SS value -9.60169 1.0 0.1 

Average Value -9.60144 1.0 0.1 

 

 

The controller used for controlling the top column pressure is Proportional-Integral 

(PI) controller.  Using the average value of Kp, τ, and td from Table 3.13, the 

controller parameters such as Kc and τI are calculated using Equation 3.55 and 

Equation 3.56.  The calculated parameters and information of the top pressure PI 

controller are shown in Table 3.14.  
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Table 3.14: Properties of top column pressure PI controller 

Controller 

Type 

Control 

Variable 

Manipulated 

Variable 

Local 

Disturbance 

Kc, 

(kmole/hr)/Bar 

τI, hour 

PI Top 

column 

pressure, 

PTop

Top vapor  

flow rate, 

Vtop

Vapor flow 

rate from Tray 

2, V2

-0.946 0.2755 

 

 

 

3.7.4.7 Reflux Flow Rate Controller 

 

 The control variable for the reflux flow rate control loop is the reflux flow 

rate while the proposed manipulated variable is the liquid flow rate prior to the reflux 

stream.  The valve in the line of flow of the reflux is modeled as a first order lag 

system with linear characteristics.  The major assumptions in this valve model are the 

pressure drop across the valve is constant and a function of flow only.  The value of 

the liquid flow rate prior to the reflux is varied (various step changes) and Kp, τ, and 

td for each change of the value of the flow rate of the liquid prior to the reflux is 

recorded and shown in Table 3.15. 

 

Table 3.15: The step change results for reflux flow rate controller 

Change in flow 

rate of liquid 

stream prior to 

reflux 

Static Gain, Kp, 

bar/(kmole/hr) 

Time Constant, τ, 

hour 

Dead Time, td, 

hour 

+5% of SS value 1.0003 0.1072 0.0378   

+10% of SS value 1.0005 0.1096 0.0352 

-5% of SS value 1.0002 0.1092 0.0372 

-10% of SS value 1.0004 0.1069 0.0352 

Average Value 1.0004 0.1082 0.0363 
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The parameter and information of reflux flow rate controller are shown in Table 3.16. 

 

Table 3.16: Properties of reflux flow rate PI controller 

Controller 

Type 

Control 

Variable 

Manipulated 

Variable 

Local 

Disturbance

Kc  τI, hour 

PI Reflux flow 

rate, Re 

Liquid flow 

rate prior to 

reflux 

stream 

Side draw 

flow rate, 

Sd 

2.7648 0.0716 

 

 

 

3.7.4.8 Pumparound Flow Rate Controller 

 

 The control variable for the pumparound flow rate control loop is the 

pumparound flow rate while the proposed manipulated variable is the liquid flow rate 

prior to the pumparound stream.  The valve in the line of flow of the pumparound is 

modeled as a first order lag system with linear characteristics.  The major 

assumptions in this valve model are the pressure drop across the valve is constant 

and a function of flow only.  The value of the liquid flow rate prior to the 

pumparound is varied (various step changes) and Kp, τ, and td for each change of the 

value of the flow rate of the liquid prior to the pumparound is recorded and shown in 

Table 3.17. 

 

Table 3.17: The step change results for pumparound flow rate controller 

Change in flow rate of 

liquid stream prior to 

pumparound 

Static Gain, Kp, 

bar/(kmole/hr) 

Time Constant, τ, 

hour 

Dead Time, td, 

hour 

+5% of SS value 3.8319 0.1023 0.0743   

+10% of SS value 2.0069 0.1122 0.0836 

-5% of SS value 3.5824 0.1245 0.0635 

-10% of SS value 1.6431 0.1302 0.0770 

Average Value 2.7661 0.1173 0.0746 
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The parameter and information of pumparound flow rate controller are shown in 

Table 3.18. 

 

Table 3.18: Properties of pumparound flow rate PI controller 

Controller 

Type 

Control 

Variable 

Manipulated 

Variable 

Local 

Disturbance

Kc  τI, hour 

PI Pumparound 

flow rate, P 

Liquid flow 

rate prior to 

pumparound 

stream 

Liquid 

stream flow 

rate, LDp

0.5417 0.1096 

 

 

 

3.8 Dynamic Simulation Program Performance Evaluation  

 

The developed simulation program is dynamic in nature while the available 

commercial simulator (Design II) is steady state in nature.  The performance of the 

developed dynamic simulation program is evaluated against the data from the plant 

simulated data (Appendix B).  The performance evaluation is conducted using the 

following aspect: 

  

1) The ability of the developed algorithm and program to achieve steady state 

results that close to the steady state results in the plant simulated data. 

 

 

 

3.8.1 Steady State Results Comparisons 

 

The simulation results generated from the developed program are presented 

in Table 3.19. 
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Table 3.19: Matlab simulation results for steady state 

 

 

 The steady state results generated by Matlab simulator are compared to the 

plant simulated data.  Results of these comparisons are shown in Table 3.20. The 

plant simulated data are used as the basis in the comparison.  The percentage 

difference is calculated as follow: 

 

Percentage Difference 

 = |(Plant simulated data – Matlab result)/(Plant simulated data)| x 100 %        ( 3.57 ) 

 

Parameters Bottom Stream Distillate Stream 

Flow rate (kmole/hr) 37.5 4.0 

Temperature (K) 508.05 344.17 

Pressure (bar) 0.1333 0.11 

 

Compositions (kmole/kmole) 

Hexanoic Acid 0 0.02165 

Octanoic Acid 0 0.52351 

Decanoic Acid 0.00036 0.44145 

Dodecanoic Acid 0.57591 0.01395 

Tetradecanoic Acid 0.17257 0 

Hexadecanoic Acid 0.07469 0 

Stearic Acid 0.01632 0 

Oleic Acid 0.13419 0 

Linoleic Acid 0.02282 0 

 

Sidedraw flow rate (kmole/hr) 63.6 

Liquid stream flow rate (kmole/hr) 53.6 

Reflux flow rate (kmole/hr) 10.0 

Pumparound flow rate (kmole/hr) 49.6 

Reboiler duty (kJ/hr) 2.158 x 106
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Table 3.20: Comparison of simulator results between Matlab and Plant Simulated 

Data 

Parameters Matlab 

Simulation 

Results 

Plant Simulated  

Data 

% Difference 

(%) 

Bottom Stream 

Flow rate (kmole/hr) 37.504 37.48 0.064 

Temperature (K) 508.05 509.55 0.294 

Compositions (kmole/kmole) 

Hexanoic Acid 0 0 0 

Octanoic Acid 0 0 0 

Decanoic Acid 0.00036 0.00034 5.882 

Dodecanoic Acid 0.57591 0.57778 0.324 

Tetradecanoic Acid 0.17257 0.17394 0.788 

Hexadecanoic Acid 0.07469 0.07532 0.836 

Stearic Acid 0.01632 0.01614 1.115 

Oleic Acid 0.13419 0.13516 0.718 

Linoleic Acid 0.02281 0.02273 0.352 

Distillate Stream 

Flow rate (kmole/hr) 4.00 3.998 0 

Temperature (K) 344.17 344.15 0 

Compositions (kmole/kmole) 

Hexanoic Acid 0.02165 0.02132 1.547 

Octanoic Acid 0.52351 0.52101 0.480 

Decanoic Acid 0.44145 0.44283 0.312 

Dodecanoic Acid 0.01395 0.01484 6.000 

Tetradecanoic Acid 0 0 0 

Hexadecanoic Acid 0 0 0 

Stearic Acid 0 0 0 

Oleic Acid 0 0 0 

Linoleic Acid 0 0 0 
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 From the comparison shown in Table 3.20, the maximum difference is about 

6.0%.  The written program is able to achieve the desired bottom and distillate 

compositions that are close to the simulator.  The liquid and vapor flow rate profile 

of the Matlab program were also compared to the plant simulated data.  The liquid 

profile of the Matlab program was very close to the liquid profile of the plant 

simulated data.  The vapor profile exhibits some differences but the maximum 

difference is about 5% which is acceptable.  This difference is caused by the different 

method in calculating the enthalpies between the two programs and also in the plant 

simulated data, the presence of neutrals and water was considered in the feed stream 

to the column while in the Matlab program, these components were ignored as their 

compositions in the feed stream is very small (around 0.004 for each component).  

However, the developed Matlab program was able to achieve the desired bottom and 

distillate flow rate and compositions. Therefore, the developed Matlab program is 

capable of generating the desired data for this research.  

 

 

 

3.9 Chapter Summary 

 

This chapter presents modeling of the study column, literature review on 

dynamic simulation algorithm, dynamic simulation algorithm formulation, dynamic 

simulation program development and program performance evaluation.  The study 

column is a distillation column from literature.  There are nine chemical components 

in this column. 

 

There are 31 degrees of freedom for the study column.  The variables that are 

fixed are the 28 trays pressure, the reboiler duty, reflux flow rate and pumparound 

flow rate.  The modeling of the column requires MESH equations and hydraulic 

equations.  Total mass balance and components balance are written for each model in 

the column.  The equilibrium equations based on Wilson Correlation and Virial 

Correlation are used to determine the values of the activity coefficients and the 

fugacity coefficients of the liquid and vapor phase respectively.  Heat balance 

equations are used to determine the vapor leaving each tray. Hydraulic equations are 

used to calculate the liquid flow rate leaving each tray and tray molar hold-up. 
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The dynamic simulation program built using Matlab software was developed 

based on the algorithm in Lee and Kamarul (2001).  The algorithm proposed by Lee 

and Kamarul (2001) worked well in a normal distillation column.  The study column 

of this research has a pumparound system on top of the column, some modifications 

on the algorithm by Lee and Kamarul (2001) was done to suit the needs of the study 

column.  The initial values for the derivative variables in the dynamic simulation 

program were obtained using a commercial steady state simulator, Design II.  The 

results obtained from Matlab were compared to the data from literature.  The 

developed program was able to produce results close to the data from literature.  As a 

conclusion, the developed program is ready to generate a set of normal operating 

condition (NOC) data and disturbance data for usage later on in this research.  A 

summary of this chapter can be represented in Figure 3.13. 
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Figure 3.13: Summary of scope of work for distillation column dynamic modeling  

 and simulation 



CHAPTER IV 
 

 

 

 

METHODOLOGY FOR IMPLEMENTATION OF  

FAULT DETECTION AND DIAGNOSIS  

 

 

 

 

4.1 Introduction 

 

This chapter contains four major sections: chapter introduction, development 

of the fault detection and diagnosis (FDD) algorithm based on Multivariate Statistical 

Process Control (MSPC), the performance evaluation method for the developed FDD 

algorithm and chapter summary. 

 

The second section comprises of the methodologies in formulating the FDD 

algorithm based on Normal Correlation (NC), Principal Component Analysis (PCA) 

and Partial Correlation Analysis (PCorrA).  The procedures include: generating a set 

of nominal operation condition (NOC) data, development of MSPC fault detection 

and diagnosis tools and applying the developed tools to detect fault situations and 

identify the fault causes. 

 

The third section outlines the fault detection and diagnosis performance 

evaluation method.   
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4.2 Development of Fault Detection and Diagnosis Algorithm Based on  

Multivariate Statistical Process Control (MSPC) 

 

 In this research, a fault detection and diagnosis (FDD) algorithm is 

established in order to detect any non-statistical stable condition.  The non-statistical-

stable condition is also known as fault situation.  The root causes for the fault 

situations are known as fault causes.  The performance of the developed algorithm 

will be evaluated as in Section 4.3 of this chapter. 

 

 A distillation column is selected as the study unit operation.  The developed 

FDD algorithm is applicable to any type of unit operation in the industry and not 

only on a distillation column as shown in this research.  The first step in developing 

the FDD algorithm is the selection of quality variables of interest and the 

corresponding key process variables that are related with the selected quality 

variables of interest.  The next section will explain how the selection of quality 

variables and key process variables are carried out.  The employed procedures in 

formulating the MSPC FDD algorithm for this research are systematically presented 

in the following sections.  

 

 

   

4.2.1 Selection of Variables 

 

 The study column is the first column from a series of column from a palm oil 

fractionation plant (Appendix B).  This column is to separate the fatty acid 

components: N-Decanoic Acid and lighter components from N-Dodecanoic Acid and 

heavier components in the feed stream.  The quality variables of interest in this 

research are the oleic acid and linoleic acid composition in the bottom stream.  Oleic 

acid and linoleic acid are important products at the end of the fractionation plant.  

Table 4.1 shows the information on the selected quality variables of interest. 
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Table 4.1: Selected quality variables of interest 

Quality Variable of Interest Name of Quality Variable Location of Variable 

1 Linoleic acid mole 

fraction, x8

Bottom stream of column 

2 Oleic acid mole fraction, 

x9

Bottom stream of column 

 

 

 After the selection of quality variables of interest, the key process variables 

that are related with the selected quality variables will be chosen from a list of 

available (measured) process variables.  The correlation (normal correlation) 

between the process variables with the two quality variables will serve as a good 

indication of whether a process variables is key process variable that has major 

contribution to the variation of the quality variables or not.  This is important as the 

proposed FDD algorithm in this research is based on the correlation between the 

selected key process variables and the quality variables of interest. 

 

 Small random noise (arithmetic average =0 and standard deviation =1) is 

added into process variables such as feed flow rate, feed temperature, cooler duty, 

reboiler duty, pumparound flow rate and reflux flow rate to generate a set of data 

with small fluctuation from their steady-state (SS) value (the quality variables have a 

fluctuation of ±  5% of their SS value).  The correlation (normal correlation) between 

a list of process variables with the two quality variables of interest is determined.  

Process variables with high correlation (absolute correlation value ≥ 0.1) are chosen 

as the key process variables that have high contribution to the variation of the two 

quality variables of interest.  The full list of the process variables and their 

correlation values are given in Section 5.2 of Chapter 5.  Table 4.2 shows the 

information of the selected key process variables. 
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Table 4.2: Selected key process variables 

Key Process 

Variable 

Name of Key Process Variable Location of  Key Process 

Variable 

1 Feed flow rate, Lf Feed stream of column 

2 Feed temperature, Tf Feed stream of column 

3 Reflux flow rate, Re Reflux stream of column 

4 Pumparound flow rate, P Pumparound stream of column 

5 Reboiler duty, Qr Reboiler of column 

6 Bottom temperature, Tbot Bottom Column Temperature 

 

 

 Once the quality variables of interest and key process variables are selected, 

the column program is ready to generate the required data for the development of the 

proposed FDD algorithm.  The process sampling time, TMSPC, is an important 

parameter that needs to be determined before any data can be sampled from the 

column program.  This process sampling time is for sampling data to be used in 

derivation of correlation coefficients between the selected key process variables and 

the quality variables of interest and is different from the controller sampling time, 

TAPC, which is used to sample data for control purposes.  The next section gives the 

steps used to determine the process sampling time. 

 

 

 

4.2.2 Process Sampling Time, TMSPC 

 

 In a time series data, autocorrelation plays an important role in affecting the 

variation of the data.  Autocorrelation is the correlation between successive data in a 

time series data.  In order to find the true correlation between variables, the 

autocorrelation within the data series of a variable need to be omitted through the 

selection of a suitable process sampling time, TMSPC.  Wetherill and Brown (1991) 

proposed using an autocorrelation plot of a variable to determine the suitable TMSPC 

of a process.  Any value of autocorrelation outside the value of a selected threshold 

value is considered as significant autocorrelation.  This threshold value is set as 
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± 2/ k  where k is the total number of observation in a time series of a variable.  

From Section 3.7.4 of this thesis, the pumparound cooler process section of the study 

column process has the highest time constant among the process sections of the study 

column process.  Therefore, this process section will be used as the test for 

significant autocorrelation and the selection of the suitable TMSPC of the study column 

process.  The results of this autocorrelation test will be shown in Section 5.3 of 

Chapter 5.  The TMSPC is determined at a value of 4.6 hours.  This value will be used 

to sample the desired data from the column program.  This data are then used to 

derive the correlation coefficients between the selected key process variables and the 

quality variables of interest. 

 

 

 

4.2.3 Generation of Nominal Operation Condition (NOC) Data 

 

 A set of nominal operation condition (NOC) data, which includes the quality 

variables of interest and the related key process variables are generated from the 

developed dynamic simulation program.  Selection of key process variables into the 

NOC data matrix is important to ensure that the variation of the two quality variables 

is exhibited in the selected key process variables.  In this research, NOC is referred to 

situation the two quality variables of interest (oleic acid and linoleic acid 

composition in the bottom stream) and the selected key process variables (the key 

process variables that are shown in Table 4.2) are within the control limit of their 

control charts (Statistical Control Charts: Shewhart Control Chart and Range Control 

Chart). 

 

During the generation of the NOC data, the selected key process variables 

from Table 4.2 (except Tbot) are fed with small random noise to make the two 

selected quality variables of interest from Table 4.1 to fluctuate within ±  5% of their 

SS value.  The term noise in this research refers to measurement noise.  The 

definition of noise was given in Section 2.2.4.  The quality variables of interest and 

the selected key process variables are collected to form the NOC data matrix for the 

process variables, X and for the quality variables, Y.  These NOC data matrices are 

represented in Equation 4.1 and Equation 4.2.  
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X = [F Tf Re P QR Tbot ]                                                    ( 4.1 ) 

 

Y = [X8 X9]                   ( 4.2 ) 

 

Where:   F      = data matrix for feed flow rate 

   Tf        = data matrix for feed temperature 

   Re    = data matrix for reflux flow rate 

   P      = data matrix for pumparound flow rate 

   QR     = data matrix for reboiler duty  

   Tbot    = data matrix for bottom temperature 

   X8      = data matrix for oleic acid mole fraction in the bottom flow 

   X9      = data matrix for linoleic acid mole fraction in the bottom flow 

 

 

 

4.2.3.1 Standardization of  NOC Data 

 

The data matrices of X and Y are standardized.  The standardization 

procedure is for each of the variables in both data matrices.  The standardization of 

each variable is shown as in Equation 4.3. 

 

  
i

ii
i s

xx
z

−
=                              ( 4.3 ) 

 

Where:  = standardized variable iz

 xi = variable from measurements in X or Y 

           ix  = arithmetic average of variable xi

 si = standard deviation of variable xi 

 

  The reason for standardization is that the measurements are consists of 

pressure, temperature, flow rates, compositions and other variables that have 

different scales and units of measurements.  The standardization process will yield 

standardized variables with equivalent variance and mean centered.  After this 
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procedure, both the data matrices are ready for further analysis in order to obtain 

NOC data. 

 

 

  

4.2.3.2 Normality Test of NOC Data 

 

 In Multivariate Statistical Process Control (MSPC), the NOC data has to 

follow the normal distribution before any further manipulation of the NOC data can 

be carried out.  The NOC data are subjected to normality test to study the normality 

properties of the NOC data.  The normality tests on the NOC data include the 

checking of value of skewness, kurtosis, standard deviation and arithmetic average of 

the NOC data.  For data following normal distribution, the skewness, kurtosis, 

standard deviation and arithmetic average of the data must have the value of 0, 3, 1 

and 0, respectively (Wetherill and Brown, 1991).  From the results of the normality 

test, the NOC data follow the normal distribution.  Therefore, further manipulation of 

the NOC data can be carried out.  The results of the normality tests of the NOC data 

are given in Section 5.4 of Chapter 5.  Sometimes, the collected data are skewed and 

have a skewness value of more or less than 0.  In this case, more data should be 

collected in order to get the data to have a skewness value of very near to 0.  This 

method is based on Central Limit Theorem (CLT), which states that when enough 

data are collected in a data set, the data set will follow the normal distribution. 

 

 

 

4.2.3.3 Number of Measurements in NOC Data 

 

 The number of measurements that has to be collected is the critical parameter.  

In this research, the range of the value of the two quality variables of interest for 

NOC data is set at 3σ where σ is the standard deviation of the quality variable.  The 

reason for choosing this range value is in such a way that during NOC, 99.7% of 

points on the control chart for the quality variables are within the control limit for 

normally distributed data (McNeese and Klein, 1991).  The method in obtaining the 

NOC data set is shown in Figure 4.1.  The steps involving the analysis of the 

±
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standardized NOC data for correlation using Normal Correlation (NC), Principal 

Component Analysis (PCA) and Partial Correlation Analysis (PCorrA) and the 

building of control limits for the statistical control charts will be discussed in detail 

in Section 4.2.4.  

 

 

Sampling NOC data (Process 

sampling time = TMSPC ) for 

both key process variables and 

quality variables of interest. 
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NOC data is representable. 

 

ure 4.1: Procedure in obtaining the NOC data set 

 sampled with the process sampling time of 4.6 hours for each 

the data points of the quality variables and key process variables 

trol limits of their statistical control charts (more details of the 

harts are given in Section 4.2.5).  Once the NOC data is obtained, 
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the correlation between the selected key process variables and the quality variables 

of interest will be determined. 

 

 

 

4.2.4 Derivation of Correlation Coefficient 

 

In this research, the fault detection and diagnosis algorithm will be built 

based on the development of a correlation coefficient, Cik, between the quality 

variables of interest and the selected key process variables. This correlation 

coefficient will provide linear relationship between the selected key process variables 

and the quality variables.  A selected key process variable is related to a quality 

variable of interest by the following equation: 

 

   
ik

i
i C

yx =              ( 4.4 ) 

 

where: yi = quality variable 

 xi = process variable 

 Cik = correlation coefficient between yi and xi

 

These correlation coefficients are important as they relate the quality 

variables of interest with the selected key process variables.  This aspect is important 

since the correlation coefficients will be used later on to relate the statistical control 

limits of the quality variables of interest and the selected key process variables.   

 

There are three methods used in this research to derive the correlation 

coefficient, Cik, from the two data matrices.  Correlation coefficient via NC will be 

discussed in the next section followed by correlation coefficient using PCA and 

PCorrA in the two sections that follows. 
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4.2.4.1 Correlation Coefficient Derivation Using Normal Correlation 

 

 Normal Correlation (NC) between the quality variables and the selected key 

process variables are used to derive the correlation coefficient.  The correlation 

between a quality variable and a process variable is normal one to one correlation.  

Equation 4.5 shows the calculation of correlation coefficient using NC. 
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Where: xij      = measurement j-th of process variable i-th 

 yij      = measurement j-th of quality variable i-th 

            ix    = arithmetic average of process variable i-th 

            iy    = arithmetic average of quality variable i-th 

  n     = number of measurements 

 

 

 

4.2.4.2 Correlation Coefficient Derivation Using Principal Component Analysis 

 

 The derivation of correlation coefficient using Principal Component Analysis 

(PCA) will be based on the work of Lam and Kamarul (2002).  Before applying PCA 

on the generated NOC data, a data matrix as shown in Equation 4.6 are formed. 

 

 Z = [F Tf Re P QR Tbot X8]                                                                         ( 4.6 )  

 

 After PCA is applied on the Z data matrix, the principal components of this 

matrix are related to the original data matrix as shown in the following equations: 

 

 P = ZV                ( 4.7 ) 
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 P =                        ( 4.8 )

  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

mnmm

n

n

mnmm

n

n

vvv

vvv
vvv

xxx

xxx
xxx

...... 21

22221

11211

21

22221

11211

MOMM

L

L

MOMM

L

L

Where: P    = principal component matrix  

  V     = eigenvector matrix  

  xm1   = measurement m-th of variable x1 in data matrix Z  

  vm1   = value m-th of eigenvector v1 

  m     = number of measurements 

  n      = number of variables 

 

 The Singular Value Decomposition (SVD) of the Z data matrix will yield the 

eigenvector matrices and singular value matrix of the covariance matrix of the 

original data matrix as shown in the following equations (Lam and Kamarul, 2002): 

 

  Z = UL1/2VT                           ( 4.9 ) 
 

Where: U    = eigenvector matrix of ZZT 

  V    = eigenvector matrix of ZTZ 

  L1/2  = diagonal matrix of positive square root of the eigenvalue of ZTZ 

  VT   = transpose matrix of matrix V 

 

These matrices have the following properties (Geladi and Kowalski, 1986): 

 

 UUT = UTU = I             ( 4.10 ) 

  

 VVT = VTV = I             ( 4.11 ) 

  

 (L1/2  )( L1/2  )T = ( L1/2  )T (L1/2  ) = λ            ( 4.12 )

     

Where: I = identity matrix 

          λ   = diagonal matrix of eigenvalue of ZTZ 
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By multiplying both side of Equation 4.7 with VT, 

 

 Z = PVT                ( 4.13 ) 

 

Representing quality variable 1, y1 with xk and process variable 1, x1 with xi, 

Equation 4.13 can be written for these two variables as follows: 

 

 xi = P               ( 4.14 ) T
iv

 

 xk = P               ( 4.15 ) T
kv

 

Using substitution of VT = [   … ], Equation 4.14 and 4.15 can be simplified 

to become: 

1v 2v nv

 

 xi = P                ( 4.16 ) iv

 

 xk = P               ( 4.17 ) kv

  

By rearranging Equation 4.4 and combining Equation 4.16 and 4.17,  

 

 Cik  =  ( )( xT
ix k ) 

       =  (P )iv T(P ) kv

       =  T
iv PTP                           ( 4.18 )

  

kv

Combining Equation 4.7 and 4.9,  

 

  P = ZV = UL1/2                        ( 4.19 ) 

 

By combining results from Equation 4.10, 4.12 and 4.19,  

 

  PTP = (UL1/2)T(UL1/2) 
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  = (L1/2) TL1/2UTU 

   =λ                                                                                                 ( 4.20 ) 

 

Inserting this result into Equation 4.18, 

 

 Cik = T
iv λ kv               ( 4.21 ) 

 

Correlation coefficient between a quality variable and a process variable for j 

variables will be calculated using Equation 4.22 (Lam and Kamarul, 2002).  

 

                           ( 4.22 ) ∑
=

=
n

i
ikiijik vvC

1

λ

 

where:   = eigenvector i-th for process variable j-th ijv

   = eigenvector i-th for quality variable k-th ikv

  iλ   = eigenvalue i-th 

    n  = number of eigenvalues  

 

 In order to obtain the correlation coefficients for linoleic acid with the 

selected key process variables, X8 will be replaced with X9 in Equation 4.6.  Then, 

SVD will be used to derive the eigenvectors and eigenvalues of the newly formed 

data matrix.  Equation 4.22 will be used together with the newly derived eigenvectors 

and eigenvalues to calculate the correlation coefficients between linoleic acid and the 

selected key process variables.   

 

 PCA is a technique used to reduce the dimension of data while at the same 

time retaining the original variation of the original data to minimize the lost of 

information during dimension reduction.  In this research, the correlation coefficient 

based on PCA will be comprised of two methods based on the retained variation of 

the original data.  One method will retained 90% of the variation of the original data 

while the other method will retained 95% of the variation of the original data.  PCA 

has advantage over Normal Correlation (NC) in term of data reduction while still 

retaining the information of the original data.  The method based on NC does not 
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include data reduction and also the correlation developed is one variable to one 

variable. 

 

 

 

4.2.4.3 Correlation Coefficient Derivation Using Partial Correlation Analysis 

 

 Partial Correlation Analysis (PCorrA) is used to develop correlation between 

two variables after taken into account the effect of the other variables.  The 

application of PCorrA in this research on the development of the correlation 

coefficient, Cik is based on the work of Kamarul (1997).  In Kamarul (1997), the 

correlation coefficient developed was between multiple input variables and one 

quality variable of interest.  In this research, there will be two quality variables, thus 

the application of correlation coefficient has been extended to multiple input multiple 

output correlation. 

 

 The method in developing the correlation coefficient between the two quality 

variables and the selected process variables will be as in Kamarul (1997).  For 

quality variable 1, y1 (oleic acid) and process variable 1, x1, the correlation coefficient 

is calculated as shown in Equation 4.23. 
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 where:         = correlation coefficient between y
11 yxikC 1 and x1

   = partial correlation between y),...,.( 311 nxxyxr 1 and x1 after the effect of n – 2  

            variables 

   = partial correlation between x),...,.( 321 nxxxxr 1 and x2 after the effect of n – 2  

            variables 

   = partial correlation between y),...,.( 321 nxxxyr 1 and x2 after the effect of n – 2  

            variables 

      n         = number of selected process variables    

 



 93

The correlation coefficients for quality variable 2, y2 (linoleic acid) with the selected 

process variables are also determined using an equation similar to Equation 4.23.  

 

 

 

4.2.5 Implementation of Correlation Coefficients 

 

 As stated in Chapter 2, the univariate statistical control charts used in this 

research are modified using the developed correlation coefficients in Section 4.2.4.  

The modification of these charts using correlation coefficients will be provided in the 

next section.   

 

 

 

4.2.5.1 Constructing Statistical Control Charts 

 

 After the derivation of the correlation coefficients from the three analysis 

techniques, the control limits for the statistical control charts will be built.  The 

statistical control charts used in this research are Shewhart Control Chart (SCC) and 

Range Control Chart (RCC).  The control limits for these charts will be based on the 

calculated correlation coefficients.  SCC has proven its ability to detect fault in 

univariate process.  However, chemical processes being multivariate in nature make 

SCC perform well below the desired value (Manabu et al., 2000).  In this research, 

the Shewhart Control Chart used for normal univariate process will be modified to 

suit the multivariable nature of the case study. 

 

 The SCC for the quality variables has the same control limits since all these 

variables are in standardized form.  The Upper Control Limit (UCL) and Lower 

Control Limit (LCL) for the quality variables are +3 and -3, respectively.  The Center 

Line (CL) for these charts has a value of zero.  The reason for the control limits 

having the stated value is the range of deviation of the quality variables for Nominal 

Operation Condition (NOC) has been set to ± 3σ where σ is the standard deviation of 

the quality variable.  The control limits of the each quality variable of interest are 

translated into the control limits of the selected key process variables using the 
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information from Equation 4.4.  Figure 4.2 shows how the translation is carried out 

on each quality variable and the corresponding key process variables. 
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Figure 4.2: The control limits of each quality variable are translated to control limits 

of the selected key process variables 
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In Figure 4.2,  

 C1i = correlation coefficient between quality variable 1 (linoleic acid  

          composition in the bottom flow) and key process variable i (i = 1, 2, 3, 4,  

                    5 and 6) 

 C2i = correlation coefficient between quality variable 2 (oleic acid  

          composition in the bottom flow) and key process variable i (i = 1, 2, 3, 4,  

                    5 and 6) 

 

The correlation coefficients for each quality variable with the corresponding selected 

key process variables are determined using Equation 4.5 (for NC), Equation 4.22 (for 

PCA) and Equation 4.23 (for PCorrA).  Figure 4.3 shows the Shewhart Control Chart 

for quality variable 1 (x8) and how the correlation coefficient is applied to translate 

the control limits for selected key process variable 1 (Lf) based on the control limits 

of the control chart of quality variable 1.   
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4 

 
Figure 4.3: The control limits of quality variable 1 are translated to control limits of 

selected key process variable 1 (Shewhart Control Chart)  

 

From Figure 4.3, the UCL, CL and LCL of a quality variable of interest are 

translated into UCL, CL and LCL of a selected key process variable.  The UCL and 

LCL of a key process variable are +3/Cik and –3/Cik, respectively.  The UCL and 

LCL of all the selected key process variables are related to the UCL and LCL of the 

two quality variables of interest in this manner.     

 

 The Range Control Chart is also used in this research.  Using a subgroup, m = 

2, the range value for each of the variable and the control limits for the Range chart 

of each variable are calculated by the following equations: 
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 First Range value, R (1) = 0 

 

 Range value number i  = | zi – zi-1 | i = 2, 3, 4,…                   ( 4.24 ) 

 

 CL for Range chart, R  = Arithmetic average of the range data set 

     =  
n

iR
n

i
∑
=1

)(
          ( 4.25 ) 

 

 LCL for Range chart  = 0  

 

 

 UCL for Range chart  = d2*CL of Range chart 

     = d2* n

iR
n

i
∑
=1

)(
          ( 4.26 ) 

 

where: d2 = statistical parameter based on the subgroup m, for m =2, d2 = 3.267 

     (McNeese and Klein, 1991)  

 n = number of Range values  

 zi = standardized values for the selected process variables, measured  

     values for the quality variables 

 

Figure 4.4 shows how the control limits of each quality variable and the 

corresponding key process variables are related for Range Control Chart. 
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Figure 4.4: The control limits of each quality variable are translated to control limits 

of the selected key process variables 
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In Figure 4.4,  

 C1i = correlation coefficient between quality variable 1 (linoleic acid  

          composition in the bottom flow) and key process variable i (i = 1, 2, 3, 4,  

                    5 and 6) 

 C2i = correlation coefficient between quality variable 2 (oleic acid  

          composition in the bottom flow) and key process variable i (i = 1, 2, 3, 4,  

                    5 and 6) 

 

Figure 4.5 shows the Range chart for quality variable 1 (x8) and selected key process 

variable 1 (Lf) with their respective control limits. 
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3.5 

 
Figure 4.5: The control limits of quality variable 1 are translated to control limits of 

key process variable 1 (Range Control Chart)  

 
From Figure 4.5, the UCL, CL and LCL of a quality variable of interest are 

translated into UCL, CL and LCL of a selected key process variable.  After the 

statistical control charts (Shewhart Control Chart and Range Control Chart) are built 

and the limits are calculated, the algorithm for fault detection and diagnosis is ready 

to test its capability on a set of fault data.  The definition of fault and generation of 

fault data will be presented in the next section. 
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4.2.6 Fault Data Generation 

 

In this section, the general definition of fault and the definition of fault in this 

research will be given.  The types of faults considered and the generation of the fault 

data set will also be discussed in detail.  

 

 

 

4.2.6.1 Fault Definition 

 

 In an equipment, fault is to designate the departure from an acceptable range 

of an observed variable or calculated parameter associated with the equipment 

(Himmelblau, 1978).  The characteristics of the process chosen for measurement, 

their acceptable range of operation and the accuracy of the statistic used for 

classification of a potential fault are factors that influence the definition of fault. 

 

 A fault implies degradation of performance while failure means complete 

inoperability of equipment or the process (Himmelblau, 1978).  Most chemical 

processes are sufficiently flexible and well organized that as soon as a fault shows up 

in any subsystem, the system compensates for the fault so as to continue operation. 

Thus, a fault will not be necessarily being a failure of equipment or process unable to 

continue operation.  In this research, the faults considered are those that do not 

lead to failure of the study equipment but rather those that cause the 

degradation of performance of the study column.  When a fault is detected, the 

study column will fail to produce the desired linoleic acid (x8) and oleic acid (x9) 

compositions in the bottom flow rate.   

 

 Thus, the definition of fault in this research is a fault occurs when any of the 

quality variables of interest (oleic acid and linoleic acid) exhibit an out-of-control 

limit signal in their statistical control charts (Shewhart Control Chart or Range 

Control Chart) and also an out-of-control limit signal in any of the statistical control 

chart (Shewhart Control Chart or Range Control Chart) of the selected key process 

variables.  The out-of-control limit signal occurs when a value of a variable exceeds 
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the control limit of its statistical control chart.  The type of faults considered and 

their properties will be presented in Section 4.2.6.2.  

 

The term disturbance is often mentioned in works involving fault detection 

and diagnosis.  Disturbance is referring to independent variable that causes the 

process in which this disturbance is interacting with to deviate from its desired 

operating condition.  For example, the flow of liquid feed stream into a distillation 

column will cause the increase in the liquid level of the column bottom.  The feed 

stream is the disturbance to the distillation column process.  In this research, there 

are two types of disturbances considered.  Overall disturbances are defined as 

independent variables that will cause the study column fail to produce the desired 

value for the two quality variables of interests (oleic acid and linoleic acid).  Local 

disturbances are variables that will cause the control variable (not the quality 

variables of interest selected in Table 4.1) in which these variables are present in its 

control loop to deviate from its set point value.  The fault situations considered in 

this research do not include normal disturbance changes and set point changes.  

These two phenomena are considered to be normal operation of the study 

column.  The information on disturbances considered in this research is presented in 

Table 4.3.      

 

The feed stream to the study column is assumed to be pumped from a storage 

tank.  Therefore, the value of feed flow rate and feed temperature are assumed to be 

fixed (having normal random variation).  Any changes in the value of these two 

variables will be considered due to faults (sensor faults or valve faults) and not 

caused by change in the properties of the raw material in the feed stream.   
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Table 4.3: Information on types of disturbances 

Type of Disturbance Name of 

Disturbance 

Location of 

Disturbance 

Location of  

Control Loop 

Overall Disturbance Feed flow rate, Lf Feed stream to 

column 

- 

Overall Disturbance Feed temperature, Tf Feed stream to 

column 

- 

Local Disturbance* Sidedraw flow rate, 

Sd  

Sidedraw 

stream 

Reflux flow rate 

control loop 

Local Disturbance* Liquid stream flow 

 rate, LDp

Liquid stream 

after reflux 

point 

Pumparound flow 

rate control loop 

Local Disturbance* Liquid stream flow 

 rate, LDp

Liquid stream 

after reflux 

point 

Pumparound 

temperature control 

loop 

Local Disturbance* Vapor flow rate, V2  Vapor stream 

from tray 2 

Top column 

pressure control 

loop 

Local Disturbance* Liquid flow rate, L28 Liquid stream 

from tray 28 

Bottom liquid level 

control loop 

Local Disturbance* Liquid flow rate, L28 Liquid stream 

from tray 28 

Bottom temperature 

control loop 

Local Disturbance* Liquid flow rate, L1 Liquid stream 

from tray 1 

Sidedraw tray liquid 

level control loop 

 

*The local disturbance considered for each control loop is one of the many local 

disturbances present in each control loop.   
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4.2.6.2 Fault Generation 

 

Faults are introduced into the process after the NOC data matrix is collected 

and the fault detection and diagnosis (FDD) algorithm is developed.  These faults 

will be tested against the developed FDD algorithm.  The fault generation procedure 

involves feeding the values of the selected key process variables (feed flow rate, 

feed temperature, reflux flow rate, pumparound flow rate and reboiler duty) 

with random numbers.  These random numbers are generated using the random 

number generator in the Matlab software.  The arithmetic average and standard 

deviation of these random numbers are zero and one respectively.  Although random 

in nature, these numbers are following the normal distribution as justified in Section 

4.2.3.2. 

 

There are two types of fault generated in the fault data set: 

• Significant Fault 

- Large change in value of the selected key process variable(s) 

designed for fault; 

- The selected quality variables of interest (Listed in Table 4.1) will 

exhibit values exceeding ± 4σ (σ is the standard deviation of each 

quality variable of interest) 

 

• Insignificant Fault 

- Small change in the value of the selected key process variable(s) 

designed for fault; 

- The selected quality variables of interest (Listed in Table 4.1) will 

exhibit values  not exceeding ± 4σ (σ is the standard deviation of 

each quality variable) 

 

These two types of fault contain both single and multiple fault causes.  There will be 

both: one selected key process variable and multiple selected key process 

variables causing out-of-control signal in the statistical control charts of the two 

quality variables of interest.  The out-of-control signals in the selected key 

process variables and quality variables of interest will yield fault signals.  In this 

research, disturbances to the process and normal set point changes in the 
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control loops of the column are considered as normal changes in the variation of 

the process while faults are due to the abnormal changes in the variation of the 

process due to assignable fault causes.  When an out-of-control signal is detected 

in the control charts of the selected key process variables and the quality variables of 

interest, this signal is checked to determined whether there is an assignable fault 

cause to the observed signal or it is due to normal disturbance (disturbances listed in 

Table 4.3) changes or normal set point changes in the control loops of the column.  

The developed FDD algorithm will only be activated if there are assignable fault 

causes to an out-of-control signal detected in the control charts of the quality 

variables and the selected key process variables.  The main assumption is that 

the disturbances listed in Table 4.3 are monitored.  The flowchart in Figure 4.6 

represents the mechanism of the developed FDD algorithm.     
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Figure 4.6: The mechanism of the developed FDD algorithm 

 

The faults considered in this research involve fault in sensor, fault in valve and fault 

in controller in the study column.  The description of each type of fault is presented 

in Table 4.4.   
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Table 4.4: Description of each type of fault 

1) Sensor Fault 2) Valve Fault 3) Controller Fault 
• For open loop 

variables, only 

the value of the 

variable changes 

abnormally. For 

closed loop 

variables, only 

the value of the 

disturbance (D) 

OR the 

manipulated 

variable (MV) 

OR the control 

variable (CV) 

changes 

abnormally. 
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From Table 4.4, each type of fault represents faults that occur in the chemical 

industries.  Sensor faults representing situations where the sensors show bias 

(positive and negative) in their measurements.  Valve faults represent situations 

where the valve is stuck (thus causing the value of the flow rate of the fluid in the 

line of this valve to suddenly increase or decrease).  Controller faults are situations 

where a controller fails to function normally (only for controller having the integral 

mode failing to perform normally).  The assumptions used in considering these faults 

are valve and sensor operations are assumed to be ideal (except when there are faults 

involving the sensors and valves) and controller are working fine throughout the 

process monitoring period (except when controller faults are present).   

 

 

 

4.2.7 Working Procedure of Developed Fault Detection and Diagnosis  

            Algorithm 

 

 In this section, the working procedure of the developed fault detection and 

diagnosis algorithm will be presented. 

 

 

 

4.2.7.1 Fault Detection 

 

 The Shewhart Control Chart and Range Control Chart will be used together 

in fault detection.  Any variable that observed a value exceeding the control limits in 

any of the control charts will yield an out-of-control limit signal.  The process will be 

monitored using the control charts for the two quality variables (listed in Table 4.1).  

Any out-of-control limit signal detected by these control charts will lead the operator 

to check the control charts for the selected key process variables (listed in Table 4.2).  

The detected fault (both quality variable(s) and selected process variable(s) showing 

out-of-control limit signal) will be diagnosed by checking any faults observed in the 

selected process variables control chart.  As stated earlier on, normal set point 

changes and normal disturbance changes are not considered as fault situations in this 

research.  Figure 4.7 shows an example of fault detection involving a quality variable 
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of interest and its corresponding selected key process variables (only two key process 

variables are shown) for Shewhart Control Chart (for Range Control Chart, the 

procedure is similar). 

 

 

6 

 

 
 

Figure 4.7: Fault detection procedure involving Shewhart Control Chart 
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Once a fault is detected, the statistical control charts (Shewhart Control Chart and 

Range Control Chart) will be checked to pinpoint the fault cause of the detected fault 

and further fault diagnosis will be carried out.  The working procedure of fault 

diagnosis will be shown in the next section. 

 

 

 

4.2.7.2 Fault Diagnosis 

 

 The fault diagnosis procedure involves checking the statistical control charts 

(Shewhart Control Chart and Range Control Chart) of the selected key process 

variables (listed in Table 4.2) that exhibit out-of-control limit signal for an observed 

fault.  Once the fault cause (or fault causes) is determined, a run chart (value of 

variable versus time) of that variable will be plotted (charts shown in Table 4.4).  The 

fault type will be determined using the information from this run chart and compared 

to the types of fault given in Table 4.4.  In this research, selected key process 

variables that are not present in control loops are designed with sensor faults and 

valve faults while selected key process variable that are present in control loops 

(such as reboiler duty, Qr) are designed with all three types of faults presented in 

Table 4.4.  An example of fault diagnosis involving a quality variable of interest and 

its corresponding selected key process variables (only two key process variables are 

shown) for Shewhart Control Chart (for Range Control Chart, the procedure is 

similar) is shown in Figure 4.8.  
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Figure 4.8: Fault diagnosis procedure involvin
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The results of the fault detection and diagnosis of the generated fault data will be 

given and discussed in detail in Section 5.6 of Chapter 5. 

 

  

 

4.3 Performance Evaluation of the Developed Fault Detection and Diagnosis 

Algorithm 

 

The evaluation of the developed fault detection and diagnosis (FDD) 

algorithm will be based on two aspects.  The first aspect is how many of the 

generated faults in the process are successfully detected by the developed FDD 

algorithm.  The second aspect is how many of the generated faults are successfully 

isolated or diagnosed the cause of the fault.  Then, the overall performance of the 

developed FDD algorithm will be evaluated based on these two aspects.  The method 

based on NC will served as the benchmark for comparison with the methods based 

on PCA and the method based on PCorrA.   

 

 

 

4.3.1 Fault Detection Efficiency 

 

The fault detection efficiency, Detη , of the developed FDD algorithm will be 

evaluated using the following equation: 

 

processtheingeneratedfaultsofnumber
detectedfaultsofnumber

Det =η          ( 4.29 ) 

 

 

 

4.3.2 Fault Diagnosis Efficiency 

 

The fault diagnosis efficiency is not as straight forward as the fault detection 

efficiency.  This is because not all detected fault will be successfully isolated or 

diagnosed.  There will be successfully diagnosed faults and unsuccessful diagnosed 
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faults which are consist of partially diagnosed faults, over diagnosed faults and 

undiagnosed faults.  These faults are explained as follow: 

 

1) Successfully diagnosed fault 

The system is able to identify the exact causes of the fault without 

identifying other process variables as fault causes.  

 

2) Unsuccessful diagnosed fault 

 

i) Partially diagnosed fault 

                 Several of the known fault causes are identified by the fault diagnosis 

system.  There are still some fault causes not identified.  

 

           ii)   Over diagnosed fault 

           The system over identifies other process variables that are not            

suppose to be the fault causes as fault causes. 

             

                 iii)   Undiagnosed fault 

            The system is unable to identify the correct fault causes. 

 

Therefore, the fault diagnosis efficiency, Diaη , will be calculated in the 

following manner: 

 

Number of exact fault diagnosed 

= total diagnosed fault situation – total successful diagnosed fault situation     ( 4.30 ) 

 

 
processtheingeneratedfaultsofnumber

diagnosedfaultexactofnumber
Dia =η          ( 4.31 )
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4.3.3 Overall FDD Efficiency 

 

The overall performance of the developed FDD algorithm is evaluated using 

the following equation: 

 

%100** DiaDetFDD ηηη =             ( 4.32 ) 

   

The performance of the FDD algorithm based on PCA and PCorrA will be compared 

to the method based on NC.  The basis of comparison is on the value of their overall 

FDD efficiency. 

 

  

 

4.4 Chapter Summary 

 

The FDD algorithm developed in this research are based on three analysis 

techniques: Normal Correlation (NC), Principal Component Analysis (PCA) and 

Partial Correlation Analysis (PCorrA).  The procedures for developing the FDD 

algorithm are summarized by Figure 4.9. 
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Figure 4.9
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CHAPTER V 
 

 

 

 

RESULTS AND DISCUSSION 

 

 

 

 

5.1 Introduction 

 

 This chapter will present the full results of this research. This chapter consists 

of seven main sections: introduction, selection of key process variables results, 

process sampling time results, normality test results, correlation coefficients 

derivation results, fault detection and diagnosis results and chapter summary. 

 

 The next section of this chapter gives the results of the selection of the key 

process variables.  The third section presents the results obtained from the study of 

process sampling time.  The fourth section presents the normality study results of the 

data obtained from the model.   

 

 The fifth section gives the results of correlation coefficient derivation from 

the generated Nominal Operation Condition (NOC) data.  The sixth section consists 

of the results from the fault detection and diagnosis section of this research.  The 

final section of this chapter is the chapter summary. 
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5.2 Results of Selection of Key Process Variables 

 

From Section 4.2.1, the two quality variables of interest selected in this 

research are the linoleic acid composition (x8) and oleic acid composition (x9) in the 

bottom flow rate.  The correlation (normal correlation) between a list of process 

variables with the two quality variables were determined to select key process 

variables that are having major contribution to the variation of the two quality 

variables (process variables that show absolute correlation value of equal or more 

than 0.1 are selected).  Table 5.1 shows the results of the selection of key process 

variables. 

 

Table 5.1: Results of selection of key process variables 

Process Variable Absolute Correlation 

value with Quality 

Variable 1 (x8)   

Absolute Correlation 

value with Quality 

Variable 2 (x9) 

Selection 

Feed flow rate (Lf) 0.1712 0.1984 Selected 

Feed Temperature 

(Tf) 

0.7529 0.7219 Selected 

Reflux flow rate (Re) 0.2122 0.2677 Selected 

Pumparound 

temperature (Tp) 

0.0114 
 

0.0260 
 

Not selected 

Pumparound flow 

rate (P) 

0.4594 0.4209 Selected 

Reboiler duty (Qr) 0.0718 0.2995 Selected* 

Bottom  temperature 

(Tbot) 

0.9987 0.9615 Selected 

 

*Reboiler duty is selected since the absolute correlation value for this variable with 

Quality Variable 2 is more than 0.1. 
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5.3 Process Sampling Time (TMSPC) Study Results 

 

The sampling time of the Nominal Operating Condition (NOC) data is 

determined using an autocorrelation plot of the process data (using the process 

section model of a process with the highest time constant) based on the method 

proposed by Wetherill and Brown (1991).  The total of observation used are 500 

observations and the threshold value is 0.0894 (calculated using information from 

Section 4.2.2).  Once the value of the autocorrelation is smaller than this threshold 

value, the corresponding first lag value when this value of autocorrelation is 

observed is chosen and the process sampling time will be calculated from this lag.  

Figure 5.1 shows the autocorrelation plot of the pumparound temperature (process 

section model with the highest time constant in the study column process) and how 

the MSPC sampling time is determined. 

 

 

0.11 
Autocorrelation 

Figure 5.1: Autocorrelation plot of the pumparound temperature 

 

From Figure 5.1, every one lag represents 0.01 hour and the first lag value that has an 

autocorrelation value of less than the chosen threshold value is around 457 lags.  In 
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order to simplify the calculation of the process sampling time, a value of 460 lags are 

used.  Therefore, the process sampling time (TMSPC) is 4.6 hours (460 lags times 

0.01hour/lag).  TMSPC is used as the sampling time to sample data from the 

process for developing the fault detection and diagnosis algorithm and is 

different from the controller sampling time, TAPC, which is used to sample data 

from the process for control purposes.  

 

 

 

5.4 Normality Test Results 

 

 From Section 4.2.3.2, the sampled data (using TMSPC) for establishing the 

NOC data are subjected to normality tests.  There are 8 variables that are tested (two 

quality variables of interest and the six selected key process variables) and the results 

of their normality test are given in Table 5.2. 
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Table 5.2: Normality test results 

Key Process 

Variable 

Arithmetic 

average 

(x 10-9) 

Standard 

deviation

Skewness Kurtosis 

Feed flow rate (Lf) -0.0063 1.0000 0.0024 2.9603 

Feed temperature (Tf) 0.0017 1.0000 -0.0042 2.9542 

Reflux flow rate (Re) 0.0024 1.0000 0.0011 2.9464 

Pumparound flow rate 

(P) 

-0.0059 1.0000 0.0019 3.0350 

Reboiler duty (Qr) -0.0019 1.0000 0.0026 2.9660 

Bottom temperature 

(Tbot) 

-0.0140 1.0000 0.0051 2.9821 

Quality Variable     

Linoleic Acid mole 

fraction in bottom flow 

(x8) 

-0.0037 1.0000 0.0051 3.0412 

Oleic Acid mole fraction 

in bottom flow (x9) 

0.0013 1.0000 0.0048 3.0127 

 

 

For data following normal distribution, the mean, standard deviation, skewness and 

kurtosis of the data must have the value of 0, 3, 1 and 0, respectively (Wetherill and 

Brown, 1991).  From the results of the normality test shown in Table 5.2, the small 

random numbers used to generate the NOC data follow the normal distribution.  

Therefore, the generated NOC data follow the normal distribution. 

 

 

 

5.5 Correlation Coefficient Derivation Results 

 

 This section will show the results of the correlation coefficient derived from 

the analysis of NOC data using Normal Correlation (NC), Principal Component 

Analysis (PCA) and Partial Correlation Analysis (PCorrA).  Table 5.3 – Table 5.5 
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shows the value of correlation coefficients between the selected key process 

variables (listed in Table 4.2) and the quality variables of interest (listed in Table 4.1). 

 

Table 5.3: Correlation coefficient using Normal Correlation 

Selected Key Process 

Variable 

Correlation Coefficient 

with Quality Variable 1 

(x8)  

Correlation Coefficient 

with Quality Variable 2 

(x9) 

Feed flow rate (Lf) 0.1712 -0.1984 

Feed temperature (Tf)  -0.7529 0.7219 

Reflux flow rate (Re) 0.2122 -0.2677 

Pumparound flow rate (P) 0.4594 -0.4209 

Reboiler duty (Qr) -0.0719 0.2995 

Bottom temperature (Tbot) 0.9987 -0.9615 

 

 

Table 5.4: Correlation coefficient using Principal Component Analysis 

Selected Key Process 

Variable 

Correlation Coefficient 

with Quality Variable 1 

(x8)  

Correlation Coefficient 

with Quality Variable 2 

(x9) 

 90% of 
variation of 
original 
data 
retained 

95% of 
variation of 
original 
data 
retained 

90% of 
variation of 
original 
data 
retained 

95% of 
variation of 
original 
data 
retained 

Feed flow rate (Lf) 0.1744 0.1712 -0.2129 -0.1984 

Feed temperature (Tf)  -0.7515 -0.7529 0.7198 0.7219 

Reflux flow rate (Re) 0.2286 0.2122 -0.3268 -0.2677 

Pumparound flow rate (P) 0.4565 0.4594 -0.4146 -0.4209 

Reboiler duty (Qr) -0.0547 -0.0719 0.2423 0.2995 

Bottom temperature (Tbot) 0.9987 0.9988 -0.9672 -0.9616 
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Table 5.5: Correlation coefficient using Partial Correlation Analysis 

Selected Key Process 

Variable 

Correlation Coefficient 

with Quality Variable 1 

(x8)  

Correlation Coefficient 

with Quality Variable 2 

(x9) 

Feed flow rate (Lf) 0.9872 -0.9872 

Feed temperature (Tf)  -0.9875 0.9874 

Reflux flow rate (Re) 0.9882 -0.9881 

Pumparound flow rate (P) 0.9876 -0.9875 

Reboiler duty (Qr) -0.9956 0.9999 

Bottom temperature (Tbot) 0.4087 -0.3810 

 

The results of the correlation coefficients for reboiler duty and bottom 

temperature in Table 5.3 – Table 5.5 shows that the feed temperature is between the 

boiling point of linoleic acid and oleic acid at the operating pressure of the bottom 

column.  In this situation, when the feed temperature increases, the composition of 

linoleic acid in the bottom flow (x8) will increase while the composition of oleic acid 

in the bottom flow (x9) will decrease.  If the feed temperature decreases, the opposite 

of the effect stated in the previous sentence will be observed in the bottom flow. 

 

  

 

5.6 Fault Detection and Diagnosis Results 

 

 This section will show the results obtained from the fault detection and 

diagnosis algorithm on the generated fault data set.  In the generated fault data set, 

there are 17 pre-designed faults including single cause faults, multiple cause faults, 

significant faults and insignificant faults.  There are 14 significant faults and 3 

insignificant faults.  As stated earlier on, a fault is detected when one or both of the 

quality variables showing out-of-control limit signal in their statistical control chart 

(Shewhart Control Chart or Range Control Chart or both) and also one or more of the 

selected key process variables showing out-of-control limit signal in their statistical 

control chart (Shewhart Control Chart or Range Control Chart or both).    
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 In this research, a variable (quality variable or selected key process variable) 

having value of more than the control limit of its statistical control chart will give an 

out-of-control limit signal and will be coded with a value of 1 while a variable 

(quality variable or selected key process variable) having value of less than the 

control limit of its statistical control chart will give an in-control limit signal and will 

be coded with a value of 0.  Thus, for each sampling point (using TMSPC), a series of 

codes of 0 and 1 will be given to the selected key process variables and the two 

quality variables of interest. 

 

 The completed detection and diagnosis profiles of the fault data using the 

developed fault detection and diagnosis (FDD) algorithm based on all three analysis 

methods (NC, PCA and PCorrA) will be given in Appendix A.  Table 5.6 shows the 

total pre-designed faults generated in the fault data with their properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 123

Table 5.6: Pre-designed faults generated in the fault data 

Data 

Point 

Cause 

Variable 

Type of Fault Size of Fault 

2 Lf Valve fault Significant fault 

5 Re Sensor fault Significant fault 

8 Tf Sensor fault Significant fault 

10 P Valve fault Significant fault 

12 Qr Valve fault Significant fault 

14 Re and Lf Sensor fault (Re), valve fault (Lf) Significant fault 

16 Re and Tf Sensor fault (Re and Tf) Insignificant fault 

19 P and Lf Sensor fault (Lf), valve fault (P) Significant fault 

23 Tf Sensor fault Insignificant fault 

26 P and Tf Sensor fault (P and Tf) Significant fault 

29 Re and Lf Sensor fault (Re), valve fault (Lf) Significant fault 

32 Qr and Tf Sensor fault (Tf), valve fault (Qr) Significant fault 

34 P and Lf Sensor fault (P), valve fault (Lf) Significant fault 

37 Re, P and Tf Sensor fault (Re and Tf), valve fault 

(P) 

Significant fault 

40 Qr and Lf Sensor fault (Qr), valve fault (Lf) Significant fault 

42 P Valve fault Insignificant fault 

45 Qr, Re, P and 

Lf

Sensor fault (Re), valve fault (P and 

Lf), controller fault (Qr) 

Significant fault 

(Feed flow rate (Lf), feed temperature (Tf), reflux flow rate (Re), pumparound flow 

rate (P), and reboiler duty (Qr)) 

 

 As stated earlier on, the types of faults considered in this research includes 

single cause faults, multiple cause faults, significant faults and insignificant faults.  

The FDD based on NC will serve as the benchmark for comparison.  The total of 

faults incorporated into the Fault Data (OC) is 17 faults.  For the NC method, 14 

faults were detected out of the total 17 pre-designed faults.  Out of these 14 detected 

faults, the NC method was able to successfully diagnose the cause of all the 14 

detected faults.  Figure 5.2 and Figure 5.3 show examples of fault detection and fault 

diagnosis of pre-designed faults using the FDD algorithm based on NC.   
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Figure 5.2 and Figure 5.3 show how fault detection and diagnosis was being 

conducted out using the developed FDD algorithm based on NC on Shewhart 

Control Chart.  For Range Control Chart, the procedure is similar.  From Figure 5.2 

and Figure 5.3, only 2 key process variables were shown each time due to space 

constraint.  The FDD algorithm based on NC did not manage to detect 3 faults 

(insignificant faults) present in the pre-designed faults incorporated into the process.  

This is because the statistical control limits for the control charts based on this NC 

method is insensitive to insignificant faults.   

 

 In this research, there are two PCA method used for developing the FDD 

algorithm based on the percentage of variation of the original Nominal Operation 

Condition (NOC) data retained.  These PCA methods are PCA based on 90% of 

variation of original NOC data retained and PCA based on 95% of variation of 

original NOC data retained.  The FDD algorithm based on both PCA methods 

managed to detect 14 faults and successfully diagnose the fault cause of each 14 

detected faults.  Figure 5.4 and Figure 5.5 show examples of fault detection and fault 

diagnosis of pre-designed faults using the FDD algorithm based on PCA (90% of 

variation of original NOC data retained).   
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Figure 5.4: Example of fault detection and diagnosis of a single cause fault involving 

Quality Variable 2 (x9) and Key Process Variable 1 (Lf) using FDD algorithm based 

on PCA (90% of variation of original NOC data retained).  
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The FDD algorithm based on PCA (both method with 90% of variation of origin

NOC data retained an

al 

d method with 95% of variation of original NOC data retained) 

 based on NC and algorithm based on PCA (both method with 

0% of variation of original NOC data retained and method with 95% of variation of 

rigina

orithm based on PCorrA were able to detect all 17 pre-designed 

ults (significant faults and insignificant faults) and successfully diagnose the fault 

also fail to detect the 3 insignificant faults in the pre-designed faults incorporated 

into the process.  Although both PCA method show similar results, the method with 

90% of variation of original NOC data retained is slightly better than the method 

with 95% of variation of original NOC data retained because the former method 

utilizes less variation of original NOC data compared to the latter method.  PCA 

(both methods) also performed better than the NC although both PCA and NC show 

same results for FDD on the Fault Data (OC).  This is because for PCA (both 

methods), there were dimension reduction of NOC data (not using 100% variation of 

the original NOC data) compared to NC which, utilizes all 100% variation of the 

original NOC data. 

 

 The algorithm

9

o l NOC data retained) show good results in detecting the multiple fault causes 

pre-designed in the fault data.  These methods managed to detect 9 out of the total 10 

multiple fault causes injected into the fault data.  The data point in which the 

multiple fault causes were not detected is because this data point is an insignificant 

fault.  Stated earlier on, these methods were insensitive to the 3 pre-designed 

insignificant faults. 

 

 The FDD alg

fa

cause for all 17 detected faults.  Figure 5.6 and Figure 5.7 show examples of fault 

detection and fault diagnosis of pre-designed faults using the FDD algorithm based 

on PCorrA. 
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The FDD algorithm based on PCorrA were able to detect the 3 insignificant faults in 

the pre-designed faults because the statistical control limits of control charts based o

PCorrA are s

n 

ensitive to insignificant faults.  This method was also successfully in 

detecting and diagnosing all the 10 multiple fault causes injected in the fault data.  

Figure 5.8 and Figure 5.9 show examples when the FDD algorithm based on PCorrA 

managed to detect insignificant fault while the methods based on NC and PCA fail to 

do so. 
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Figure 5.9: Fault detection of a single cause fault (insignificant fault) involving 

Quality Variable 1 (x8) and Key Process Variable 2 (Tf) using FDD algorithm based 

on PCorrA.  
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 Figure 5.10 – Figure 5.12 shows the performance of each method with their 

fault detection efficiency, fault diagnosis efficiency and overall FDD, respectively. 

 

 

 

 
Figure 5.11: Fault diagnosis efficiency of each method 

 

 

Figure 5.10: Fault detection efficiency of each method 
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Figure 5.12: Overall FDD efficiency of each method 

 

 From Figure 5.10 – Figure 5.12, the FDD algorithm based on PCorrA 

perform the best among all the FDD algorithm based on different method of data 

an FDD algorithm using correlation coefficients between 

the selected quality les of intere d the selecte  process variables very 

much depend on the value of the correlation coefficients.  The closer the correlation 

coeffic epresent the relationship between the selected key process variables 

with th cted quality variables of interest, the better the performance of the 

developed FDD algorithm. 

 

 DD algorithm based on NC although only manage to detect 13 faults 

out of total 17 pre-designed faults, this lt certainly sh  

FDD algorithm are able to detect pro

based on PCA a retained and 

method with 95% of variation of original NOC data retained) also show similar 

performance as of the FDD algorithm based on NC.  However, the PCA method is 

slightly superior because this method takes into account the cross-correlation 

between the selected key process variables while determining their correlation with 

the two quality variables of interest while the NC method determine the correlation 

alysis.  The performance of 

variab st an d key

ients r

e sele

The F

resu ows that the developed

cess faults that are present.  The FDD algorithm 

(both method with 90% of variation of original NOC dat
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coefficients by using only one to one regression.  Another advantage of the PC

ethod is that PCA pe

A 

m C data during 

the determ  coefficients while the NC do no ension 

reduction in its operation.  The advantage of dimension reduction is that less 

variation (fewer amou riable  orig  data are needed to 

represent t l NOC data.  This advantage will be more important if the study 

process involve high amount of variables. 

 

 The reason the FDD algorithm based on PCorrA perform the best among all 

the FDD al was the value of correlation coefficients derived using PCorrA.  

PCorrA maintain the value of th ct ess  while 

determining the correlation coefficient ocess variable with 

a quality variable of interest.  This procedure not only takes account into the cross-

correlation among the selected key process va  

selected key process on the correlation between the key process variable under study 

 and insignificant faults in the pre-designed faults 

ated into the Fault Data (OC). 

 

limits.  Each situation can be easily assess whether the particular selected key 

rform dimension reduction of the original NO

ination of the correlation t have dim

nts of va s) of the inal NOC

he origina

gorithm 

e other sele ed key proc  variable

 between a selected key pr

riables but also the effect of other

(the key process variable which its correlation with a quality variable of interest is to 

be determined) and the quality variable of interest.  The derived correlation 

coefficients using PCorrA will better represent the relationship between the selected 

key process variables and the quality variables of interest.  This will make the 

developed FDD algorithm using these correlation coefficients to be more sensitive to 

any changes in the variation of the quality variables of interest with the selected key 

process variables.  Therefore, the FDD algorithm based on PCorrA were able to 

detect both significant faults

incorpor

 

 The developed FDD algorithm using correlation coefficients (NC, PCA and 

PCorrA) were able to successfully diagnose the fault cause for each detected fault. 

These results show that the developed FDD algorithm using correlation coefficients 

is promising in diagnosing fault causes.  The previous ambiguous nature 

(unavailability of control limit in contribution plots) of contribution plots use to 

diagnose fault causes (Yoon and MacGregor, 2000) is also overcome by the 

developed FDD algorithm using correlation coefficients as each statistical control 

chart (Shewhart Control Chart and Range Control Chart) have statistical control 
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process variable is a fault cause or not due to the presence of statistical control limits 

in the statistical control charts.        

 

 The introduction of coding for fault situations or NOC conditions also make 

the developed FDD algorithm simple yet promising to be implemented in large scale 

chemical plant operations.  As a conclusion, the developed FDD algorithm using 

correlation coefficients were able to detect the pre-designed faults and successfully 

iagnose the fault causes of the detected fault.  The introduction of PCorrA as a 

ethod

d

m  for data analysis in Multivariate Statistical Process Control (MSPC) was also 

successful as the FDD algorithm using PCorrA is the best method among all the 

developed FDD algorithms. 

 

 

 

5.7 Chapter Summary 

 

This chapter contains the results obtained from the work for the whole 

duration of this research. The results presented include the selection of key process 

variables results, process sampling time (TMSPC) results, normality study of NOC data 

results, correlation coefficient derivation results and fault detection and diagnosis 

results.  The FDD results obtained based on the methods of NC, PCA (90% and 95% 

of original variation of NOC data retained) and PCorrA were presented in detail and 

the reasons for the observed results were discussed.  

 



CHAPTER VI 
 

 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

 

6.1 Conclusions   

 

 The results of this research were presented in the previous chapter.  There are 

few conclusions that can be drawn from the results obtained. 

 

 Firstly, an algorithm for fault detection, diagnosis and control system 

identification was successfully developed.  The developed algorithm was able to 

detect and diagnose the pre-designed faults in the study process.    

 

 Secondly, the developed program package contains several analysis strategies 

(Normal Correlation, Principal Component Analysis (90%), Principal Component 

Analysis (95%) and Partial Correlation Analysis) and multiple types of monitoring 

charts (Shewhart Control Chart and Range Control Chart) for detecting and 

diagnosing faults in the study process.  
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6.2 Recommendations 

 

In this research, the process is considered out-of-control when the value of a 

data point of a variable exceeds the control limit of its Shewhart Control Chart or 

Range Control Chart.  The reason for using this rule is because the fault detection 

and diagnosis algorithm used in this research is only activated once there is an out-

of-control limit signal present in one or both of the Shewhart Control Chart of the 

quality variables of interest. For normally distributed data, the probability of a data 

point exceeds the control limit of a quality variable of interest using a statistical 

control limit of ±3σ is very low (around 0.27%).  Therefore, by using only one rule 

(the value of a data point of a variable exceeds the control limit of its Shewhart 

Control Chart shows an out-of-control limit signal) will make the developed FDD 

algorithm able to detect any abnormal changes in the process without risking the 

increase in the number of false alarms (situations where there is no faults present in a 

process but the statistical control charts show otherwise).   

 

There are numerous rules in which the data points can be considered to show 

an out-of-control limit signal in a Shewhart Control Chart (Quesenberry, 1997).  By 

increasing the number of rules in the Shewhart Control Chart for an out-of-control 

limit signal will increase the robustness of the control chart, it will tend to increase 

the number of false alarms.  On the whole, there must be a compromise between 

robustness of the statistical control charts and the number of false alarms that 

happens on the number of rules to be used when using Shewhart Control Chart. 

 

Aside from Shewhart Control Chart and Range Control Chart, there are 

numerous other types of control charts that can be used with the proposed correlation 

coefficients in this research such as Exponentially-Weighted Moving Average 

Control Chart (EWMA), Cumulative-Sum Control Chart (CUSUM) and Moving 

Average Control Chart (MA) (Wachs and Lewin, 1999).  By applying the developed 

correlation coefficients on these control charts, the results of the FDD of the fault 

data set will certainly be different.  

 

In this research, three techniques of correlation analysis were used: NC, PCA 

and PCorrA.  For future work, techniques such as Partial Least Squares (PLS) and 
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Independent Component Analysis (ICA) can be used to develop the correlation 

coefficients between the variables of the data matrix.  Chemical processes tend to 

change continuously and the correlation coefficients developed from history data 

may not truly represent the relationship between process variables.  Therefore, online 

updating of the data matrix used to develop the correlation coefficients can take 

account into process dynamics and give better FDD qualities of the developed FDD 

method based on correlation coefficients.     

 

Finally, the author hopes that this research work can be a platform for future 

studies on the field of fault detection and diagnosis using Multivariate Statistical 

Process Control (MSPC) via correlation coefficients.    
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Abstract  
 
A new approach for detecting and diagnosing fault 

via correlation technique is introduced in this study. The 
correlation coefficient is determined using multivariate 
analysis technique, Principal Component Analysis 
(PCA) to improve the traditional SPC chart. Individual 
charting technique such as Shewhart, Exponential 
Weight Moving Average (EWMA), and Moving Average 
and Moving Range (MAMR) charts are used to facilitate 
the Fault Detection and Diagnosis (FDD). A precut 
multi component distillation is used as the case study in 
this work. Based on the result from this study Shewhart 
control chart gives the best performance with the 
highest FDD efficiency.  
 
Keywords: Fault Detection and Diagnosis (FDD), 
Shewhart chart, Exponential Weight Moving Average 
(EWMA) chart, Moving Average and Moving Range 
(MAMR) chart, Principal Component Analysis (PCA) 

 
1 Introduction  

 
Malfunction of plant equipment, instrumentation 

and degradation in process operation increase the 
operating costs of any process industries. Venkat, et al., 
(2003) mentioned that the petrochemical industry 
annually losses approximately $20 billion due to poor 
management in abnormal detection events. Chen, et al., 
(2004) also highlighted that the US-based petrochemical 
industry could save up to $10 billion annually if 
abnormal process behavior could be detected, diagnosed 
and appropriately dealt with. Therefore, effective 
monitoring strategy for early fault detection and 
diagnosis is very important not only from a safety and 
cost viewpoints, but also for the maintenance of yield 
and the product quality in a process. Fault detection is to 
determine the occurrence of an abnormal event in a 

process, and that of fault diagnosis is to identify its 
reason or sources. 

Statistical Process Control, SPC is an alternative 
approach in chemical process to detect and diagnose 
fault. The major benefits of this approach are that there 
is no need for a fundamental or causal model of the 
system. In chemical processes, data based approaches 
rather than model-based approaches have been widely 
used for process monitoring, because it is often difficult 
to develop detailed physical models (Kano, et al., 2000). 
SPC only requires a good database of normal historical 
data, and the models are quickly and easily built from 
this.  

Individual Shewhart, Exponential moving average 
(EWMA), and Moving Average (MA) and Moving 
Range (MR) are Statistical Process Control, SPC charts. 
These traditional SPC chart are used to monitor and 
verify that the process remained in statistical control 
based on small number of variables. Normally the fault 
in the process is seek through the usage of SPC chart, 
i.e., the final product quality variables. Measuring 
quality variables alone are not enough to describe the 
process performance (Kourti, et al., 1996). In this study, 
the quality variables and some of the process variables 
that having a correlation between the former and the 
later variables are monitored. In traditional SPC, once 
the quality variables showed out of statistical control 
signal, it is then left up to process operators and 
engineers to try to diagnose the cause of out of control 
using their process knowledge and a one at a time 
inspection of process variables (MacGregor and Kourti, 
1995). 

To overcome this limitation, a new approach using 
multivariate analysis is applied in the SPC realm 
procedure to detect and diagnose the faulty condition. 
This new approach is called Improved SPC, ISPC. The 
correlation coefficient calculated from multivariate 
analysis technique is applied to improve the traditional 

 1
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control chart rather than using Hotelling’s T2 and Q 
statistics which has been widely used in multivariate 
statistical process control (Wise and Gallegher, 1996; 
MacGregor and Kourti, 1995; Jackson, 1991; Kourti and 
MacGregor, 1996; Kresta, et al., 1991). 
 
2 Data generation 
 

Figure 1 shows the schematic diagram of dynamic 
simulated distillation column developed by Yee and 
Ibrahim (2003) that is used in this case study. The 
monitoring purpose of this column is to maintain the 
composition of oleic acid and linoleic acid at the range 
of 0.134 to 0.135 mole fraction and 0.024 to 0.025 mole 
fraction respectively. There are seven control loops 
installed in the study column. These control loops 
controlled the process by counteracts the effects of 
disturbances change and set point change to maintain the 
control variables at the set point values. This concept 
known as Automatic Process Control (APC), which uses 
continuous adjustment on manipulated variables to keep 
the process on target. 
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In contrast, SPC does not control the process but 

rather performs a monitoring function and gives signals 
when control is needed in the form of identification and 
removal the root causes. SPC accomplish the deviation 
in the process by detecting the changes in monitoring 

variables when the assignable causes occur in the 
process. It is important to note that the implementation 
of the SPC method is to detect and diagnose fault in the 
process such as line blockage, line leakage, sensor fault, 
valve fault and controller fault. This means that the 
controller in APC system are ready to counteracts the 
effect of disturbance change and set point change as 
long as the controller is function well.   

SPC variable can be categorized into two i.e quality 
variables and process variables. Quality variables consist 
of oleic acid composition, xc8 and linoleic acid 
composition, xc9 at bottom stream. The process variables 
were selected from five locations i.e feed stream, 
pumparound stream, reflux stream and bottom stream. 
Feed flowrate and feed temperature of the study column 
are overall disturbances.Eventhough the study precut 
column has been installed with controllers, the 
probability of faults to occur is possible due to line 
blockage, line leakage and sensor fault. Pumparound 
flowrate and reflux flowrate are the controlled variables 
in APC system. These variables are controlled to 
maintain at the target values. The controllers will take 
action if any changes due to measured disturbances and 
set points. Both variables are set on the target values as 
long as the controllers are function well. The probability 
of faults to occur is possible due to line blockage, line 
leakage, sensor faults, valve sticking and controller 
fault. Therefore, these variables are included in 
monitoring process to identify the causes of faults. 
Reboiler heat duty of the study column does not 
measured directly and the value is calculated using 
Equation 1, 

 
Qr = FhotCp∆T                      1 
 
where,   
 Fhot = Hot oil flowrate  

= 8267 kg/hr 
 Cp = Specific heat capacity 

= 7.5 kJ/kg.K 
 ∆T = Temperature difference 

= 40 K 
 

Hot oil flowrate is the manipulated variable in APC to 
maintain the bottom temperature at the desired value. 
This manipulated variable will change if the controller 
takes action to compensate the effect of disturbance 
(liquid flowrate at tray 28) change and set point (bottom 
temperature) change. Otherwise it is due to faults such 
as line blockage, line leakage, sensor faults, valve 
sticking and controller fault. Table 1 lists the selected 
process variables to be monitored in this study. 

Figure1 Schematic diagram of distillation column
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he fault during the OC situation.  

d composition 
Feed temperature, Tf
Pumparound flowrate, P 
Reflux flowrate, Re 
Reboiler duty, Qr

Algebraically, PCA relies on eigenvector 
decomposition of the covariance or correlation matrix of 
the process variables. A set of original variables x1, x2, 
…, xp  is transform to a set of new variables PC1, PC2, …, 
PCp. The mathematical representations that describe the 
transformation of a data matrix, X (m,p) consist of m 
observations on p variables is shown as follow, 
 

T
mpppmp ,,, XVPC =     3 

 
V is the eigenvector matrix, which consists of 
eigenvector v1, v2, …, vp. Singular Value Decomposition 
(SVD) technique is used to decompose data matrix, X 
(m,p) into a product of the eigenvectors of XXT, the 
eigenvectors of XTX and a function of their eigenvalue. 
The fundamental identity of SVD is shown by the 
following equation, 
 
X(m,p) = U(m,p)L1/2 

(p,p)VT (p,p)       4 
 
The diagonal elements of L (p,p), λ1, λ2,…, λp  are 
called eigenvalues of X while the columns vector of U 
(m,p) , u1, u2, …, up and the columns vector of V (p,p), 
v1, v2, …, vp are called eigenvectors of X and both 
eigenvector are orthonormal. Matrices of U, V and L1/2  

have the following properties (Nash and Lefkovitch, 
1976): 
 
 UTU = UUT =I      5 
VTV = VVT = I      6 
(L1/2)(L1/2) T = (L1/2) T (L1/2) =L     7 
 
The correlation between the variable k, xk and variable i, 
xi if j variables are involved can be written as following, 
 

Cik = ∑     8 
=

n

j
jkjijvv

1
λ

 
n = Number of retained eigenvectors 

vk = Eigenvectors of process variable 

vi = Eigenvectors of quality variable 

 
The number of retained eigenvector can be determined 
using Scree plot (Ralston, et al., 2001). Detailed 
derivation of this equation can be found in (Loong and 
Ibrahim, 2002). 
 

3
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4 Improved SPC, ISPC charts 
 

The function of ISPC chart is to compare the 
current state of the process against Normal Operating 
Condition, NOC. ISPC chart is used to determine 
whether the process in a state of statistical control or in a 
state of out of statistical control using a set of historical 
data. There are two types of causes, which contribute to 
the existing of faults in the process. Chance, or common 
causes are small random changes in the process that 
cannot be avoided. Variation of this type is only 
removable by making a change in the existing process. 
Assignable causes, on the other hand, are large variation 
in the process that can be identified as having specified 
cause. Assignable causes are causes that are not part of 
the process on a regular basis. This type of variation 
arises because of specific circumstances. Sources of 
variation can be found in the process itself, the material 
used, the operator’s actions, or the environment.  

Control charts approach is based on the assumption 
that a process subject to common cause variation will 
remain in a state of statistical control under which 
process remain close to target which is known as NOC 
data for this study. By monitoring the process over time, 
OC events known as assignable cause can be detected as 
soon as they occur. If the causes for such events can be 
diagnosed and the problem can be corrected, the process 
is driven back to its normal operation.  

Correlation coefficient from the multivariate 
analysis technique that is PCA, is used to relate the 
quality variables with the process variables. Let xk is the 
quality variable and xi is the process variable. The 
relationship between standardized quality variable, x  

and standardized process variable, x can be written as, 

s
k

s
i

 
 x = Cs

k ikx      9 s
i

 
where x =(xs

k k - x k)/sk, x =(xs
i i - x i)/si. s is the standard 

deviation, while x k and x i  is quality variable mean and 
process variable mean respectively. The control limit for 
quality variable in general is  
  
LCL< x <UCL                     10                                                  s

k  
 
where UCL and LCL is upper control limit and lower 
control limit respectively. Substitute equation 9 into 
equation 10 and rearrange the equation 10. The control 
limits for corresponding process variable is 
 

LCL/Cik< x <UCL/  Cs
i ik        11

       
Equation 11 is used to calculate the control limits 

for process variables. These limits are calculated based 
on the NOC data. Figure 1 shows the used of correlation 
coefficient corresponding to process variables. 

 

 
 
Figure 2 The implementation of correlation coefficient, 
Cjk in ISPC chart 
 
The quality variable control limits and process variables 
control limits for each ISPC chart are accordingly 
presented in Table 2 and Table 3.  

 
Table 2 Quality variable control limits 

Control chart Control limit 
Shewhart 
Individual 

UCL = 3s,LCL = -3s 

Shewhart 
Range 

UCL=D '
001. R , LCL=D '

999. R  

EWMA 
UCL=+Ls

λ
λ
−2

[1-(1-λ)2i] 

UCL=-Ls
λ

λ
−2

[1-(1-λ)2i] 

MA UCL=+A2 R , LCL=-A2 R  
MR UCL=D '

001. R , LCL=D '
999. R  
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Table 3 Process variable control limits 
Control chart Control limit 

Shewhart 
Individual 

UCL = 3s/Cik , LCL = -3s/Cik

Shewhart Range UCL=D '
001. R /Cik, 

LCL=D '
999. R /Cik

EWMA 
UCL=+(Ls

λ
λ
−2

 [1-(1-λ)2i])/Cik

UCL=-(Ls
λ

λ
−2

 [1-(1-λ)2i])/Cik

MA UCL=+A2 R /Cik, LCL=-A2 R /Cik
MR UCL=D '

001. R /Cik, 

LCL=D '
999. R /Cik

 
Table 4 shows the equation to determine the statistical 
data for each control charts.  
 
 

 
 
 
 
 
 
 

 
The correlation coefficient is used to translate the 

control limits of SPC charts from quality variables into 
process variables, which is used to perform fault 
diagnosis for the process operation. The quality 
variables data is incorporate in the control chart during 
the faulty condition for fault detection purpose, while 
the process variables which has been correlate with the 
quality variables is used for fault diagnosis. Therefore, 
the Improve SPC charts applied not only for quality 
variables but also for process variables. 
 
 
 
 
 

5 FDD efficiency using Improved SPC, ISPC chart 
 
The efficiency of the FDD method using improved 

Shewhart, EWMA and MAMR chart is evaluated based 
on two aspects i.e the successful of ISPC chart to detect 
the fault and the successful of ISPC chart to identify the 
correct process variable as fault cause for each fault 
situation. The efficiency of fault detection, ηFdetect and 
the efficiency of the fault diagnosis, ηFDiagnose is 
determined using the following equation, 

 
ηFdetect= [Number of faults detected / Total of faults    
generated in the process] x 100   10 
 
ηFDiagnose = [Number of faults diagnosed / Total of 
diagnosed fault] x 100    11 
                   

80 fault locations consist of 50 single fault and 30 
multiple faults were introduced into the process. Figure 
3 and figure 4 show the efficiency of FDD on quality 
variables, oleic acid, C8 and linoleic acid, C9 
respectively using different ISPC charts. Shewhart chart 
give 100% performance in fault detection, which is 
better than EWMA and MAMR for both quality 
variables. Shewhart chart used 100% current data but 
MAMR statistic is calculated using window size of four, 
which consist of 25% current data and 75% previous 
data. This caused detection delay using MAMR. EWMA 
statistic exponential weighted average of all prior data, 
including the most recent data. The weighted average 
depends on weighting factor, λ. Small λ will give less 
weight to current data and more weight to previous data 
and vice versa. In this study, λ = 0.4 is used. This give 
the EWMA statistic consist of 40% current data 60% 
previous data. This caused EWMA is more efficient in 
detecting shift in the process compared to MAMR since 
EWMA statistic gives more weight to current data.  

Table 4 Statistical data for control charts
Control chart Chart Statistics 

Shewhart Individual x = xi
Shewhart Range Ri = max [xi-1+1] – min [xi-1+1] 
EWMA zi=λxi + (1-λ)zi-1
MA MAi =(xi + xi-1 + … + xi-w+1)/w 
MR MRi = max [xi-w+1] – min [xi-w+1] 

where  
R  = Average of range 
λ =Weighting factor 

A2 , D
' , D '  001. 999.

= Constant 

L = Width of the control limit 
z = EWMA statistic 

w = window size for moving chart  
 

t  
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Shewhart

 
Figure 5 and figure 6 show the fault detection 

efficiency using Shewhart, EWMA and MAMR in three 
different regions based on single fault data. The OC data 
that is greater than 3s is divided into three regions. 
Region 1, region 2, and region 3 refer to mean 

±
± 4s, 

mean 5s and over mean± ± 5s respectively. Refer to 
figure 5, both Shewhart chart and EWMA can detect OC 
data in region 1 but Shewhart (100% fault detection 
efficiency) give better performance than EWMA (9.1% 
fault detection efficiency). MAMR chart only can detect 
deviation that is greater than mean 4s for oleic acid 
while one fault cases is detected by MAMR for linoleic 
acid.  
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Based on fault diagnosis result (not shown in the figure), 
the smallest deviation (0.24%) from the target in process 
variables, which contribute to the out of control situation 
in the quality variables, can be identified by shewhart. 
EWMA can diagnose for 0.58% deviation in process 
variable while MAMR can diagnose for 0.86% deviation 
in process variables. The result obtained shows that 
Shewhart chart was able to detect small shift in the 
process. EWMA chart can be used to detect moderate 
shift in the process while MAMR for large shift in the 
process. 
 
Conclusion 
 

Early fault detection and diagnosis is important in 
chemical industries for safety, maintaining product 
quality and reduce the cost. The potential of ISPC to 
detect and diagnose faults in simulated distillation 
column is shown. PCA technique is used to develop the 
correlation between quality variables and process 
variables in order to improved the traditional SPC chart 
for FDD. One major advantage of the correlation 
coefficients method is process monitoring for fault 
diagnosis can be done using process variables. Process 
fault diagnosis can be done in straightforward manner. 
The simplicity of the presentation and interpretation of 
the ISPC charts based on multivariate analysis technique 
makes these charts attractive to the plant engineers and 
operators to identify the out of statistical control in the 
process. Performance of Shewhart chart which used 
100% current data is the best compared to EWMA and 
MAMR in detecting and diagnosing faults. Both EWMA 
and MAMR chart incorporate previous data in 
calculating the control limits.  FDD result using EWMA 

Shewhart EWMA MAMR 
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is better than MAMR to detect moderate shift in the 
process. 
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Introduction 

Currently, chemical plants face numerous 
challenges like stringent requirements are 
needed on the desired final product quality, 
utilization of a lot of energy, must be 
environmentally friendly and fulfill safety 
requirements.  High operation cost is needed 
in order for chemical plants to overcome the 
stated challenges.  Any faults that are present 
in a chemical process will yield higher 
operation cost on the plant due to increase in 
production of waste, re-work, re-processing 
and consumption of utilities.  Therefore, 
accurate process fault detection and diagnosis 
(FDD) on a chemical process at an early stage 
is important to reduce the cost of operation 
due to present of faults. 

The important task of detecting and 
diagnosing abnormal process behavior (faults) 
has led to the evolution of a range of 
statistically based condition monitoring 
approaches (Treasure et al., 2004).  These 
approaches are collectively referred to as 
Multivariate Statistical Process Control 
(MSPC) and have gained attention over the 
past decades noticeable by the large number 
of publications in this area (MacGregor and 
Kourti, 1995).  Application of MSPC as a 
fault detection tool in previous works was 
based on two conventional control chart: 
Hotelling’s T2 Statistic control chart and 
Square Prediction Error Statistic control chart 
(SPE) (Wachs and Lewin, 1999).  These two 
control charts have shown good fault detection 
performance for simulated model unit 
operations (Wachs and Lewin, 1999).  MSPC 
using the two stated conventional control 
charts is a very powerful tool for fault 
detection but its main limitation lies in the 
ability to isolate or diagnose the actual causes 
of the detected faults.  The main fault 
diagnosis tool used together with the two 
control charts is the Contribution Plots (CP) 
(Wachs and Lewin, 1999).  Although CP is 
used to diagnose the cause of the detected 
faults, they tend to be noisy and ambiguous.  
These plots also do not have confidence 
limit/control limit, thus making it difficult to 

determine whether a situation is normal or 
abnormal (Yoon and MacGregor, 2000).          

The present fault diagnosis tool using CP 
has limited usage in diagnosing causes of 
detected faults.  Faults that have effect 
propagated into other variables are hard to be 
isolated using CP.  In enhancing the fault 
isolation ability of MSPC and overcoming the 
ambiguity of CP, fault signatures have been 
proposed.  Faults from process data are 
collected and fault signatures are developed 
using Principal Component Analysis (PCA).  
Any new detected faults will exhibit certain 
fault signature and this signature will be 
compared to the database of fault signatures 
developed earlier on.  Good results were 
obtained for the application of the proposed 
method (Yoon and MacGregor, 2001).  
Although the fault signature method shown 
better fault diagnosis ability compared to the 
previous Contribution Plots, there are several 
weaknesses of the former method.  The fault 
signature database needs to be as 
comprehensive as possible to cover all 
possible faults in a process and great amount 
of computer calculation is needed in 
diagnosing a fault for highly multivariable 
processes.  The present work focuses on 
overcoming the ambiguity nature of fault 
isolation using MSPC through contribution 
plots and also the need for big database of 
faults signatures by introducing fault 
diagnosis using correlation coefficients of 
process variables and quality variables.  The 
proposed FDD method in this paper is an 
extension of fault detection using correlation 
coefficients (Mak and Kamarul, 2003). 

Correlation coefficients between key 
process variables and quality variables of 
interest are used as fault detection and 
diagnosis tools.  These coefficients are 
developed from nominal operating condition 
(NOC) data using multivariate projection 
techniques such as PCA and Partial 
Correlation Analysis (PCorrA).  PCorrA has 
been applied in many applications (Ding and 
Nancy, 2000) and hardly been used in MSPC 
as a method for determining correlation 



between variables.  The developed correlation 
coefficients will be used together with 
conventional Shewhart Control Chart and 
Range Control Chart as FDD tools.  The 
proposed method is applied to a simulated 
industrial column model (Wong, 2003).  
 
Methodology 
 
Process modeling and data generation 
 The most important part in obtaining an 
accurate correlation between the process 
variables and quality variables is the data 
mining section.  In this research, data is 
obtained from a simulation model.  A 
distillation column from a Palm Oil 
Fractionation Plant is selected as the case 
study.  The model of this column is developed 
based on the model from literature with slight 
modifications to suit the present work (Wong, 
2003).  Figure 1 shows the distillation column 
with the key variables of the process.  From 
the column model, two sets of process 
operating data were generated.  For NOC data, 
some noises with zero mean were imbedded 
into the simulation program. The noises 
considered are small random change in 
selected key variables such as feed flow rate, 
feed temperature, reboiler duty, cooler duty, 
reflux flow rate and pumparound flow rate.  
While for Out-of-Control (OC) data, some 
large changes (significant faults) and 
moderate changes (insignificant faults) were 
purposely added into the process model as 
faults.  These faults represent valve faults, 
sensor faults and controller faults.  The 
description of each type of fault is described 
in Table1.  The feed flow rate and feed 
temperature to the study column are assumed 
to be fixed.  Any abnormal changes of the 
value of these two variables are due to faults 
as shown in Table 1 and not due to common 
cause variation (NOC).  The generated NOC 
and OC data are mean-centered and variance 
scaled.  The NOC data will be subjected to 
analysis using PCA and PCorrA for deriving 
the correlation coefficients between the 
selected process variables with the selected 
quality variables.  The two quality variables of 
interest in this research are the oleic acid mole 
fraction, x8, and linoleic acid mole fraction, x9, 
in the bottom flow rate.  The objective of the 
proposed FDD tools is to maintain the value 

of these two variables at their steady-state 
value through detection and diagnosis of faults 
present in the process.  
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Figure 1 Distillation column model 
 
Derivation of correlation coefficients 
 After the NOC data are obtained, the 
correlation coefficients between the selected 
key process variables and the quality variables 
of interest are determined using PCA and 
PCorrA.   Method for obtaining correlation 
coefficients between the variables, Cik, using 
PCA was based on previous PCA work (Lam 
and Kamarul, 2002).  Correlation coefficients 
using PCA are calculated as in Equation 1.  
 

                        (Eq.1) ∑
=

=
n

j
jkjijik vvC

1

λ

 
Where:  
vij, vkj = eigenvectors obtained from process   
             data using PCA 
 λj      = eigenvalue obtained from process data  
             using PCA 
 
 
 
 

  



Table 1 Fault Descriptions  

PCorrA determines the correlation between 
two variables while allowing the effect of 
other correlated variables on these two 
variables.  For calculating correlation 
coefficient, Cik, for variable 1 and 2 using 
PCorrA after allowing the effect of j-2 
variables is as shown in Equation 2 (Cliff and 
Ord, 1973).                                                  
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Where:  
 r12            = correlation between variable 1                                                          

                    and 2 
r12.3             = partial correlation between      
                      variable 1 and 2 after the effect   
                      of variable 3 
r12.(3,4,…,j-1)     = partial correlation between  
                      variable 1 and 2 after the effect  
                      of  j-2 variables 
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-For open loop variables, 
only the value of the 
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-For open loop 
variables, only the 
value of the variable 
changes abnormally. 
For closed loop 
variables, both 
manipulated variable 
(MV) AND control 
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changes abnormally 
together. 
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Development of FDD Tools 
 Cik relates a process variable, xi, with a 

quality variable, yi, in the following way:  

ik

i
i C

y
x =                      (Eq.3) 

 
For conventional Shewhart Control Chart, the 
Upper Control Limit (UCL), Center Line (CL) 
and Lower Control Limit (LCL) for mean-
centered and variance-scaled variables are +3, 
0 and -3 respectively (McNeese and Klein, 
1991).  Using the information from Equation 
3, the UCL, CL and LCL for quality variables 
and process variables will be +3, 0 and -3 and 
+3/Cik, 0 and -3/Cik respectively.  After the 
NOC control charts are established, they are 
used for fault detection of the OC data. 
 The UCL, CL and LCL for conventional 
Range Control Chart for mean-centered and 
variance-scaled variables are mean of the 
range values, Rmean multiplied by a constant, 
d2, Rmean and 0 respectively (McNeese and 
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Klein, 1991).  The constant, d2, is determined 
by the number of subgroup used in calculating 
the range values.  In the present work, d2 is 
3.267 for a subgroup, n = 2 (McNeese and 
Klein, 1991).  Rmean is determined as shown in 
Equation 4.  

                   
n

R
n

i
i∑

== 1
meanR                      (Eq.4) 

Where:  
Ri      = i-th Range value   
Rmean = mean of the range values 
n        = number of range values 
 
For the present work, the UCL, CL and LCL 
for the Range Control Chart of quality 
variables will be of the conventional Range 
Control Chart.  For the selected process 
variables, the UCL, CL and LCL will be 
(Rmean* d2)/Cik, (Rmean)/Cik and 0 respectively. 
 The major assumption in the proposed 
method is that all key process variables are 
measured.  The process variables that are 
major contributors to the variation of the 
process are included into the correlation 
analysis.  In this way, the behavior of the 
process will be well represented by the 
correlation determined from the selected key 
process variables and the developed fault 
detection and diagnosis method will suit the 
dynamic behavior of the process.  From 
Figure 1, the study column is installed with 
several control loops to ensure the stable 
operation of the column.  Any common cause 
changes in the column either through load 
problem (disturbance changes) or servo 
problem (set point changes) will be taken care 
of through these controllers.  The causal cause 
changes of interest in this work are those 
involving abnormal changes in the values of 
the variables of the process not through the 
two mentioned problems rather through faults 
in sensors, valves or even controllers.  For 
NOC data, only common cause variation is 
present in the process.  While for OC data, the 
observed causal cause variation is caused by 
faulty operation of the process sensors, valves 
and controllers.     
 When a process variable changed from its 
normal steady-state value, the variable of that 
control chart will be checked whether it is a 
closed loop variable or open loop variable.  A 
fault signal is observed only when either the 
Range Control Chart or Shewhart Control 

Chart of one or more quality variable show 
value that exceeds its control limit AND one 
or more process variable observed a value out 
of its control limit either in its Shewhart 
Control Chart or Range Control Chart.  For 
open loop variable, the fault will be of sensor 
fault or valve fault as pre-designed while fault 
for closed loop variable can be of valve fault, 
sensor fault or controller fault.  The cause 
variable(s) of each detected fault is diagnosed 
by checking the control charts of the process 
variables.  Process variables that show value 
exceeding its control limit (either in Shewhart 
Control Chart or Range Control Chart) are 
diagnosed as the cause of the observed fault.  
To determine which type of fault is detected, 
the method used is as the previous paragraph. 
 
Results and Discussions 

Figure 2 shows an example of the fault 
detection and diagnosis using the proposed 
method based on PCA.  For the PCorrA 
method, a similar plot of graphs will be 
observed as well.  Due to space limitation, 
only the Shewhart Control Chart for the 6 
selected key process variables (feed flow rate 
(Lf), feed temperature (Tf), reflux flow rate 
(Re), pumparound flow rate (P), reboiler duty 
(Qr) and bottom column temperature (Tbot)) 
and quality variable 1 (oleic acid mole 
fraction in the bottom flow rate (x8) were 
shown in Figure 2.  Similar results will also be 
observed through the Range Control Chart of 
these variables.  The performance of PCA and 
PCorrA in detecting the faults and diagnosis 
the cause of each detected fault is shown in 
Figure 3 and Figure 4. 

Both methods based on PCA and PCorrA 
were able to diagnose the cause of each fault 
detected.  Out of the 17 faults in the fault data, 
13 faults (both single fault and multiple faults) 
were successfully detected by the PCA 
method (Using data reduction with 95% of the 
variation of the original data retained).  The 4 
faults that were not detected by the PCA 
method were insignificant faults (moderate 
changes in the values of the process 
variables).  The method based on PCorrA 
performed better than the PCA method by 
successfully detecting all the 17 pre-designed 
faults (both significant faults and insignificant 
faults).  The PCorrA method performed better 
because the correlation coefficients developed 
by this method are closer to the actual value of 
the correlation coefficients representing the



 
 
Figure 2 Example of Fault Detection and Diagnosis based on PCA 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 3 Performance of fault detection using               Figure 4 Performance of fault diagnosis using                                         
correlation coefficient                                                    correlation coefficient 
 
correlation between the selected process 
variables with the quality variables of interest.  
This is because the PCorrA method sets other 
selected process variables at constant values 
when calculating the correlation between a 
selected process variable with a quality 
variable.  The PCA method calculates the 
cross-correlation between variables 
(interaction between variables) when 
determining the correlation coefficients 
between the process variables and quality 
variables.  However, the PCorrA method was 
superior in determining the correlation 
between variables judging from the observed 
fault detection and diagnosis results of the 
study column.   

One major advantage of the correlation 
coefficients method is the simplicity in 

determining the fault cause(s) of a detected 
fault.  The control charts of the selected 
process variables will trigger alarm if any of 
them exhibit value out of their control limits 
and the charts that triggers an alarm will be 
determined as the root causes of the detected 
fault.  Furthermore, the availability of control 
limits in these control charts will shed away 
any ambiguities of whether a change in value 
of the selected process variables are due to 
common cause (NOC) or causal cause (OC).  
For online process monitoring, the data that 
are used for calculating the correlation 
coefficients can be updated with dynamic data 
to take account into the changes of the process 
due to change in raw material, fouling in heat 
exchangers and other changes in the process 
parameters.  This area can be further 

0 20 40 60
-50 

0 
50

Lf 

0 20 40 60
-10

0

10
Tf

0 20 40 60
-20 

0 
20

Re 

0 20 40 60
-20

0

20
P

0 20 40 60
-100 

0 
100 

Qr 

0 20 40 60
-20

0

20Tbot

Sample Number

0 20 40 60
-20 

0 
20

x8 

Sample Number 

Performance of Fault Detection Using Correlation 
Coefficient 

76.47%

100.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

PCA PCorrA

Method of Data Analysis

Pe
rc

en
ta

ge
 o

f F
au

lt 
D

et
ec

te
d

Performance of Fault Diagnosis Using Correlation 
Coefficient 

76.47%

100.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

PCA PCorrA

Method of Data Analysis

Pe
rc

en
ta

ge
 o

f F
au

lt 
Su

cc
es

sf
ul

ly
 D

ia
gn

os
ed



researched and are a research problem for 
future work.  The application of the developed 
FDD tools on a multiple unit operation case 
study is also a research work for the future. 
 
Conclusion 

An approach for fault detection and 
diagnosis using correlation coefficients based 
on PCorrA and PCA was presented.  The 
performance of the approach was studied on 
an industrial distillation column.  The results 
show that the fault detection and diagnosis 
method using cross correlation coefficient was 
able to detect the faults and diagnose the fault 
cause of each detected fault (both single fault 
cause and multiple fault causes).  Although 
both methods based on PCA and PCorrA were 
successful in diagnosing the cause of each 
fault detected, PCorrA managed to detect all 
the pre-designed faults (both significant faults 
and insignificant faults) while PCA only 
managed to detect the significant fault.  This 
is due to the fact that PCorrA determines the 
correlation between two variables after taken 
account into the effect of other variables that 
are correlated with the two variables of 
interest.  Therefore, the correlation 
coefficients developed using the PCorrA 
method was better in representing the 
correlation between the selected process 
variables and the quality variables of interest.    
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ABSTRACT 
 
A new approach for detecting and diagnosing fault via correlation technique is introduced in this study. The 
correlation coefficient is determined using multivariate analysis technique, Partial Correlation Analysis 
(PCorrA). Individual charting technique such as Shewhart, Exponential Weight Moving Average (EWMA), 
and Moving Average and Moving Range (MAMR) charts are used to facilitate the Fault Detection and 
Diagnosis (FDD). A precut multi component distillation is used as the case study in this work. Based on the 
result from this study Shewhart control chart gives the best performance with the highest FDD efficiency.  
 
Keywords: Fault Detection and Diagnosis (FDD), Shewhart chart, Exponential Weight Moving Average 
(EWMA) chart, Moving Average and Moving Range (MAMR) chart, Partial Correlation Analysis (PcorrA) 
 
 
 
1 INTRODUCTION 
 

Malfunction of plant equipment, instrumentation and degradation in process operation increase the 
operating costs of any process industries. More serious are a gross accident such as explosion. Even major 
catastrophes and disasters from chemical plant failures may be infrequent, minor accidents are very 
common, occurring on a day to day basis, resulting in many occupational injuries, illnesses, and costing the 
society billions of dollars. Venkat, et al., (2003) mentioned that the petrochemical industry annually losses 
approximately $20 billion due to poor management in abnormal detection events. Chen, et al., (2004) also 
highlighted that the US-based petrochemical industry could save up to $10 billion annually if abnormal 
process behavior could be detected, diagnosed and appropriately dealt with. Therefore, effective monitoring 
strategy for early fault detection and diagnosis is very important not only from a safety and cost viewpoints, 
but also for the maintenance of yield and the product quality in a process.  

Statistical Process Control, SPC is an alternative approach in chemical process to detect and diagnose 
fault. The major benefits of this approach are that there is no need for a fundamental or causal model of the 
system. In chemical processes, data based approaches rather than model-based approaches have been 
widely used for process monitoring, because it is often difficult to develop detailed physical models 
(Manabu et al., 2000). SPC only requires a good database of normal historical data, and the models are 
quickly and easily built from this.  

SPC chart is the most technically sophisticated tool to monitor the performance of any given process. 
The function of this control chart is to compare the current state of the process against Normal Operating 
Condition, NOC. The NOC condition exists when the process or product variables remain close to their 
desired values or in statistical control. In contrast, the Out of Control, OC occurs when fault appears in the 
process. In general, fault is deviations from the normal operating behavior in the plant that are not due 
disturbance and set point changes in the process. Fault detection is to determine the occurrence of an 
abnormal event in a process, and that of fault diagnosis is to identify its reason or sources. 

Traditional SPC methods assume that process data is statistically independent and stationary (Nong et 
al., 2000) and ignoring the cross correlation between the variables. This can lead to faulty interpretation 
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during process monitoring. To overcome this limitation, a multivariate analysis approach is applied in the 
USPC realm procedure to detect and diagnose the faulty condition. Multivariate analysis method that is 
Partial Correlation Analysis, PCorrA is used to develop the control limits of USPC charts. Ibrahim (1997) 
has introduced PCorrA method to be applied in chemical process data to develop Multivariate Statistical 
Process Control (MSPC) scheme known as Active SPC. 
 
2 DATA GENERATION 
 

Figure 1 shows the schematic diagram of dynamic simulated distillation column developed by Mak 
and Kamarul (2003) that is used in this case study. The monitoring purpose of this column is to maintain 
the composition of oleic acid and linoleic acid at the range of 0.134 to 0.135 mole fraction and 0.024 to 
0.025 mole fraction respectively. This column is used to generate two sets of data i.e NOC data and OC 
data. 

SPC variable is categorized into two i.e quality variables and process variables. The quality variables 
acted as an indicator variables to show that the process in the state of statistical control or in the state of out 
of control. If any of the points of these variables are fall out of control limits, it shows that the fault 
situation is taken place. On the other hand, the process variables used to find the causes of the fault 
situation. Table 1 show the list of quality variables and process variables used in this study.  

 
 

 

Quality  
variable 

Process 
variable 

xC8 
xC9 

F 
Tf
P 
Re 
Qr

Table 1. SPC variables 

where  
F = Feed flowrate 
Tf =Feed temperature 
P =Pumparound flowrate 
Re =Reflux flowrate 
Qr = Reboiler duty 
xC8 = Oleic acid composition  
xC8 = Linoleic acid composition 

 Figure1. Schematic diagram of distillation column
 
NOC data that consist of quality variables and process variables were generated and arranged in the 

matrix form, X when the process is in statistical control or quality variables remain close to their desired 
values. The matrix data, X with m observations on p variables can be written as, 
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NOC data is very important in SPC methodology since it is used to predict the future behavior of the 
process. Some noises were imbedded into the process variables using Matlab simulator to create random 
process data with normally distributed. After NOC step done, faulty condition was introduced in the 
process by inserting deviations in the process variables and OC data was collected during this condition. 
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Both NOC and OC data are standardized before further analysis since the variables have different units 
and wide range of data measurements. Each variable is adjusted to zero mean by subtracting off the original 
mean of each column and adjusted to unit variance by dividing each column by its standard deviation. After 
the standardization, each variable have equal weights with zero mean and one standard deviation (N (0, 1)). 
The linear relationship between quality variables and process variables is developed using multivariate 
analysis techniques, PCorrA during normal process operation. This relationship is interpreted in terms of 
correlation coefficient, Cik which is used to diagnose the cause of the fault during the OC situation.  

 
3 PARTIAL CORRELATION ANALYSIS, PCORRA 
 

Partial correlation coefficient is defined as a correlation of quality variable, xk and process variable, xi 
when the effects of other process variable(s) have been removed from xk and xi. If the two variables of 
interest are xk,1 and xi,1 and the controlled variables are xi2, xi3 ... xin, then the corresponding partial 
correlation coefficient is  
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As shown mathematically above, PCorrA is done by separating the group of process variables into 

subgroup in which one or more variables are held constant before determining the correlation among the 
other variables. 

 
4 INDIVIDUAL SPC CHARTS 
 

SPC chart is used to monitor the performance of any given process. There are two types of causes, 
which contribute to the existing of faults in the process. Chance, or common causes are small random 
changes in the process that cannot be avoided. Variation of this type is only removable by making a change 
in the existing process. Assignable causes, on the other hand, are large variation in the process that can be 
identified as having specified cause. Assignable causes are causes that are not part of the process on a 
regular basis. This type of variation arises because of specific circumstances. Sources of variation can be 
found in the process itself, the material used, the operator’s actions, or the environment.  

Control charts approach is based on the assumption that a process subject to common cause variation 
will remain in a state of statistical control under which process remain close to target which is known as 
NOC data for this study. By monitoring the performance of a process over time, OC events known as 
assignable cause can be detected as soon as they occur. If the causes for such events can be diagnosed and 
the problem can be corrected, the process is driven back to its normal operation. Individual Shewhart, 
Exponential moving average (EWMA), and Moving Average (MA) and Moving Range (MR) are USPC 
charts. They are used for individual data.  Correlation coefficient from the multivariate analysis technique 
is used to relate the quality variables with the process variables. This correlation coefficient is used to 
translate the control limits of USPC charts from quality variables into process variables, which is used to 
perform fault diagnosis for the process operation. The OC situations will be considered whenever a point 
fall outside the control limits with 99.73% confidence limits for all these charts.  

 
5 IMPLEMENTATION OF PCORRA IN USPC CHART 

 
PCorrA method is used to determine the correlation coefficient between quality variable and process 

variables. Let xk is the quality variable and xi is the process variable. The relationship between standardized 
quality variable, x  and standardized process variable, x can be written as, s

k
s
i

 
                                                                            x = Cs

k ikx      (3) s
i

 

 3



where x =(xs
k k - x k)/sk, x =(xs

i i - x i)/si. s is the standard deviation, while kx and ix is quality variable mean 
and process variable mean respectively. The control limit for quality variable in general is  
  

LCL< x <UCL                   (4)                                              s
k

 
where UCL and LCL is upper control limit and lower control limit respectively. Substitute equation 3 into 
equation 4 and rearrange the equation 4. The control limits for corresponding process variable is, 
 

           LCL/Cik< x <UCL/  Cs
i ik         (5) 

       
Equation 5 is used to calculate the control limits for process variables. These limits are calculated based on 
the NOC data. Table 2 shows both of the limits for all control charts as FDD tools in this study. 

 
Table 2.Control limits for quality variable and process variable 

Control chart Quality variable control limit Process variable control limit 
Shewhart Individual UCL = 3s,LCL = -3s UCL = 3s/Cik , LCL = -3s/Cik
Shewhart Range UCL=D '

001. R , LCL=D '
999. R  UCL=D '

001. R /Cik, LCL=D '
999. R /Cik

EWMA 
UCL=+Ls

λ
λ
−2

[1-(1-λ)2i] 

UCL=-Ls
λ

λ
−2

[1-(1-λ)2i] 

UCL=+(Ls
λ

λ
−2

 [1-(1-λ)2i])/Cik

UCL=-(Ls
λ

λ
−2

 [1-(1-λ)2i])/Cik

MA UCL=+A2 R , LCL=-A2 R  UCL=+A2 R /Cik, LCL=-A2 R /Cik
MR UCL=D '

001. R , LCL=D '
999. R  UCL=D '

001. R /Cik, LCL=D '
999. R /Cik

 
where  
R  = Average of range 

λ =Weighting factor 
A2 , D

' , D '  001. 999.
=Constant 

L = Width of the control limit 

 
 
 
 
 
 
 

Table 3 shows the equation to determine statistical data for each control charts. 
 

Table 3.Statistical data for control charts 
Control chart Quality variable Process variable 

Shewhart Individual x = xi y = yi
Shewhart Range Ri = max [xi-1+1] – min [xi-1+1] Ri = max [yi-1+1] – min [yi-1+1] 
EWMA zi=λxi + (1-λ)zi-1 zi=λyi + (1-λ)zi-1
MA MAi =(xi + xi-1 + … + xi-w+1)/w MAi =(yi + yi-1 + … + yi-w+1)/w 
MR MRi = max [xi-w+1] – min [xi-w+1] MRi = max [yi-w+1] – min [yi-w+1] 
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6 FDD EFFICIENCY USING DIFFERENT CONTROL CHARTS  
 

Both quality variable and process variable were monitored continuously using three types of control 
charts. The efficiency of the FDD method using Shewhart, EWMA and MAMR chart is evaluated based on 
two aspects i.e the successful of SPC chart to detect the fault and the successful of SPC chart to identify the 
correct process variable as fault cause for each fault situation. The efficiency of fault detection, ηFdetect and 
the efficiency of the fault diagnosis, ηFDiagnose is determined using the following equation, 

 
ηFdetect= [Number of faults detected / Total of faults generated in the process] x 100 
ηFDiagnose = [Number of faults diagnosed / Total of diagnosed fault] x 100 

                   
The overall performance is, 

 
ηFDD = ηFdetect x ηFdiagnose x 100% 
 

80 fault locations consist of 50 single fault and 30 multiple faults were introduced into the process. 
Figure 2 and figure 3 show the efficiency of FDD on quality variables, oleic acid, C8 and linoleic acid,C9 
respectively using different SPC charts. Shewhart chart give 100% performance in FDD on oleic acid and 
linoleic acid, which is better than EWMA and MAMR, which result 90% fault detected on oleic acid and 
93% fault detected on linoleic acid. Shewhart chart is plotted using 100% current data but MAMR statistic 
is calculated using window size of four, which consist of 25% current data and 75% previous data. This 
caused detection delay using MAMR. EWMA statistic exponential weighted average of all prior data, 
including the most recent data. The weighted average depends on weighting factor, λ. Small λ will give less 
weight to current data and more weight to previous data and vice versa. In this study, λ = 0.4 is used. This 
give the EWMA statistic consist of 40% current data 60% previous data. This shows that FDD efficiency 
decreases as the percentage of previous data involved in calculates the statistics value for each charts 
increases. False alarm (action is taken due to signal but in fact the process does not change at all) rate using 
MAMR is about 10% for C8 and 7% for C9.  This is higher than EWMA, which has 3% false alarm rate for 
C8.  
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Shewhart MAMREWMA Figure 4 shows the fault detection efficiency 
using Shewhart, EWMA and MAMR in three 
different regions using single fault data. The 
OC data that is greater than ± 3s is divided into 
three regions. Region 1, region 2,and region 3 
refer to mean ± 4s, mean 5s and over 
mean

±
± 5s respectively. Both Shewhart chart 

and EWMA can detect OC data in region 1 but 
Shewhart (100% fault detection efficiency) give 
better performance than EWMA (9.1% fault 
detection efficiency). MAMR chart only can 
detect deviation that is greater than mean ± 4s. 
The result obtained shows that Shewhart chart 
was able to detect small shift in the process. 
 

            Figure 4. Fault detection efficiency in different region 
 
7 CONCLUSIONS  
 
Improved SPC chart for FDD using PCorrA technique, which is used to develop correlation between 
quality variables and process variables have been presented. Process monitoring for fault diagnosis can be 
done using process variables with the implementation of correlation coefficient. Performance of Shewhart 
chart is the best compared to EWMA and MAMR in detecting and diagnosing faults. FDD result using 
EWMA is better than MAMR because high false alarm rate using MAMR shows the risk of taking wrong 
action on the process.          
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ABSTRACT 

 
Chemical process is inclined to be a large-scale, complex and having stringent requirements on the 
desired quality. It also utilizes a lot of energy, must be environmentally friendly and fulfill safety 
requirements. Accurate process fault detection at an early stage of the process is important to modern 
chemical plant in achieving the above requirements. This paper focuses on the application of Multivariate 
Statistical Process Control (MSPC) as a fault detection tool. An industrial distillation column is modelled 
and chosen as the case study for this research.  Principal Component Analysis (PCA) and Partial 
Correlation Analysis (PCorrA) are used to develop the correlation coefficients between the variables of 
the process. Faults considered in the research are sensor failures, valve failures and controller 
malfunctions. Shewhart Control Chart with the developed correlation coefficients are used for detecting 
the faults.  Results show that both methods based on PCorrA and PCA are able to detect the pre-designed 
faults.    
 
Keywords: correlation coefficient; partial correlation analysis; principal component analysis 
 
1.0 INTRODUCTION 
 
Currently, many chemical processes are becoming increasingly measurement rich. Large volume of 
highly correlated data is always recorded. This large volume of data can be very useful for process 
monitoring if an appropriate analysis method is applied (Lam and Kamarul, 2002a). Multivariate 
Statistical Process Control (MSPC) is a method that is able to extract the desired information from the 
data by carrying out data reduction without losing the original information. Many industrial processes 
involve a set of input variables and quality variables, which are highly correlated. If one of the variable 
changes, it will affect the other correlated variables (Lam and Kamarul, 2002b). Thus, ignoring the cross-
correlation between the variables can lead to misinterpretation of the process behaviour. 
 
 One advantage of MSPC is that this method could reduce the complexity of online process monitoring 
with its ability to detect process abnormalities that are difficult to notice. Principal Component Analysis 
(PCA) is used to extract the required information for process monitoring from the data of the process. 
Partial Correlation Analysis (PCorrA) will also be used in this work for information extraction of the 
original data. PcorrA is a method that is able to determine the correlation between two variables while 
maintaining other correlated variables at a constant value (Kamarul, 1995). In MSPC, the correlation 
between variables is the major information needed for good process monitoring performance. In Lam and 
Kamarul (2002b), the cross-correlation coefficients between process variables were introduced as tool for 
process monitoring for fault. In this research, PCA and PCorrA will derive the cross-correlation 
coefficients from data collected from the simulation model. 
 
 Shewhart Control Chart is plotted using the developed correlation coefficients from PCA and PCorrA 
for process monitoring of the process. The function of these control charts is to compare the current state 
of the process with “Normal Operating Condition (NOC)”. NOC exists when the process variables and 
quality variables remain close to their desired values. In contrast, “Out of Control (OC)” occurs when 
fault appears in the process. OC exists when one or more value of the quality variable and the input 
variable are outside the control limit of their respective control chart. 
 
 
 
 



2.0 PROCESS MODELLING AND DATA GENERATION 
 
Data mining is the most important part in obtaining an accurate correlation between the process variables 
and quality variables. In this research, data is obtained from a simulation model. A distillation column 
from a Palm Oil Fractionation Plant is selected as the case study. The model of this column is developed 
based on the model by Wong (2003). Figure 1 shows the process and the key variables. 
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Figure 1: Distillation Column Model 
 
 The state equations for the distillation column were derived based on first principal equations. Ordinary 
Differential Equations (ODE) for state equations were formed and solved using 4th Order Runge-Kutta 
method. The MATLAB® software was used for the whole simulation program.  
 
 Based on the column model, two sets of process operating data were generated. For NOC data, some 
noises with zero mean were imbedded into the simulation program. The noises considered are small 
random change in selected key variables such as feed flow rate, feed temperature, reboiler duty, cooler 
duty and side draw flow rate. On the other hand, for OC data, some significant changes were purposely 
added into the process model as faults. These faults represent valve failures, sensor failures and controller 
malfunctions. The description of each type of fault is listed in Table1. The generated NOC and OC data 
are mean-centered and variance scaled. The NOC data will be subjected to multivariate analysis using 
PCA and PCorrA for deriving the correlation coefficients between the process variables and the selected 
quality variables.    
 
 



Table 1: Fault Descriptions  
 

Sensor Failure Valve Failure Controller Malfunction 
• For open loop 

variables, only 
the value of the 
variable changes 
abnormally. For 
closed loop 
variables, only 
the value of the 
disturbance (D) 
OR the 
manipulated 
variable (MV) 
OR the control 
variable (CV) 
changes 
abnormally. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

• For open loop 
variables, only 
the value of the 
variable changes 
abnormally. For 
closed loop 
variables, both 
the value of 
manipulated 
variable (MV) 
AND control 
variable (CV) 
changes 
abnormally 
together. 

 
 

• For closed loop 
variables, the 
value of 
manipulated 
variable (MV) 
AND control 
variable (CV) 
changes 
abnormally 
together.  
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3.0 CORRELATION COEF
 
3.1 Correlation Coefficients
 
Method for obtaining correla
Kamarul (2002b). Correlation
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3.2 Correlation Coefficients using PCorrA 
 
Partial Correlation Analysis calculates the correlation between two variables while allowing the effect of 
other correlated variables on the two variables. For calculating correlation coefficient, Cik, for variable 1 
and 2 using PCorrA after allowing the effect of j-2 variables is as Equation 2.   
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Where: r12            = correlation between variable 1 and 2 

r12.3          = partial correlation between variable 1 and 2 after the effect of variable 3 
      r12.(3,4,…,j-1) = partial correlation between variable 1 and 2 after the effect of  j-2 variables 
 
4.0 PROCESS FAULT DETECTION USING CIK BASED ON PCA AND PCorrA 
 
Cik relates a process variable, xi with a quality variable, yi in the following way:  
 

                                          iiki xCy =                                                                         (Eq.3) 
 

For conventional Shewhart Control Chart, the Upper Control Limit (UCL) and Lower Control Limit 
(LCL) for mean-centered and variance-scaled variables are +3 and -3 respectively (McNeese and Klein, 
1991). Using the information from Equation 3, the UCL and LCL for quality variables and process 
variables will be +3 and -3 and +3/Cik and -3/Cik respectively. After the NOC control charts are 
established, they are used for fault detection of the OC data. 
 
 When a fault is detected, the variable of that control chart will be checked whether it is a closed loop 
variable or open loop variable. For open loop variable, the fault will be of sensor failure or valve failure 
as pre-designed while fault for closed loop variable can be of valve failure, sensor failure or controller 
malfunction. The performance of the fault detection method using correlation coefficients based on PCA 
and PCorrA is shown in Figure 2. 
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Figure 2: Performance of Fault Detection Using Correlation Coefficients 



 Both fault detection method using correlation coefficients based on PCA and PCorrA were able to 
detect the pre-designed faults. Out of the 10 faults in the fault data, 9 faults (both single fault and multiple 
faults) were successfully detected. These results show that the developed correlation coefficients were 
able to relate the key process variables to the quality variables of interest in the case study. 
 
5.0 CONCLUSION 
 
An approach for fault detection using correlation coefficients based on PCorrA and PCA was presented. 
The performance of the approach was studied on an industrial distillation column. The results show that 
the fault detection method using cross correlation coefficient was able to detect the faults present in the 
process. The cause of each fault can be diagnosed by checking the control charts of the key process 
variables in which a fault is detected. Fault diagnosis using method based on correlation coefficients is a 
research problem for future work.   
 
6.0 NOTATION 
 
Cik: Correlation Coefficient 
CV: Control variable 
D: Disturbance 
LCL: Lower Control Limit 
MSPC: Multivariate Statistical Process Control 
MV: Manipulated variable 
NOC: Normal Operating Condition   
OC: Out of control 
ODE: Ordinary Differential Equation 
PCorrA: Partial Correlation Analysis 
PCA: Principal Component Analysis   
vij, vkj: Eigenvectors obtained from process data using PCA  
UCL: Upper Control Limit 
x : Process variable  
y : Quality variable  
λj: Eigenvalue obtained from process data using PCA 
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