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Abstract � This paper presents a technique to allocate the real and reactive power flow in 
deregulated power system environment by incorporating the hybridization of Genetic Algorithm 
and Least Squares Support Vector Machine (Genetic-SVM). The idea is to use GA to find the 
optimal values of hyper-parameters of LS-SVM and adapt a supervised learning approach to train 
the LS-SVM model. The manipulation of proportional sharing method (PSM) is utilized as a 
teacher. Based on converged load flow and followed by PSM for power flow allocation 
procedures, the description of inputs and outputs of the training data are created. The Genetic-
SVM model will learn to identify which generators are supplying to which loads. In addition, the 
equivalent transmission model will be discussed in reactive power tracing methodology together 
with the concept of virtual load for both real and reactive power tracing methods. In this paper, 5-
bus system and 25-bus equivalent system of southern Malaysia are used to show the effectiveness 
of the proposed method. The comparison with other method is also given. Copyright © 2010 
Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature
AP Distribution matrix of real power 
AP

-1    Inversion of matrix AP
AQ    Distribution matrix of reactive power 
AQ

-1    Inversion of matrix AQ
Pi Total through power of bus i
Pj Total through power of bus j

i     Set of buses supplying directly to bus i
|Pj-i|    Magnitude of power flow at line j-i
Qi Total through power of bus i (reactive

power)
Qj Total through power of bus j (reactive

power)
|Qj-i|    Magnitude of reactive power flow at line j-i
PLk     Load at bus k
QDk     Reactive load at bus k
PGi     Generation bus i
PLVk

m    Virtual load at bus k for line m
nline    The total lines that attached to bus 
Lossi-j

Gi Contribution of generator i to line loss i-j
Vi     The voltage at sending end 
Vj     The voltage at receiving end 
Ii-j     The current through the line i-j
Gi     The original generator at bus i
GQk  Displacement reactive power produced by 

shunt admittance
Qsh    Number of shunt admittance 

i R    Lagrange multipliers

I. Introduction
Power allocation or power tracing problem become 

one of the active topics among electrical power engineers 
and researchers. The important of this topic is significant 
because by knowing the contribution of individual 
generators to loads and losses, difficult charging of 
electricity tariff schemes could be resolved in 
deregulation environment. Moreover, the information of 
generators� shares in meshed power network is vital in 
congestion management. Nevertheless, the problem 
arises since all transactions have to share the same 
transmission network concurrently. Thus the power 
tracing algorithm which has ability to guarantee open 
access to all system users and working efficiently is 
needed to solve the problem. 

In the last decades, several power flow tracing 
algorithms haven been proposed in literature. It started 
by the introduction of proportional sharing principle that 
has been proposed by Bialek [1], [2]. However, the 
method proposed has a drawback in handling the 
transmission losses by introducing fictitious nodes on 
every lossy branch to make the system lossless. This will 
cause the distribution matrix [1] become larger and 
messy. The graph method that uses searching technique 
to determine the power flow from any generators to loads 
has been proposed in [3]. The concepts of graph method 
and proportional sharing principle have been adopted in 
[4], where the technique is called proportional tree 
method (PTM). 
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A modified topological generation and load 
distribution factor has been proposed in [5]. This method 
uses a decouple power flow to overcome the losses 
problem and also the equivalent model of a line in their 
power tracing algorithm. In reactive power flow tracing, 
the effects of line charging to the original generators and 
loads are integrated. However, the actual contributions 
from individual generators to lines and loads have been 
ignored.  

The circuit theory approach in determining the real 
and reactive power flow allocation also has been 
proposed in [6], [7]. In [6], the concept of superposition 
theorem has been proposed. However, the tracing 
methodology is applied for small system only (4 bus and 
6 bus-systems). If the method is tested for a larger 
system, the results may be varied and not so accurate, 
especially for reactive power flow allocation. Reference 
[7] uses circuit theory method for tracing the 
transmission usage allocation in bilateral trade power 
system.  

The incorporation of Artificial Intelligence (AI) 
techniques also have been utilized in power tracing 
problem. Khalid et al. has proposed an Artificial Neural 
Network (ANN) technique to trace the transmission 
usage in bilateral power system [8]. The method in [7] is 
utilized as a teacher before ANN is incorporated in their 
tracing methodology. Real power flow allocation using 
Genetic Algorithm (GA) has been proposed in [9]. The 
problem of this method is GA will gives multi-solution 
results which is sometimes the result is far from the 
expected result and very time consuming. 

This paper proposes a new technique to allocate the 
real and reactive power transfer from generators to loads 
by implementing the hybridization of Genetic Algorithm 
(GA) and Least Squares Support Vector Machine (LS-
SVM), namely Genetic-SVM. The new power allocation 
method is based on manipulation of convention in [1], 
the introduction of virtual load concept (for real and 
reactive power allocation) and the equivalent 
transmission model (for reactive power allocation) [5] 
before incorporating Genetic-SVM into power allocation 
problem.  

II. Proportional Sharing Method (PSM) 
This paper presents the manipulation of the PSM that 

proposed in [1], [2] by introducing a virtual load 
concept, where the loss at each transmission line is 
removed and attributed to the sending end bus. The 
concept of virtual load will be applied in real and 
reactive power tracing methodologies, which are 
presented in the next sub-sections.  

II.1. Real Power Flow Allocation 

The development process of proposed method can be 
illustrated with a small power network with AC power 
solution as shown in Fig. 1. To apply this concept, the 

test system must be constructed into lossless system. This 
paper proposes a different point of view how the lossless 
system can be obtained, which is by removing the loss at 
each line and that particular loss is attributed to the 
sending end bus as a virtual load. The proposed 
modification is depicted in Fig. 2.  

After lossless system is constructed, PSM is applied, 
which is the distribution matrix is created as follows [1]: 

1

0

j i
P ji i

for i j

P
A c for j

Pj
otherwise

 (1) 

From distribution matrix AP, the shares of generators 
to the loads and losses (virtual loads) can be calculated 
as follows: 

1

1

n
GiGi

Lk P Lkiki k

P
P A P

P
 (2) 

1

1 1

n nline
GiGi m

LVk P LVkiki k m

P
P A P

P
 (3) 

Finally, the individual generators� contribution to line 
loss can be obtained as follows: 

i jGi
i j Gim

LVk

Loss
Loss P

P
 (4) 

Fig. 1. 5-bus test system with the real power flows in MW 

Fig. 2. Lossless system with attributed losses to the sending end bus 
(virtual load) 



M. H. Sulaiman, M. W. Mustafa, O. Aliman, S. N. Abd. Khalid, H. Shareef

II.2. Reactive Power Flow Allocation 

Before proceed to the concept of PSM for reactive 
power tracing, the equivalent  model of a line is 
introduced. Although the transmission losses of reactive 
power depend on line charging, it is also possible to 
displace the reactive powers GQi and GQj produced by 
shunt admittances Bsh/2,i-j into nearby buses as follows 
[5]: 

2
2Qi i sh / ,i jG V B  (5) 

2
2Qj j sh / ,i jG V B  (6) 

Fig. 3 shows this equivalent model of line i-j. From 
Fig. 3, it can be seen that line i-j has the reactive power 
absorption due to reactance Xi-j as follows: 

2
i j i j i jLoss I X  (7) 

To make the system lossless, same as real power 
allocation technique, each of reactive losses is attributed 
to its sending end and treated as virtual load. The virtual 
load and displacement reactive power concepts are 
illustrated in Figs. 5-6.

Fig. 3. Equivalent model of line i-j

Fig. 5 shows the test system after introducing 
equivalent transmission model of line. It can be seen that 
the integration of the generators with the reactive powers 
by shunt admittances and the contribution of charging 
megavars to the loads. The integration of generators, 
Gi(int) for each generator can be obtained as follows [5]: 

i Qk ,ni int
n Qsh

G G G  (8) 

Fig. 6 shows the lossless system of this test system. It 
can be seen that the loss at each transmission line has 
been attributed to the sending end bus and treated as 
additional load. After the lossless system is constructed, 
PSM is applied, where the distribution matrix, AQ is
created as follows: 

1

0

j i
Q ji i

for i j

Q
A c for j

Qj
otherwise

 (9) 

Fig. 4. 5-bus test system with the bus voltages and the reactive power 
flows in MVar 

From matrix AQ, the shares of generators to loads, 
QGi(int)

Dk can be calculated as follows: 

1

1

n
Gi(int)Gi int

Q DkDk iki k

Q
Q A Q

Q
 (10) 

To obtain the contribution of original reactive 
generator to each load, the following expression is used: 

Gi intGi i
Dk Dk

i int

G
Q Q

G
 (11) 

Fig. 5. Reactive power flows in MVar after applying equivalent model 
line

Fig. 6. Lossless system with attributed losses to the sending end bus 
(virtual load) 
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To trace the contribution of original reactive 
generators to reactive losses, the same technique of 
equations (3) and (4) are adopted and followed by the 
partition technique expressed in equation (11).  

Vectors PGi
Lk and QGi

Dk then are used as a target in the 
training process of proposed hybrid Genetic-SVM 
technique. 

III. Function Estimation Using LS-SVM 
Support vector machine (SVM) is known as a 

powerful methodology for solving problems in nonlinear 
classification, function estimation and density estimation. 
SVM has been introduced within the context of statistical 
learning theory and structural risk minimization. Least 
squares support vector machine (LS-SVM) is 
reformulations from standard SVM [10] which lead to 
solving linear Karush-Kuhn-Tucker (KKT) systems. LS-
SVM is closely related to regularization networks and 
Gaussian processes but additionally emphasizes and 
exploits primal-dual interpretations [11].   

In LS-SVM function estimation, the standard 
framework is based on a primal-dual formulation. Given 
N dataset 1

N
i i ix , y , the goal is to estimate a model of the 

form:  
T

iy x w x b e  (12) 

where nx R , y R and hnn. : R R is a mapping to 
a high dimensional feature space. The following 
optimization problem is formulated: 

2

1

1 1
2 2

N
min T
w,b,e i

i
J w,e w w e  (13) 

s.t. T
i i iy w x b e , i=1,�,N.

With the application of Mercer�s theorem [10] for the 
kernel matrix as T

ij i j i jK x ,x x x , i,
j=1,..,N it is not required to compute explicitly the 
nonlinear mapping (.) as this is done implicitly through 
the use of positive definite kernel functions K [11]. 

From the Lagrangian function: 

2

1

1

1 1
2 2

N
T

i
i

N
T

i i i i
i

w,b,e; w w e

w x b e y
 (14) 

Differentiating (5) with w, b, ei and i, the conditions 
for optimality can be described as follow: 

1

1

0

0 0

0 1

0

N

i i
i

N

i
i

i i i
i

T
i i i

i

d w x
dw

d
db
d e ,i ,...,N
de
d y w x b e

 (15) 

By elimination of w and ei, the following linear 
system is obtained [14]: 

1

00 1T b|
yy I

 (16) 

with y =[y1,�,yN]T, =[  1,�,  N]T. The resulting LS-
SVM model in dual space becomes: 

1

N

i i
i

y x K x,x b  (17) 

Usually, the training of the LS-SVM model involves 
an optimal selection of kernel parameters and 
regularization parameter. For this paper, the RBF Kernel 
is used which is expressed as: 

2

22
ix x

iK x,x e  (18) 

Note that 2 is a parameter associated with RBF 
function which has to be tuned.  

IV. Genetic-SVM for Real and Reactive 
Power Flow Allocation 

In order to find the optimal value of regularization 
parameter, and Kernel RBF parameter, 2, the hybrid 
genetic algorithm (GA) with LS-SVM is proposed. 
Genetic algorithm is a subset of evolutionary algorithms 
that model biological processes to solve the optimization 
problems. GA approach can be divided into two: binary 
and continuous. For this paper, continuous GA is 
selected since it has an advantage in the accurate 
representation of the continuous parameter. Each 
chromosome consists of two parameters representing 
and 2 in continuous floating numbers that generated 
randomly. The single point arithmetic crossover method 
is adapted from the modification of extrapolation and 
crossover method [12]. The CGA properties to find the 
optimal  and 2 are as follow:

Selection: roulette wheel
Crossover probability = 0.9 
Mutation probability = 0.1 
Population = 40 
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Maximum iteration = 50 
The proposed tracing method is elaborated by 

designing an appropriate Genetic-SVM model using LS-
SVMlab Toolbox [13] for the 25-bus equivalent system 
of southern Malaysia as shown in Fig. 7. The input 
samples for training is assembled using daily load curve 
and performing load flow analysis for every hour of load 
demand. For this paper, two models of Genetic-SVM are 
developed for real and reactive power allocation 
respectively. Input data (D) and target data (T) for real 
and reactive power allocation problem for each Genetic-
SVM models are tabulated in Table I.  The flow of GA-
SVM is depicted in Figs. 8 and 9. 

Fig. 7. Single line diagram for the 25-bus equivalent system of southern 
Malaysia

TABLE I
DESCRIPTION OF INPUTS AND OUTPUTS OF THE GENETIC-SVM MODEL

Genetic-SVM for Real Power Allocation 
Input and Output Description 

I1 to I12 Real power generation (PG1 to 
PG12)

I13 to I17 Real loads (Pd13, Pd14, Pd16, Pd17,
Pd18)

I18 to I42 Voltage magnitude (V1 to V25)
O1 to O60 12 generators� contribution to 

each load 
Genetic-SVM for Reactive Power Allocation 

Input and Output Description 
I1 to I12 Reactive power generation (QG1

to QG12)
I13 to I17 Reactive loads (Qd13, Qd14, Qd16,

Qd17, Qd18)
I18 to I42 Voltage magnitude (V1 to V25)
O1 to O60 12 generators� contribution to 

each load 

V. Results and Discussion 
V.1. 5-Bus System 

Bialek [1], [2] has proposed PSM for power tracing 
methodology. The same convention is followed with 
simple manipulation of distribution matrices, AP

-1 and AQ
-

1 to suit the real and reactive power flow allocation 
purpose.

Fig. 8. Flow of proposed method 

Fig. 9. Flow of Genetic-SVM 
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In order to verify the veracity of this approach, a 
numerical calculation is performed for 5-bus system 
shown in Fig. 1 for real power and Fig. 4 for reactive 
power.

For real power flow allocation, after obtaining lossless 
system (Fig. 2), the matrix AP and AP

-1 can be constructed 
as follow: 

83 0156 18 75691 0 0
92 6796 60

9 664 41 2431 28 11170 1
92 6796 60 70

41 88830 0 1 0
70

0 0 0 1 0
0 0 0 0 1

P

. .
.
. . .

.
A .

1

1 0 0 8957 0 3126 0 536
0 1 0 1043 0 6874 0 464
0 0 1 0 0 5984
0 0 0 1 0
0 0 0 0 1

P

. . .

. . .
A .

By applying equation (2), the contribution of real 
power from G1 to load 5, PG1

D5 is (103.361/103.361) x 
0.536 x 70 = 37.52 MW and the contribution of real 
power from G2 to load bus 5, PG2

D5 is (80/80) x 0.464 x 
70 = 32.48 MW. The same procedures can be used to 
compute the generators� contributions to load buses 3 
and 4 as well. Table II shows the result for the real 
power tracing for this test system using proposed method 
together with the method that has been proposed in [4]. 

TABLE II
REAL POWER CONTRIBUTION FROM INDIVIDUAL GENERATORS TO 

LOADS IN MEGAWATT (MW) FOR 5-BUS SYSTEM
Supplied

By 
Proposed Method 

Bus ID 
3 4 5 

G1 44.7863 18.7569 37.5204 
G2 5.2137 41.2431 32.4796 

Total 50 60 70 
 PTM [4] 

G1 44.7863 18.7569 37.5204 
G2 5.2137 41.2431 32.4796 

Total 50 60 70 

It can be seen that the result of proposed method 
compared well with the result using PTM [4]. This can 
be expected since PTM uses the same convention of 
proportional sharing principle.  

The same technique can be applied for reactive power 
tracing methodology. After lossless system is constructed 
together with the application of displacement megavars, 
the matrix AQ is formed as follows: 

14 608 1 3241 0 0
20 24 16 202
5 632 14 878 11 1860 1

20 24 16 202 26 008
14 8220 0 1 0

26 008
0 0 0 1 0
0 0 0 0 1

Q

. .

. .
. . .
. . .

A .
.

And inverting the matrix AQ yields: 

1

1 0 0 7218 0 0817 0 4113
0 1 0 2782 0 9183 0 5887
0 0 1 0 0 5699
0 0 0 1 0
0 0 0 0 1

Q

. . .

. . .
A .

By applying equation (10), the contribution of reactive 
power from integrated G1 to load 3, QG1(int)

D3 is
(20.698/20.698) x 0.7218 x 3.044 = 0.2197 MVar and
the contribution of reactive power from integrated G2 to 
load bus 3, QG2(int)

D3 is  (34.639/34.639) x 0.2782 x 3.044 
= 0.8469 MVar. To obtain the original contribution of 
reactive power from both generators G1 and G2 to load 
3, equation (11) is used.  The same procedures can be 
used to compute the generators� contributions to load 
buses 4 and 5 as well. Table III shows the result for the 
reactive power tracing for this test system using 
proposed method together with the method that has been 
proposed in [6]. 

TABLE III
REACTIVE POWER CONTRIBUTION FROM INDIVIDUAL GENERATORS TO 

LOADS IN MEGAVOLT AMPERE (MVAR) FOR 5-BUS SYSTEM
Supplied

By 
Proposed Method 

Bus ID 
3 4 5 

G1 (int) 2.197 1.324 10.698 
G2 (int) 0.847 14.88 15.31 

Total (int) 3.044 16.20 26.01 
G1 1.541 0.929 7.504 
G2 0.699 12.27 12.63 

Total 2.24 13.20 20.13 
 Superposition technique [6] 

G1 2.136 8.091 12.393 
G2 7.864 11.917 17.634 

Total 10.0 20.008 30.027 

It can be seen that the total result at row 6 in Table III 
is same with the reactive load demand after displacement 
reactive power is applied (refer to Fig. 5). By referring to 
row 9, the result of actual or original contribution from 
generators is displayed. For load 3, only 2.24 MVar is 
contributed from generators 1 and 2, while about 0.804 
MVar is supplied by shunt admittances from lines 1-3 
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and 1-4 for G1 and lines 2-3, 2-4 and 2-5 for G2. The 
results show the conformity of reactive power tracing 
with the equivalent transmission model and also the 
reactive power solution.

Comparison with [6] shows discrepancies with 
proposed method. This situation has been expected since 
the effect of line charging megavars that have been taken 
into account in the proposed method. By referring back 
to the Fig. 5, the loads are changing due to line charging 
megavars as introduced in equivalent model of a line. 
While in [6], the load demand is maintain and the 
technique is adapting superposition technique into the 
power tracing. However, by using this technique, 
sometimes the contribution of individual generators can 
be exceeding the generation of that generator itself. 
Thus, the veracity of [6] can be argued. 

The purpose of virtual load is to make the system 
lossless and by applying the same concept of load 
tracing, the loss allocation now can be allocated since the 
loss has treated as a load. By applying equation (3), the 
generators� shares to losses can be traced. Table IV 
shows the result of loss tracing for real and reactive 
losses.

TABLE IV
CONTRIBUTION FROM INDIVIDUAL GENERATORS TO LOSSES FOR 5-BUS

SYSTEM

From 
Bus

To 
Bus

G1 G2 G1(int) G2(int) G1 G2 
MW MW MVar MVar MVar MVar 

1 3 1.328 0 3.983 0 2.794 0 
1 4 0.261 0 0.782 0 0.549 0 
2 3 0 0.07 0 0.21 0 0.174 
3 5 0.709 0.08 1.714 0.661 1.202 0.545 
2 4 0 0.18 0 0.532 0 0.438 
2 5 0 0.73 0 2.201 0 1.816 

V.2. 25-Bus System with Incorporating Genetic-SVM 

V.2.1. Training, Validation and Testing Processes 

After the input and target of training data have been 
created, the next step is to divide the data (D and T) up to 
training, validation and testing subsets. In this case, 48 
samples (29%) of the data are used for training, 72 
samples (42%) for validation and 48 samples (29%) for 
testing out of 168 hours. Table V shows the number of 
samples of training, validation and testing.  

TABLE V
THE NUMBER OF SAMPLES FOR TRAINING, TESTING AND VALIDATION

SETS

Data Types Samples (Hour) 

Training (1-24),(145-268) 

Validation  (25-72), (121-144) 

Testing (73-120) 

The property of regularization parameter,  and Kernel 
RBF, 2 are decided through the hybrid Genetic-SVM 
model that has been discussed above. For real power 
allocation, the final value of  is set to 962.8178 and 2 is 

set to 16.663. While for reactive power allocation, the 
final value of  is set to 986.0975 and 2 is set to 
17.6567. For real power allocation, the mean square 
error (MSE) for testing and validation are 2.1468 x 10-4

and 2.1449 x 10-4 respectively. While for reactive power, 
the MSE for testing is 3.3715 x 10-4 and for validation 
process is 3.0855 x 10-4. These show that estimation by 
Genetic-SVM models and the training data points having 
the similar characteristics.  

V.2.2. Pre-Testing

After Genetic-SVM models have been trained in 
MATLAB based, the next step is to simulate the models. 
After simulation, the obtained result from the trained 
model is evaluated with the linear regression analysis. 
The regression analysis that refers to Generator 12 to 
load bus 18 for real and reactive power are shown in 
Figs. 9 and 10 respectively. The correlation coefficient, 
(R) for real and reactive power allocations are equal to 
one indicates the perfect correlation between trained 
Genetic-SVM models with the PSM results.  

Fig. 10. Regression analysis between Genetic-SVM output and 
corresponding target for real power allocation 

Fig. 11. Regression analysis between Genetic-SVM output and 
corresponding target for reactive power allocation 
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V.2.3. Simulation

The case scenario is that real and reactive power at 
each load is assumed to decrease by 10% from hour 1 to 
168, from the nominal trained pattern. This also assumed 
that all generators also decrease their production 
proportionally according to the variation of demands. 
The allocation of real and reactive power from 
generators to loads using PSM and proposed method on 
hours 40 out of 168 hours are tabulated in Tables VI and 
VII respectively.  

The results obtained by Genetic-SVM are compared 
well with the result form PSM. For real power allocation, 
the largest difference between generators is 0.0053 MW 
at bus 16 for G4. While for reactive power allocation, the 
largest difference is 0.0149 MVar at bus 14 for G9. The 

MSE for the simulation of real and reactive power are 
1.76 x 10-2 and 1.27 x 10-2 respectively. 

For real power allocation, it can be observed that the 
sum of real power contributed by each generator 
obtained from Genetic-SVM and PSM are in conformity 
with the actual load demand although there are very 
small variations in the predicted results from Genetic-
SVM. This situation is quite opposite for reactive power 
allocation. It can be observed that the sum of reactive 
power contributed by each generator obtained from PSM 
and Genetic-SVM are unequal to the load demand from 
load flow analysis which is tabulate in Table VIII. This 
situation has been expected since the effect of shunt 
admittances, Bsh/2,i-j that exist at several transmission 
lines (equivalent transmission model) which also give 
some contributions to the reactive load demand.  

TABLE VI 
ANALYSIS OF GENERATORS� CONTRIBUTIONS TO LOADS ON HOURS 40 USING PSM IN MW AND MVAR

Supplied  PSM 
By 

 Load Bus ID 
MW+jMVar 13 14 16 17 18 

G1 0 0 100.42+j64.12 0 0 
G2 0 82.25+j61.5 0 0 0 
G3 0 82.25+j61.5 0 0 0 
G4 0 0 89.36+j65.01 0 0 
G5 3.31+j0.73 0 24.10+j6.14 33.10+j9.0 21.73+j4.07 
G6 0 0 68.74+j52.48 0 0 
G7 2.76+j0.93 0 20.094+j7.78 27.58+j11.4 18.12+j5.16 
G8 0 22.19+j0.62 0 0 60.02+j6.97 
G9 0 18.50+j0.80 0 0 50.02+j9.02 

G10 3.59+j1.60 0 26.11+j13.45 35.85+j19.72 23.54+j8.92 
G11 3.59+j1.60 0 26.11+j13.45 35.85+j19.72 23.54+j8.92 
G12 3.86+j1.59 0 28.12+j13.32 38.61+j19.53 25.35+j8.84 
Total 17.10+j6.45 205.20+j124.42 383.04+j235.761 171+j79.35 222.30+j51.90 

Actual 17.10+j10.60 205.20+j126.97 383.04+j237.387 171+j105.98 222.30+j137.77 

TABLE VII
ANALYSIS OF GENERATORS� CONTRIBUTIONS TO LOADS ON HOURS 40 USING GENETIC-SVM IN MW AND MVAR

Supplied  Genetic-SVM 
By 

 Load Bus ID 
MW+jMVar 13 14 16 17 18 

G1 0 0 100.404+j64.1386 0 0 
G2 0 82.2501+j61.5460 0 0 0 
G3 0 82.2501+j61.5460 0 0 0 
G4 0 0 89.3507+j65.0204 0 0 
G5 3.3095+j0.7320 0 24.1019+j6.1483 33.0950+j9.0050 21.7259+j4.0745 
G6 0 0 68.7319+j52.4934 0 0 
G7 2.7579+j0.9268 0 20.0851+j7.7780 27.5787+j11.4009 18.1055+j5.1623 
G8 0 22.1919+j0.6065 0 0 60.0187+j6.9754 
G9 0 18.4932+j0.7835 0 0 50.0156+j9.0185 
G10 3.5853+j1.6023 0 26.1105+j13.4511 35.8529+j19.7190 23.5367+j8.9293 
G11 3.5853+j1.6023 0 26.1105+j13.4511 35.8529+j19.7190 23.5367+j8.9293 
G12 3.8611+j1.5866 0 28.1188+j13.3187 38.6109+j19.5255 25.3473+j8.8416 
Total 17.099+j6.45 205.185+j124.482 383.013+j235.8 170.99+j79.3694 222.286+j51.9309 

Actual 17.10+j10.5976 205.20+j126.97 383.04+j237.387 171.00+j105.976 222.30+j137.769 

Overall performance of Genetic-SVM can be said 
very successful since the model�s predictions are close to 
the PSM even just using about 29% from the overall 
data. Moreover, the Genetic-SVM model computes the 
results within 227 ms whereas the PSM took about 659 
ms to calculate the same real and reactive power 

allocation. Better computation time is crucial to improve 
online application. 

For that, the Genetic-SVM provides the results in a 
faster manner with acceptable accuracy. Figs. 12 and 13 
show the daily load profile for real and reactive power 
within one week for different load buses. 
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TABLE VIII
BUS DATA FOR 25-BUS SYSTEM ON HOURS 40

Bus Voltage Load Generation 
No Mag. Angle Real Reactive Real Reactive 

 p.u p.u MW MVar MW MVar 

1 1.05 9.88 0 0 100.4
2 76.74 

2 1.05 8.60 0 0 82.48 72.02 
3 1.05 8.60 0 0 82.48 72.02 
4 1.05 9.35 0 0 89.36 75.86 
5 1.03 11.19 0 0 82.48 32.95 
6 1.05 9.16 0 0 68.74 60.75 
7 1.04 10.34 0 0 68.74 37.75 
8 1.05 19.33 0 0 82.48 31.78 
9 1.05 16.99 0 0 68.74 28.70 

10 1.05 10.50 0 0 89.36 64.20 
11 1.05 10.50 0 0 89.36 64.20 
12 1.05 10.83 0 0 96.23 64.73 
13 0.99 5.54 17.1 10.60 0 0 
14 0.98 4.26 205.2 127.17 0 0 
15 0.99 4.61 0 0 0 0 
16 0.99 5.05 383.04 237.39 0 0 
17 0.91 -1.05 171 105.98 0 0 
18 0.89 -2.93 222.3 137.77 0 0 
19 0.99 5.85 0 0 0 0 
20 0.99 5.35 0 0 0 0 
21 1.00 6.21 0 0 0 0 
22 1.00 5.87 0 0 0 0 
23 0.99 5.52 0 0 0 0 
24 0.99 5.22 0 0 0 0 
25 0.97 4.04 0 0 0 0 

Fig. 12. Daily load curves for real power demand 

Fig. 13. Daily load curves for reactive power demand 

VI. Conclusion
This paper has presented a new methodology to 

allocate the generators� contributions to real and reactive 

loads in pool based power system. Initially, the 
introduction of virtual load concept for real and reactive 
power allocation and equivalent transmission model for 
reactive power allocation are proposed before PSM is 
applied in the tracing paradigm. Then the power 
allocation procedure is extended by proposing the 
hybridization of LS-SVM technique with Genetic 
Algorithm. The developed Genetic-SVM adopts real and 
reactive power allocation outputs determined by PSM as 
an estimator to train the model. The results show that 
Genetic-SVM able to trace the real and reactive power 
transfer from generators to loads even though just using 
small amounts of data in training process. The results 
also show the advantage of Genetic-SVM compared to 
PSM in term of computational time. Better 
computational time is crucial to improve online 
application. Thus, the proposed methodology could be 
adopted into real application of power system 
deregulation, especially in pool based market. 
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