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ABSTRAK 

 

 

 

Objektif penyelidikan ini ialah membangunkan membran gentian geronggang 

karbon asimetrik yang baru dan mencirikan prestasi pemisahan gas serta morfologi 

membran karbon yang terhasil. Poliackrylonitril (PAN) telah dipilih sebagai bahan 

mentah membran karbon. Membran gentian geronggang dihasilkan melalui proses 

pemintalan kering/basah. Proses pirolisis dengan gas lengai digunakan untuk penghasilan 

membran karbon gentian geronggang daripada membran gentian geronggang PAN. 

Pencirian membran karbon dijalankan dengan pengukuran kebolehtelapan gas tulen, 

Mikroskopi Imbasan Electron (SEM), Spektroskopi Inframerah Transformasi Fourier 

(FTIR) dan Analisis Termogravimetri (TGA). Pengaruh keadaan pirolisis ke atas prestasi 

membran karbon telah dikaji. Parameter pirolisis yang telah dikaji termasuk suhu 

pirolisis, jangka masa pemanasan dan kadar alir gas cucikan. Keputusan ujikaji 

menunjukkan bahawa suhu pirolisis pada 700°C dan 800°C boleh meningkatkan 

kememilihan O2/N2 daripada 1.1 kepada 1.85 manakala kebolehtelapan tertinggi O2 iaitu 

480 GPU dicapai pada suhu 600°C. Walaupun kememilihan sebanyak 3.1 dicapai pada 

suhu 250°C, membran tersebut masih bukan membran karbon yang tulen. Jangka masa 

pemanasan yang lebih panjang meningkatkan kememilihan daripada 1.1 kepada 1.8 

dengan peningkatan kebolehtelapan pada peringkat awal. Penurunan kebolehtelapan 

berlaku apabila masa pemanasan 180 minit digunakan. Membran yang dipanaskan 

selama 10 minit menunjukkan kememilihan yang tinggi iaitu 3.7 dengan kebolehtelapan 

yang lebih rendah daripada membran PAN. Walaupun, kadar alir gas cucikan yang tinggi 

meningkatkan kebolehtelapan O2 dan N2 dalam julat daripada 50 hingga 130 GPU kepada 

150 hingga 730 GPU tanpa mempengaruhi kememilihannya. Oleh itu, keadaan pirolisis 

mempunyai pengaruh yang ketara terhadap membran gentian geronggang karbon 

asimetrik untuk pemisahan gas. 



 

 

 

ABSTRACT 

 

 

 

The objective of this research is to develop a novel asymmetric carbon hollow 

fiber membrane and to characterize it’s gas separation performance and morphology. 

Polyacrylonitrile (PAN) was chosen as the precursor for carbon membranes. The hollow 

fiber membranes were produced using the dry/wet spinning process. PAN hollow fiber 

membranes were converted to carbon hollow fiber membranes with inert gas pyrolysis 

process. Carbon hollow fiber membranes were characterized by pure gas permeation 

measurement, Scanning Electron Microscopy (SEM), Fourier Transform Infrared 

Spectroscopy (FTIR) and Thermogravimetry Analysis (TGA). The influence of the 

pyrolysis conditions on carbon membrane performance was investigated. Pyrolysis 

parameters including pyrolysis temperature, heating duration (soak time) and purge gas 

flow rate were studied. The results showed that pyrolysis temperatures of 700°C to 800°C 

increased O2/N2 selectivity from 1.1 to 1.85 and the maximum O2 permeability was 

achieved at 600°C with 480 GPU. Although the selectivity of 3.1 was achieved at 250°C, 

the membrane was not a pure carbon membrane. Longer duration of heating improved the 

selectivity from 1.1 to 1.8 with an increased in permeability at the initial stage. A 

decreased in permeability occurred at 180 min heating duration. Carbonized membrane 

with 10 min heating duration exhibited high selectivity of 3.7 with poorer permeability 

compared to PAN membranes. However, high purge gas flowrate gave an increase for O2 

and N2 permeability from the original 50 – 130 GPU to 150 – 730 GPU without 

influencing it’s selectivity. Therefore, pyrolysis condition has pronounced influence on 

asymmetric carbon hollow fiber membranes for gas separation. 
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CHAPTER I 

 

 

 

INTRODUCTION 

 

 

 

1.1 Membrane Separation Processes 

 

There are numerous membrane definitions proposed in the literature [G10]. A 

general definition of membrane is a selective barrier between two phases [B3-1] and 

can be classified into biological and synthetic membranes. The synthetic membranes 

can be subclassified into organic (polymer or liquid) and inorganic membranes. 

Furthermore, membranes can be classified according to its structure or morphology, 

configurations as well as applications [G10,B3-1] as tabulated in Table 1.1. A 

process which using membrane to achieve particular separation is known as 

membrane process. Membrane can be considered as a heart of a membrane process. 

Membrane processes can be classified according to the driving force [G7] as shown 

in Table 1.2. 

 

Table 1.1: Classification of membranes 

Classification Types of Membranes 

Structure  -Asymmetric/anisotropic 

     (porous with dense top layer, porous, composite) 

-Symmetric/isotropic 

     (dense, porous, cylindrical porous) 

Configuration Hollow fiber, film, tube, plate & frame, spiral wound 

Application Microfiltration, ultrafiltration, pervaporation, reverse osmosis 

dialysis, electrodialysis, gas separation 
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Table 1.3 presents worldwide sales of various membrane processes in the 

industry and their growth per annual. Table 1.4 shows the worldwide sales of 

membrane for different applications and the sales of membrane products would most 

likely continue to grow at an annual rate more than 8%. Among those processes, 

membrane gas separation process has the highest growth percentages of 15%. In this 

century, membrane systems process more than 4000 million cubic meters of gas 

annually [F3]. Hence, the future of membrane gas separation process is tremendous 

and it has a great potential to sustain as an important process in the industry in new 

millennium.  

 

Table 1.2: Classification of membrane processes  

Driving force Type of membrane process 
Pressure Microfiltration, ultrafiltration, reverse osmosis, gas 

separation  
Concentration Dialysis, controlled release and Donnan dialysis 
Partial pressure Pervaporation, vapor separation 
Electrical potential Electrolysis, electrodialysis, energy conversion 

 

 

Table 1.3: Worldwide sales of membranes and modules for various membrane 

processes [G7] 

Membrane Process Sales in 1998, US$ million Growth, % p.a. 
Dialysis 1900 10 
Microfiltration 900 8 
Ultrafiltration 500 10 
Reverse osmosis 400 10 
Gas exchange 250 2 
Gas separation 230 15 
Electrodialysis 110 5 
Electrolysis 70 5 
Pervaporation > 10 - 
Miscellaneous 30 10 
Total 4400 > 8 
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Table 1.4:Worldwide sales of membranes and modules for various applications [G7] 

Market segment Sales in 1998, US$ million Growth, % p.a. 
Haemodialysis/filtration 2200 8 
Blood oxygenator 350 2 
Water desalination 350 10 
(Waste) water purification 400 10 
Oxygen/nitrogen purification 100 8 
Food processing 200 10 
(Bio)chemical industry 150 15 
Electrochemical industry 150 8 
Analytical/diagnostic 150 10 
Miscellaneous 350 10 
Total 4400 > 8 

 

 

 

1.2 Membrane for Gas Separation Applications 

 
In 1830, Mitchell discovered that rubber membranes (film) are selectively 

permeable for gases [T7,T8]. Graham found that gas separation in nonporous 

polymer membranes (natural rubber films) is by solution diffusion mechanism and 

the gas mixtures could be partially separated by permeation through microporous 

membranes owing to the difference in the molecular weights of the gases (Graham’s 

law) [T2]. Those finding is essentially important as an initiator for the development 

of today’s membrane technology. 

 

The first large-scale use of membranes to separate gases was developed in the 

1940s for the “gaseous diffusion” process [G8] for the separation of uranium 

isotopes by utilizing microporous ceramic membranes. Nevertheless, Loeb and 

Sourirajan achieved a breakthrough in membrane technology with an invention of 

high flux asymmetric cellulose acetate membranes for water desalination in 1960s 

[T6] and thus boosted and stimulated both commercial and academic interest. 

 

 Membrane-based gas separation was introduced commercially in 1979 when 

Monsanto Co. installed the first large-scale membrane separation plant based on 
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polymer membranes (polysulfone/polysiloxane membrane) for the recovery of H2 in 

refinery or petrochemical streams [T4].  

 

Presently, membrane gas separation process has become an accepted new 

separation process in chemical industry. Gas separation membranes complement as 

well as compete with older separation technology such as cryogenic distillation, 

selective adsorption and absorption processes. Membrane technology has been 

applied in a wide range of gas separation processes such as the production of N2 from 

air, oxygen enrichment, H2 recovery from refinery, petrochemical and ammonia-

purge streams, CO2 and H2S removal from natural gas, CO2 removal from mixtures 

with hydrocarbons in enhanced oil recovery operation (EOR), enrichment of CH4 

from landfill gas and dehydration of air or natural gas streams [G3,G4,G8]. 

 

 

 

1.3 Advantages of Membrane Technology 

 

Membrane technology is broadly applied in the gas separation industry as it 

offers advantages such as listed below [G4,G8,B3-1]: 

(a) Ease of operation  

(b) Continuous separation 

(c) Membrane properties are variable and adjustable 

(d) Economic viability for small unit operations  

(e) Low energy cost  

(f) Portability  

(g) Simplicity  

(h) Compactness  

(i) Reliability 

(j) Can easily be scaled up 

(k) Can operate at partial capacity 

(l) Environmental Friendly  
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1.4   Polymeric Membranes 

 
The foundation for today’s commercial gas-separation membranes was 

established in the 1960s & 1970s, primarily by the major chemical/plastics 

companies (e.g. Dupont, Monsanto, General Electric, Dow). The widely application 

of polymers as membrane materials is due to the simplicity of polymer processing 

into efficient membranes with small effective thickness, high area/volume ratio and 

relatively low material and processing cost [G3]. 

 

In membrane technology, glassy and amorphous polymers have been 

recognized as the most suitable membrane material. Organic, glassy polymer films 

have been well known as the major membrane candidates in the gas separation 

industry as glassy polymers offer improved permeability/selectivity combination for 

specific gas pair separation. The glassy state offers a more structured sieving matrix 

than the rubbery state, good mechanical properties as well as higher load bearing 

properties allowing for high pressure drop across the membrane. [G4,G8,B1-4].  

 

The glassy polymers stand between the crystalline polymers, which are 

essentially impervious to gases and the rubbery polymers, which are highly 

permeable for all permanent gases as well as for many organic vapors with poor 

selectivity. Although the intrinsic gas permeability of glassy polymers are much 

lower than rubbery polymer, the development of high flux asymmetric membranes 

has eliminated this weakness [G8].  

 

Porous solids are another class of media, which are known to have gas 

separation capability [C36]. Nowadays, porous inorganic membranes have become 

another alternative membranes in gas separation industry due to the limitation of the 

polymeric membranes. 
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1.5 Limitation and Disadvantages of Polymeric Membranes 

 

For the past decade, the separation factor for gas pairs varies inversely with 

the permeability of the more permeable gas. An analysis of literature data reveals an 

upper bound relationship for these gas pairs [G9]. Over the last 40 years, polymer 

scientists have tried to push the limits of the upper bound of polymer membranes 

performance. However, significant advances in conventional polymeric membranes 

will be difficult to attain as currently, the direction is close to the limit of the 

technology. For instance, improvement of O2/N2 selectivity from the current level of 

5 – 6.5 to 10 at 25°C requires breaking through the upper bound barriers for 

polymers. It is expected that inorganic materials with higher specificity towards O2 

such as carbon can achieve higher performance [G3]. 

 

Growth in traditional membrane markets has also been driven by technology 

developed in the 1970s and 1980s by the major chemical companies with intense 

membrane innovation. The ‘90s represents the industrialization and growth phase of 

the life cycle. At this period, membrane technology was implemented and driven by 

the industrial gas companies. However, the demands of the market have now 

changed and new technology is needed to spawn further expansion. It is owing to 

polymeric membranes are not as competitive (relative to cryogenic distillation or 

adsorption) for large units or where high purity is required. Therefore, membranes 

with improved selectivity, higher temperature and pressure capability as well as 

higher chemical resistance will spawn a new growth [G3,G4]. 

 

In the last decade, a lot of effort has been concentrated on membrane 

development especially to improve membrane efficiency and reduce membrane-

manufacturing costs. Most of the improvements came from gains in cost or in 

membrane thickness/geometry or in bundle efficiency. Hence, next generation 

membranes will have to be similarity inexpensive in final module form to be 

commercially attractive [G3]. 
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1.6 Potential of Inorganic Membranes  

 
Increasing interest in gas separation by organic membranes has led to 

exploitation of inorganic membranes for high temperature or corrosive gas separation 

applications [C33]. Inorganic membrane producers are generally in the start-up and 

technology push stage. Meanwhile, the end-user industries have exhibited a “wait-

and-see” attitude when they come to adopting advanced inorganic membrane 

applications. Industries currently have a major interest in basic quantitative 

knowledge of inorganic membranes and are interest to know the performance of 

inorganic membranes in separation process and their stability in aggressive 

environment [C32]. 

 

Gas separation inorganic membranes can be categorized into 3 types 

including microporous, amorphous membranes; microporous, crystalline membranes 

and dense, high temperature membranes. A lot of attention will be focused on 

realizing complex, well-defined porous architectures and all these 3 types of 

membranes will be combined to new separation properties with improved long-term 

stability in these few years. In the future, a gradual shift will take place from the 

exploration of new membrane concepts toward better control of membrane 

preparation and understanding of performance, long-term stability and process 

integration in the applications [C32]. 

 

Commercialized inorganic membranes exist in 3 types of configurations: 

disks or sheets, tubes and multichannels/honeycombs. Usually, flat disks or sheets 

are limited to small-scale industrial, medical and laboratory applications. They used 

almost exclusively in flow-through filtration in contrast to cross-flow filtration in 

tubes and multichannel monoliths. Meanwhile, tubes and monoliths are used for 

various industrial applications [C42,C33].  

 

Today, 20 firms are involving in the inorganic membranes manufacturing; 

most of them were emerged in the market over the last five to ten years. The 

inorganic membranes produced by these firms are presented in the Table 1.5. The 

oldest inorganic porous membranes manufacturers, SCT/US Filter and TECH-SEP 

are now dominating the inorganic membranes market [C42].  
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Table 1.5: Commercial porous inorganic membranes [C42] 

Manufacturer Trade Name Material Pore Geometry 

MEMBRALOX® ZrO2/Al2O3 20-100nm Monolith 

 Al2O3/Al2/O3 5nm-12µm  

USF/SCT 

CERAFLO® Al2O3/AL2O3 0.2-1.0µm  Monolith 

CARBOSEP® ZrO2/C 10-300kD Tube 

 TiO2/C 0.14µm  

KERASEP® TiO2/Al2O3 + TiO2 0.1-0.45µm  

TECH-SEP 

 ZrO2/Al2O3 + TiO2 15-300kD Monolith 

Le Carbone 

Lorraine 

 C/C 0.1-1.4µm Tube 

 Al2O3/Al2/O3 0.1-1.2µm Tube/Monolith CERASIV 

 +TiO2/ZrO2/Al2O3 5-100nm  

NGK  Al2O3/Al2O3+SiO2 0.2-5µm Tube/Monolith 

Whatman ANOPORE® Al2O3 20nm-0.2µm Disk 

Gaston Country UCARSEP® ZrO2/C 4nm Tube 

Du Pont/Carre  Zr(OH)4/SS 0.2-0.5µm Tube 

DYNACERAM® ZrO2/Al2O3 ≈10nm Tube TDK 

 Al2O3/Al2O3 50nm  

 SiC/SiC 0.05-1.0µm Tube/Monolith ATECH 

 Al2O3   

Asahi Glass  Glass 0.1-1.4µm Tube 

 Glass 4-90nm Tube Fuji Filters 

 Glass 0.25-1.2µm  

STRATA-PORE® Ceramics/Ceramics 1-10µm Tube/Plate Fairey 

MICROFILTREX® SS 0.2-1µm Tube/Plate 

HYTREX® Ag/None 0.2-5µm Tube/Plate Osmonics 

CERATREX® Ceramics/Ceramics 0.1µm  

Ceramen  Ceramics/Cordierite 0.05-0.5µm Honeycomb 

Trideltafiltration  Al2O3/Al2O3 0.1-7µm  Tube/Monolith 

Hoogovens  Al2O3/Al2O3 0.1-1µm  Tube 

Steenecker  Al2O3 0.4µm Tube 

NOK  Al2O3/Al2O3 0.2-6µm Tube 

 Al2O3/Al2O3 0.1-0.2µm  Tube/ TOTO 

 ZrO2/Al2O3 5-30nm Monolith 

Carre  ZrO2/SS  Tube 
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Currently, typical and prevalent inorganic membranes are Vycor glass, silica, 

alumina, zirconia and porous ceramic membranes. However the application of these 

materials is limited to their lower selectivities due to their relatively larger average 

pore size (more than 2.0nm). The selectivity for the O2/N2 is less than 1 [C42,C37]. 

 

 

 

1.7 Unique of Carbon Membrane 

 

Selectivities of the carbon membranes are much larger than those of the 

inorganic membranes and the polymeric membranes. The selectivities of typical 

highly selective carbon membranes are 10 to 20 times larger than Vycor glass and 

silicon rubber membranes. In addition, the average permeabilities are one order of 

magnitude higher than that of Vycor glass [C37]. 

 

Meanwhile, Koros and Mahajan summarized three main challenges faced by 

the current membrane technology which are achieving higher permselectivity with 

acceptable productivity, maintaining these properties in the presence of complex and 

aggressive feeds and preventing the need for recompression of the desired product 

[G1]. Carbon membranes have the potential to overcome these three challenges with 

its advantages compared with polymeric membranes.  

 

 

 
1.8 Advantages of Carbon Membrane Compare with Polymeric Membrane 

 

 Attention and interest in the developing of carbon membrane technology has 

risen since there are numerous advantages of carbon membranes as reported by 

previous researchers. 

  

(a) Carbon membranes display superior permeabilities-selectivity combination 

than polymeric membranes [C1,C18,C22,C31,C36,C54,G1]. 

(b) Carbon membranes are effective to separate gas mixtures with similar 

molecular sizes such as O2/N2, CO2/CH4 and CO2/N2 [C57]. 
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(c) Carbon membranes have stronger mechanical strength and withstand higher 

pressure differences for a given wall thickness [C36]. Carbon membranes have 

higher elastic modulus and lower breaking elongation than the polymeric 

membranes [C1]. 

(d) Feed pressure does not affected much on the permeation properties of carbon 

membranes [C1,C5] due to the structural stability of carbon membranes, which 

do not have compaction and swelling problems [C33]. 

(e) The permeation properties of carbon membranes will not be time dependent 

[C1]. It means that the operating life of carbon membrane is much longer than 

organic membrane [C59]. 

(f) Requirement of activation energies for the diffusion through carbon 

membranes are smaller than those in the polymer membranes. It means that the 

diffusing gas (especially with large molecule size) is much influenced by the 

activation energies when it diffuses in the polymer membranes compared with 

carbon membranes. Therefore, the selectivity of polymeric membrane 

decreases when the measurement temperature increases [C2]. This situation 

was absent with carbon membranes. 

(g) Carbon membranes offer the advantage of operation in environments 

prohibitive to polymeric materials and have superior stability in the presence of 

organic vapor or solvent and non-oxidizing acids or bases environments 

[C1,C22,C31,C36]. They can perform well with high purity and dry feeds 

[C10]. They are ideal for corrosive applications [C43] and are not much 

affected by the aggressive feeds [G1]. They are much more resistance toward 

radiation, chemicals and microbiological attack [C32,C33].  

(h) Carbon membranes have higher thermal stability than polymeric membranes. 

They are appropriate for the application in the high temperature separation 

processes with temperatures in the range of 500-900oC. In contrast, organic 

polymer membranes cannot resist very high temperature and begin to 

decompose or react with certain components. [C12,C18,C22,C36,C43]. 

(i) The same starting material can be used to develop membranes of different 

permeation properties for different gas mixtures [C36]. 

(j) The pore dimension and distribution of the carbon membranes can be finely 

adjusted by simple thermochemical treatment to meet different separation 

needs and objectives [C31,C36]. 
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(k) Carbon membranes have a superior adsorptivity for some specific gases, thus 

enhancing its gas separation capacity [C31].  

(l) Carbon membranes have the ability to be back flushed, steam sterilized or 

autoclaved. This may encourage more developments and application of carbon 

membranes in biotechnology [C33]. 

 

 

 

1.9 Disadvantages of Carbon Membranes 

 

Carbon membrane is very brittle and fragile and is difficult to process. It 

requires careful handling [C31,C36,G1].  

 

 Carbon membranes also require a pre-purifier for removing traces of strongly 

adsorbing vapors, which can clog up the pores due to the transport is through a pore 

system rather than through the bulk system. This is typical of many industrial 

adsorption separators. This problem may be avoided by operating at sufficiently high 

temperatures [C36]. 

 

 Carbon membranes only demonstrated selectivities for certain gas mixture, 

limited to gases with molecular sizes smaller than 4.0 – 4.5 ⊕. Carbon membranes 

are not suitable to separate gas mixtures, such as iso-butane/n-butane and gas-vapour 

mixtures, for instance air/hydrocarbons, H2/hydrocarbon [C57].  

  

 However, the advantages of carbon membrane are apparently much more 

than its disadvantages. This unique characteristic of carbon membranes has accounts 

for the wide application of this new technology in recent industry.   

 

 

 

1.10 Application of Carbon Membranes 

  

The most important application of carbon membrane is in the production of 

low cost and high purity nitrogen from air. Membrane can produce N2 with purity up 
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to 99.5%. It is estimated that membranes currently produce 30% of all gaseous N2 

because many industrial and commercial applications do not require ultra-high purity 

nitrogen [G1,G3]. It is expected that carbon membrane would continuously to be an 

effective way for the production of N2. 

 

Other separation processes include purification of methane as well as 

recovery of carbon dioxide in oil fields [C3,C59]. Besides that, it is useful in the 

removal of acid gases from natural gas because it can operate in severe environment 

[C59]. Currently, the world market for natural gas is estimated at about US$22 

billion annually. Although polymeric membranes are able to compete successfully 

with other technologies such as amine scrubbing, carbon membranes still has a broad 

market opportunity. This is due to some glassy polymeric membranes losing its 

selectivity and productivity in the presence of trace quantities of condensable heavy 

hydrocarbon. Furthermore, extremely high partial pressure of carbon dioxide can 

cause the plasticization in the skin layer of membrane [G1]. 

 

Membrane compete with cryogenic, catalytic and pressure swing adsorption 

processes in the hydrogen recovery process [G1]. Carbon membrane can be applied 

to recover a valuable chemical (H2) from a waste gas or recovery of hydrogen from 

gasification gas without further compression of the feed gas while rejecting a 

substantial portion of the hydrocarbons [C17]. Conventional/polymeric membranes 

required adding recompression costs because H2 as a fast gas exits the unit at the 

lower pressure permeate side [G1,G2]. 

  

Carbon membranes are promising candidates for the separation of light 

alkenes/alkanes especially propene/propane separation as carbon molecular sieve 

membranes possess excellent propene/propane permselectivities. They are expected 

to be superior to other methods such as distillation, adsorption and absorption based 

on energy consumption. Separation of light alkenes/alkanes has been recognized to 

be a key technology in the petrochemical industry [C48].  

 

Carbon membranes are also implemented for the separation of olefins and 

paraffins, another important process in petrochemical industries especially for 1,3-

butadiene/n-butane separation [C49]. A recent study estimated that about 10,000 
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BTU of energy is used annually for olefin-paraffin distillation. Distillation process is 

commercially used in this separation process. However, membrane separation with 

low energy consumption and simple operation can give a significant competition to 

distillation process [G1]. Therefore, the carbon membrane can give a great 

contribution to petrochemical industry. 

  

The combination of reaction and separation at high temperature in a 

membrane reactor offers interesting new possibilities. In a carbon membrane reactor, 

the separate product and feed compartments allow more ways to optimize both 

selectivity and conversion [C32,C59]. 

 

In this research, attention only focused on the application in the air separation 

or oxygen enrichment application. The fundamental observation and findings 

obtained from this research can also implemented for other gas separation process 

such CO2/CH4 separation, CO2/N2 separation and others. 

 

 

 

1.11 Air Separation Membrane Process 

 

  As reported, the 3rd and 5th largest bulk chemicals produced worldwide are O2 

and N2 respectively. However, air separation membranes are still competing with 

conventional processes such as cryogenic distillation since those processes promise 

to give high purity of products. Currently, the gaseous O2 market is dominated by 

distillation (99.999 % purity) and vacuum swing adsorption (95 % purity). Polymeric 

membranes only served for a limited number of applications that using low purity 

(25 – 50 %) O2 [G1] because some nitrogen always permeates through the membrane 

with the oxygen, producing oxygen-enriched air rather than pure oxygen [G11].  

 

Nevertheless, Stern evaluated O2 enrichment of air as a developing and 

potential membrane process [G8]. Therefore, the crucial important task at present is 

to improve the O2/N2 separation factor of the membrane (without sacrificing the 

permeability) in order to ensure that membrane technology can be an attractive and 

competitive technology in the air separation industry. Additionally, the production 
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costs and selective layer thicknesses should be similar to the current generation of 

polymeric membranes [G1,G7]. With the economically competitive production, the 

oxygen enrichment process can find a significant market, especially in combustion 

applications [G8]. Oxygen-enriched air can be applied in FCC catalyst regeneration 

in refineries or to burn methane more efficiently in high-temperature furnace or 

cement kilns [G11]. One of the appropriate ways to overcome the current limitation 

and hurdles of the membrane technology is to develop carbon membrane, which has 

higher separation factor and higher productivity than polymeric membrane. 

 

 

 

1.12 Problem Statement 

 

Carbon membrane technology has been focus in this century. In the effort to 

develop carbon membrane, the main problem that must be overcome before broader 

application of carbon membrane technology is the fabrication of these materials in a 

manner that is both reproducible and scalable for manufacturing.  

 

From Table 1.1, there are only a few manufacturers involved in the 

production of carbon membranes. It is because greater expenses in producing and 

packaging these carbon membranes in modules have prevented their use in large-

scale membrane modules [G2]. The cost of carbon membrane is reported to be higher 

between one and three orders of magnitude per unit of membrane area compared to 

polymeric membrane [G1].  

 

Since carbon membranes involve high production costs, permeability and 

permselectivity of carbonized membranes require further refinements and 

improvements before they can be used on a large industrial scale [C45]. High 

permeability membrane requires small membrane area that lower the capital cost of 

the membrane system. In addition, high selectivity membrane promises to give more 

efficient separation. Thereby, reducing the operating cost because lower driving 

force (pressure ratio) is required [G1]. A lot of research should be carried out to 

study the optimum way for the production of carbon membrane with excellent 
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performance in order to render the carbon membrane becomes an important 

separation tool in the industry.  

 

Moreover, investigation on material selection of more suitable precursor 

should be done. Finding a more economical material than polyimide, which mainly 

used by other researchers as the carbon membrane precursors, is another necessary 

task in carbon membrane production at Malaysia. This indicates that discovering 

ways to provide excellent separation properties of carbon membrane without losing 

the economical processability of polymeric membrane materials would be a major 

breakthrough in this field. 

 

This has given the inspiration and incentive for the development of 

polyacrylonitrile carbon hollow fiber membranes for oxygen/nitrogen separation. It 

is hoped that such fundamental knowledge will lead to the development of tailor-

made carbon membrane in this century. The following section describes the 

objectives and the scopes of this research. 

 

 

 

1.13 Objective of the Research 

 

Based on the research background and problem statement describe above, the 

objective of the research is to develop a novel asymmetric carbon hollow fiber 

membrane and characterize the separation performance as well as morphology of the 

carbon membrane. 

 

 

 

1.14 Scope of the Research 

 

To accomplish the above objectives, the following scope of works has been drawn. 

1. Prepare suitable polymer solution as precursor for the production of carbon 

membranes. 

2. Fabrication of polymeric hollow fibers by using dry/wet-spinning process. 
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3. Set up an inert gas pyrolysis system for the production of carbon hollow fiber 

membranes. 

4. Fabricate and set up a pure gas permeation testing system for the measurement of 

carbon membranes’ performance. 

5. Study the effect of pyrolysis condition on the carbon membranes’s permeation 

properties (permeability and selectivity).  

6. Study the effect of pyrolysis condition on the physical properties (structure and 

morphology) and chemistry properties (elemental content) of carbon membrane 

by using various characterization methods. 

 



 

 

 

CHAPTER III 

 

 

 

RESEARCH  METHODOLOGY 

 
 
 

3.0 Research Design 

 

The fabrication method of carbon hollow fiber membrane is quite similar 

with the fabrication of carbon fiber. The carbon fibers technology has been long 

developed since it has been known as filaments for lamps for nearly a century, 

discovered by Edison. Modern carbon fibers were first developed by Shindo in 1961 

when he pyrolysed polyacrylonitrile fiber [C62]. Furthermore, the control of 

structure and the interaction between the structure and properties have been 

extensively studied since high performance carbon fibers were first commercialized 

by Union Carbide in the 1960s [C67].  

 

Manufacture of carbon fiber typically involves 4 major processes: preparation 

of precursor solution, fiber spinning, stabilization of fiber and carbonization of fiber. 

Hence, the production of carbon hollow fiber membrane also involves these four 

processes. By using these four processes, a carbonaceous precursor (polymer) will 

change into hollow fiber form and thereby become crosslinked hollow fiber. Finally 

the hollow fiber converted into carbon hollow fiber.  

 

The major factors that determine the performance of carbon molecular sieve 

membrane including the nature of the precursor, solution formulation, spinning 

process and pyrolysis process as shown in Figure 3.1. The Figure 3.2 shows the 

experimental stages involved in the production of carbon membrane. Although post-

treatment after pyrolysis process and surface modification will influence the 
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performance of carbon membranes [C80], it was neglect in this research. This 

research was emphasis on the investigation of pyrolysis process. The effect of 

different pyrolysis process conditions on the performance of carbon membrane was 

studied. 

 

Figure 3.1: Factors influencing the performance of carbon membrane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Experimental stages in this research 
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3.1 Precursor Selection  

 

Carbon membranes may contain pores of very diversified dimensions 

depending on the morphology of the organic precursor and the chemistry of 

pyrolysis. Precursor must yield no pores larger than those of molecular dimensions 

after pyrolysis process. Thermosetting polymers usually do not liquefy or soften 

during any stage of the pyrolysis process. The porosity, which is due to morphology 

of precursor, is coarse macroporosity. In order to obtain a membrane free from pores 

larger than those of molecular dimension, one should start from an even, flawless, 

thermosetting polymers membrane as a precursor for pyrolysis. Many thermosetting 

polymers preserve their morphology upon pyrolysis is the basis of the art of 

producing high strength and high modulus graphite fibers utilized in composite 

material production [C35]. It is noteworthy that the thermosetting polymers are 

suitable to be chosen as precursor for carbon molecular sieve membrane. The Table 

3.1 shows the various precursors used in the previous research. 

 

Although polysulfone is a conventional commercial polymer for membrane 

fabrication [B18], it is a thermoplastic polymer, which cannot withstand very high 

temperature during carbonization process. Another classic polymer for membrane 

production -- cellulose acetate (thermoplastic polymer) also cannot withstand heat at 

high temperature. In both cases, the fibers were either melt and stuck together or 

broken into many parts and even disappeared. Therefore, a lot of weight loss occurs 

and the carbon yield is very low. Cellulosic precursors are no longer an important 

source of carbon fibers. Although the pitch-based carbon fibers have the advantages 

of low cost and high carbon yield, it has poor strength properties, nonuniformity and 

nonreproducibility of their properties [B21-1.1]. 

 

Polyimide, one of the thermosetting polymers has been proved to be a 

suitable precursor for the production of carbon membranes. Table 3.1 shows that 

numerous researchers are using the polyimide-based polymers to produce carbon 

molecular sieve membranes. Most of them use their own laboratory-synthesized 

polyimide. Polyimides are very expensive material compared with other polymers 

and most of them only available on the laboratory scale production. Furthermore, 

most of the commercial polyimides are not available in Malaysia. The possibility to 
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Table 3.1: Carbon membranes precursors used in the previous research 

No Precursor Supplier Trade Name Reference(s) 
1  Matrimid ®5218 Ciba Specialty Chemicals  C38 
2  PMDA-ODA Synthesis 

Synthesis/Dupont Inc. 
Dupont Inc. 
Synthesis 

Dupont Inc. 
Synthesis 

 
--/Kapton 
Kapton 

 
Kapton 

 

C12,C41 
C20,C21 
C4,C40,C48 
C38 
C50 
C24,C53 

3  Polyacrylonitrile 
(PAN) 

Sythesis  C14 

4  Polyvinylidene 
Chloride (PVDC) 

-- 
-- 

 C16,C17,C46 
C71,C69,C79 

5  Polyfurfuryl alcohol 
(PFA) 

-- 
Occidental. Chemical. Corp 

-- 
Aldrich 

-- 

 
Durez Resin 

C26 
C15 
C25 
C56 
C55,C70 

6  Cellulosic --  C35 
7  Polyetherimide (PEI) Polyscience Ultem ®1000 C7 
8  Phenolic Resins -- 

-- 
 C5,C57,C68 

C23 
9  Phenol formaldehyde Synthesis 

-- 
 C13,C37 

C77 
10  Poly(vinylidene 

chloride-co-vinyl 
chloride) (PVDC-
PVC) 

Aldrich 
(43038-2) 

Saran C39 
   

11  Condensed 
polynuclear aromatic 
(COPNA) 

Synthesis  C8 

12  Polypyrrolones Synthesis  C47 
13  6FDA/BPDA Synthesis 

Synthesis 
 C10,C22,C34 

C44 
14  BPDA-pPDA Synthesis  C3, C6 
15  BPDA-pp’-ODA Synthesis 

Synthesis 
 C9,C30,C45,T5 

C28 
16  BPDA-ODA/DAT Synthesis  C29 
17  BPDA-DDBT Synthesis  C49 
18  BPDA-aromatic 

diamines 
UBE 
UBE 

 C1 
C2 

19  Coal tar pitch Dalian Gas Company  C31 
20  Graphite --  T1 
21  AP E. I. Dupont de Nemours  C54 
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synthesis a new polymer or polyimide in this research is not practical because it is 

another area of study.  

 

Therefore, the selection of commercially available polymer instead of high 

cost polyimide or polyimides synthesized at the laboratory scale will ultimately 

contribute to the development of carbon membranes in Malaysia.  The polymer used 

in this research is Polyacrylonitrile (Aldrich 18131-5). Polyacrylonitrile-based 

carbon fiber is one of the major carbon fiber produced and used in the industry. 

These commercial PAN-based carbon fibers have been available for over 25 years. 

Currently, PAN-based carbon fibers are recognized as the most important and 

promising precursor for the present manufacture of carbon fibers and dominate 

consumption, accounting for nearly 90 % of all sales worldwide [B21-1.2,C65].  

 

Besides that, the numerous advantages of PAN fibers including a high degree 

of molecular orientation, higher melting point and a greater yield of the carbon fiber. 

Table 3.2 presents the weight loss of different fibers with heating at 1000°C in 

Helium [B21-1.1]. As seen in table 3.2, the carbon yield of the oxidized PAN fiber is 

very high compared with other precusor-based fibers. PAN fibers form a thermally 

stable, highly oriented molecular structure when subjected to a low temperature heat 

treatment, which is not significantly disrupted during the carbonization treatment at 

higher temperatures. This means that the resulting carbon fibers have good 

mechanical properties [B21-1.2]. It is noteworthy that PAN is a suitable polymer for 

the production of carbon hollow fiber membranes. 

 

Table 3.2: Weight loss of different fibers at 1000°C in Helium  [B21-1.1] 

Polymer Type Total Weight Loss (%) 
Pitch ≈ 30 
Oxidized Polyacrylonitrile 38 
Polyacrylonitrile 60, 67 
PRD-14 52 
X-101 53 
Saran 74 
Rayons 87 – 89 
Ramie 91 
Poly(vinyl alcohol) 93 
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3.1.1 Structure of PAN 

 

 The acrylonitrile molecule has a nitril group, which is highly polar so that 

polymerization can take place in the presence of free radicals or negative initiators, 

leading to the production of polyacrylonitrile as seen in Figure 3.3 [B21-1.2]. 

Polyacrylonitrile (PAN) is often considered to be a “laterally ordered” polymer, with 

no c-axis order. It is generally believed that PAN forms relatively stiff, rod-like 

molecules due to the intramolecular dipole repulsions of its nitriles. Disordered or 

“amorphous” regions between crystalline domains consist of entanglements, chain-

ends, defects, co-monomer sequence and tie-chains [C65]. The highly polar character 

of the nitrile group causes strong dipole-dipole forces which act as crosslinks, 

making the polymers soluble only in highly ionizing solvents, increasing its melting 

point and making it more suitable as a carbon fiber precursor [B21-1.2]. 

 

 

Figure 3.3: Chemical structure of polyacrylonitrile (PAN) 
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of PAN was used for the polymer solution preparation as followed the composition 

used by previous researchers [Th1,F12]. 

 

There are a few requirements for the choice of solvents in an aqueous 

quenched membrane formation system [F4,F6]: 

(a) The solvent must be miscible with the water (coagulant). 

(b) The solvent must sufficiently strong for the dissolution of high polymer 

concentrations. 

(c) The solvent must have sufficient volatility to allow ample evaporation from the 

membrane. 

(d) The solvent must provide good mechanical properties to the formed yarn upon 

quenching. 

 

Most of the solvents that interact strongly with water have relatively low 

volatilities. This is one of the severe limitations in the solvent selection [F6]. 

Polyacrylonitrile (PAN) is an atactic (amorphous), linear polymer containing highly 

polar nitrile pendant groups. Pure PAN tends to decompose before it melts due to its 

highly polar nature. Therefore, polyacrylonitrile (PAN) precursor fibers must be 

produced by either wet or dry spinning processes using a highly polar solvent. 

Among the suitable solvents for polyacrylonitrile (PAN) are sodium thiocyanate 

[C65,C66], dimethylsulfoxide (DMSO) [C14], nitric acid, dimethylacetamide 

(DMAc) and dimethylformamide (DMF) [C67].  

 

In this study, dimethylformamide (DMF) was used as solvent for the polymer 

solution due to it is a good polar solvent for PAN as well as having high boiling 

point. Good solvent has the power to open and solvate the polymeric chains [F4]. 

DMF is commonly used as the solvent for PAN membranes production by 

researchers [F12,F13,Th1]. Furthermore, Cabasso et al. [F4] proposed that DMF is 

suitable solvent for the spinning process if water quenching is applied.  
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3.3 Solution Preparation 

 

Figure 3.4 shows the solution mixing vessel and all necessary laboratory tools 

required to prepare a polymer solution. Round bottom solution vessel was used to 

prepare the solution. The function of stirrer is to make sure that the polymer and 

solvent can mix well in order to form a homogeneous solution. The thermometer 

measured the temperature during the mixing process. The processing temperature 

should be controlled in a suitable and optimum temperature range by the heater and 

the condenser. In order to remove all the water vapor from the polymer and 

equipment, they had been heated in the vacuum oven and air oven (Thelco Oven) 

respectively for 1 day before the solution being prepared. The existence of water in 

the polymer solution will influence the purity as well as quality of a polymer 

solution.  

 

In general, a binary polymer solution consisted of polymer and solvent. The 

volatile solvent was put into the mixing vessel first, followed with the polymer. The 

polymer in powder form should put in gradually to prevent agglomeration. The 

agglomeration would make the polymer becomes more difficult to dissolve. Mixing 

temperature should maintain lower than the boiling point of the volatile solvent 

because the solvent is tending to vaporize. However, low temperature will slow 

down the mixing process. The boiling point for dimethyformamide is 153 oC [F2]. 

Therefore, an optimum range of mixing temperature should be chosen. The mixing 

temperatures used in the study were 80-90oC. The solution has to be stirred for about 

7-9 hours to produce a completely homogeneous solution. 

 

After the polymer was fully dissolved, the homogeneous solution was 

degassed to remove any micro-bubbles by using ultrasonic treatment (Branson 

Ultrasonics) for 48 hours. Finally, the homogeneous solution was store in a solution 

bottle and ready for the spinning process. 
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Figure 3.4: Solution preparation vessel 

 

 

 

3.4 Dry/wet Spinning Process 

 

In this research, dry/wet phase separation process [F1] was used to prepare 

asymmetric polyacrylonitrile (PAN) hollow fiber membranes according to the 

dry/wet spinning process. The dry/wet phase separation process has been known as a 

suitable process for preparing asymmetric membranes. The Figure 3.5 shows 8 basic 

steps involve in the dry/wet phase separation process. 

 

Figure 3.6 presents a schematic diagram of a spinning system used in this 

research. In the spinning process, the dope was fed to the spinneret via a gear pump. 

The dope reservoir was kept under nitrogen pressure as a precaution against 

cavitation in the line to the pump. The gear pump smoothly delivered the polymer 

solution to the spinneret with 2.5 ml/min dope extrusion rate. An on-line filter 

prevented any extraneous material being passed to spinneret from the gear pump. 

Syringe pump provided an accurate and pulse-free supply of water to the capillary in 

the spinneret. A spinning solution and bore fluid were going extruded through a 
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spinnerette die to form a nascent hollow fiber at ambient temperature. The inside 

surface of hollow fiber was contacted with a bore fluid and experienced wet phase 

separation in order to form a circular hollow lumen [F1,F13].  Water was chose as 

bore fluid with flowrate 1ml/min. The bore flow rate 1ml/min typically applied in the 

previous studies [F1,F6]. 

 

 

Figure 3.5: Preparation steps for asymmetric membranes according to the dry/wet 

phase separation process   

 

In the spinning process, the shear field tends to orient the solidifying 

polymeric structure parallel to the direction of flow. PAN tends to precipitate into 

fibril form. This spinning process yield a precursor fiber in which the PAN 

molecules are organized into fibrils which, in turn, are generally oriented parallel to 

the fiber axis. This fibrillar network appears to be the precursor of the graphite 

network that develops during final heat treatment [C67]. Previous research showed 

that the shear affects the phase inversion dynamics of membrane precipitation as well 

as the orientation of the polymer molecules in the active layer [F3]. 

 

The fiber was then directed through a small blower which providing a 

controlled force convective environment for inducing dry phase separation. The inert 

gas used was nitrogen with flow rate 4 l/min[F1,F13]. The high inert gas flowrate is 

better for the fabrication thin skin layer of membranes [F8]. Sharpe et al. [F3] also 

reported that the residence time in the force convection chamber must be long 
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enough to allow skin formation but not too long as to allow excessive non-solvent 

encroachment from the lumen side. If membranes were spun at an optimized 

residence time, then surface imperfections would be minimized allowing thinner and 

more highly oriented defect-free active layers to be produced.  

 

Clausi and Koros [F6]  found that increasing air gap would lead to higher 

selectivity and lower permeability. It is due to larger air gap allows more time for 

mass transfer to occur and the resulting membrane has thicker skins with fewer 

defects. They concluded that the air gap played a significant role in the formation of 

the skin layer. However, humidity of air gap was not considered in this research 

because previous result showed that it has minor influence on the permeation 

properties of the resulting fibers [F6]. 

 

 

Figure 3.6: Schematic diagram of hollow fiber spinning system: (1) nitrogen 

cylinder; (2) dope reservoir; (3) gear pump; (4) on-line filter, 7 mm; (5) syringe 

pump; (6) spinneret; (7) forced convective tube; (8) roller; (9) wind-up drum;  (10) 

refrigeration/heating unit; (11) coagulation bath; (12) washing/treatment   bath; (13)  

wind-up bath; (14) schematic spinneret [Th1] 
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After the fibers passed through a 9 cm air gap, it was immersed into the 

nonsolvent (water) coagulation bath and the washing treatment bath. The temperature 

of water in the coagulation bath was controlled by a refrigeration/heating unit at 

14oC. The coagulation conditions ensures rapid solidification when the spinning dope 

comes in contact with coagulant. Wet phase separation process occurs in the 

coagulation bath [F1,F13]. If precipitation is rapid, the outer surface of hollow fibe 

forms a dense selectivie skin. Meanwhile, the underlying polymeric solution 

precipitates much more slowly, forming a porous matrix. As a result, the resulting 

membranes are markedly asymmetric. In contrast, the membrane with more 

symmetrical structure can obtained if the precipitation process is slow [C38]. 

 

Similar finding was observed by McKelvey et al. [F14]. They reported that 

exposing the nascent membrane to an environment drastically different than the 

quench bath prior to quenching can aid in the formation of highly asymmetric 

structures. The first enviroment initiates the formation of the permselective skin and 

the quench environment completes the formation of the porous structure.  

 

After collecting the hollow fibers with wind up drum at 12.678 m/min take up 

rate, they were washed in water at 24oC for 2 days. Then, put in methanol bath at 

24oC as a solvent exchange for 2 days and followed with hexane bath for another 2 

days. It is necessary to replace the water contained within the pores of the membrane 

structure with a volatile organic liquid having a much lower surface tension. The 

purpose of the solvent exchange is to reduce the drying stress. The hollow fibers 

hung vertically and air-dried at room temperature for 7 days prior to testing [F1].  

 

The resulting hollow fibers have outsie diameter 600 ∝m and inner diameter 

290 ∝m. Typical average outside fiber diameter for gas separation application is in 

the range of 100 – 600 ∝m while average inside diameter is limited by gas pressure 

drop in the fiber bore. Pressure drop becomes severe at ID < 50 ∝m. In addition the 

rule of thumb regarding wall thickness is implying a value of 2 for the OD/ID. 

Smaller diameter fibers are favors because they possess high surface area in a given 

module volume, thereby promising to give high productivity [F14]. 
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3.5 Solvent Exchange 

 

Solvent exchange is one of the important steps, which cannot be neglect in 

the membrane fabrication process. Solvent exchange process was invented by Manos 

[F19] in 1978. Researchers found that direct drying water-wet membranes (porous 

substructures filled with water) can cause significant changes in the structure and 

properties of membrane. It is due to enormous capillary forces potentially present 

during pure water removal. High capillary forces exist especially in pores with 

relatively small radii and the pores are found just beneath the top layer of an 

asymmetric membrane. Thereby, the remaining solvent can result in plasticization of 

the polymer as well as densification of the structure in this part. The membrane skins 

are much thicker for the samples dried from higher surface tension fluids. 

Apparently, capillary forces collapse the underlying transition layer of the fibers, 

effectively changing it to less permeable skin [F19,F6,F15,F16,F18].  

 

Solvent exchange processes typically involve removing the water in the 

membrane with a water-soluble/partially water miscible alcohol that is a nonsolvent 

for the membrane material. Subsequently, replacing the alcohol with a volatile and 

less polar organic compounds with low surface tension. The sequence often used 

during solvent exchange is water – alcohol – alkane – air [F6,F15,F17,F19]. Water-

soluble alcohol and volatile organic solvent used in this research were pure methanol 

and pure hexane respectively. The aliphatic alcohols with 1 – 3 carbon atoms 

(methanol, ethanol and isopropanol) are particularly effective for replacing water 

from a membrane [F19].  

 

Hexane was chosen to be the 2nd solvent since it has minimal effect on the 

membranes during drying. Due to the slower evaporation rate of the 2nd solvent, the 

solvent exchange process could prevent collapse of the pore structure and minimized 

the surface corrugations. Thereby, the surfaces were relatively smooth [F18]. Both 1st 

and 2nd solvents should be sufficiently inert to the membrane in order to prevent any 

significant depreciation of membrane properties [F19]. It was observed that 

polyacrylonitrile hollow fiber membranes have a serious shrinkage problem when 

dried without solvent exchange process. The hollow fibers shrunk and became curl 

form. Methanol is not effective enough for the solvent exchange purpose. The lack of 
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hexane for solvent exchange caused minor shrinkage problem. Besides that, the 

impurity of the solvent would also influence the resulting membranes. 

 

 

 

3.6 Membranes Coating  

 

Most of the gas flow through any surface pores or imperfections in 

polacrylonitrile membrane rather than diffusion through the solid PAN polymer itself 

because polyacrlonitrile polymer has low intrinsic permeabilities [F13]. Pores are 

defined to be passageways allowing communication between the upstream and 

downstream membrane face by a Knudsen or viscous flow process [F21].  Therefore, 

this membrane can be made into defect-free and thin skin structures by coating the 

membranes in a post-treatment with a dilute solution of silicone rubber. (The 

Monsanto Prism separator embodies this concept) [B18].   

 

Coating is a standard procedure allows the hollow fiber to display permeation 

properties closer to the inherent characteristics of the membrane polymer itself [F13]. 

Coating will only prevent the hydraulic flux of gas through any defects in the 

membrane skin without altering the permeation characteristics of membrane material 

[F20]. The hollow fibers were coated with 3 % silicone (Sylgard 184, Dow Corning) 

in a hexane solution [F3,F12] for 15 minutes [F12,F13,Th1]. Previous research 

observed that the percentage of the silicone in the hexane solution was not much 

affected the permeation properties of membrane [F13]. After coating, the membranes 

were stored in a clean environment to allow curing. Figure 3.7 shows a bundle of 

PAN hollow fiber membranes. 
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Figure 3.7: Polyacrylonitrile hollow fiber membranes 

 

 

 

3.7 Stabilization Process 

 

Before carbonization process, the PAN hollow fibers were treated in an 

oxidizing atmosphere at temperature in the range of 200 – 300 °C [B21-1.2,B6-2.7]. 

The stabilization process is necessary to be carried out in order to cross-link PAN 

chains and prepare a structure that can withstand the rigors of high temperature 

processing. Stabilization process can insure that both the molecules and the fibrillar 

orientation will not be lost during final heat treatment. Therefore, either the inherent 

stiffness of the PAN molecules must be increased or the molecules must be “tied” 

together in order to eliminate or at least limit the relaxation and chain scission during 

the final carbonization step. The reaction is highly exothermic and if not controlled, 

can lead to run away autocatalytic processes resulting in “melting” down and 

coalescing of fibers [C65,C67].  The treatment converts PAN into a nonplastic cyclic 

or ladder compound capable of withstanding the high temperature present in the 
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subsequent process and increases the carbonization yield [B21-1.2]. This 

thermostabilization pretreatment brings the cross-linking of polymer which may 

reduce the fusion of nodules and ensures the asymmetric structure of the precursor 

hollow fiber can well held [C49].  

  

Isothermal stabilization at high temperature will lead to oxidative degradation 

and may cause poor mechanical properties in carbonized hollow fiber membrane. 

Therefore, previous researchers suggested that it is more beneficial to stabilize the 

hollow fiber membrane using a constant heating rate to a high temperature. It is 

because by exposing the hollow fiber membrane to high temperature for a short 

period will prevent oxidative degradation and lead to the formation of well-stabilized 

hollow fiber membrane [C66].  

 

In this research, the PAN hollow fiber membranes have gone through 

oxidative stabilization process until 250 oC with heating rate of 9 oC/min and held at 

250 oC for 30 min. The thermostabilization temperatures should neither over nor 

close to the melting temperature of the polyacrylonitrile -- 317oC. It is because of 

polyacrylonitrile tend to oxidize and melt rapidly at the melting temperature and the 

structure of the hollow fiber would collapse. The thermostabilization gases applied in 

this research were pure oxygen and compressed air. Without this treatment, the 

precursors soften during the pyrolysis and lead to the production of low performance 

carbon membranes [C2].  

 

 

 

3.8 Pyrolysis Process 

 

The heart of the carbon membrane fabrication process is the pyrolysis process 

or carbonization process. Porosity, which depends on the chemistry of pyrolysis, is of 

molecular dimensions and it is responsible for the molecular sieve property of 

carbons. (It is termed ultramicroporosity and is probably initiated by the small 

gaseous molecules channeling their way out of the solid matrix during pyrolysis) 

[C35]. Pyrolysis of certain types of substances (natural or polymeric) will lead to 
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carbon materials with a very narrow micropore distribution below 1 nm, which is 

able to separate gas pairs with very similar molecular dimension [C6].  

  

A pyrolysis system was set up for the carbonization process. This system 

consisted of a wire wound tube furnace, flow meter, Pyrex tube or quartz tube, 

thermostabilization gases and inert gas. Figure 3.8 shows an inert gas pyrolysis 

system used in this research. In this study, tube furnace was chosen rather than box 

furnace because it allows the purging of the inert gas during heating process. Quartz 

tube was used in the pyrolysis system not only due to it can withstand high 

temperature; it would also not react with the membrane sample. Long quartz tube 

should be used to prevent the melting problem of the connecting tubing at the end of 

the quartz tube. However, Pyrex tubes that are more economic can be used for 

heating temperature not more than 600oC.  

 

 

Figure 3.8: Inert gas pyrolysis system 

 

Before the carbonization process started, the inert gas was purged into the 

pyrolysis system to remove unwanted air or oxygen. The purpose is to prevent the 

oxidation process happens during high temperature process. The heating rate for the 

entire pyrolysis process maintained at 9oC/min and it was reduced when approaching 

final pyrolysis temperature in order to avoid an overshoot problem [C54]. Then, the 

precursor was heat to a required pyrolysis temperature and held for certain duration. 

After that, the resulting carbon membrane was cool down to ambient temperature in 



 85

the inert gas atmosphere. Finally, the precursor was completely carbonized to form 

carbon membrane. Figure 3.9 shows the resulting PAN carbon hollow fiber 

membranes. 

 

 Research was carried out to investigate a few very important parameters 

during carbonization process such as pyrolysis temperature, heating duration (soak 

time) as well as purge gas flow rate. This was in accord with the fact that carbon 

membrane performance is exclusively affected by the carbonization condition. Not 

much research had been conducted out to study the influence of soak time and purge 

gas flow rate on the carbon membrane performance. 

 

Figure 3.9: Carbon hollow fiber membrane 

 

 

 

3.8.1 Pyrolysis Atmosphere 

 

Pyrolysis atmosphere can change the pore size and geometry or even nature 

of the surface by sintering (pore closure) or activation (pore opening by removal of 

surface groups or by burn-off) effects [C4]. In general, pyrolysis atmosphere can 
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divide into two categories. There are vacuum pyrolysis and purge gas pyrolysis. 

Vacuum pyrolysis technique is employed by Koros [C22,C44] and Suda et al. 

[C40,C41] while there are a lot of researchers using purge gas pyrolysis system.  The 

inert gases typically applied in the purge gas pyrolysis system are nitrogen, helium 

and argon and carbon dioxide [C4,C44], hydrogen [C55]. 

 

Geiszler and Koros [C44] had made comparison between these two types of 

pyrolysis system. They found that the vacuum pyrolysis produced more selective but 

less productive membranes than the inert purge pyrolized membranes. When an inert 

gas was used, the degradation process was “enhanced”, presumably due to increased 

gas phase heat and mass transfer. The inert gas molecules can produce a more open 

porous matrix in the carbon molecular sieve membranes by accelerating the 

carbonization reaction. Thus, a higher permeability and less selective pore structure 

can be obtained. 

 

Vacuum pyrolysis was not applied in this research due to the limitation of the 

high cost equipment such as vacuum tube furnace. Since the inert purge gas pyrolysis 

is more simple system which able to produce excellent carbon membrane, this 

method was used in this study. Type of purge gas used in a pyrolysis process will not 

much affect the membrane performance. Geiszler and Koros [C44] had reported that 

there was only minor difference seen among the membranes pyrolyzed in 3 different 

purge gases: argon, helium and carbon dioxide. Numerous researchers used nitrogen 

as the purge gas for pyrolysis process. Therefore, in this study, the nitrogen was 

chosen as purge gas owing to it is an economic, common and available gas in the 

laboratory. 

 

 

 

3.8.2 Pyrolysis Temperature 

 

The pyrolysis temperature applied in previous studies varied in accordance 

with the precursor. The common carbonization temperatures used by the previous 

researchers were in the range of 500oC – 1000 oC [C4]. Hayashi et al. [C30] 

suggested that the optimum carbonization temperatures are in the range of  
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600 oC – 900 oC. It is desirable to keep the processing temperature low enough to 

prevent graphitization especially for coke-forming precursor materials [C44]. In this 

research, the pyrolysis temperatures in the range of 250oC – 800 oC were applied. 

 

 

 

3.8.3 Heating Duration (Soak Time) 

 

The influence of soak time on the carbon membranes performance was 

studied. The range of the heating duration studied in this research was between 10 

min to 3 hours. Heating duration more than 3 hours were rarely applied by the carbon 

membranes researchers. 

 

 

 

3.8.4 Purge Gas Flow Rate 

 

Purge gas flow rate ranged from 20 cm3/min to 200 cm3/min were applied in 

the pyrolysis process to study the influence of the different purge gas flow rate on the 

performance of carbon membranes. Gas flow meter was used to control the required 

purge gas flowrates. 

 

 

 

3.8.5 Heating Rate 

 

Various heating rates have been used in previous study. The range is between 

1 – 13.3 oC /min [C4]. The heating rate applied in the thermastabilization and 

carbonization process is generally low (a few °C) in order to prevent destruction 

caused by the release of the volatiles byproducts [B21-1.2]. Suda and Haraya [C4] 

reported that as the heating rate decreased, the pyrolization proceeds very slowly and 

the pore becomes smaller. This caused the increasing of selectivity and the 

decreasing of the permeability. Although low heating rate requires long operation 

time and increases the operating cost, researchers [C4] found that the membrane 
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pyrolized at the slowest heating rate exhibited the highest selectivity. Moreover, 

Petersen et al. [C12] proposed that low heating rates should assist the increase of 

crystallinity of carbon. 

 

This research did not emphasis much on the influence of heating rate to the 

carbon membrane performance. Therefore, in this research, relatively low heating 

rate 9°C/min was used in order to prevent rapid release of gases during pyrolysis, 

which can disrupt or destroy the membrane integrity and structure prior to the 

formation of complete carbon membrane [C70].  

 

 

 

3.9 Fourier Transform Infrared Spectroscopy (FTIR) 

 

 Fourier Transform Infrared Spectroscopy (FTIR) is a very useful tool to 

detect the existence of the functional groups in a membrane. The FTIR results can 

display the change of the functional groups and elemental in the membranes when 

they were heated from room temperature to 800oC. 

 

 

 

3.10 Scanning Electron Microscopy (SEM) 

 

Scanning Electron Microscopy (SEM) can be used to observe the 

macroscopic structure of the carbon membranes. Image of fiber surface, skin layer 

structure and cross sections of membrane prepared under different carbonization 

condition can be obtained. Before SEM scans, the membrane samples had cut into 

small piece in liquid nitrogen and gone through a gold coating. SEM Machine – 

Philip XL-40 was used for the scanning purpose. 
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3.11 Thermogravimetry Analysis 

 

 Thermogravimetry analysis was used to study the weight loss of the 

membrane samples during heat treatment. The change of the weight will indicate the 

structure change in the membrane. 

 

 

 

3.12 Pure Gas Permeation Measurement  

 

In this study, pure gases were used for the permeation testing instead of 

mixture gas. A lot of researchers have used pure gas to characterize the permeation 

properties of the membranes 

[C1,C2,C5,C9,C13,C18,C24,C28,C29,C30,C31,C38,C39,C45,F1,F2]. It is reported 

that the permeability of the N2 was approximately same for both single and binary 

system [C28]. Anshu Singh-Ghosal and Koros also found that pure gas permeability 

and selectivity were within 3% of the mixed gas permeation properties [C54]. 

Petersen et al. [C12] also reported that each component of gas in a gas mixture 

showed nearly identical permeation behavior with that of the single gas. It is owing 

to gas molecules of light component can by-pass the sorbed molecules (heavy 

component) through the slit shape pores in carbon membrane. They concluded that 

the separation of mixed gases by the carbon membrane or its selectivities could 

roughly be estimated using data of single gas permeances. The schematic diagram of 

pure gas permeation testing system is displayed in Figure 3.10. 

 

However, characterization of carbon membranes by single gas components 

underestimates the true separation factor of a gas mixture. This is a consequence of 

the restriction of diffusion of non-adsorbable gases (O2, N2 and CH4) by adsorbable 

gas (CO2) of the gas mixture [C38]. It means that the real selectivity of membrane is 

higher than the measurement result [C5]. Pure gases O2 (3.46 ⊕) and N2 (3.64 ⊕) 

were used to analysis the permeation characteristics of the membrane. Therefore, the 

problem mentioned above does not exist. The values in brackets correspond to the 

kinetic diameter of gas.  
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The permeation testing method applied in this research was variable volume-

constant pressure method. Permeation of gas was measured at ambient temperature 

[C10,C22,C31,C34,C44]. It was reported that carbon membranes could obtain 

highest separation factor at 25oC for O2/N2, CO2/CH4 and CO2/N2 system [C6]. 

Pressure gauge was used to measure the feed in pressure to the system. The feed in 

pressures are within 1 to 6 bars. The feed in pressure adjusted by the regulator on the 

gas cylinder and the needle valve.  The permeate side of membrane was maintained 

at atmospheric pressure [C21]. Ball valve A allowed the permeate gas flowing to the 

burette while the retentate gas was purged through the ball valve B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Schematic diagram of pure gas permeation testing system. 

 

Hollow fiber membranes modules are one-end-opened types. One end of the 

fiber bundle was sealed in stainless steel tubing while the dead end part was potted in 

an aluminium cap both with the epoxy resin – Locite-L30 [C1,C24,C30]. The 

stainless steel tubing part was snapped off after the epoxy hardens [C10,C22].  

 

There are two ways to feed in a gas into membrane module: bore side-feed 

and shell-side feed [F5]. The method used in this research was shell-side feed. It 

means that the feed gas was introduced to the outer surface of the hollow fiber and 
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the permeate gas would penetrate into the bore side. Previous researchers had used 

this method [C2,C8]. 

 

Simple soap film flow meter was used to obtain the permeation properties of 

the gas [C2,C8,C9,C30,C31,C37,C45,F1,F2] owing to it is suitable for the 

measurement of small and wide range flowrates. The performance of the carbon 

membrane can be characterized by two important parameters: permeability and 

selectivity [F1].   
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LITERATURE REVIEW 

 

 

 

 The development of porous inorganic membranes dates from before 1945, 

long before the development of today's synthetic organic membranes. Not much 

publicity was given to the early development of inorganic membranes because the 

first porous inorganic membranes were developed for separation of uranium isotopes 
235U and 238U by the process generally known as gaseous diffusion. It is still the 

largest membrane separation process in terms of capital investment and energy 

requirements. Therefore, they were mainly used for military purposes or nuclear 

applications [C32,C42,C60].  

 

Non-nuclear applications of inorganic membranes only started at the 

beginning of the 80’s with Membralox produced by Ceraver (now SCT), Carbosep 

produced by SFEC (now TECHSEP) and Ceraflo produced by Norton (now by SCT) 

[C42]. The potential of inorganic membranes was not widely recognized until high 

quality porous ceramic membranes were produced for industrial usage on a large 

scale. These commercial ceramic membranes have consistent quality and narrow 

pore size distributions. Commercialization of ceramic membranes has been mostly 

the extension of technical development in gas diffusion membranes for the nuclear 

industry in the United State and France [C33].   Nowadays, inorganic membranes are 

used primarily for civilian energy-related applications. They have become important 

tools for beverage production, water purification and the separation of dairy products 

[C32]. Hence, they play a very important role in the separation processes of 
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industrial sector. Numerous European, American and Japanese companies are now 

competing to produce inorganic membranes [C42].  

 

 

 

2.1 Inorganic Membranes 

 

Hsieh has provided a technical overview of inorganic membranes in his paper 

[C33]. He divided the inorganic membranes into two major categories: porous 

inorganic membranes and dense (nonporous) inorganic membranes as shown in 

Figure 2.1. Besides that, porous inorganic membranes have two different structures: 

asymmetric and symmetric. Symmetric and asymmetric membranes are defined by 

the pore structure. Symmetric membranes exhibit homogeneous pore size or structure 

throughout the membranes while the asymmetric membranes have a gradual change 

of structure through the membranes [C42,C13]. Loeb and Sourirajan were the first to 

develop asymmetric membranes for desalination application due to the necessity of 

obtaining minimum effective thickness of membrane [T6].  

 

Porous inorganic membranes with pores more than 0.3 nm usually work as 

sieves for large molecules and particles. Glass, metal, alumina, zirconia, zeolite and 

carbon membranes are commercially used as porous inorganic membranes. Other 

inorganic materials such as cordierite, silicon carbide, silicon nitride, titania, mullite, 

tin oxide and mica also have been used to produce porous inorganic membranes. 

These membranes vary greatly in pore size, support material and configuration 

[C33].  

 

On the other hand, dense membranes made of palladium and its alloys, silver, 

nickel and stabilized zirconia have been applied or evaluated mostly for separating 

gaseous components. Application of dense membranes is primarily for highly 

selective separation of hydrogen and oxygen; transport occurs via charged particles. 

However, the dense membranes have limited industrial application due to their low 

permeability compared to porous inorganic membranes. Therefore, today’s 

commercial inorganic membranes market is dominated by porous membranes 

[C42,C33,C32]. 
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Although inorganic membranes are more expensive than organic polymeric 

membranes, they possess advantages of: temperature and wear resistance, well-

defined stable pore structure, and chemically inertness. These advantageous 

characteristics encouraged many researchers in the early 1980s to investigate the gas 

separation properties of these membranes, especially porous inorganic membranes. 

Furthermore, many studies regarding applications of inorganic membrane reactors 

have been carried out [C32]. 

 

Figure 2.1: Structures of inorganic membranes 

 

 At present, interest in the development of porous inorganic membranes 

providing better selectivity, thermal stability and chemical stability than polymeric 

membranes has grown. The main interest and attention have been focused on 

materials that exhibit molecular sieving properties such as silica, zeolites and carbon 

[C6,C39], which appear to be promising in separation of gas as shown in Figure 2.2 

[T9]. Figure 2.2 showed that the molecular sieving membranes providing higher 

permeability and selectivity than the upper limit performance of polymeric 

membranes. It means that the upper bound for polymeric materials does not constrain 

the nonpolymeric molecular sieve materials [G2].  
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Figure 2.2: Upper limit performance of polymeric membranes [T9]. 

 

Silica-based inorganic membranes selectively separate hydrogen from other 

gases but permselectivity between similar-sized molecules such as oxygen and 

nitrogen is not sufficient [C30,C39]. This is due to the existence of defects/  “pin-

hole” in the permselective layer [C39,C55]. In order to eliminate membrane defects, 

silica materials required synthesis in a clean room environment [C25]. In addition, 

there was no report on the application of silica membranes for the alkene/alkane 

separation, which contain the same number of carbon atom [C45].  

 

Zeolites with a well-defined micropores constitute an excellent material to 

prepare gas separation membranes [C39]. Zeolites can separate isomers, such as i-

butane and n-butane. Nevertheless, there were also no reports regarding the 

separation of alkene/alkane separations. Moreover, it is difficult to obtain a crack-

free, large continuous thin film formed by zeolites crystals. The existence of 

intercrystallite voids dramatically reduces the permselectivity 

[C30,C15,C39,C45,C54].  
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Advantages of carbon molecular sieve compared with commercial molecular 

sieving zeolites including shape selectivity for planar molecules, higher 

hydrophobicity, higher resistance to both alkaline and acid media as well as better 

thermal stability under inert atmosphere at higher temperature [C78,C79]. Hence, it 

is more feasible to form carbon molecular sieve membranes because it has numerous 

advantages. Besides that, there were not many researches in this field.  

 

 

 

2.2 Transport Mechanism of Inorganic Membranes 

 

Mass transfer of gas through a porous plug can involve several different 

processes, depending on the nature of the pore structure and the solid [C26]. There 

are four different mechanisms for separation of a gas mixture through a porous 

membrane: Knudsen diffusion, partial condensation/capillary condensation, surface 

diffusion/selective adsorption and molecular sieving [C17,C33]. 

 

 

 

2.2.1 Knudsen Diffusion 

 

Rao and Sircar [C46] had reported that dominant diffusion happens in a 

porous membrane is depending on the pore diameter of the membrane as shown in 

Table 2.1. Gas transport will occur predominantly by Poiseuille flow or viscous 

diffusion when the mean-free-path of the gas is much smaller than the pore diameter 

[C60] or gas molecules collide preferentially with each other instead of the pore wall 

[G2]. In other words, the membrane has large pores and no separation occur.  

 

On the other hand, if the mean-free path of the gas is much larger than the 

pore diameter and the penetrant gas is very weakly adsorbed on the microporous 

medium, the gas transport mechanism dominant in the membrane is Knudsen 

diffusion [C60]. Separation of these membranes is based on the differences in the 

molecular weighs of the components of a gas mixture. The more rapidly moving 

low-molecular weight gas executes more frequent diffusional steps because it hits the 
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wall more frequently. The selectivity is equal to the square root of the molecular-

weight ratio of the largest to smallest gas [G2]. It has very low selectivity and not 

practical to applied in the industry separation process [C17]. Knudsen diffusion is 

generally exists when the pore diameter measures around 50 – 100 ⊕ under pressure 

or 50 – 500 ⊕ in the absence of a pressure gradient [C33].  

 

Table 2.1: Dominant diffusion occurs in different pore diameters  

Dominant Diffusion Pore Diameters 
Viscous Diffusion > 1000 ∑ 
Knudsen Diffusion 10 – 1000 ∑ 
Capillary Condensation > 30 ∑ 
Activated Diffusion 
          - Surface Diffusion 
          - Molecular Sieving 

< 10 ∑ 
             5 – 7 ∑ 
             3 – 5 ∑ 

Solution Diffusion 2 – 3 ∑ 
 

 

 

2.2.2 Surface Diffusion (Selective Adsorption) 

 

Surface diffusion is important when one component is preferentially adsorbed 

or more strongly adsorbed than another component because the selectivity of 

separation for this transport mechanism is primarily governed by the adsorption 

selectivity between the components of a gas mixture. This transport mechanism 

happens when the adsorbed component diffuses faster than the other non-adsorbed 

components as the gas mixture accumulates on the pore surface. It means that certain 

components of the mixture are selectively adsorbed into the pores of the membranes 

and then they move across the membrane on the pore surface by surface diffusion. 

The separation mechanism in surface diffusion membrane is illustrated in Figure 2.3. 

Due to relatively lower activation energy required for this process, the surface 

diffusivity of the adsorbed gas can be very high. Besides that, the adsorbed 

molecules tend to create a hindrance for the transport of smaller non-adsorbed 

molecules through the void space in the pores. The adsorbed components then desorb 

at the low-pressure side to form permeate stream. Surface diffusion is important at a 
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pore diameter of 10 – 100 ⊕ or when specific surface area is large 

[C17,C33,C46,G1].  

 

Nanoporous carbon membranes have this type of transport mechanism. 

Adsorption-selective carbon membranes separate non-adsorbable or weakly 

adsorbable gases (O2, N2, CH4) from adsorbable gases, such as NH3, SO2, H2S and 

CFC [C57]. Pore size and physiochemical nature of the pore surface play a 

significant roles in determining the separation efficiency of these membrane [C17]. 

 

 2 main advantages of these membranes are: the diffusing gas can permeate 

across the membrane in order to obtain practical separation without requirement for a 

very large partial pressure gradient. Besides that, larger or more polar molecules of a 

gas mixture can be selectively separated from the smaller molecules [C17,C46]. In 

other words, the permeate stream contains larger sized penetrant while the smaller 

component was retained. This type of membranes is preferred to be used in the 

separation process, where the required product having larger molecular size.  

Additionally, that is no requirement for further product compression owing to the 

resulting product can be produced at the feed-gas pressure [C46]. 

 

 

Figure 2.3: Separation mechanism in surface diffusion membrane [C17] 
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2.2.3 Capillary Condensation 

 

At a relatively low temperature (for example near 0oC), selective 

condensation of one or more components of the gas mixture and the condensed gases 

occupy the pores as a liquid followed by diffusion of condensed molecules through 

the liquid-filled pores. When other gases do not dissolve in the condensed 

component, separation occurs. This phenomenon happens in H2S/H2 and SO2/H2 

system in which H2S and SO2, respectively condense in the pores and diffuse across 

the membrane; while H2 in both cases is blocked from the pores as H2 does not 

dissolve in either H2S or SO2 [C33,C46]. These membranes require the pore size in 

the range of pore diameter more than 30∑ and can achieve very high selectivity 

[C17]. 

 

 

 

2.2.4 Molecular Sieving 

 

Carbon molecular sieve membranes have been identified as very promising 

candidates for gas separations, both in terms of separation properties and stability. 

The predominant transport mechanism of carbon membranes is molecular sieving as 

shown in Figure 2.4. Carbon molecular sieve materials are globally amorphous 

materials devoid of long-range order. Dislocation in the orientation of aromatic 

microdomains in the glasslike matrix gives rise to free volume and 

ultramicroporosity. The ultramicropores are usually considered to be nearly slit-

shaped and the pore mouth dimensions are similar to the diameters of small 

molecules [C72].  

 

 

 

 

 

 

 

Figure 2.4: Typical molecular sieving transport mechanism 



 25

The carbon membranes contain constrictions in the carbon matrix that 

approach the molecular dimensions of the absorbing species [C10]. Molecules that 

are three-dimensionally smaller than the size of the slit width or planar shape with 

small cross-sections are selectively permeated through the molecular sieve carbon 

[C80]. Hence, carbon molecular sieve membranes are able to separate the gas 

molecules with similar size effectively. According to this mechanism, the separation 

is caused by passage of smaller molecules of a gas mixture through the pores while 

the larger molecules are obstructed. It exhibits high selectivity and permeability for 

the smaller component of a gas mixture [C17,C74].  

 

The carbon matrix is assumed to be impervious, and permeation through 

carbon membranes is attributed entirely to the pore system [C35,C36]. The technique 

of activation or partial burnoff, which is used to enlarge the pore system in carbon, 

together with annealing at high temperatures in an inert atmosphere which brings 

about pore closure, has been employed recently to prove that the permeability of 

gases through the carbon membranes proceeds through a pore system of molecular 

dimensions. The pore system consists of relatively wide openings with narrow 

constrictions. The openings contribute the major part of the pore volume and 

responsible for the adsorption capacity, while the constrictions are responsible for the 

stereoselectivity of pore penetration by host molecules and for the kinetics of 

penetration [C36]. Hence, the diffusivity of gases in carbon molecular sieve change 

abruptly depending on size and shape of molecules because the carbon molecular 

sieve has ultramicropores with critical pore mouth dimensions and pores size similar 

to the dimension of gas molecules [C5,C72]. The pore size in the carbon molecular 

sieve depends upon a balance between removal of O2 containing groups on the 

surface around the pore mouth (pore enlargement) and crystallite rearrangement 

enhancing sintering (pore shrinkage) [C80]. 

 

Kusakabe et al. [C28] have proposed that there are different types of pore 

shape in molecular sieving membranes. Three different permeation models for silica 

membrane, Y-type zeolite membrane and carbon molecular sieve membrane were 

reported in their paper. Figure 2.5 shows a schematic microstructure of a carbonized 

membrane while Figure 2.6 presents three permeation models for microporous 

membranes. 
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Figure 2.5: Schematic microstructure of a carbonized membrane  

 

 

 

Figure 2.6: Permeation models for microporous membranes [C28] 

(a) Cylindrical pore, dp < dN2 + dCO2 
(silica membrane) 

(b) Cylindrical pore, dp > dN2 + dCO2 
(Y-type zeolite membrane) 

 (c) Slit-shaped pore, dp < dN2 + dCO2 (CMS membrane)
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As shown in the Figure 2.6, silica membranes have cylindrical pore having a 

size of dp < dN2 + dCO2. Therefore, CO2 permeation is limited by the permeation of N2 

because CO2 and N2 molecules, which are aligned in the pore unable to pass one 

another. The Y-type zeolite membranes have larger cylindrical micropores with dp > 

dN2 + dCO2. In this case, adsorptive molecules, CO2 are concentrated on the pore wall 

and outrun non-adsorptive molecules, N2 by a surface diffusion mechanism. On the 

other hand, carbon molecular sieve membranes have slit-shaped pores, which can 

distinguish sizes of alkane and alkene. In slit-shaped pores system, the gas molecules 

can move two-dimensionally and pass one another by moving to the wider side of the 

slit. The surface diffusion will not occur in this type of carbon membranes because 

the pore size is too narrow for adsorptive molecules to be concentrated on the pore 

wall. Due to the special shape of carbon molecular sieve membranes, the permeation 

results for CO2 and N2 obtained from single and binary system only displayed a 

minor difference [C28].  

 

Carbon molecular sieves are porous solids that contain constricted apertures 

that approach the molecular dimensions of diffusing gas molecules.  This similarity 

in pore mouth and gas molecules enhances the interaction between the pore wall and 

diffusing molecule. At these constrictions, the interaction energy between the 

molecule and the carbon is comprised of both dispersive and repulsive interactions. 

When the opening becomes sufficiently small relative to the size of the diffusing 

molecule, the repulsive forces dominate and the molecule requires activation energy 

to pass through the constrictions. In other words, smaller molecules experiences 

lower activation barrier to diffuse through the small micropore mouth since the 

repulsive forces is lower. In this region of activated diffusion, molecules with only 

slight differences in size can be effectively separated through molecular sieving 

[C22,C72]. The mechanism of gas permeation and uptake through porous solids is 

thus closely related to the internal surface area, dimensions of the pores and to the 

surface properties of the solid, rather than to the bulk properties of the solid as in the 

case with polymers [C36]. 

 

There are a lot of methods to prepare porous inorganic membranes. They 

consisted of phase separation and leaching, particle dispersion and slipcasting, 

anodic oxidation, thin-film deposition methods, track-etch method and pyrolysis 
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[C33], which will be discussed in next section. Carbons usually are produced by 

pyrolysis of a great variety of organic residues, synthetic polymers and natural coals 

in an inert atmosphere [C35]. However, molecular sieves carbon membranes suitable 

for gas separation are prepared by pyrolyzing thermosetting polymers. Carbon 

molecular sieve membranes with pore diameter 3-5 ⊕ have ideal separation factor for 

various combinations of gases ranges from 4 to more than 170. The ideal separation 

factor for N2/SF6 and He/CO2 are 4. The values are in the range of 20 – 40 for He/O2, 

He/N2 and He/SF6 separation. Meanwhile, ideal separation factor for O2/N2, H2/N2 

and O2/SF6 are 8, 10 – 20 and more than 170 respectively [C33]. The permeation 

characteristics of the molecular sieve carbon membrane can be varied by changing 

the high temperature treatment parameters [C18].  

 

The difference between structures of adsorption-selective carbon membranes 

(ASCM) with carbon molecular sieve membranes (CMSM) concerns the micropores. 

The definition of pore size according to the recommendation of IUPAC has been 

summarized in the Table 2.2. Adsorption-selective carbon membranes (ASCM) have 

a carbon film with micropores slightly wider than carbon molecular sieve membranes 

(CMSM), probably in the range of 5 – 7 ⊕  [C57]. 

 

Table 2.2: Definition of pore size [C63] 

Type of Pore Pore Size 
Micropore 

                           -ultramicropores 
                           -supermicropores 

< 20 ⊕ 
< 7 ⊕ 

7 ⊕ - 20 ⊕ 
Mesopore 20 ⊕ - 500 ⊕ 
Macropore > 500 ⊕ 

 

 It is known that the performance of an asymmetric membrane is dependent on 

the thin active layer [D1]. Meanwhile, the great difference between carbon 

asymmetric membranes and polymeric asymmetric membranes is the skin layer. 

Comparing with polymer membranes, carbon membranes may be considered as a 

refractory porous solid where, the permeates are non-soluble and merely penetrate 

through the pore system [C18]. The tiny (2 – 4⊕) short-lived intersegmental gaps 

that spontaneously appear in the selective layers to allow diffusion of gas through 
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conventional polymeric membranes are not considered as pores. Molecular sieving 

transport mechanism is greatly different with the transport mechanism of polymer 

membranes – solution-diffusion mechanism. The Figure 2.7 shows the solution-

diffusion mechanism in the dense layer of a polymeric membrane. Size (diffusivity) 

and condensability (solubility) selectivity factors interact with polymer to determine 

which component passes though the membrane faster [G2]. 

 

 

 

 

 

 

 

 

 

Figure 2.7: Solution-diffusion transport mechanism [G2] 

 

In addition, diffusion on the asymmetric polymer hollow fiber membranes 

occurs in free space holes made by thermal motion of the polymer chains and those 

that existed originally because the polymer is the glassy polymer. On the other hand, 

the diffusion of the gases on the asymmetric carbon membrane occurs in holes that 

existed originally. It is proposed that the activation energy of the diffusion on the 

asymmetric carbon membranes are smaller than those on the asymmetric polymer 

hollow fiber membranes for gases especially having larger molecular size. As a 

result, the selectivities for the gas pairs such as H2 hydrocarbons, CO2 hydrocarbons, 

O2/N2 on the asymmetric polymer membrane decrease remarkably as the 

measurement temperature increases. However, the selectivities of the carbon 

membranes only decrease slightly [C2].  

 

However, carbon membranes require very fine control of the pore sizes 

(diameter < 4⊕) and require operation at an elevated temperature in order to provide 

practically acceptable flux for the smaller molecules due to membrane thicknesses 

several microns [C17]. The influence of adsorption of permeates on the pore walls of 

Transient gap between chains in matrix 
allows penetrant to diffuse. 
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carbon have to be taken into consideration, especially in the case of penetrants with 

relatively high boiling point [C18].    

 

 

 

2.3 Preparation Methods of Porous Inorganic Membranes  

 

2.3.1 Phase Separation and Leaching (Glass membranes) 

 

Glass membrane with a symmetric structure (isotropic sponge) of 

interconnected pores can be prepared by thermally demixing a homogeneous 

borosilicate glass (Na2O-B2O3-SiO2) phase into two phases by heating to  

550°C – 800°C. The borate phase (Na2O-B2O3-) is then removed by acid leaching 

creating a microporous silicon dioxide SiO2-rich phase, which is insoluble boric 

phase rich in alkali. This technique can be used to produce either porous glass tubes 

or hollow glass fibers. The advantage of glass membranes is that capillaries (hollow 

fiber) can be easily formed and can be further modified to porous hollow fiber 

membranes. However, the instability of the surface is the main disadvantage of a 

porous glass membrane [C42,B6-2.2]. 

 

 

 

2.3.2 Anodic Oxidation (Anodic membranes) 

 

This method is used to produce the commercial ANOPORE membranes. One 

side of a thin, high-purity aluminium foil is anodically oxidized in an acid 

electrolyte, which may contain sulfuric, phosphoric, chromic or oxalic acids. The 

unaffected part/unoxidized metal remaining on the other side is then removed by 

dissolution in a strong acid, leaving a regular pattern of pores. The membranes 

obtained are not stable under long exposure to water and having symmetric structure 

with a network of distinctive conical pores perpendicular to the surface of the 

membrane. Asymmetric structure with a thick layer of large pores and a thin layer of 

small pores connected to the large ones can be obtained by treated in hot water or in 

a base [C42,B6-2.2]. 
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2.3.3 Particle Dispersion and Slip Casting (Ceramic membranes) 

 

Composite ceramic membranes can be prepared by slip casting from particle 

dispersion. Slip is referred to colloidal suspension and polymeric solution. These 

particles and colloidal suspensions are obtained mainly by the so-called sol-gel 

process. Particles are deposited onto a porous support in one or more layers by 

dipping or casting. The dispersion medium is forced into the pores of the support by 

a pressure drop created by a capillary action of the microporous support. At the 

interface the solid particles are retained and concentrated at the entrance of pores to 

form a gel layer [C42,B6-2.2,B6-2.3]. 

 

 

 

2.3.4 Sol-gel Process 

 

The sol-gel can be categorized into two main routes consisting colloidal 

suspension route and polymeric gel route. In both routes, a precursor is hydrolysed 

while a condensation or polymerization reaction occurs simultaneously. The 

precursor is either an inorganic salt or a metal inorganic compound [C42,B6-2.3]. 

 

 

 

2.3.5 Track-Etch  

  

 Track-etch method is applied for production of membranes with a very 

regular and linear shape pores. A thin layer of a material is bombarded with highly 

energetic particles from a radioactive source. The track left behind in the material is 

much more sensitive to an etchant in the direction of the track axis than 

perpendicular to it. This process has been applied on polymers (Nuclepore 

membranes) and on some inorganic systems like mica. The resulting membranes are 

attractive as model systems for fundamental studies [B6-2.2]. 
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2.3.6 Pyrolysis 

 

Polymers are coated onto porous supports and then degraded by controlled 

pyrolysis to produce an inorganic membrane. Silica membranes and carbon 

membranes can be produced by this method. Depending on the pyrolysis degree, the 

support can be weakly hydrophilic (low temperature) or more hydrophobic (high 

temperature). One or two layers of specific polymer are deposited onto the support 

surface. The carbon layer is formed by pyrolysis of the polymeric layer in a 

controlled environment (inert atmosphere) [C42,B6-2.2]. 

 

 

 

2.4 The Beginning of Carbon Molecular Sieve Membranes 

 

The concept of carbon molecular sieve membrane or film for gas separation 

can be found in the early 1970. Barrer et al. compressed non-porous graphited carbon 

into a plug, called a carbon membrane [T1,C81]. The compression sintering of 

granular carbon is another synthetic method that has seldom been used besides 

pyrolysis of a polymeric precursor [C44].  Bird and Trimm used polyfurfuryl alcohol 

(PFA) to prepare unsupported and supported carbon molecular sieve membranes. 

During carbonization, they met shrinkage problem, which would lead to cracking and 

deformation of the membrane. Hence, they failed to obtain continuous membranes 

[C26].  

  

Carbon molecular sieves produced from the pyrolysis of polymeric materials 

have proved to be very effective for gas separation in adsorption applications by 

Koresh and Soffer [C19,C19a,C19b,C19c] as well as Kapoor and Yang [C76]. 

Molecular sieve carbon can be obtained by carbonization of suitable carbon-

containing materials. They are thermosetting polymers such as poly(vinylidene 

chloride) (PVDC), poly(furfuryl alcohol) (PFA), cellulose, cellulose triacetate, saran 

copolymer, polyacrylonitrile (PAN), phenol formaldehyde, polyimide, various coals 

such as coconut shell, graphite, pitch and plants under inert atmosphere or vacuum 

conditions [C19,C31]. They described that the pore dimensions of carbon depend on 

morphology of the organic precursor and the chemistry of pyrolysis [C35]. During 



 33

the research on molecular-sieve carbon adsorbents, they have shown that the 

molecular sieving effect of non-graphitizing carbons was extremely specific and 

adjustable by mild activation and sintering steps to the discrimination range  

2.8 – 5.2Å [C18]. 

   

Pyrolysis of thermosetting polymers typically cellulosic, phenolic resin, 

oxidized polyacrylonitrile as well as pitch mesophase has been recognized to yield an 

exact mimic of the morphology of the parent material. They do not proceed through a 

melt or soften during any stage of the pyrolysis process. Hence, pyrolysis processes 

can produce carbon molecular sieve membranes from thermosetting polymer 

membranes [C35]. The interest in developing carbon membranes only grew after 

Koresh and Soffer [C35,C36,C18] had successfully prepared apparently crack-free 

molecular sieving hollow fiber membranes by carbonizing cellulose hollow fibers. 

They have shown the dependence of permeabilities and selectivities on temperature, 

pressure and extent of pore for both adsorbing and non-adsorbing permeates 

[C35,C18]. However, those membranes would be lack of mechanical strength for 

practical application.  

 

 

 

2.5 Configurations of Carbon Membranes 

 

Configurations of carbon membranes can be divided into two major 

categories: unsupported and supported carbon membranes [C6]. Unsupported 

membranes have three different configurations: flat (film), hollow fiber and capillary 

while supported membranes consisted of two configurations: flat and tube. Figure 2.8 

shows various configurations of carbon membranes. The unsupported carbon 

membranes are more brittle than the supported carbon membranes. On the other 

hand, the supported carbon membranes require several times the cycle of polymer 

deposition-carbonization steps in order to obtain an almost crack-free membranes 

[C6]. 

 

 The choice of a membrane configuration depends on many factors, consisting 

of nature of the polymer, the ease of formation of a given configuration and 
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structure, the reproducibility of a given structure, the membrane’s performance 

characteristics and structural strength, the nature of the separation, the extent of use 

and the separation economics [F11]. 

 

 

 

 

 

 

 

 

Figure 2.8: Configurations of carbon membranes 

  

 

 

2.5.1 Supported and Unsupported Flat Carbon Membranes 

 

 A group of Japanese researchers, Hatori et al., have prepared porous carbon 

films from Kapton-type polyimide, including supported and unsupported carbon 

membranes [C20,C21,T3]. Hatori et al. reported that the carbon molecular sieve film 

used for gas separation is required to be as thin as possible in order to enhance the 

separation efficiency. However, the thin film should be supported with a porous plate 

for handling convenience. The flat homogeneous carbon films prepared by pyrolysis 

at 800 oC had O2/N2 selectivities of 4.2 [T3].    

 

Rao and Sircar [C16,C17,C46] have introduced nanoporous supported carbon 

membranes, which were prepared by pyrolysis of polyvinylidene chloride layer 

coated on a macroporous graphite disk support. The diameter of the macropores of 

the dried polymer film was reduced to the order of nanometer as a result of a heat 

treatment at 1000oC for 3 hours.  These membranes with mesopores can be used to 

separate hydrogen-hydrocarbon mixtures by the surface diffusion mechanism, which 

selectively adsorbs gas molecules on pore wall. This transport mechanism differs 

from the molecular sieving mechanism. Therefore, these membranes were named as 

selective surface flow (SSFTM) membranes. They possess a thin (2 – 5µm) layer of 

Carbon membranes

Unsupported Supported 

Flat Hollow fiber Flat Tube Capillary
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nanoporous carbon (effective pore diameter in the range of 5 – 6Å) supported on a 

mesoporous inert support such as graphite or alumina (effective pore diameter in the 

range of 0.3 – 1.0µm). The procedures for making the selective surface flow 

membranes were described in those two authors’ papers [C17,C46]. The requirement 

to produce a surface diffusion membrane has been described clearly in the author’s 

paper [C46]. 

 

A solution to overcome reproducibility problems of nanoporous carbon 

(NPC) membranes has been introduced by Acharya and Foley [C25]. They have used 

spray-coating system for the production of thin layers of nanoporous carbon on the 

surface of a porous stainless steel support. A solution of poly(furfuryl)alcohol (PFA) 

in acetone was sprayed onto the support in the form of a fine mist using an external 

mix airbrush with nitrogen gas. This was the first reported technique for supported 

carbon membrane synthesis. The advantages of this preparation method are 

reproducibility, simplicity and good performance for oxygen-nitrogen separation. 

The resulting membranes were found to have oxygen over nitrogen selectivities up to 

4 and oxygen fluxes on the order of 10-9 mol/m2 s Pa.   

 

Chen and Yang [C15] have prepared large, crack-free carbon molecular sieve 

membrane supported on a macroporous substrate by coating a layer of polyfurfuryl 

alcohol followed by controlled pyrolysis. Diffusion of binary mixtures was measured 

and the results were compared with the kinetic theory for predicting binary 

diffusivities from pure-component diffusivities. Good agreement was obtained 

between theoretical predictions and experimental data for binary diffusion.  

 

Suda and Haraya [C40] have prepared flat, asymmetric carbon molecular 

sieve membranes, which exhibited the highest gas permselectivities among those in 

the past research by pyrolysis of a Kapton type polyimide derived from pyromellitic 

dianhydride (PMDA) and ODA. They used the permeation measurements and X-ray 

powder diffraction to relate the relationship between the gas permselectivity and 

microstucture of the carbon molecular sieve membrane. They proposed that that the 

decrease of the interplanar spacing, amorphous portion and pores upon heating might 

be the origin of the “molecular sieving effect”. 
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Suda and Haraya [C4] also made a clarification of the factors that determine 

the microstructure and the permeation properties of carbon molecular sieve dense 

membranes derived from Kapton polyimide film. They have gained insight into the 

permeation mechanism through the study of permeability versus kinetic diameter in 

connection with diffusivity and sorptivity. They suggested that the factors 

determining the microstucture and gas permeation properties of carbon molecular 

sieve membranes are not completely open to controlled pyrolysis of a precursor, 

because these properties are significantly affected by several factors: the choice of 

polymer precursor, the membrane formation method and the pyrolysis conditions.  

 

Shusen et al. [C13] reported that the asymmetric carbon membranes produced 

by Le Carbon-Lorraine using a two-step procedure (carbon support preparation in the 

first step and top layer deposition in the second step) seems to be complicated. By 

using this method, the porous carbon support is made by pyrolysis of a tube with 

1mm wall thickness. On top of the support, thin polymeric films are deposited; 

followed by controlled pyrolysis to the desired pore shape. Hence, Shusen et al. used 

simpler and more flexible one-step preparation method (one heat treatment step for 

support and functional top layer) to fabricate asymmetric supported carbon 

membranes, consisting formation of phenol formaldehyde film followed by pyrolysis 

and unequal oxidation.  

 

In this process, micropores were achieved as a result of small gaseous 

molecules channeling their way out of the solid matrix of the polymer during 

pyrolysis. The micropore structure was further widened by oxidation, which removed 

carbon chains in the pores. The pore structure was made narrower by high 

temperature sintering which shrinks the pore size. All of the preparation conditions 

which shrink the pore size of the carbon membrane would be beneficial for 

improvement of selectivities while the conditions for widening pore size should be 

favorable for increasing permeabilities [C37].  They have proposed that the key point 

to create a carbon membrane with asymmetric structure was to keep a different 

oxidation atmosphere on two sides of the membranes in the activation process, for 

example, a relatively strong activation condition on one side and a relatively weak 

activation conditions on the opposite side [C13,C37]. 
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Kita et al. [C47] synthesized an unsupported polypyrrolone film by means of 

a casting method. The authors found that the membranes, which have been 

carbonized at 700oC for 1 hour, gave the highest performance in their research. The 

membranes exhibited excellent stability up to 500oC under nitrogen atmosphere, 

without weight loss. 

 

Liang et al. [C31] have produced carbon membranes for gas separation from 

coal tar pitch. The result showed that the ‘separation power’, which is refer to 

production of permeability by selectivity of carbon membranes of carbon membranes 

prepared from coal tar pitch was generally higher by at least 3 orders of magnitude 

compared with polymeric membranes for H2/O2 and H2/N2 separation.  

 

Spain researchers, Fuertes and Centeno have investigated the method to 

prepare flat, supported carbon molecular sieve membranes by using different 

polymeric or precursors. They used BPDA-pPDA [C3,C6], phenolic resin [C5] as 

precursor to make flat carbon molecular sieve membranes supported on a 

macroporous carbon substrate.  

 

In another study, they chose polyetherimide as a precursor to prepare flat, 

supported carbon molecular sieve membranes. Method for the preparation of carbon 

molecular sieve membranes from a polyetherimide and their structures as well as gas 

permeation properties have been described in their paper [C7]. Polyetherimide was 

chosen because it can be used economically. On the other hand, these polyetherimide 

carbon membranes showed similar performance with the carbon molecular sieve 

membranes prepared by Hayashi et al. [C9], which were obtained from a laboratory-

synthesized polyimide (BPDA-ODA). 

 

Furthermore, they also used two other commercially available polyimide-type 

polymers, Matrimid and Kapton to prepare supported carbon composite membranes 

in a single casting step [C38]. They reported that the different structures of carbon 

membranes could be obtained depending on the polymeric precursors, the casting 

solution and the preparation condition. However, preparation conditions have a great 

effect on the structure and separation properties of the Matrimid-based carbon 

membranes. 
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Recently, they have investigated the preparation of supported carbon 

molecular sieve membrane formed by a microporous carbon layer, obtained by 

carbonization of a poly(vinylidene chloride-co-vinyl chloride) (PVDC-PVC) film 

[C39]. They discovered that the oxidation of PVDC-PVC samples did not 

significantly affect the micropore volume of the carbonized materials. However, the 

pretreatment in air at 200oC for 6h leaded to a less permeable carbon membrane than 

the untreated membrane but much more selective. The selectivity of CO2/N2 was 

increased from 7.7 to 13.8 after the pretreatment. 

 

Some researchers have studied the entropic contributions to diffusivity 

selectivity as the polymer matrix evolved to a rigid carbon matrix [C54]. Polymer 

precursor, membranes pyrolyzed at intermediate steps in the pyrolysis process and 

finally pyrolyzed membranes were tested for the purpose to study the development of 

gas separation properties as the material progresses from a polymer to a completely 

carbonized membrane. 

 

 

 

2.5.2 Carbon Membranes Supported on Tube 

 

Hayashi et al. [C9] have produced carbon molecular sieve membranes by dip-

coating of BPDA-4,4'-oxydianiline (ODA) solution on an α-Al2O3 porous support 

tube follow by pyrolysis at 500-900OC in an inert atmosphere. In their study, the 

sorptivity and diffusivity of penetrants in the carbonized membrane were greatly 

improved because of the increased micropore volume (free space) and segmental 

stiffness. The selectivity of CO2/CH4 larger than 100 was achieved although BPDA-

ODA membrane usually can only reached 65 at 35oC. This indicated that the 

carbonization procedure was optimized and excellent permselectivities of penetrants 

were obtained. 

 

They modified the resulting carbon molecular sieve membranes by chemical 

vapor deposition (CVD) using propylene as carbon source at 650oC [C30]. At 

pyrolysis temperature 700oC, the CVD modification was effective to increase the 
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CO2/N2 selectivity from 47 to 73 while O2/N2 selectivity increased from 9.7 to 14 

because the pore structure was further controlled and the micropores were narrowed. 

 

Hayashi et al. [C45, T5] also found that a carbonized membrane prepared 

with a BPDA-pp'ODA polyimide gave higher C3H6/C3H8 and C2H4/C2H6 

permselectivities than those of polymeric membranes. This was in accord with the 

fact that carbonized membrane possess a micropore structure, which was capable of 

recognizing size differences of alkane and alkene molecules. In addition, Hayashi et 

al. [T5] evaluated the stability of a membrane based on BPDA-ODA polyimide and 

carbonized at 700oC by exposing it to air at 100 oC for one month. It was suggested 

that the carbon molecular sieve membranes were usable for a prolonged period under 

an atmosphere that contains low levels of oxidants, which is refer to the level of 

oxidants in atmosphere air.  

 

Their study also showed that the permeation properties of carbon membrane 

could be improved by treating carbon membrane under an oxidizing atmosphere. 

Hayashi et al. [T5] have oxidized BPDA-ODA carbon membrane with mixture of 

O2-N2 at 300 oC or with CO2 at 800 – 900 oC. Nevertheless, excessive oxidation 

fractured carbon membrane. They concluded that carbonization under optimum 

condition shifted the trade-off relationship of the BPDA-pp’ODA polyimide 

membrane toward the direction of higher selectivity and permeability. The resulting 

membranes exhibited permeances approximately 1x10-8 mol.m-2s-1Pa-1 for C2H4, 

2x10-9 mol.m-2s-1Pa-1 for C2H6, 4x10-9 mol.m-2s-1Pa-1 for C3H6 and 1x10-10 mol.m-2s-

1Pa-1 for C3H8.  The selectivities were 4-5 for C2H4/C2H6 separation and 25-29 for 

C3H6/C3H8 separation [C45]. 

 

Tennisson and co-workers [C23] have prepared microporous carbon 

membranes by carbonization and activation of an asymmetric phenolic resin 

structure comprising a dense resol layer, supported on a highly permeable 

macroporous novolak resin tube. 

 

A BPDA-ODA/DAT copolyimide, which contains methyl groups; was used 

as a precursor for carbon molecular sieve membrane by Yamamoto et al. [C29]. 

Methyl groups would be expected to be decomposed during the post-treatment under 
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an oxidative atmosphere and to result in expanded micropores. They reported that the 

permeation properties of the resulting membranes were dependent on the 

composition of the precursor films, carbonization temperature and oxidation 

conditions.  In spite of the permeance increasing with increasing permeation 

temperature, the separation coefficients were not greatly influenced by the oxidation 

and carbonization treatments.  

 

They suggested that the oxidation in air by increasing temperature up to 

400oC with a one-hour hold and carbonization up to 700oC was most suitable for 

increasing permeance with no damage in separation coefficient. The carbon 

membranes gave 3x10-8 molm-2s-1Pa-1 for CO2 permeance and the separation 

coefficient of CO2/CH4 reached 60 at permeation temperature of 35oC.  In addition, 

the trade-off line for the BPDA-ODA carbon membrane for O2/N2 system was 3-fold 

higher in the direction of separation coefficient than that for polyimide membrane 

reported by Stern. They have concluded that optimization of the treatment procedure 

was more important than changes in diamine portion of the copolyimide [C29]. 

 

 A study on the structure of the phenol-formaldehyde carbon membrane has 

been conducted by Steriotis et al. [C77]. They studied bulk and skin structure of the 

membrane by using various characterization methods including nitrogen adsorption, 

small-angle neutron scattering and scanning electron microscopy (SEM). 

 

Kusakabe et al. [C28] made a further study regarding carbon molecular sieve 

membranes, which were formed by carbonizing BPDA-pp'ODA polyimide 

membranes at 700oC and then oxidized with either an O2-N2 mixture or pure O2 at 

100oC – 300oC under controlled conditions. The study showed that the oxidation 

increased permeance without greatly damaging the permselectivities. This was due to 

the oxidation at 300oC for 3h significantly increased the micropore volume but the 

pore size distribution was not broadened. The result was similar with the author 

previous research [T5] regarding the effect of oxidation on gas permeation of carbon 

molecular sieving membranes based on BPDA-pp'ODA polyimide. 

 

They also formed the condensed polynuclear aromatic (COPNA) resin film 

on a porous α-alumina support tube. Then, a pinhole-free carbon molecular sieve 
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membrane was produced by carbonization at 400 – 1000oC [C8]. The mesopores of 

the COPNA-based carbon membranes did not penetrate through the total thickness of 

each membrane and served as channels, which increased permeances by linking the 

micropores. Molecular sieving carbon membranes produced using COPNA and 

BPDA-pp'ODA polyimides showed similar permeation properties although they had 

different pore structures. At permeation temperature 100oC, the selectivities of 

CO2/N2 were 17 for pyrolysis temperature at 700oC and 19 for pyrolysis temperature 

at 800oC respectively. This suggests that the micropores are responsible for the 

permselectivities of the carbonized membrane. 

 

 Research team leaded by Sircar has produced tubular support selective 

surface flow carbon membranes for gas separation application [C69]. They coated 

the bore side of the tube using polyvinylidene chloride-acrylate terpolymer latex. The 

resulting membranes exhibited very good separation properties at low to moderate 

feed gas pressure. Details of the practical applications and advantages of the selective 

surface flow membranes had reported in their paper [C69]. The membrane has been 

successfully tested for H2 enrichment applications from fluid catalytic cracker and 

H2-PSA off-gases at low pressures. The use of SSF membrane-PSA hybrid system is 

very attractive for the production of high purity H2 from a waste gas [C71]. In 

addition, they found that the SSF membrane could be efficiently applied for the 

separation of H2S-CH4 gas mixtures without high feed gas pressures. Experiments 

also carried out to evaluate the effect of feed gas pressure, feed gas composition and 

permeate gas pressure on the separation of binary H2S-CH4 gas mixtures [C79]. 

 

On the other hand, Wang et al. [C56] used a gas phase coating technique, 

vapor deposition polymerization (VDP) to prepare supported carbon membranes 

from furfuryl alcohol. They reported that the membranes prepared by VDP have 

comparable CO2/CH4 selectivities but lower CO2 permeabilities than certain PFA-

based membranes prepared by dip-coating techniques. The selectivity for CO2/CH4 

separation was 80 – 90 with CO2 permeances in the range of 27x10-10 – 58 x10-10 

molm-2Pa-1s-1. 

 

There are other different coating methods on porous stainless steel support 

media in the production of carbon membranes supported on tube: brush coating, 
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spray-coating and ultrasonic deposition of the polymer resin. Shiflett and Foley have 

reported various approaches to preparing carbon molecular sieve layers on the 

stainless steel support by ultrasonic deposition [C55]. They reported that the 

reproducible production of nanoporous carbon membranes could be achieved 

through automated ultrasonic spray system [C70]. Figure 2.9 shows the nanoporous 

carbon membrane produced. The permeances results for H2, He and O2 were 

reproducible within ±20% while separation factors reproducible within ±30%.  

 

 

Figure 2.9: Membrane test module and supported nanoporous carbon membrane. (A) 

Membrane module, (B) sintered metal tube, (C) continuous carbon film supported on 

sintered metal tube [C70] 

 

Besides that, Fuertes [C57] used phenolic resin to prepare adsorption-

selective carbon membrane supported on ceramic tubular membranes. The dip 

coating technique was used in the research. Study also conducted to analysis the 

effect of the oxidation post treatment process on the separation properties of carbon 

membranes [C68]. It is reported that a carbon molecular sieve membrane can be 

transformed into an adsorption-selective carbon membrane by using air oxidation 

post treatment process. The post treatment would slightly widen the carbon 

micropores. Besides that, the study showed that the oxidation temperature more than 
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450°C and long oxidation time (6 hrs) would cause the loss of membrane separation 

properties. 

 

 

 

2.5.3 Carbon Capillary Membranes 

 

 Damle et al. [C75] have put effort to modify the commercial liquid 

microfiltration carbon membrane to gas separation carbon membrane, which based 

on Knudsen diffusion mechanism. The techniques applied include dip coating of 

polymer precursors, in-situ polymerization and gas phase pyrolysis. 

 

Haraya et al. [C41] have reported a novel preparation of asymmetric capillary 

carbon molecular sieve membranes from Kapton polyimide membrane and their gas 

permeation properties. Capillary carbon molecular sieve membrane must have 

controlled asymmetric structure, consisting of a dense surface layer with molecular 

sieving properties and a porous supporting layer in order to attain both high 

permselectivity and permeance. However, it is not easy to control the structure of the 

capillary carbon molecular sieve membrane. They described that the structure of 

membrane was formed in the gelation step of polyamic acid and was also maintained 

in the imidization and shrank about 30% at pyrolysation steps. They observed that 

the surface layer became thinner and the pore dimension became larger, with 

acceleration in the exchange rate of solvent with coagulant. Slow gelation process 

would result in a thicker dense surface layer.  

 

Petersen et al. prepared carbon molecular sieve membrane (capillary tubes) 

by using precursor derived from Kapton [C12]. They worked at improving the 

fabrication method of capillary carbon membrane for high-temperature gas 

separations. 
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2.5.4 Carbon Hollow Fiber Membranes 

 

 Besides the configurations mentioned in the preceding section, there are also 

a lot of studies regarding carbon hollow fiber membranes. The main variation in the 

structure of the carbon hollow fiber membrane with the polymeric hollow fiber 

membrane has been shown in Figure 2.10. 

 

 

 

 

 

 

 

 

(a)           (b)   

Figure 2.10: Comparison of carbon molecular sieve hollow fiber membrane (a) with 

the polymeric hollow fiber membrane (b) 

 

Linkov et al. [C14] summarized a number of special techniques, which have 

been developed to obtain narrow pore-size distribution in carbon membranes. They 

consisted of introduction of monomers with low carbon content into polyacrylonitrile 

macromolecules, irradiation of polymer films with high-energy ions, in-situ 

polymerization on the surface of dip-coated polymeric precursors, treatment with 

concentrated hydrazine solution and the dispersion of a finely divided inorganic 

material in the casting solution of polyacrylonitrile (PAN).  

 

They reported that the carbonization of highly asymmetrical PAN precursors, 

produced by the use of various combinations of solvent and non-solvents in 

precipitation media, resulted in the formation of a range of flexible hollow fiber 

carbon membranes with high porosity and good mechanical properties. Morphology 

of this type carbon membrane as well as the possibility of altering of the pore 

structure was studied. It was suggested that precursor preparation (solution 

formulation and fabrication procedure) and stabilization as well as carbonization 

conditions have possibility to alter the pore sizes of carbon membranes [C14]. 

Dense active layer 

Porous support layer

Fiber Bore

Porous active layer 
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Linkov et al. [C27] also used vapor-deposition polymerization method to coat 

hollow fiber carbon membranes. Then, the coated membranes were heated in a 

nitrogen atmosphere to produce composite carbon-polyimide membranes. The 

composite membranes had low wall and active skin thickness with good mechanical 

properties. They have resistance against high pressures and high flexibility.  

 

Polyimide derived from a reaction of 2,4,6-trimethyl-1,3-phenylene 

diamine,5,5-[2,2,2-trifluoro-1-(trifluoromethyl)ethylidenel]-1,3-isobenzofurandione 

and 3,3',4,4'-biphenyl tetra carboxylic acid dianhydride was used by Jones and Koros 

to prepare carbon molecular sieve asymmetric hollow fiber membranes [C22]. Those 

membranes were developed and optimized for air separation applications. However, 

they were also effective for the separation of other gas mixtures such as CO2/N2, 

CO2/CH4 and H2/CH4 with the selectivities 55-56, 140-190 and 400-520 respectively. 

On the other hand, the selectivities for conventional polymeric membranes only 

reached 15-25 for CO2/N2 separation, 15-40 for CO2/CH4 and less than 200 for 

H2/CH4. It is noteworthy that the selectivities obtained were much higher than those 

seen with conventional polymeric materials without sacrificing productivity. 

 

Jones and Koros have found a few problems or weakness of carbon 

membranes in their studies [C10,C34]. Carbons generally have nonpolar surfaces. As 

a result they are organophilic. Therefore, ultramicroporous carbon membranes would 

be very vulnerable to adverse effects from exposure to organic contaminants due to 

its adsorption characteristics of organics. Membrane performance will deteriorate 

severely if feed streams having as low as 0.1 ppm organics. As organic sorption 

proceeds, capacity for other compounds is diminished and membrane performance 

losses occur rapidly. Once a monolayer has been established, a prohibitive resistance 

to other permeating species exists.   

 

However, a unique regeneration technique developed by Jones and Koros 

[C34] seem to be very promising for removing a number of organic contaminants. 

Pure propylene at unit or near-unit activity has found to be suitable for the 

regeneration process. The propylene most likely acted as a solvent, removing other 

sorbed compounds from the carbon surface. Propylene exposure resulted in a small 
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“opening up” of the pore structure and membrane recovery was significantly 

boosted.  

 

Jones and Koros [C10] also found that the micropores of carbon membranes 

would gradually plugged with water at room temperature and resulting in the 

decrease of the non-polar gases permeabilities and its selectivities. The reason is the 

surface of membrane carbonized at relatively low temperature is affected by oxygen 

remaining in the inert purge gas during pyrolysis [C44]. The surface is partially 

covered with oxygen-containing functional groups, thus giving the membrane a 

hydrophilic character [C28]. The resulting oxygen-containing surface complexes will 

act as primary sites for water sorption. Sorbed water molecules then attract additional 

water molecules through hydrogen bonding, leading to the formation of clusters. The 

cluster grows and coalesces, leading to bulk pore filling. As the amount of sorbed 

water in microporous carbon adsorbents increases, it will greatly diminishing the 

diffusion rate of other permeating species [C10].  

 

The problem can be overcome by coating the membrane with a highly 

hydrophobic film, which does not prohibitively reduce the flux of other permeating 

species. Therefore, the resulting carbon composite membranes demonstrated a 

greater resistance to the adverse effects from water vapor while retaining very good 

separation properties [C11]. Thus, Kusakabe et al. [C28] reported that the 

modification of the surface properties of carbon molecular sieve membrane is a key 

technology for the selective gas separation.  

 

Geiszler and Koros [C44] have studied the effect of polyimide pyrolysis 

conditions on carbon molecular sieve membranes properties. They compared the 

carbon membrane performances prepared by vacuum pyrolysis and inert purge 

pyrolysis. In addition, they also studied other pyrolysis variables such as the 

processing temperatures, purge gas flow rate and residual oxygen concentration in 

the purge gas. They observed that pyrolysis atmospheres and flow rates of purge gas 

strongly influenced H2/N2 and O2/N2 selectivities of carbon molecular sieve 

membranes. In argon purge pyrolysis, the O2/N2 selectivity was 2.8 – 6.1 while the 

H2/N2 selectivity was 6.8 – 31.2. The selectivities were increased to 7.4 – 9.0 for 

O2/N2 and 64 – 110 for H2/N2 when the membrane carbonized in vacuum condition. 



 47

The purge gas flow rate changed from 20 cm3/min to 200 cm3/min had resulted in the 

increasing of permeability of O2 from 0.05 – 0.54 GPU to 71 – 284 GPU. It is 

noteworthy that pyrolysis condition has significant influence to the carbon 

membranes performance. 

 

Kusuki et al. [C2] have made the asymmetric carbon membranes by 

carbonization of asymmetric polyimide hollow fiber membranes. The effects of 

different experimental conditions on the membrane performance have been 

investigated. They reported that those carbon membranes showed high 

permselectivities compared with polyimide hollow fiber membranes. They achieved 

the selectivity of H2/CH4 ranging from 100 – 630 with permeation rate of H2 ranging 

from 10-4 to 10-3 cm3(STP)/(cm2 s cmHg). 

.  

Tanihara et al. [C1] have made the asymmetric carbon membranes by 

carbonization of asymmetric polyimide hollow fiber membranes. In their study, they 

found that the permeation properties of carbon membrane were hardly affected by 

feed pressure and exposure of toluene vapor. Furthermore, there was only little 

change in the permeation properties of the carbon membrane with the passage of 

time. 

 

Ogawa and Nakano [C24] have investigated the effect of gelation conditions 

on the properties of the carbonized membrane in their previous study. The 

carbonized hollow fiber membrane was formed by gelation of polyamic acid solution 

in a coagulant by phase inversion method, imidization and carbonization. The 

microstructure of the carbonized membrane was evaluated by the micropore 

volumes, which depended on gelation temperature and pH of coagulant. Hence, the 

gelation process was important to control microstructure, permeance and 

permselectivity of the carbonized membrane.  

 

They observed that the gelation time was not a predominant factor to control 

the micropore volume, the permeances and CO2/CH4 permselectivity. However, they 

found that the gelation temperature would influence the permeation properties of the 

carbon membranes. They also reported that the permeance reduced with the increase 

of pH value of the coagulant. The micropore volume also decreased remarkably in 
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the alkali region, resulting in reduction of micropore size. However, the 

permselectivity increased with the increase of pH [C24].  

 

They proposed that the most important factor to achieve both high permeance 

and high permselectivity in the carbonized membrane was pH control of the 

coagulant (water). They realized that the high permeance of CO2 and the high 

CO2/CH4 permselectivity were obtained under the specific conditions of gelation: 

time 6h, temperature 275K and pH 9.4. They concluded that the transport of CO2 was 

mainly governed by the adsorption effect and transport of CH4 was restricted by the 

molecular sieving effect, yielding high CO2/CH4 permselectivity [C24]. 

 

They also investigate the difference in permeation behaviors of CO2 and CH4 

between single component and multicomponent of CO2/CH4 system from the 

viewpoint of the microporous structure, which was created through the formation 

process of the carbonized membrane [C53].  

 

Table 2.3 summarized the various configurations of carbon membranes 

produced by previous researchers. From the literature review, it is observed that most 

of the carbon membranes produced during 1980 until early 1990 were flat disk or flat 

sheet membranes. During the middle of 1990, carbon membranes supported on tube 

have been made followed with carbon capillary membranes and carbon hollow fiber 

membranes. Flat sheet or flat disk carbon membranes are more suitable for 

laboratory or research applications while carbon membranes supported on tube, 

carbon capillary membranes and carbon hollow fiber membranes are more practical 

and suitable to apply in industry.  

 

The carbon membrane is preferable to be fabricated in asymmetric structure 

and capillary or hollow fiber configurations for commercial applications of 

membrane in order to increase its permeation products [C12]. 
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Table 2.3: Configuration of carbon membranes produced by previous researchers 

Researcher(s) Configuration Period/Year Reference(s) 

Ash et al.  1967-1968 C22 

Barrer et al.  1973-1976 T1,C81 

Bird & Trimm Flat 1983 C26 

Koresh & Soffer Hollow fiber 1980-1987 C18,C19,C35,C36 

Kapoor & Yang  1989 C76 

Damle et al. Capillary 1991 C75 

Bauer et al. Tube 1991 C43 

Hatori et al. Flat 1991-1992 C20,C21,T3 

Rao & Sircar Flat 1993 C16,C17,C46 

Chen & Yang Flat 1994 C15 

Linkov et al. Hollow fiber 1994 C14,C27 

Jones & Koros Hollow fiber 1994-1996 C10,C22,C34,C11 

Hayashi et al. Tube 1995-1997 C9,C30,C45,T5 

Suda & Haraya Flat, Capillary 1995-1997 C4,C40,C41,C48 

Shusen et al. Flat 1996 C13,C37 

Kita et al. Flat 1997 C47 

Petersen et al. Capillary 1997 C12 

Kusuki et al. Hollow fiber 1997 C2 

Tennisson et al. Tube 1997 C23 

Yamamoto et al. Tube 1997 C29 

Steriotis et al. Tube 1997 C77 

Kusakabe et al. Tube 1998 C28,C8 

Sircar et al. Tube 1997-1999 C71,C69,C79 

Geiszler & Koros Hollow fiber 1999 C44 

Tanihara et al. Hollow fiber 1999 C1 

Okamoto et al. Hollow fiber  1999 C49 

Ogawa &Nakano Hollow fiber 1999-2000 C24,C53 

Liang et al. Flat 1999 C31 

Acharya & Foley Flat 1999 C25 

Fuertes & Centeno Flat  1998-2000 C3,C5,C6,C7,C9,C38,C39 

Singh-Ghosal & Koros Flat 2000 C54 

Shiflett & Foley Tube 2000-2001 C55,C70 

Wang et al. Tube 2000 C56 

Fuertes Tube 2000-2001 C57,C68 
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2.6 Formation of Hollow Fiber Membrane 

 

Hollow fiber membranes were first reported in a series of patents by Mahon 

in 1966 assigned to the Dow Chemical Company [F14]. Nowadays, hollow fiber has 

been used in numerous commercial applications including medical field, water 

reclamation (purification and desalination), pervaporation and gas separation owing 

to its excellent mass transfer properties. In fact, the development of hollow fiber 

membrane technology has been greatly inspired by intensive research and 

development of reverse-osmosis membrane during 1960s. Hollow fibers allow 

selective exchange of materials across their walls. Additionally, they can be used as 

containers to affect the controlled release of a specific material or as reactors to 

chemically modify a permeate as it diffuses through a chemically activated hollow 

fiber wall [B18]. 

 

 In general, the tubular membranes consisted of hollow fiber membrane, 

capillary membrane and tubular membrane. The variation is only in terms of fiber 

inner diameter [B3-3]. 

• Hollow fiber membranes (inner diameter: < 0.5 mm) 

• Capillary membranes  (inner diameter: 0.5 – 5 mm) 

• Tubular membranes  (inner diameter: > 5 mm) 

 

Hollow fiber membranes can be divided into 2 categories: open hollow fiber 

and loaded hollow fiber. In open hollow fiber, the flow of lumen medium gas/liquid 

is not restricted. On the other hand, lumen of the loaded fiber is filled with an 

immobilized solid, liquid or gas [B18]. 

 

 There are numerous methods to prepare synthetic membranes. The most 

important methods are sintering, stretching, track-etching, phase inversion and 

coating. Among those methods, phase inversion method is typically applied in 

production of commercial available membranes [B3-3]. Koros and Fleming [F21] 

have divided the phase inversion process into four broad categories: 
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(a) Wet cast/Wet phase inversion 

(b) Dry cast/Wet phase inversion 

(c) Dry cast/Dry phase inversion 

(d) Dry cast/Dry-wet phase inversion 

 

  The distinction between dry cast and west cast is refers to whether the outlet 

of the spinneret or casting knife that transfers the dope from a closed reservoir is 

exposed to air or is submerged directly in a liquid coagulation medium which is a 

non-solvent for the polymer [F2]. 

 

A number of different techniques can be used in a phase inversion process 

including solvent evaporation, precipitation by controlled evaporation, thermal 

precipitation, precipitation from the vapor phase and immersion precipitation. Most 

of the phase inversion membranes fabricated using immersion precipitation 

technique. Precipitation process involves casting or spinning of polymer solution and 

followed by immersion in a nonsolvent coagulation bath. Solvent and non-solvent 

exchange causes precipitation of polymer. The membrane is produced by 

combination of mass transfer and phase separation [B3-3]. In this research, dry 

cast/dry-wet phase inversion spinning process was used in the fabrication of PAN 

hollow fiber membranes. In the following section, a numbers of different spinning 

process are discussed. 

 

 

 

2.6.1 Spinning Process 

 

Previous researchers [F4] proposed that a satisfactory spinning process must 

provide fibers having the requisite permeability, surface pore size and stability under 

long-term compression. The principal variables during spinning process are solution 

composition, solution viscosities spinning temperature, solution pumping rates, 

coagulation agents (inside & outside), coagulation temperature and nascent fiber 

drawing rate. Different spinning techniques are illustrated in Appendix A. 

 



 52

There are 4 conventional synthetic fiber spinning methods that can be 

implemented for the production of hollow fiber membranes: 

 

(a) Melt Spinning   : A polymer melt is extruded through a spinneret into a 

cooler atmosphere, which induces phase transition and solidifies into fiber 

form. The resulting hollow fiber is isotropic/homogeneous dense membrane 

[B18, F11,C67]. These membranes are normally used for the characterization 

of the intrinsic properties of the membrane materials [Th3]. 

 

(b) Wet Spinning: The spinning dope, consisting of polymer volatile solvent, is 

spun through a spinneret into a liquid coagulating bath (solvent more soluble in 

the coagulation fluid than in the precursor). The precursor solution precipitates 

into fiber form after emerges from spinneret capillaries [B18,C67]. This 

process can produce anisotropic and asymmetric membrane [F11].  

 

(c) Dry spinning  : As the solution extruded into a drying chamber, 

evaporation of the solvent will cause the precursor precipitates into fiber form 

[C67]. The evaporation from a nascent membrane dope containing nonsolvents 

with lower volatility than those of the solvents produces a critical concentration 

leading to transformation from a single phase to two-phase structure [F21]. 

 

(d) Dry/wet spinning  : This method is a combination of the 2nd and 3rd 

methods. In this process, all three mechanisms of formation (temperature 

gradient, solvent evaporation and solvent-nonsolvent exchange) can be 

combined. Spinning rate is relatively low (up to 100 m/min but usually 15-50 

m/min) [B18]. 

 

 

  

2.6.1.1 Wet Phase Separation Process 

 

Wet phase separation process is characterized by the demixing of a stable, 

homogeneous polymer solution in a nonsolvent precipitation bath. During wet phase 

separation process, the cast membrane is immersed prior to reaching phase 
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instability. Therefore, the entire phase separation occurs by the diffusional exchange 

of solvents and non-solvents in the coagulation bath. Loeb and Sourirajan 

successfully implemented wet phase separation process in the 1960’s for the 

desalination of brackish seawater. If sufficient time is allowed for a fraction of the 

cast structure to phase separate before the structure is immersed in a nonsolvent to 

complete the phase separation throughout, this process is called as a dry-wet phase 

separation process, which will discuss in next section [F2,F21]. 

 

Wet phase inversion membranes have either too many defects to allow their 

use in gas separation without further treatment or a rather thick selective skin (>2000 

⊕). The thin selective layer of such defective membranes can be caulked with a high 

flux, low selectivity material like silicone rubber to eliminate viscous or Knudsen 

flow without causing serious productivity loss. However, properties of the composite 

membrane are complex averages of those of the membrane polymer and the caulking 

agent. The caulking agent may add significant resistance to the overall transport 

process and limit ones ability to benefit from the productivity and selectivity of high 

performances in thin skinned forms [F2]. 

 

 

 

2.6.1.2 Dry/wet Phase Separation Process 

 

Dry/wet phase separation process is the most common industrial approach to 

fabricate gas separation membranes [F21]. Dry/wet phase inversion process first 

demonstrated by Pinnau and Koros in producing a flat-sheet membrane without 

requirement for post-treatement [F10]. Pinnau and Koros have shown that it is 

possible to produce simultaneously ultrathin and defect-free asymmetric polysulfone 

membranes by the dry/wet inversion technique using forced-convective evaporation 

[F7].  

 

Dry/wet phase separation describes evaporation-induced phase separation in 

the outermost regions of nascent flat sheet and hollow fiber membranes prior to 

coagulation. The selective loss of the volatile solvent causes destabilization in the 

outermost region of nascent membrane. Interfacial “dry” phase separation can be 
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observed by the almost instantaneous onset of turbidity in this outermost region. 

After that, the casting solution is immersed in a non-solvent coagulant, thus 

undergoing a “wet” phase separation, where the formation of membrane bulk 

structure as well as extraction of the remaining solvents and non-solvent occurred 

[F1]. Rapid phase separation and vitrification processes are required during wet 

phase inversion step in order to generate the highest performance gas separation 

membranes [F7].  

 

A process for producing ultrathin and defect-free selecting layers on 

asymmetric membranes using dry/wet phase separation has been reported earlier for 

organic coagulation media. Peinemann and Pinnau prepared ultrathin 

polyethersulfone membranes from a casting solution by using methanol as coagulant. 

However, the resulting membranes were defective [F10].  

 

Hence, Pinnau and Koros have successful eliminate the defects and achieved 

thinner selecitve skins by changing the casting solution composition and the addition 

of a convective evaporation step in the spinning process. However, the flammability, 

toxicity, difficulties in reclamation of the organic quench media makes it not 

attractive for commercial use. Hence, it is desirable to have option to use more 

conventional aqueous quench media in large-scale production operations. Pesek and 

Koros developed an aqueous quenched, dry/wet system to produce flat sheet 

polysulfone membrane [F2]. The dry/wet phase separation process with aqueous 

coagulants used in this research is based on earlier work where organic coagulants 

were used.  

 

Despite the coagulant can have a tremendous effect on morphology, it is 

believed that the membrane skin and much of the transition region is formed during 

the dry phase separation step. Under optimum formation conditions, the membrane 

skin has been found to be much thinner than those formed in traditional wet phase 

separation processes as well as defect-free [F2].  

  

It is clear from the above discussion, the important properties for the 

formation of optimized asymmetric membranes made by the dry/wet phase inversion 

process are shown below [F8]. 
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(a) The composition of the casting solution should be as close as possible to the 

thermodynamic instability limit: binodal composition. 

 

(b) The force convective evaporation should be carried out by using inert gas to 

induce phase separation in the outermost region of the cast film (dry phase 

inversion). 

 

(c) A thermodynamically strong non-solvent should be chosen as coagulant in the 

quench step (wet phase inversion). Besides that, the quench medium must be 

miscible with the solvents of the casting solution. 

 

 

 

2.6.1.3 Advantages of Dry/wet Spinning Process 

 

The dry/wet phase separation process is a suitable method for the preparation 

of ultrathin and defect-free integrally skinned asymmetric membranes. It does not 

have severe limitation and successfully employed for many polymers, solvents, non-

solvents, solution viscosities and coagulation media. [F2]. It can obtain almost every 

known membrane morphology [B18]. 

 

 

 

2.6.1.4 Different Types of Spinneret  

 

Spinneret is the most important part in a spinning process. In general, there are 

3 types of spinnerets used for the hollow fiber spinning process [B18]: 

 

 

 

(a) The segmented-arc design 

This spinneret has a C-shaped orifice and it is suitable for melt spinning. In this 

system, extradite rapidly coalesces to complete the annular configuration. This 
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system does not require gas injection to prevent collapse of hollow fiber because the 

gas is drawn through the unwelded gaps. 

 

(b) Plug-in-orifice design 

This design simply provides the extrudate with the annular shape. A gas supply is 

usually required to prevent collapse. 

 

(c) Tube-in-orifice jet design 

This is the most versatile combination since it can be applied to all spinning 

techniques mentioned in the preceding section. Gas, liquid or suspended solids can 

be delivered through the inner tube to maintain the annular structure and to control 

coagulation of the fiber bore as well as to encapsulate gases, liquid or solids to form 

the so-called loaded fibers. 

 

(d) Multiannular design 

This design is employed in spinning of multilayer fiber walls or for entrapping 

(encapsulating) activated species in a composite hollow fiber wall. The gas used (in 

all cases) is usually inert (N2) so no chemical interactions occur between gas and 

organic polymers. 

 

 

  

2.6.2 Advantages of Hollow Fiber  

 

Hollow fiber membrane has been applied in this research due to its abundant 

advantages and it is well known as a suitable configuration for gas separation process 

as shown in Table 2.4. The advantages of hollow fiber have listed as below. 

 

(a) Hollow fibers exhibit higher productivity per unit volume. They have high 

packing density and large surface area. In order word, high surface area to 

volume ratio. 0.04 m3 membrane device can easily accommodate 575 m2 of 

effective membrane area in hollow fiber form (90 µm in diameter) while the 

same device only can put in 30 m2 of spiral wound flat-sheet membrane or 5m2 

of membrane in a tubular configuration [B18,F15]. Table 2.5 displays that 
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hollow fiber membrane has highest surface area to volume ratio among 

different membrane module. 

 

(b) They are self-supporting and can operate under high pressures condition. 

Thereby, simplify the hardware for fabrication of a membrane permeator 

[B18]. 

 

(c) High recovery in individual units [B18]. 

 

(d) Low cost [C56]. 

 

 

Table 2.4: Different modules for different process [G5] 

 

Process 

Plate-

and-

frame 

Spiral-

wound 

Disc-

tube 

Tubular Capillary Hollow 

fiber 

TFM 

Microfiltration +   ++ +  ++ 
Ultrafiltration + + + ++ ++  ++ 
Nanofiltration + ++ + ++ ++ + + 
Reverse Osmosis + ++ + +  ++  
Gas Separation  ++ +  + ++ + 
Pervaporation ++ + +  +   
Electrodialysis ++       
Dialysis +   + ++ ++  

 

++  : Best suited for a given process. 

+ : Suited under certain circumstances 
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Table 2.5: Characteristics of different membrane modules [G5] 

Module Type Characteristics Surface to volume ratio 
(m2/m3) 

Plate-&-frame Flat sheet membranes  100 – 200 
Spiral-wound Flat sheet  700 – 1,000 
Disc-tube High pressures possible  100 – 200 
Tubular ID > 5 mm  100 – 500 
Capillary 0.5 < ID < 5 mm  500 – 4,000 
Hollow fiber  ID < 0.5 mm  4,000 – 30,000 
Transverse flow Fibers perpendicular to feed  500 – 20,000 

 

 

 

2.6.3 Disadvantages of Hollow Fiber  

 

The main disadvantage of hollow fiber membranes is its sensitivity to fouling 

and plugging by particulate matter due to a relatively low free space between fibers 

[B18]. However, feed stream in gas separation are relatively clean.  Beside that, the 

pressure drop is significant with gas flow through the membrane bore. Therefore, the 

fiber length is an important criterion in the design of a separation unit [F11]. 

Moreover, other drawbacks are fragility and difficulty of packaging into modules 

[C56]. 

 

 

 

2.6.4 Hollow Fiber Flow Configurations 

 

There are a few hollow fiber flow configurations applied for different industry 

applications [B18]: 

(a) Countercurrent flow with the feed enters outside the fiber and permeate is 

inside the fibers bore. This flow configuration usually used for reverse osmosis 

and ultrafiltration application 
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(b) Countercurrent flow with the feed flows in the fiber bore and permeate is 

outside the fiber. Large diameter fibers are used in this flow configuration and 

it is appropriate for the application, where the feed has a high loading of 

particulates. 

 

(c) Cross flow with shell side feed. Microfiltration generally applied this type of 

flow configuration.  

 

Both three flow patterns can be utilized in the gas separation application. 

 

 

 

2.7 Influence of Carbonization Process on the Carbon Membrane Structure 

 

Carbonization process is utilized for the fabrication of carbon hollow fiber 

membranes from the PAN polymeric membranes. Carbon membrane usually 

consisting of 3 structural zones: an inner layer of coarse pores, finger-like channels 

and a dense skin. Linkov et al. [C14] have concluded that carbon membranes with 

internal coarse pore structures and thin separation layers can be produced by the 

carbonization of PAN precursors. A few important parameters that will control the 

pore sizes of the outer skin are intrinsic viscosity of the PAN polymer, the precursor 

preparation, stabilization atmosphere and the carbonization temperature. 

Carbonization process has significant influence on the carbon membrane structure. 

 

 

 

2.7.1 Physical Structure Evolution 

 

 The carbonization of polymeric materials in membrane form leads to 

structures approaching the hexagonal structure of graphite, characterized by a 

3.354∑ interlayer spacing. The final product of the pyrolysis process may approach 

the graphitic structure to various degrees with regard to crystallinity, interlayer 

spacing and domain size depending on the polymeric precursor (carbon, cross-link 

content and other structural details) and the carbonization conditions (temperatures, 
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heating duration, heating rate, atmosphere and purge gas flowrate). Furthermore, the 

final product may have a nearly compact form or develop considerable porosity at 

one or more level (microporosity, mesoporosity and macroporosity) [C77]. 

 

The volume of the carbon hollow fiber membrane reduced with increasing of 

the carbonization temperatures due to the shrinkage of fiber inner diameter and 

outside diameter as well as length [C1,C61]. The diameter of fiber can decreased 

from 35 µm to 7 µm [C67]. Besides that, carbonization process increased the 

micropore volume without widening the size distribution [C9]. 

 

 Steriotis et al. [C77] described that some interparticle macropore (10 – 20 

∝m) are preserved in the bulk structure of the carbon membrane and some additional 

macropore (0.1 ∝m) are generated during carbonization process. However, 

carbonization does not result in any significant effect on the skin macroporosity. 

There are typically no openings analogous to the interparticle voids of the bulk on 

the skin layer of membrane.  

 

The absence of macroporosity in the skin may be attributed mainly to the 

special characteristics of the skin carbonization, which located at the exterior of the 

membrane and made from a solution precursor. Therefore, the skin undergoes the 

carbonization reactions first with the presence of a free surface. Consequently, the 

skin material has the freedom to pack more efficiently while the interior (bulk) 

undergoes structural changes under dimensional constraints because hollow fiber 

diameter becomes fix as the skin hardens. Eventually, the bulk material (especially 

the less dense or less-rigid interparticle materials) preserves or develops 

macroporosity while the skin becomes compact of the micron scale [C77]. 

 

The carbonization process produces a cross-linking between adjacent chains. 

This crosslinking obtained by carbonizing the stabilized hollow fiber resulted in the 

increasing of carbon fiber strength. In addition, density increased rapidly below 

carbonization temperature of 1000°C. This observation showed that the 

aromatization and cross-linking of the heterocyclic rings and the lengthening and 
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broadening of carbon basal planes rendered the repacking of the structure in carbon 

hollow fiber membrane [C62].  

At about 600°C, the fusion to larger structures of the ladder polymer chains 

formed at lower temperature in the precursor. This 600°C fusion does not result in a 

sharp narrowing of the spacing between lamellar plate-like structures formed along 

the fiber axis during the stabilization, which can only occur at higher temperature. 

The spacing formed at 600°C or below can range from 10 nm to several tens of 

nanometers and is in the form of open pores [C14]. 

 

The stabilized hollow fiber membrane was composed of lamellar-platelike 

structure (LPLS) along the fiber axis. The large spacing between 2 LPLS is one kind 

of open pore. During the carbonization stage, the lamellar plates could be packed 

together, thus narrowing the pores. The dimensions of the large open pores decreased 

when the carbonization temperature was raised. It was found that the preferred 

orientation of the carbon hollow fiber membrane increased with temperature 

throughout the range of 320 – 800°C. In addition, the broadening of the carbon basal 

planes could lead to rearrangement and misorientation of structures along the fiber 

axis. It was reported that the main reason for the conversion of open to closed pores 

could be the broadening of the basal planes during carbonization. This could lead to 

the closing of the surface entrances from open structure [C62]. 

 

 

 

2.7.2 Chemical Structure Evolution 

 

The chemical structures of PAN membranes undergo oxidation, cyclization, 

dehydrogenation and denitrogenation during pyrolysis process as displayed in Figure 

2.11 to Figure 2.13. At low pyrolysis temperatures (28°C – 250°C), the heat causes 

the cyano repeat units to form cylces and favors of the formation of a ladder polymer 

in which oxygen is present as carbonyl groups (–C=O) as seen in Figure 2.11.  

 

The Figure 2.11 displays that the subsequent heat treatment at 250°C – 400°C 

removes hydrogen and oxygen and leads the rings become aromatic. This polymer is 
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a series of fused pyridine rings. As the cyclization or aromatization (the production 

of aromatic carbon) and condensation reactions take place, consuming the oxygen 

and hydrogen atoms will lead to the development of the pore structure in carbon 

molecular sieve membranes [B21-1.2,B6-2.7,C72,Th2]. The processes happen owing 

to the combination of carbon atoms to form a sp2 bonding structure that is similar to 

that of graphite while losing non-carbon atoms [Th2]. There is a considerable 

evolution of H2O in the early stages of carbonization (300°C – 500°C). The evolution 

of H2O results from the cross-linking condensation reactions between two monomer 

units of the adjacent ladder polymeric molecular chains [B21-1.2,B6-2.7,C62].  

 

At 400°C – 600°C, these cyclized structures undergo dehydorgenation and 

begin to link up in the lateral direction, producing a graphitelike or ribbon-like fused 

ring polymer structure consisting of a numbers of hexagons in the lateral direction 

and bounded by nitrogen atom as displayed in Figure 2.12. It was suggested that the 

lateral molecular growth occurs by condensation reactions in which the carbon atoms 

in one cyclized sequence fit into spaces left by the nitrogen atoms in adjacent 

cyclized sequence. In addition to ring-system carbon, significant amounts of carbon 

must be available for the interchange mechanism to be operative [B21-1.2,B6-2.7].  

 

Figure 2.13 shows the denitrogenation process happens at 600°C – 800°C and 

the newly formed ribbons will join together to form even wider ribbons with nitrogen 

atoms along its edges until most of the nitrogen is removed and remaining almost 

pure carbon in the graphite form [B21-1.2,B6-2.7]. Eventually, carbon hollow fiber 

membranes are produced.  

 

 Final processing step varies depending on the structure of the precursor. 

Those structures with some interdomain organization (as a result of the preservation, 

induction or enhancement of order during low temperature carbonization) require 

relatively mild final processing conditions for the formation of large ordered 

domains. In contrast, materials with strongly disordered structures (such as those 

with heavily cross-linked precursors or poorly preserved original order) require quite 

intense final processing for the formation of larger ordered domains. They may 
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instead develop strongly interwoven graphitic sheaths (glassy carbon), especially 

when the processed object has a pronounced three-dimensional form [C77]. 

 

O OO O

250°C -- 400°C  

    Figure 2.11: Oxidative stabilization process 

 Stabilization  (28°C – 250°C)  

 

Figure 2.12: Dehydrogenation process at 400 – 600°C 

Dehydrogenation 
400°C – 600°C  
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Figure 2.13: Denitrogenation at 600°C – 800°C 

Denitrogenation 

(600°C – 800°C)  
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2.8 Structure of PAN-based Carbon Hollow Fiber Membrane 

 

The structure of PAN-based carbon hollow fiber membrane is fibrillar in 

nature, mimicking the fundamental structure of the polymeric precursor fiber. PAN-

based carbon hollow fiber membranes contain extensively folded and interlinked 

turbostratic layers of carbon with interlayer spacings considerably larger than those 

of graphite as shown in Figure 2.14. The turbostratic layers within PAN-based 

carbon hollow fiber membranes appear to follow the original fibril structure of the 

PAN precursor fiber. Although the turbostratic layers within these fibrils tend to be 

oriented parallel to the fiber axis, they are not highly aligned. This fibrillar structure 

that makes PAN-based carbon hollow fiber membrane less prone to flaw-induced 

failure [C67].  

 

It was observed that the crystallites within the PAN-based carbon hollow 

fiber membranes are not perfectly aligned and misoriented crystallites are relatively 

common. The superior compressive strength of carbon hollow fiber membrane is 

mainly attributed to the inter-crystalline and intra-crystalline disorder, which mostly 

caused by its fibrillar structure as displayed in Figure 2.15. Edie inferred that the 

fundamental fibrillar structure of PAN-based carbon fibers is ultimately created 

during initial fiber formation [C67].  

 

 

Figure 2.14: Microstructure of PAN-based carbon fiber proposed by Johnson [C67] 
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Figure 2.15: Misoriented crystallite linking two crystallites parallel to fiber axis 

[C67] 

 

 

 

2.9 Permeation Measurements of Carbon Membrane 

 

The performance of carbon membrane can be characterized by its selectivity 

and permeability. These two parameters can be measured by a few permeation 

measurement methods. 

 

 

 

2.9.1 Constant Pressure-Variable Volume Method 

 

For this method, high gas pressure applied on the feed in side while the 

permeate side with low pressure (usually at atmosphere pressure). The change in the 

volume of permeates measured as function of time by using the displacement of a 

short column of liquid/soap film bubble in a capillary. The series of pure gases are 

always tested in the order of increasing permeability with the purpose to reduce the 

permeability of the faster gases by any remaining slow gas. This will reduce the 

calculated selectivity and obtain a worst selectivity [F20,F9]. This method 

successfully used by Brubaker and Kammermeyer [F9]. 
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2.9.2 Constant Volume-Variable Pressure Method 

 

In this method, the both sides of the membrane are initially evacuated. 

Constant gas pressure applied on one side of the membrane. Increasing of the 

permeating gas pressure is measured on the opposite of the membrane by pressure 

measurement equipment such as pressure transducer while the downstream pressure 

of 10 mmHg or less was always negligible relative to the upstream pressure 

[F9,F20]. 

 

 

 

2.9.3 Variable Concentration Method 

 

2 different gases are allowed to contact the opposite sides of the membrane. 

Gas composition is monitored as a function of time on either side of the membrane. 

The measurements are conducted under zero total pressure differentials. This method 

developed by Landrock and Proctor [F9]. 

 

The first 2 methods have proved to be more popular because they do not 

require high cost and analytical apparatus. The variable pressure method in particular 

is widely used at the present time and has been adopted as a standard by the 

American Society for Testing Material. However, the variable volume method offers 

the advantages of accurate and rapid permeability measurements. Beside that, it is 

suitable for the application with wide range of temperature and pressure. In addition, 

relatively unskilled person can conduct the measurements, since they do not require 

the use of vacuum techniques. Besides that, leaks in the apparatus and pinholes in the 

membrane being tested are easy to detect and identify.  

 

The permeability data obtained by the variable volume method with thin 

membranes, of the order of 0.002 in, were found to agree within experimental error 

with comparable values determined by the variable pressure method. On the other 

hand, permeabilities determined by the former method were 15-30 % higher for 

thicker membranes with about 0.01 in thickness [F9]. 



 

 

 

CHAPTER IV 

 

 

 

RESULTS & DISCUSSIONS 

 

 

 

4.1 Permeation Properties of Carbon Membrane 

 

Generally membrane is characterized foremost by its permeation properties, 

which consists of two importance parameters: permeability and selectivity. These 

two parameters describe the performance of carbon membrane. Permeability of a 

membrane will determine the productivity of a membrane process while selectivity 

of a membrane will determine the purity of the product. 

 

The permeation rate in carbon membrane is mainly depending on the kinetic 

diameter of the gas molecules instead of their molecular weights or solubility and 

diffusivity coefficient [C6,C7,C38]. The selectivities achieved for different gas pairs 

were much higher than those expected from Knudsen diffusion. Knudsen separation 

factor for O2/N2, CO2/CH4 and CO2/N2 are 0.94, 0.60 and 0.80 respectively [C6].  

 

High selectivity indicates that carbon membranes have micropores with 

similar size to the dimensions of gas molecules. It is evident that transport 

mechanism owned by carbon membrane is molecular sieving mechanism [C6,C38]. 

If the Knudsen diffusion mechanism occurred, the lighter molecules N2 (in O2/N2 

mixture) and CH4 (in CO2/CH4 mixture) would permeate faster [C8].  

 

This chapter reports the results and effect of a few important parameters in 

pyrolysis process including pyrolysis temperatures, heating duration/soak time, purge 
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gas flowrate and thermastabilization condition. These parameters have significant 

influence on the permeation properties of the carbon membranes.  

 

 

 

4.2 Influence of Pyrolysis Process on Carbon Membrane Performance 

 

4.2.1 Effect of Pyrolysis Temperature 

 

Pyrolysis temperature is important in the carbon membrane production, as it 

will alter its properties and transport mechanism. As the pyrolysis temperature 

increases, the gas permeation mechanism changes from solution diffusion for the 

polymeric and thermostabilized membranes to molecular sieving or adsorption-

activated diffusion for the pyrolyzed membranes.  

 

If the membranes are not pyrolyzed at high temperature, they are not 

considered as a real “carbon” membrane because they usually contain subdomains 

where the structure of the polymer/precursor can be recognized in part [C49,C72]. 

The revolution in the structure of membrane will also affect the permeation 

properties of the membranes. From previous study [C44,C4], the increasing of the 

final pyrolysis temperature will result in the decreasing of the permeability and the 

increasing selectivity.  

 

The structural revolution of the membrane can be seen from its skin layer and 

substructure through SEM results as shown in Figure 4.1 and Figure 4.2. As seen in 

those figures, the membrane polymer changed from amorphous polymer to rigid and 

crystalline polymer. Carbon membranes carbonized at 250°C have partial structure of 

the original PAN membrane as displayed in Figure 4.1a – 4.1b and Figure 4.2a – 

4.2b. The carbon membranes carbonized at 400°C – 800°C have similar bulk 

structure (in terms of cross section and skin layer). This indicates that the PAN 

membranes must be carbonized at minimum temperature of 400°C. 
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Figure 4.1: Structural change of the membrane skin layer at different pyrolysis 

temperatures 

(b) Tpyrolysis = 250°C (a) PAN membrane 

(c) Tpyrolysis = 400°C (d) Tpyrolysis = 500°C 

(e) Tpyrolysis = 600°C (f) Tpyrolysis = 700°C 

(g) Tpyrolysis = 800°C 
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Figure 4.2: Structural change of the membrane substructure at different pyrolysis 

temperatures   

(b) Tpyrolysis = 250°C (a) PAN membrane 

(c) Tpyrolysis = 400°C (d) Tpyrolysis = 500°C 

(e) Tpyrolysis = 600°C (f) Tpyrolysis = 700°C 

(g) Tpyrolysis = 800°C 
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However, the permeation results of PAN membrane carbonized at 400°C 

were unable to obtain in this research because it was extremely brittle and fragile 

membrane. It was reported that the main reactions occurred below 500°C were the 

evolution of H2O, CH4 and CO2. These reactions promoted a cross-linking of 

heterocyclic rings, which formed sufficient carbon basal planes to cause a dramatic 

increase in the modulus and tensile strength. It was found that the modulus increased 

slowly below 500°C. In contrast, increasing temperature over 500°C promoted the 

formation of longer and broader basal planes, which led to a rapid increase in 

modulus and tensile strength [C62]. 

 

 

 

4.2.1.1 Effect of Pyrolysis Temperatures on the Membrane Selectivities 

 

At early stage of pyrolysis process, the selectivity of the membranes 

decreased due to pore formation on the surface of the membranes as seen in Figure 

4.3. At 250°C, the carbon membranes were partially formed. There were only a few 

small pores that existed at this period as shown in SEM image of Figure 4.4b. The 

membranes still have the characteristic of the nonporous polymeric membranes.  

Figure 4.3: Influence of pyrolysis temperatures on the carbon membrane selectivity 

at different feed pressure 
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Figure 4.4: Surface of membranes pyrolyzed at different carbonization temperatures 

 

(b) Tpyrolysis = 250°C (a) PAN membrane 

(c) Tpyrolysis = 400°C (d) Tpyrolysis = 500°C 

(e) Tpyrolysis = 600°C (f) Tpyrolysis = 700°C 

(g) Tpyrolysis = 800°C 
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 The increasing amount of the pores at 500°C and 600°C as displayed in 

Figure 4.4d and Figure 4.4e. had reduced the selectivity of the membranes 

Nevertheless, the relatively high pyrolysis temperature is favorable for increasing 

carbon membrane selectivity as displayed in Figure 4.3. The selectivity of the 

membranes increased as the pyrolysis temperatures were being increased to 700°C 

and 800°C, which is in agreement with previous studies [C2,C54]. Therefore, the 

selectivities obtained were higher than original PAN membrane as shown in Figure 

4.5. This is because of the material progress from a low selectivity flexible polymer 

to a rigid high selectivity carbon [C54]. In addition, carbon membranes carbonized at 

700 – 800°C seem not much influenced by the feed in pressure.  The pyrolysis 

temperatures can change several parameters of the membrane, which directly or 

indirectly influence the selectivity of the membrane. 

Figure 4.5: Comparison between PAN membrane and carbon membrane at 250°C, 

700°C and 800°C 

 

(a) The pyrolysis kinetics of the precursor 

 

The TGA results in Table 4.1 shows that the weight loss was most significant 

at 800°C compared with other carbonization temperatures. Higher weight loss 

indicates higher carbon ratio to other elements such as oxygen, nitrogen and 

hydrogen can be obtained. This means that less void were exist in the membrane. 
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Previous studies found that the variety in weight loss as a function of pyrolysis 

temperatures was more pronounced in the inert purge pyrolysis system compared 

with vacuum pyrolysis system [C44]. 

 

Table 4.1: Weight loss of the membranes at different pyrolysis temperatures  

Pyrolysis Temperature Weight Loss  Remaining Weight Percentage 
Original PAN Fibers 0.0 %  100.0%  

250°C 1.9 %  98.1%  
400 oC 12.0 %  86.1%  
500 oC 12.3 %  73.8%  
600 oC 4.4 %  69.4%  
700 oC 4.4 %  65.0%  
800 oC 19.2 %  45.8%  

 

The FTIR results showed that the functional groups of the membranes 

decreased with the increasing of carbonization temperatures. PAN membranes 

possess functional groups such as methyl (CH3) and nitrile (C≡N) as shown in Figure 

4.6. Other FTIR results were presented in Appendix D-1 to D-6. As seen in 

Appendix D-1, membranes carbonized at 250°C have methyl group (C-H), nitril 

group  (C≡N), amines group (C-N) and alkene group (C=C). C=C group existed due 

to the aromatization process occurred during thermastabilization process. At 400°C, 

the methyl group was removed while C≡N, C-N and C=C were eliminated at 500°C.  

 

At high heating temperatures such as 600°C – 800°C, all functional groups 

were not found because the heat treatment has successfully removed H and N 

element from the membrane. Kusuki et al [C2] described that the asymmetric 

structure of the membrane become dense due to the physical shrinking of the 

membrane with a decomposition and chemical condensation of the precursor and the 

evolution of the compounds. 
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(b) The pyrolysis kinetics of the polymer degradation byproducts. 

 

At low pyrolysis temperature, the pyrolysis byproducts would degrade prior 

to complete removal and were plugging the membrane “pores” when low purge gas 

flowrate was applied. However, at high pyrolysis temperature, it was proposed that a 

thin layer of carbon could have been deposited inside the “pores” without sealing 

them. In other word, average pore size was being modified or reduced without 

complete pore blocking [C44,Th2]. 

 

(c) The compactness of the turbostratic carbon structure (interplanar spacing, 

amorphous portion and pores) 

 

Densification of the porous carbon matrix occurs at high pyrolysis temperature. 

At high temperature, variety of weight losses is lesser but larger diameter and linear 

shrinkage was evident which resulted in higher bulk density. It was observed that the 

outer diameter of the hollow fiber membranes can reduced from 0.6 mm to 0.25 mm, 

which is more than 50% of shrinkage. This definitely produces tighter porous carbon 

morphology.  Thereby, the selectivity increases while the permeability decreases 

[C44,Th2]. Besides that, Tanihara and his co-workers [C1] have suggested that 

carbon membrane is composed of network of the aromatic fragments having less 

molecular mobility. The aromatic fragments grow and crosslink between the 

fragments progresses, then the asymmetric structures of the membranes become 

dense with the increasing of pyrolysis temperatures. 

 

Moreover, gases are likely to permeate through the cross-linked voids of the 

amorphous region and the interlayer spacing of the graphite-like microcrystallines 

[C4]. Higher pyrolization temperature will increase the formation of a turbostratic 

structure, which means the occurrence of graphite domains in amorphous carbon 

[C12]. Suda and Haraya [C40] observed that high temperature pyrolysis would cause 

a higher crystallinity, density and a narrower interplanar spacing of graphite layers of 

the carbon, which produces a carbon membrane with high gas selectivities. In 

addition, Steriotis et al. [C77] explained that the maximum temperature of pyrolysis 

process is a major factor affecting the size and interplanar spacing of the evolving 

carbon domains. 
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The increasing of pyrolysis temperature contributes to the decreasing of 

amorphous portion leading to high gas selectivity. The carbon prepared by the 

pyrolysis of organic materials has a turbostratic structure, in which layer-planes of 

graphite-like structure are dispersed in non-crystalline carbon. Several types of pores 

with diameter of a few ten of angstrom may also exist at the surface and in the 

structure into which molecules can penetrate. Most of the molecules may penetrate 

and diffuse into the membrane via these voids. As crystallization proceeds at 

elevated temperatures, the larger molecules are restricted from permeate through the 

smaller and narrower cross-linked voids. [C40].  

 

In addition, permeation properties of carbon membranes are dependent on pore 

volume and pore size distribution, which are decided by carbonization conditions 

[C28]. Kusakabe et al. [C8] suggested that the micropores are responsible for the 

selectivities of the carbon membranes. Numerous researchers [C37,C31,C72,C80] 

proposed that high pyrolysis temperatures are responsible for pore shrinkage. The 

pores mouth dimension becomes narrow owing to the graphitization. In other words, 

the graphitization by heat treatment would improve the sieving performance of the 

carbon membrane [C80]. Mochida et al. [C80] proposed that the carbon tends to give 

slit-type pores consistent with its graphitic layer. High heat treatment induces the 

shrinkage of graphitic layers and may produce new slits and reduce the slits distance 

of the micropores in the carbon molecular sieve membrane [C80].  

 

(d) Entropic selectivity 

 

Anshu Singh-Ghosal and Koros [C58] suggested that the selectivity of 

membrane is depending on sorption selectivity and diffusivity selectivity. Diffusivity 

selectivity can be divided into entropic selectivity and enthalpic selectivity. Enthalpic 

selectivity/energetic selectivity is an energetically biased selection process. A 

penetrant sorbed in a nonporous polymer matrix diffuses by executing a size-

dependent jump. These jumps are moderated by the activation energy needed to 

create transient gaps of sufficient size to enable the jump to occur. Smaller penetrants 

require the localization of less activation energy, thereby easier penetrate through the 

membrane. 
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However, carbon membranes with higher selectivity than polymeric 

membranes are not only attributed to this energetic factor but also entropic factors. 

The entropic factor for polymeric membrane is negligible regarding its contribution 

to diffusivity selectivity owing to the polymer chains [C58]. Entropic selectivities 

arise from the ability of molecular sieving media to selectively reduce the rotational 

degrees of freedom of N2 versus O2 in the diffusion transition state. Thus, the 

entropic selectivity arises from O2 retained more degrees of freedom in the transition 

state than nitrogen. The polymer chains, which are in constant thermal motion are 

incapable of selectively restricting the motion of N2 in the transition state leading to a 

complete loss of entropic selectivity. These significant segmental motions present in 

polymers prevent exercising this fine level of control, thereby limiting the 

performance of polymeric materials compared to molecular sieves [C54,C58].  

 

On the other hand, the sorption selectivity for O2/N2 is lies in the range of 1–2 

in almost all glassy polymers and in the range of 0.7 to 2 for molecular sieving 

materials like zeolite 4A and carbon molecular sieve. According to Anshu Singh-

Ghosal and Koros, the diffusivity selectivity/mobility selectivity is responsible for 

the remarkable differences in the separation properties of membrane. They reported 

that the mobility of the polymer chains might have become severely hindered as the 

pyrolysis temperatures increased. Therefore, restricting the motion of the larger gas 

molecule. By tightening of periodic pore mouths exist between the free volume 

sorption sites, hence accounts for greater size and shape selectivity. Therefore, the 

increasing of selectivity is due to the increasing of mobility selectivity because the 

thermodynamic sorption selectivity of materials does not change measurably 

[C54,C58]. 

 

 

 

4.2.1.2 Effect of Pyrolysis Temperatures on the Membrane Permeability 

 

 The changes in gas permeance with pyrolysis temperature are related to the 

modification of the textural characteristics (micropore volume and the mean 

micropore size) of the selective film [C5]. Figure 4.7 and Figure 4.8 display that at 

initial stage (250°C), both oxygen and nitrogen permeability increased with 
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increasing of carbonization temperature until a maximum stage at 600°C. It was 

followed with the decreasing of permeability at 700°C and 800°C. The similar trend 

was also observed by previous researchers [C5,C9,C18,C39,C54,C72].  

 

Figure 4.7: Influence of pyrolysis temperatures on the oxygen permeability of the  

membranes at different feed pressure 

 

Figure 4.8: Influence of pyrolysis temperatures on the nitrogen permeability of the 

membranes at different feed pressure 
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As shown in Figure 4.9, the permeability of oxygen and nitrogen for 

membranes heated at 250°C were much lower than PAN membranes at pressure 1 – 

6 bar. Oxygen and nitrogen permeability of membrane carbonized at 250°C were in 

the range of 0.02 – 0.036 GPU and 0.01 – 0.018 GPU respectively. Meanwhile, the 

oxygen and nitrogen permeability for PAN membranes obtained were 12 – 50 GPU 

and 8 – 46 GPU respectively. This probably means that the partial carbon 

membranes have lower diffusivity and solubility than original PAN membranes. 

 

At initial stage of pyrolysis, the pores will gradually appear and subsequently 

follow by the pore enlargement due to abstraction of surface carbon atom as carbon 

monoxides. This means that the micropore volume increases initially until it reaches 

a maximum stage. The increase in the total micropore volume proves that 

carbonization process is effective in enlarging the total volume of the micropores. At 

higher pyrolysis temperature, the limiting pore volume and pore size start to decrease 

and the pore size distribution becomes sharper. Additionally, it also reduces the 

portion of larger pores. At last, the pores will shrink and finally collapse and 

disappear/pore closure owing to progressive annealing 

[C4,C5,C9,C18,C28,C36,C39].  

 

Figure 4.9: Comparison between PAN membranes with membrane heated at 250°C 
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The SEM results in Figure 4.4 support the preceding observation. Formation 

of pores started at 400°C while large amount of pores with maximum pore size 

obtained at 600°C. The subsequent heat treatment at 700°C and 800°C reduced the 

pore size and amount of pores. Some researchers [C9] proposed that the permeability 

of permeating gas is controlled by the size distribution of the micropores rather than 

the total micropores volume. 

 

Anshu Singh-Ghosal and Koros [C54] observed that activation energies for 

gas diffusion increased as the pyrolysis temperature increased. Activation energies of 

diffusion and effective heats of sorption for a penetrant in a material contribute to the 

total of activation energies for permeation. Higher activation energy of diffusion 

means higher resistance to diffusion in the molecular matrix and reduced the 

permeation of gas. This finding is in agreement with Lafyatis et al. [C73] 

observation, which indicated that the higher temperatures treatments induce greater 

diffusional barriers to gaseous sorption in the carbon molecular sieve structure.  

  

In order to achieve carbon membranes with excellent performance, 

controlling the pyrolysis temperature is obviously a way to tailor the microstructure 

as well as permeation properties of carbon membrane [C4]  

 

 

 

4.2.2 Effect of Heating Duration (Soak Time) 

 

The literature review showed that the heating duration usually applied during 

pyrolysis processes were between 30 min to 3 hours. However, a few researchers 

used soak time which less than 5 minutes [C1,C2] or 5 hours and even 10 hours 

[C47]. Although there are a few researchers involved in the investigation of heating 

duration during pyrolysis process, both researchers are using polyimide based 

polymer such as PMDA-ODA [C4,C12] and AP [C54] as the carbon membranes 

precursor. It is noted that very few studies were on the influence of heating duration 

in the carbon membranes production process especially research regarding non-

polyimide based polymer. 

 



 107

Figure 4.10 and Figure 4.11 displayed that the increasing of heating duration 

has caused the increasing of the oxygen and nitrogen permeability. At low heating 

duration, the resulting membrane might not a pure/real “carbon” membrane because 

the samples did not have sufficient time to break the molecular chain of the PAN 

membrane and convert it into the carbon membrane structure. Thereby, the resulting 

membranes still have the characteristic of the polymeric membranes with nonporous 

skin layer as supported by the Mariwala and Foley [C72]. They proposed that some 

structural vestiges of the original precursor are still preserved at short soak time 

(heating duration).  

 

 

Therefore, the membrane carbonized at 10 min had lower permeability than 

the PAN membranes owing to the partial carbon membranes possess impermeable 

bulk structure and incomplete pore system. Gases were difficult to permeate through 

the membrane by either solution diffusion or molecular sieving transport mechanism.  

The comparison between the permeability of membrane carbonized at 10 min with 

original PAN membrane is illustrated in Figure 4.12. 30 min heating duration only 

resulted in the formation of small amount of pores. Therefore, the permeabilities still 

relatively low. Longer heating duration provides sufficient time for the formation of 

complete pore system. Therefore, maximum permeability achieved as the heating 
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duration reached 120 min. Nevertheless, excessive long heating duration (180 min) 

leading to the reduction of the pore sizes and resulted in the decreasing of 

permeability for both oxygen and nitrogen gases.  

 

 

 

Figure 4.12: Permeability comparison between membrane carbonized at 10 min 
with PAN membrane 
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However, the selectivity of the membranes was improved by increasing the 

heating duration as shown in Figure 4.13. The results are in agreement with the result 

of previous researchers [C4,C12,C54] which found that the selectivities of the 

membrane were increased with the increasing of the heating duration [C54]. Peterson 

et al. suggested a long duration of pyrolysis and reported that high selectivities 

membranes were obtained at that condition [C12].  

 

 

Figure 4.13: Influence of heating duration on the membrane selectivity at different 

feed pressure 

 

Suda and Haraya observed that the longer pyrolysis duration contributes to 

the pore size reduction due to a sintering effect [C4]. Futhermore, Mariwala and 
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molecular sieve as the structure evolves toward a metastable equilibrium state at any 

pyrolysis temperatures. Foley et al. [C73] also observed that the increasing of soak 

time would result in decreasing of the micropore size in the carbon molecular sieve 
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 SEM results (Figure 4.14) supports the permeation results obtained, as there 

were no pores exist on the surface of 10 min carbonized membrane. But the surface 

had been changed from smooth nonporous PAN membrane to rough surface with the 

spots. The surface might in the progress of pore formation. A few tiny pores were 

found on the surface of 30 min carbonized membrane while the numbers of pores 

gradually increased with increasing of the heating duration until soak time 120 min. 

The amount of pore and pore size were reduced as the membrane carbonized at 180 

min.  Nevertheless, increasing heating duration did not give any significant alteration 

on the substructure and skin layer of the membranes as shown in Figure 4.15 and 

Figure 4.16. 

 

 In addition, the FTIR results exhibited that the amount of the functional 

groups in membranes decreased with increasing of the heating duration indicating 

that the duration of heat treatment should be sufficient to break the polymer chain in 

the membranes and remain carbon elements. Figure 4.17 displayed that the 

membrane carbonized at 10 min still had functional groups consisting of C-N, C≡N 

and C=C. However, the functional group remained in the membranes carbonized at 

30 min – 180 min were C-N only as shown in Appendix D-7 to Appendix D-10. 

 

TGA results in Figure 4.18 illustrated that the weight losses continue 

occurred for 180 min heat treatment. Therefore, the formation of real carbon 

membranes ultimately required long heating duration in order to remove completely 

the noncarbon elements. 
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Figure 4.14: Surface of PAN membranes carbonized at different heating duration 

 

 

 

 

 

 

 

(a) 10 min (b) 30 min 

(c) 60 min (d) 120 min 

(e) 180 min 
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Figure 4.15: Cross section of membranes carbonized at different heating duration  

 

 

 

 

 

 

 

(a) 10 min (b) 30 min 

(c) 60 min (d) 120 min 

(e) 180 min 
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Figure 4.16: Skin layer of membranes carbonized at different heating duration  

 

 

 

 

 

 

 

 

 

(a) 10 min (b) 30 min 

(c) 60 min (d) 120 min 

(e) 180 min 
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Figure 4.18: TGA result of a membrane heated at 500°C for 180 min 

 

 An explanation regarding the decreasing of permeability and increasing of 

selectivity at high heating duration and pyrolysis temperatures was mentioned by 

Mariwala and Foley [C72]. The conceptual model for the structure evolution in PFA-

derived carbon molecular sieve is displayed in Figure 4.19.  At low pyrolysis 

temperatures (200°C – 500°C), a highly chaotic structure consisting of amorphous 

carbon and very small aromatic microdomains are formed. At longer soak time, sp3 

carbons collapse and only sp2 carbon is observed. These sp2 carbons form the basis 

for the aromatic microdomains. This structure has a critical average pore dimension 

of rpore 1, which is relatively large. This low temperature structure may have some 
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reiminiscene of the original precursor, thereby increasing the overall disorder of the 

material and its porosity.  

 

 

Figure 4.19: Conceptual model for adsorptive structure evolution in PFA-derived 

carbon molecular sieve [C72] 

 

The size of the aromatic microdomains increases at the expense of the 

amorphous carbon regions with the increasing of soak times as well as temperatures. 

Despite a more ordered structure is formed in the short range; it is still highly 

disordered over the long range. As aromatic microdomains slowly grow with longer 

time at fixed temperatures or higher temperatures, it will adjust the orientation and 

improve the order of the structure, thus narrow the pores. Meanwhile, the 

misalignment between the aromatic microdomains begins to diminish and results in 

the reduction of average pore mouth dimensions [C72].  

 

The researchers [C72] inferred that the misalignment of the aromatic 

microdomains would improve the ultramicroporosity in the carbon. At high degrees 

of misalignment, the pores are larger and numerous. As the degree of misalignment 

decreases, the pores become narrow and finally the overall porosity drops. Hence, 

rpore2 is on average, nominally less than rpore1. As the material is heated to a high 

temperature, the internal growth of the aromatic microdomains continues and the 

amorphous carbon is consumed. With longer time or higher temperatures, the 

micropore structure will collapse, as the microdomains enlarge and more completely 
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align with one another. Therefore, the time and temperature effects can be considered 

as an annealing process, which in the limit leads to a nearly nonpermeable, 

microcrystalline graphite structure. 

 

 

 

4.2.3 Effect of Purge Gas Flow Rate 

 

It was observed that, as pyrolysis temperature increases, the carbon content 

will increase and the elemental ratio of hydrogen, oxygen and nitrogen to carbon 

decrease [C2]. This is because the heat will break the polymer chains of membrane 

during pyrolysis process and different volatile byproducts were produced. These 

evolved gases, which channeling their way out of the solid matrix during pyrolysis, 

develop the micropores of the carbon molecular sieve membranes [C4,C13]. Typical 

volatile products consisted of H2, H2O, CO and CO2 as well as smaller amount of 

hydrogen cynide (HCN), CH4 and NH3 depending on the polymer. For a polyimide, 

typical less volatile byproducts include benzene, toluene, phenol and other heavier 

molecules that resemble portions of the polyimide chain [C44] while the noncarbon 

elements usually remove as volatiles from PAN membranes are hydrogen cynide 

(HCN), hydrogen (H2), ammonia (NH3), methane (CH4), water (H2O), carbon 

monoxide (CO), carbon dioxide (CO2) and nitrogen (N2) [B21-1.2,C67]. 

 

If the less volatile by products are not removed quickly enough during 

pyrolysis, they can presumably degrade further and leave carbon deposits on the 

surface of the carbon, which can be considered to be a form of chemical vapor 

deposition (CVD). Thus, at lower purge gas flow rates, the flow rate will determine 

whether the pores will blocked by carbon deposited by the polymer decomposition 

byproducts. Pore blocking via carbon deposition can occur either in the pores or on 

the fiber surface. Hence, the reduction in flow rate leads to an increase in the 

boundary layer thickness. This indicates that the permeability will decrease 

[C44,Th2]. The carbon deposit inside the pores will give additional resistance to the 

permeating gases. 
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The increasing of purge gas flowrate caused the increasing of the membrane’s 

permeability without interfering its selectivity. The results in Figure 4.20 and Figure 

4.21 showed that the permeabilities for oxygen and nitrogen were very low when the 

purge gas flow rate 20 cm3/min was utilized. High permeability could be achieved if 

the high purge gas flow rates 150 – 200 cm3/min were applied. It was observed that 

both oxygen and nitrogen permeability increased remarkably from 50 – 130 GPU at 

20 cm3/min flowrate to 150 – 730 GPU at 200 cm3/min flowrate.  

  

Figure 4.20: Influence of purge gas flowrates on the oxygen permeability at different 

feed pressure 

 

However, the membrane carbonized at 20 cm3/min purge gas flowrates still 

had higher permeability than original PAN membranes. This probably reflects that 

the pore system of membranes was not totally blocked by the volatile byproducts. 

The original PAN membranes have very low oxygen and nitrogen permeability with 

the range of 10 – 50 GPU. It is due to permeation of gases through the pore system is 

faster than the permeation through the polymer matrix of membranes. Thus, 

molecular sieving membranes tend to give higher productivity than conventional 

solution-diffusion membranes. 

 

The membranes’ selectivity achieved was in the range of 1.1 – 3.3. Figure 

4.22 displays that the selectivity of the membrane did not affect much by the purge 
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gas flow rates. These finding is in agreement with the result of Geizler and Koros 

[C44] which observed the decrease of permeate flux by at least 2 orders of 

magnitude without increasing of selectivity when the purge gas flow rate 20 cm3/min 

was applied.  

Figure 4.21: Influence of purge gas flowrate on the nitrogen permeability at different 

feed pressure 

 

Figure 4.22: Influence of purge gas flowrate on the membrane selectivity at different 

feed pressure 
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This observation displays that purge gas flowrates is essentially importance to 

enhance the productivity of carbon membranes without sacrificing its separation 

ability. A suitable and optimum inert gas flow rate must be determined for different 

carbon membrane precursors. 

 

 SEM results in Figure 4.23 displayed the variation of membranes surface 

carbonized at different purge gas flowrates. Large amount of pores are evident on the 

surface on the membranes carbonized at high purge gas flowrates. In contrast, a lot 

of pores were blocked and coated by carbon deposit when low purge gas flowrates 

were applied. However, neither support layers nor skin layers of membranes were 

influenced by the purge gas flowrates as displayed in Figure 4.24 and 4.25. 

Therefore, there is no significant diversity between the membranes pyrolized at 

different purge gas flowrates. 

 

 In addition, the FTIR results support the preceding observation, which 

exhibited that only functional group nitril (C-N) owned by membranes fabricated 

using different purge gas flowrates at 500°C. Figure 4.26 shows the FTIR result for 

carbon membrane carbonized by using 20 cm3/min purge gas flowrate. Other FTIR 

results were presented in Appendix D-11 to Appendix D-13. The results indicated the 

purge gas flowrates during pyrolysis would not affect the chemical structure of the 

membranes. Obviously, the purge gas flowrates will not manipulate the bulk 

structure of the membranes and affect the pore size distribution, but it is responsible 

in making alteration on the membranes surface properties. 

 

 

 

 

 

 

 

 

 

 



 121

 

Figure 4.23: Surface of PAN membranes carbonized at different purge gas flowrates 

(a) 20 cm3/min (b) 50 cm3/min 

(c) 100 cm3/min (d) 150 cm3/min 

(e) 200 cm3/min 
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Figure 4.24: Cross section of PAN membranes at different purge gas flowrates 

 

 

 

 

 

(a) 20 cm3/min (b) 50 cm3/min 

(c) 100 cm3/min (d) 150 cm3/min 

(e) 200 cm3/min 
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Figure 4.25: Skin layer of PAN membranes at different purge gas flowrates 

 

 

 

 

 

 

 

 

(a) 20 cm3/min (b) 50 cm3/min 

(c) 100 cm3/min (d) 150 cm3/min 

(e) 200 cm3/min 
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4.3 Influence of Thermastabilization Process Atmosphere  

  

During thermastabilization process, the purge gas chosen is critical for the 

resulting carbon membranes. It is because different atmosphere of 

thermastabilization process leading to different structure of the stabilized 

membranes. TGA results in Figure 4.27 and Figure 4.28 display that the weight loss 

was greater for the membrane pyrolyzed without oxidative thermastabilization 

treatment. The weight loss was significant especially at temperature 300°C – 350°C 

because the glassy temperature for PAN is 317°C. It means that the chemical 

stability of the oxidative thermastabilized membrane is higher than the membrane 

obtained from inert thermastabilization process.  

 

However, if the membrane was exposed under oxygen purge only, the weight 

of the membrane was entirely loss at around 650°C due to the excessive oxidation 

process as shown in Figure 4.29. This indicated that the fibers were melting and 

removed as volatile gas. In addition, the PAN hollow fibers already broke even 

carbonized until 500°C only. Therefore, inert gas should be used for PAN heating 

treatment after thermastabilization process. 

 

 The polymerization reactions may occur from simple heating of PAN in inert 

or oxidizing atmosphere and give rise to a thermally stable cyclized structure, which 

is often referred as ladder polymer as shown in Figure 4.30. Two different chemical 

structures would form by inert stabilization and oxidative stabilization process. 

Cyclization and oxidation take place in the oxidative stabilization process while there 

is only cyclization process taking place in the former process. Previous researcher 

reported that the oxidative treatment produces more thermally stable structures [B21-

1.2,B6-2.7,C67]. 
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Figure 4.27: TGA result for the membrane stabilized under oxidative atmosphere 
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Figure 4.28: TGA result for the membrane stabilized under inert atmosphere 
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Figure 4.29: TGA result for the membrane stabilized and carbonized with oxygen 

atmosphere 
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Figure 4.30: Formation of ladder polymer in inert stabilization and oxidative 

stabilization process  

  

The rate of cyclization for the PAN fibers heated under an oxidizing 

atmosphere is faster than the membranes heated under inert atmosphere and the final 

carbon products have better yield with improved mechanical properties. It is due to 

oxidized PAN fibers have preferentially an aromatic character, which prevents the 

backbone carbon chain from extensive splitting. Conversely, aromatization does not 

readily occur at low temperatures for PAN fibers stabilized in inert atmosphere. 

Thereby, it has to be induced at higher temperatures, which causes considerable 

splitting of the main carbon chain and leads to the formation of a low yield and poor 

mechanical properties carbon fibers. It was reported that larger weight loss occurred 

for unoxidized carbon fibers [B21-1.2]. 

 

When PAN fibers are heated under controlled oxidizing atmosphere, would 

cause reorganization of the polymer chains and three-dimensional linking of the 

parallel molecular chains by oxygen bonding [B21-1.2]. In addition, previous 

researchers [C62] observed that when a PAN hollow fiber is heated at above 180°C 

in the presence of O2, C≡N bonds will be converted into C=N bonds, the ladder 

polymer will be formed and the cohesive energy between the relative chains will 

drop appreciably. It was found that O2 is introduced in the form of C=O groups and 
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bonded to the carbon backbone of the ladder polymer. The O2 of C=O is released as 

water vapor during carbonization. The densities of stabilized hollow fiber are due to 

the structural rearrangements associated with the cyclization reactions and the 

incorporation of O2 

 

Oxidative stabilization reactions initiate in the amorphous part of PAN fiber. 

The reactions contribute to the major portion of the macroscopic shrinkage. 

Crystalline morphology is largely maintained during this stage, although 

considerable randomization of crystal lamellae takes place. Stabilization reactions 

are primarily intramolecular. Intermolecular cross-linking occurs above ~ 300°C in 

the presence of O2. Macroscopic shrinkage observed during stabilization is proposed 

to be an “entropic” process, with “chemical” forces serving only to modify the 

observed response [C65]. 

 

Oxidation increased permeance without greatly damaging the selectivities. It 

is due to oxidation significantly increased the micropore volume but the pore size 

distribution was not broadened. Therefore, oxidation did not greatly affect the 

chemical structure of the membrane. Besides that, the changes in elemental 

compositions by the oxidation were much smaller than those by carbonization [C28]. 

 

 

 

 



BAB V 

 

 

 

CONCLUSIONS  

 

 

 

5.1 Conclusions 

 

From the research conducted and the preceding discussion, the carbon 

molecular sieve membrane will definitely emerge as another alternative membrane 

for gas separation process and other separation processes. Despite carbon membranes 

consist of 4 major configurations: flat, capillary, tube and hollow fiber, carbon 

hollow fiber membranes are recognized to have enormous potential to applied 

broadly in the gas separation industry for instance air separation industry. Presently, 

hollow fibers are the most famous membrane geometry due to their high surface area 

per unit volume of membrane module and other enormous advantages [F3].  

 

Carbon membrane with it unique characteristics and advantages will make it 

competitive with polymeric membrane even with other inorganic membrane. 

However, intensive research and development must be carried out to commercialize 

the carbon membrane in international market. It is important that the study regarding 

the influence of pyrolysis process on the carbon membrane performance plays a 

significant role as a starting stage to commercialize the production of carbon 

membrane in Malaysia and worldwide. From obtained results, there are a few 

conclusions reached. 
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1. Polyacrylonitrile membranes are a suitable precursor for carbon membranes as it 

can withstand high temperature heat treatment and is relatively economic 

polymer. 

 

2. Oxidative thermastabilization process is required prior to carbonization of PAN 

membrane to carbon membranes. After this treatment, the membranes have 

higher thermal stability for heat treatment at high temperatures. 

 

3. The inert gas pyrolysis is an appropriate process to fabricate and produce carbon 

hollow fiber membranes. This is because it can produce high productivity carbon 

membranes. 

 

4. Pyrolysis temperature is one of the most important parameters, which influence 

the structure as well as the permeation properties of carbon membranes. 

Increasing of pyrolysis temperatures resulted in the increasing of permeability at 

initial stage of 250°C but the permeability decreased after 600°C. High 

selectivities were achieved at temperatures 700°C – 800°C.  

 

5. Heating duration or soak time during pyrolysis process also give significant 

influence on the carbon membranes properties. As the heating duration increased, 

the permeability of the membranes increased at early stage but decreased after 

120 min. It was found that high heating duration responsible for the formation of 

high selectivity carbon membranes. Sufficient soak time is important for the 

formation of complete carbon membranes. 

 

6. Another significant factor, which has pronounced effect on the carbon 

membranes surface properties is purge gas flowrate. The high purge gas flowrate 

leaded to the production of high permeability membranes without sacrificing the 

membrane selectivity. 
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5.2 Recommendations 

 

Although carbon membranes still require improvement before they can 

become dominant commercialized inorganic membranes, carbon membranes have 

great potential to replace other inorganic membranes in the market because they have 

many useful characteristics and are able to separate gas mixtures, which have similar 

size of gas molecules, efficiently. From this research, a few recommendations were 

proposed for future investigation. 

 

1. Optimization of precursor preparation process 

 

Besides pyrolysis process, the polymer solution preparation, spinning process, 

solvent exchange process and others are important steps to ensure the production of 

excellent carbon membranes. 

 

2. Optimization of pyrolysis process 

 

There are abundant parameters during process, which will determine the properties 

and performance of a carbon membrane. A wider coverage of study on the pyrolysis 

process condition including heating rate, types of purge gas and amount of heating 

steps should be conducted. All the experimental results obtained should be simulated 

using computer software to obtain an ideal and practical pyrolysis condition, which 

can be implemented in pilot-scale. 

 

3. Composite precursor for carbon membranes 

 

Combination utilization of low cost and high cost polymers to produce composite 

carbon membranes is an alternative way to get economical and high performance 

carbon membranes. The membranes consisted of skin layer with high yield carbon 

and substructure with low yield carbon. High yield carbon leads to the development 

of high selective skin layer while low yield carbon can results in open porous 

structure with minimum resistance for the gas permeation [Th2]. 
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4. Polymer blend carbonization method 

 

The polymer blend carbonization method will become an important tool for 

producing carbon membranes with mixed-matrix materials overcome the challenges 

and limitation of membrane technology in the gas separation industry. The concept 

of this method has illustrated in Figure 5.1. Mixed matrix materials comprising 

molecular sieve entities embedded in a polymer matrix offer the potential to combine 

the processability of polymers wit the superior gas separation properties of rigid 

molecular sieving materials [G1,G6]. 

 

 

Fig 5.1: Schematic diagram of the polymer blend carbonization concept [C52] 

 

The carbonization polymer blend will lead to the formation of porous 

structure. It is because of the thermally unstable polymer (pyrolyzing polymer) will 

decomposing and remaining pores on the carbon matrix obtained from the stable 

polymer (carbonizing polymer). Polymer blends of phenolic resin and poly(vinyl 

butyral) [C52] as well as poly(diphenylene pyromellitimide) (PP) and poly(ethylene 
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glycol) (PEG) [C51] were used by previous researchers. Although polymer blends 

have widely used as important industrial raw materials for highly functional 

materials, the implementation of this carbonization method just at the beginning 

stage [C51]. More study is needed to identify suitable pyrolyzing polymers and 

carbonizing polymer for blending. 

 



 

 

 

REFERENCES 

 

 

 

C1 Tanihaara, N., Shimazaki, H., Hirayama, Y., Nakanishi, S., Yoshinaga, T. and 

Kusuki, Y. (1999). “Gas Permeation Properties of Asymmetric Carbon Hollow 

Fiber Membranes Prepared from Asymmetric Hollow Fiber.” J. Membr. Sci. 

160. 179-186. 

C2 Kusuki, Y., Shimazaki, H., Tanihara, N., Nakanishi, S. and Yoshinaga, T. 

(1997). “Gas Permeation Properties and Characterization of Asymmetric 

Carbon Membranes Prepared by Pyrolyzing Asymmetric Polyimide Hollow 

Fiber Membrane.” J. Membr. Sci. 134. 245-253. 

C3 Fuertes, A. B. and Centeno, T. A. (1999). “Preparation of Supported Carbon 

Molecular Sieve Membrane.” Carbon. 37. 679-684. 

C4 Suda, H. and Haraya, K. (1997).  “Gas Permeation through Micropores of 

Carbon Molecular Sieve Membranes Derived from Kapton Polyimide, J. Phys. 

Chem. B. 101. 3988-3994. 

C5 Centeno, T. A. and Fuertes, A. B. (1999). “Supported Carbon Molecular Sieve 

Membranes based on Phenolic Resin.” J. Membr. Sci. 160. 201-211. 

C6 Fuertes, A. B. and Centeno, T. A. (1998). “Preparation of Supported 

Asymmetric Carbon Molecular Sieve Membranes.” J. Membr. Sci. 144. 105-

111. 

C7 Fuertes, A. B. and Centeno, T. A. (1998). “Carbon Molecular Sieve 

Membranes from Polyetherimide.” Microporous & Mesoporous Materials. 26. 

23-26. 

C8 Kusakabe, K., Gohgi, S. and Morooka, S. (1998). “Carbon Molecular Sieving 

Membranes Derived from Condensed Polynuclear Aromatic (COPNA) Resins 

for Gas Separation.” Ind. Eng. Chem. Res. 37. 4262-4266. 

C9 Hayashi, J., Yamamoto, M., Kusakabe, K. and Morooka, S. (1995). 

“Simultaneous Improvement of Permeance and Permselectivity of 3,3’4,4’-



 137

Biphenyltetracarboxylic Dianhydride-4,4’-Oxydianiline Polyimide Membrane 

by Carbonization.” Ind. Eng. Chem. Res. 34. 4364-4370. 

C10 Jones, C. W. and Koros, W. J. (1995). “Characterization of Ultramicroporous 

Carbon Membranes with Humidified Feeds.” Ind. Eng. Chem. Res. 34. 158-

163. 

C11 Jones, C. W. and Koros, W. J. (1995). “Carbon Composite Membranes: A 

Solution to Adverse Humidity Effects.” Ind. Eng. Chem. Res. 34. 164-167. 

C12 Petersen, J., Matsuda, M. and Haraya, K. (1997). “Capillary Carbon Molecular 

Sieve Membranes Derived from Kapton for High Temperature Gas 

Separation.” J. Membr. Sci. 131. 85-94. 

C13 Wang, Shu Sen, Zeng, Mei Yun and Wang, Zhi Zong (1996). “Asymmetric 

Molecular Sieve Carbon Membranes.” J. Membr. Sci. 109. 267-270. 

C14 Linkov, V. M., Sanderson, R. D. and Jacobs, E. P. (1994). “Highly 

Asymmetrical Carbon Membranes.” J. Membr. Sci. 95. 93-99. 

C15 Chen, Y. D. and Yang, R. T. (1994). “Preparation of Carbon Molecular Sieve 

Membrane and Diffusion of Binary Mixtures in the Membrane.” Ind. Eng. 

Chem. Res. 33. 3146-3153. 

C16 Rao, M. B. and Sircar, S. (1996). “Performance and Pore Characterization of 

Nanoporous Carbon Membrane for Gas Separation.” J. Membr. Sci. 110. 109-

118. 

C17 Rao, M. B. and Sircar, S. (1993). “Nanoporous Carbon Membranes for 

Separation of Gas Mixtures by Selective Surface Flow.” J. Membr. Sci. 85. 

253-264. 

C18 Koresh, J. E. and Soffer, A. (1986). “Mechanism of Permeation through 

Molecular – Sieve Carbon Membrane. Part 1 – The Effect of Adsorption and 

the Dependence on Pressure.” J. Chem. Soc. Faraday Trans. I. 82. 2057-2063. 

C19 Koresh, J. E. and Soffer, A. (1980). “Study of Molecular Sieve Carbons. Part 1 

– Pore Structure, Gradual Pore Opening and Mechanism of Molecular 

Sieving.” J. Chem. Soc. Faraday Trans. I. 76. 2457-2471. 

C19

a 

Koresh, J. E. and Soffer, A. (1980). “Study of Molecular Sieve Carbons. Part 2 

– Estimation of Cross-sectional Diameters of Non-spherical Molecules.” J. 

Chem. Soc. Faraday Trans. I. 76. 2472-2485. 

C19 Koresh, J. E. and Soffer, A. (1980). “Molecular Sieving Range of Pore 



 138

b Diameters of Adsorbents.” J. Chem. Soc. Faraday Trans. I. 76. 2507-2509. 

C19

c 

Koresh, J. E. and Soffer, A. (1981). Molecular Sieve Carbons. Part 3 – 

Adsorption Kinetics According to a Surface-Barrier Model.” J. Chem. Soc. 

Faraday Trans. I. 77. 3005-3018. 

C20 Hatori, H., Yamada, Y. and Shiraishi, M. (1992). “Preparation of Macroporous 

Carbon Films from Polyimide by Phase Inversion Method.” Carbon. 30. 303-

304. 

C21 Hatori, H., Shiraishi, M., Nakata, H. and Yoshitomi, S. (1992). “Carbon 

Molecular Sieve Films from Polyimide.” Carbon. 30. 305-306. 

C22 Jones, C. W. and Koros, W. J. “Carbon Molecular Sieve Gas Separation 

Membranes – I Preparation and Characterization based on Polyimide 

Precursors.” Carbon. 32. 1419-1425. 

C23 Katsaros, F. K., Steriotis, T. A., Stubos, A. K., Mitropoulos, A., Kanellopoulos, 

N. K. and Tennison, S. (1997). “High Pressure Gas Permeability of 

Microporous Carbon Membranes.” Microporous Materials. 8. 171-176. 

C24 Ogawa, M. and Nakano, Y. (1999). “Gas Permeation through Carbonized 

Hollow Fiber Membranes Prepared by Gel Modification of Polyamic Acid.” J. 

Membr. Sci. 162. 189-198. 

C25 Acharya, M. and Foley, H. C. (1999) “Spray-coating of Nanoporous Carbon 

Membranes for Air Separation.” J. Membr. Sci. 161. 1-5. 

C26 Bird, A. J. and Trimm, D. L. (1983). “Carbon Molecular Sieves Used in Gas 

Separation Membranes.” Carbon. 21. 177-180. 

C27 Linkov, V. M., Sanderson, R. D. and Rychkov, B. A. (1994). “Composite 

Carbon – Polyimide Membranes.” Material Letters. 20. 43-46. 

C28 Kusakabe, K., Yamamoto, M. and Morooka, S. (1998). “Gas Permeation and 

Micropore Structure of Carbon Molecular Sieving Membranes Modified by 

Oxidation.” J. Membr. Sci. 149. 59-67. 

C29 Yamamoto, M., Kusakabe, K., Hayashi, J. and Morooka, S. (1997). “Carbon 

Molecular Sieve Membrane Formed by Oxidative Carbonization of a 

Copolyimide Film Coated on a Porous Support Tube.” J. Membr. Sci. 133. 

195-205. 

C30 Hayashi, J., Mizuta, H., Yamamoto, M., Kusakabe, K. and Morooka, S. (1997). 

“Pore Size Control of Carbonized BPTA-pp’ODA Polyimide Membrane by 



 139

Chemical Vapor Deposition of Carbon.” J. Membr. Sci. 124. 243-251. 

C31 Liang, Chang Hai, Sha, Guan Yan and Guo, Shu Cai (1999). “Carbon 

Membrane for Gas Separation Derived from Coal Tar Pitch.” Carbon. 37. 

1391-1397. 

C32 Keizer, K. and Verweij, H. (1996). “Progress in Inorganic Membranes.” 

Chemtech. Jan. 37-41. 

C33 Hsieh, H. P. (1990). “Inorganic Membranes.” Membrane Materials and 

Processes. 84. 1-18. 

C34 Jones, C.W. and Koros, W. J. (1994). “Carbon Molecular Sieve Gas Separation 

Membranes – II  Regeneration Following Organic Exposure.” Carbon. 32. 

1427-1432. 

C35 Koresh, J. E. and Soffer, A. (1983). “Molecular Sieve Carbon Permselective 

Membrane Part I: Presentation of a New Device for Gas Mixture Separation.” 

Sep. Sci. Tech. 18. 723-734. 

C36 Koresh, J. E. and Soffer, A. (1987). “The Carbon Molecular Sieve Membranes. 

General Properties and the Permeability of CH4/H2 Mixture.” Sep. Sci. Tech. 

22. 973-982. 

C37 Wang, Shu Sen, Zeng, Mei Yun and Wang, Zhi Zhong (1996). “Carbon 

Membrane for Gas Separation.” Sep. Sci. Tech. 31. 2299-2306. 

C38 Fuertes, A. B., Nevskaia, D. M. and Centeno, T. A. (1999). “Carbon Composite 

Membranes from Matrimid and Kapton Polyimide.” Microporous & 

Mesoporous Materials. 33. 115-125. 

C39 Centeno, T. A. and Fuertes, A. B. (2000). “Carbon Molecular Sieve Gas 

Separation Membranes Based on Poly(vinylidene chloride-co-vinyl chloride).” 

Carbon. 38. 1067-1073. 

C40 Suda, H. and Haraya, K. (1995). “Molecular Sieving Effect of Carbonized 

Kapton Polyimide Membrane.” J. Chem. Soc. Chem. Commun. 1179-1180. 

C41 Haraya, K., Suda, H., Yanagishita, H. and Matsuda, S. “Asymmetric Capillary 

Membrane of a Carbon Molecular Sieve.” J. Chem. Soc. Chem. Commun. 

1781-1782. 

C42 Soria, R. (1995). “Overview on Industrial Membranes.” Catalysis Today. 25. 

285 – 290. 

C43 Bauer, J. M. Elyassini, J., Moncorge, G., Nodari, T. and Totino, E. (1991). 



 140

“New Developments and Application of Carbon Membranes.” Key Eng. 

Materials. 61 & 62. 207-212. 

C44 Geiszler, V. C. and Koros, W. J. (1996). “Effect of Polyimide Pyrolysis 

Conditions on Carbon Molecular Sieve Membrane Properties.” Ind. Eng. 

Chem. Res. 35. 2999-3003. 

C45 Hayashi, J., Mizuta, H., Yamamoto, M., Kusakabe, K. and Morooka, S. (1996). 

“Separation of Ethane/Ethylene and Propane/Propylene System with a 

Carbonized BPDA-pp’ODA Polyimide.” Ind. Eng. Chem. Res. 35. 4176-4181. 

C46 Rao, M. B. and Sircar, S. (1993). “Nanoporous Carbon Membrane for Gas 

Separation.” Gas Sep. Purif. 7. 279-284. 

C47 Kita, H., Yoshino, M., Tanaka, K. and Okamoto, K. (1997). “Gas 

Permselecivity of Carbonized Polypyrrolone Membrane.” J. Chem. Soc. Chem. 

Commun. 1051-1052. 

C48 Suda, H. and Haraya, K. (1997). “Alkene/alkane Permselectivities of a Carbon 

Molecular Sieve Membrane.” J. Chem. Soc., Chem. Commun. 93-94. 

C49 Okamoto, K., Kawamura, S., Yoshino, M., Kita, H., Hirayama, Y., Tanihara, 

N. and Kusuki, Y. (1999). “Olefin/paraffin Separation through Carbonized 

Membranes Derived from an Asymmetric Polyimide Hollow Fiber 

Membrane.” Ind. Eng. Chem. Res. 38. 4424-4432. 

C50 Inagaki, M., Harada, S., Sato, T., Nakajima, T., Horino, Y. and Morita, K. 

(1989). “Carbonization of Polyimide Film “Kapton”.” Carbon. 27. 253-257. 

C51 Kyotani, T. (2000). “Control of Pore Structure in Carbon.” Carbon. 38. 269-

286. 

C52 Ozaki, J., Endo, N., Ohizumi, W., Igarashi, K., Nakahara, M., Oya, A., 

Yoshida, S. and Iizuka, T. (1997). “Novel Preparation Method for the 

Production of Mesoporous Carbon Fiber from a Polymer Blend.” Carbon. 35. 

1031-1033. 

C53 Ogawa, M. and Nakano, Y (2000). “Separation of CO2/CH4 Mixture through 

Carbonized Membrane Prepared by Gel Modification.” J. Membr. Sci. 173. 

123-132. 

C54 Anshu Singh-Ghosal and Koros, W. J. (2000). “Air Separation Properties of 

Flat Sheet Homogeneous Pyrolytic Carbon Membranes.” J. Membr. Sci. 174. 

177-188. 



 141

C55 Shiflett, M. B. and Foley, H. C. (2000). “On the Preparation of Supported 

Nanoporous Carbon Membranes.” J. Membr. Sci. 179. 275-282. 

C56 Wang, Huang Ting, Zhang, Li Xiong and Gavalas, G. R. (2000). “Preparation 

of Supported Carbon Membranes from Furfuryl alcohol by Vapor Deposition 

Polymerization.” J. Membr. Sci. 177. 25-31. 

C57 Fuertes, A. B. (2000). “Adsorption-selective Carbon Membrane for Gas 

Separation.” J. Membr. Sci. 177. 9-16. 

C58 

 

Anshu Singh and Koros, W. J. (1996). “Significance of Entropic Selectivity for 

a Advanced Gas Separation Membranes.” Ind. Eng. Chem. Res. 35. 1231-1234. 

C59 Fain, D. E. (1991). “Technical & Economic Aspects and Prospects for Gas 

Separation with Inorganic Membranes.” Key Eng. Materials. 61 & 62. 327-

336. 

C60 Venkataraman, V. K., Rath, L. K. and Stern, S. A. (1991) “Potential 

Applications of Microporous Inorganic Membranes to the Separation of 

Industrial Gas Mixture.” Key Eng. Materials 61 & 62. 347-352 

C61 Lee, J. C., Lee, B. H., Kim, B. G., Park, M. J., Lee, D. Y., Kuk, I. H., Chung, 

H., Kang, H. S., Lee, H. S. and Ahn, D. H. (1997). “The Effect of 

Carbonization Temperature of PAN Fiber on the Properties of Activated 

Carbon Fiber Composites.” Carbon. 35. 1479-1484. 

C62 Ko, Tse Hao. (1991). “The Influence of Pyrolysis on Physical Properties and 

Microstructure of Modified PAN Fibers during Carbonization.” J. Applied 

Polymer Sci. 43. 589-600. 

C63 Ryu, Zhen Yu, Zheng, Jing Tang, Wang, Mao Zhang. (1998). “Porous 

Structure of PAN-based Activated Carbon Fibers.” Carbon. 36. 427-432. 

C64 Furukawa, S. and Nitta, T. (2000). “Non-equilibrium Molecular Dynamics 

Simulation Studies on Gas Permeation Across Carbon Membranes with 

Different Pore Shape Composed of Micro-graphite Crystallites.” J. Membr. Sci. 

178. 107-119. 

C65 Gupta, A. and Harrison, I. R. (1996). “New Aspects in the Oxidative 

Stabilization of PAN-based Carbon Fibers.” Carbon. 34. 1427-1445. 

C66 Gupta, A. and Harrison, I. R. (1997). “New Aspects in the Oxidative 

Stabilization of PAN-based Carbon Fibers: II” Carbon. 35. 809-818. 

C67 Edie, D. D. (1998). “The Effect of Processing on the Structure and Properties 



 142

of Carbon Fibers.” Carbon. 36. 345-362. 

C68 Fuertes, A. B. (2001). “Effect of Air Oxidation on Gas Separation Properties of 

Adsorption-selective Carbon Membranes.” Carbon. 39. 697-706. 

C69 Sircar, S., Rao, M. B. and Thaeron, C. M. A. (1999). “Selective Surface Flow 

Membrane for Gas Separation.” Sep. Sci. Tech. 34.2081-2093. 

C70 Shiflett, M. B. and Foley, H. C. (2001). “Reproducible Production of 

Nanoporous Carbon Membranes.” Carbon. 39. 1421-1446. 

C71 Anand, M., Langsam, M., Rao, M. B. and Sircar, S. (1997). “Multicomponent 

Gas Separation by Selective Surface Flow (SSF) and Poly-

trimethylsilylpropyne (PTMSP) Membranes.” J. Membr. Sci. 123. 17-25. 

C72 Mariwala, R. K. and Foley, H. C. (1994). “Evolution of Ultramicroporous 

Adsorptive Structure in a Poly(furfuryl alcohol)-derived Carbongenic 

Molecular Sieves.” Ind. Eng. Chem. Res. 33. 607-615. 

C73 Lafyatis, D. S., Tung, J. and Foley, H. C. (1991). “Poly(furfurylalcohol)-

derived Carbon Molecular Sieves: Dependence of Adsorptive Properties on 

Carbonization Temperature, Time and Poly(ethylene glycol) Additives.” Ind. 

Eng. Chem. Res. 30. 865-873. 

C74 Ruthven, D. M. (1992). “Diffusion of Oxygen and Nitrogen in Carbon 

Molecular Sieve.” Chem. Eng. Sci. 47. 4305-4308. 

C75 Damle, A. S., Gangwal, S. K.,  Spivey, J. J., Longanbach, J., Venkataraman, V. 

K. (1991). “Carbon Membranes for Gas Separation.” Key Eng. Materials. 61 & 

62. 273-278. 

C76 Kapoor, A. and Yang, R. T. (1989). “Kinetic Separation of Methane-carbon 

Dioxide Mixture by Adsorption in Molecular Sieve Carbon.” Chem. Eng. Sci. 

44. 1723-1733. 

C77 Steriotis, T. H., Beltsios, K., Mitropoulos,A. CH., Kanellopoulos, N., 

Tennison, S., Wiedenman, A. and Keiderling, U. (1997). “On the Structure of 

an Asymmetric Carbon Membrane with a Novolac Resin Precursor.” J.Applied 

Polymer Sci. 64. 2323-2345. 

C78 C.Gomez-de-Salazar, A.Sepulveda-Escribano and F.Rodriguez-Reinoso 

(2000). “Preparation of Carbon Molecular Sieves by Controlled Oxidation 

Treatments.” Carbon. 38. 1889-1892. 

C79 Thaeron, C., Parrillo, D. J., Sircar, S., Clarke, P. F., Paranjape, M. and Pruden, 



 143

B. B. (1999). “Separation of Hydrogen Sulfide-methane Mixtures by Selective 

Surface Flow Membrane.” Sep.Purif.Tech. 15. 121-129.  

C80 Mochida, I., Yatsunami, S., Kawabuchi, Y. and Nakayama, Y. (1995). 

“Influence of Heat-treatment on the Selective Adsorption of CO2 in a Model 

Natural Gas Over Molecular Sieve Carbons.” Carbon. 33. 1611-1619. 

C81 Ash, R., Barrer, R. M. and Purna Sharma (1976). “Sorption and Flow of 

Carbon Dioxide and Some Hydrocarbons in a Microporous Carbon 

Membrane.” J. Membr. Sci. 1. 17-32. 

F1 Pesek, S. C. and Koros, W. J. (1994). “Aqueous Quenched Asymmetric 

Polysulfone Hollow Fiber Prepared by Dry/wet Phase Separation.” J. Membr. 

Sci. 88. 1-19. 

F2 Pesek, S. C. and Koros, W. J. (1993). “Aqueous Quenched Asymmetric 

Polysulfone Membranes Prepared by Dry/wet Phase Separation.” J. Membr. 

Sci. 81. 71-88. 

F3 Sharpe, I. D., Ahmad Fauzi Ismail and Shilton, S. J. (1999). “A Study of 

Extrusion Shear and Forced Convection Residence Time in the Spinning of 

Polysulfone Hollow Fiber Membranes for Gas Separation.” Sep. & Purif. Tech. 

17.101-109. 

F4 Cabasso, I.,  Klein, E. and Smith, J. K. (1976). “Polysulfone Hollow Fibers I 

Spinning & Properties.” J. Appl. Poly. Sci. 20. 2377-2394.  

F5 Rautenbach, R., Struck, A., Melin, T. and Roks, M. F. M. (1998). “Impact of 

Operating Pressure on the Permeance of Hollow Fiber Gas Separation 

Membranes.” J. Membr. Sci. 146. 217-223. 

F6 Clausi, D. T. and Koros, W. J. (2000). “Formation of Defect-free Polyimide 

Hollow Fiber Membranes for Gas Separations.” J. Membr. Sci. 167. 79-89. 

F7 Pinnau, I. and Koros, W. J. (1992). "Influence of Quench Medium on the 

Structures and Gas Permeation Properties of Polysulfone Membranes by Wet 

and Dry/wet Phase Inversion.” J. Membr. Sci. 71. 81-96. 

F8 Pinnau, I. and Koros, W. J. (1993). “A Qualitative Skin Layer Formation 

Mechanism for Membranes Made by Dry/wet Phase Inversion.” J. Poly. Sci. 

Part B. 31. 419-427. 

F9 Stern, S. A., Gareis, P. J., Sinclair, T. F. and Mohr, P. H. (1963). “Performance 

of a Versatile Variable-volume Permeability Cell. Comparison of Gas 



 144

Permeability Measurements by the Variable-volume and Variable-pressure 

Methods.” J. Appl. Poly. Sci. 7. 2035-2051. 

F10 Pinnau, I., Wind, J. and Peinemann, K. (1990). “Ultrathin Multicomponent 

Poly(ether sulfone) Membranes for Gas Separation Made by Dry/wet Phase 

Inversion.” Ind. Eng. Chem. 29. 2028-2032. 

F11 Puri, P. S. (1990). “Fabrication of Hollow Fiber Gas Separation Membranes.” 

Gas Sep. & Purif. 4. 29-36. 

F12 Shilton, S. J., Ahamd Fauzi Ismail, Gough, P. J., Dunkin, I. R. and Gallivan, S. 

L. (1997). “Molecular Orientation and the Performance of Synthetic Polymeric 

Membranes for Gas Separation.” Polymer. 38. 2215-2220. 

F13 Shilton, S. J. and Bell, G. (1994). “The Rheology of Fibre Spinning and the 

Properties of Hollow-Fibre Membranes for Gas Separation.” Polymer. 

35.5327-5334.  

F14 McKelvey, S., Clausi, D. T., Koros, W. J. (1997). “A Guide to Establishing 

Hollow Fiber Macroscopic Properties for Membrane Applications.” J. Membr. 

Sci. 124. 223-232. 

F15 Van’t Hof, J. A., Reuvers, A. J., Boom, R. M., Rolevink, H. H. M., Smolders, 

C. A. (1992). “Preparation of Asymmetric Gas Separation Membranes with 

High Selectivity by a Dual-bath Coagulation Method.” J. Membr. Sci. 70. 17-

30.  

F16 Brown, P. J., East, G. C., Mclntyre, J. E. (1990). “Effect of Residual Solvent on 

the Gas Transport Properties of Polysulfone Hollow Fiber Membranes.” 

Polymer Communications. 31. 156-159. 

F17 Lui, A., Talbot, F. D. F., Matsuura, T., Sourirajan, S. (1988). “Studies on the 

Solvent Exchange Technique for Making Dry Cellulose Acetate Membranes.” 

J.Applied Polymer Sci. 36. 1809-1820. 

F18 Yong, C., Fouda, A. E., Matsuura, T. “Effect of Drying Conditions on the 

Performance and Quality of Synthetic Membranes Used for Gas Separations.” 

AICHE Symposium. 85. 18-33. 

F19 Manos, P. (1978). “Solvent Exchange Drying of Membranes for Gas 

Separation.” (US Patent 4120,098). 

F20 Pfromm, P. H., Pinnau, I., Koros, W. J. (1993). “Gas Transport Through 

Integral-asymmetric Membranes: a Comparison to Isotropic Film Transport 



 145

Properties.” J.Appl.Polymer.Sci. 48. 2161-2171. 

F21 Koros, W. J. and Fleming, G. K. (1993). “Membrane-based Gas Separation.” J. 

Membr. Sci. 83. 1-80. 

B1-

4 

Kesting, R. E. and Fritzsche, A. K. (1993). “Polymeric Gas Separation 

Membranes.” New York: Wiley-Interscience Publication. 224-283. 

B3-

1 

Mulder, M. (1991). “Basic Principles of Membrane Technology.” Netherlands: 

Kluwer Academic Publishers. 1-16. 

B3-

3 

Mulder, M. (1991). “Basic Principles of Membrane Technology.” Netherlands: 

Kluwer Academic Publishers. 54-109. 

B6-

2.2 

Burggraaf, A. J. and Keizer, K. (1991). “Synthesis of Inorganic Membranes.”  

in. Bhave, R. R. “Inorganic Membranes Synthesis, Characteristics and 

Applications.” New York: Van Nostrand Reinhold. 14-19. 

B6-

2.3 

Burggraaf, A. J. and Keizer, K. (1991). “Synthesis of Inorganic Membranes.”  

in. Bhave, R. R. “Inorganic Membranes Synthesis, Characteristics and 

Applications.” New York: Van Nostrand Reinhold. 19-26. 

B6-

2.7 

Burggraaf, A. J. and Keizer, K. (1991). “Synthesis of Inorganic Membranes.”  

in. Bhave, R. R. “Inorganic Membranes Synthesis, Characteristics and 

Applications.” New York: Van Nostrand Reinhold. 49-53. 

B18 Moch, I. (1997). “Hollow-Fiber Membranes.” in. Ruthven, D. M. 

“Encyclopedia of Separation Technology.” Vol 2. Canada: Wiley-Interscience. 

1001-1026. 

B21

-1.1 

Donnet, J. B., Bansal, R. C. (1984). “Carbon Fiber.” New York: Marcel 

Dekker. 2-12. 

B21

-1.2 

Donnet, J. B., Bansal, R. C. (1984). “Carbon Fiber.” New York: Marcel 

Dekker. 12-27. 

B23 Billmeyer, F. W. (1971). “Textbook of Polymer Science.” New York: Wiley 

Interscience. 521. 

D1 Ahmad Fauzi Ismail, Shilton, S. J., Dunkin, I. R. and Gallivan, S. L. (1997). 

“Direct Measurement of Rheologically Induced Molecular Orientation in Gas 

Separation Hollow Fiber Membranes and Effects on Selectivity.” J. Membr. 

Sci. 126. 133-137. 

G1 Koros, W. J. and Rajiv Mahajan (2000). “Pushing the Limits on Possibilities 

for Large Scale Gas Separation: Which Strategies?” J. Membr. Sci. 175. 181-



 146

196. 

G2 Koros. W. J. (1995). “Membranes: Learning a Lesson from Nature.” Chem. 

Eng. Prog. Oct. 68-81. 

G3 Roman, I. C., Ubersax, R. W. and Fleming, G. K. (2001). “New Directions in 

Membranes for Gas Separation.” Chimica & Industria-Giug. 1-3. 

G4 Robeson, L. M. (1999). “Polymer Membranes for Gas Separation.” Current 

Opinion in Solid State & Materials Science. 4. 549-552.  

G5 Franken, T. (1998). “Membrane Selection-more than Material Properties 

Alone.” Membr. Tech. 97. 7-10. 

G6 Rajiv Mahajan, Koros, W. J., Thundyil, M. (1999). “Mixed Matrix 

Membranes:Important and Challenging!” Membr. Tech. 105. 6-8. 

G7 Strathmann, H. (1999). “Membrane Processes for Sustainable Industrial 

Growth.” Membr. Tech. 113. 9-11. 

G8 Stern, S. A. (1994). “Review: Polymers for Gas Separations: The Next 

Decade.” J. Membr. Sci. 94. 1-65. 

G9 Robeson, L. M. (1991). “Correlation of Separation Factor Versus Permeability 

for Polymeric Membranes.” J. Membr. Sci. 62. 165-185. 

G10 Meares, P. (1989). “What is a Membrane? Part II.” J. Membr. Sci. 43. 1-3. 

G11 Baker, R. (2001). “Future Directions of Membrane Gas-separation 

Technology.” Membr. Tech. 138. 5-10. 

Th1 Ahmad Fauzi bin Ismail (1997). “Novel Studies of Molecular Orientation in 

Synthetic Polymeric Membranes for Gas Separation.” University of 

Strathclyde: Ph.D. Thesis. 

Th2 Geiszler, V. C. (1997). “Polyimide Precursors for Carbon Membranes.” 

University of Texas: Ph.D. Thesis. 

Th3 Shu, Guang Li (1994). “Preparation of Hollow Fiber Membranes for Gas 

Separation.” University of Twente: Ph.D. Thesis. 

T1 Ash, R., Barrer, R. M. and Lowson, R. T. (1973). J. Chem. Soc. Faraday 

Trans. I. 69. 2166. 

T2 Graham, A. (1866). “On the Law of the Diffusion of Gases.” Philos. Mag. 32. 

401-420. 

T3 Hatori, H. et al. (1992). “Carbon Molecular Sieve Films from Polyimide.” 

Carbon. 30. 719. 



 147

T4 Henis, J. M. S. and Tripodi, M. K. (1980). “A Novel Approach to Gas 

Separation using Composite Hollow Fiber Membranes.” Sep. Sci. & Tech. 15. 

1059. 

T5 Hayashi, J., Yamamoto, M., Kusakabe, K. and Morooka, S. (1997). “Effect of 

Oxidation on Gas Permeation of Carbon Molecular Sieve Membranes based on 

BPDA-pp’ODA Polyimide.” Ind. Eng. Chem. Res. 36. 2134-2140. 

T6 Loeb, S. and Sourirajan, S. (1962). Adv. Chem. Ser. 38. 117. 

T7 Mitchell, J. K. (1830). Am. J. Med. 7. 36-67. 

T8 Mitchell, J. K. (1831). Royal Inst. J. 2. 101, 307. 

T9 Moaddeb, M. and Koros, W. J. (1997). “Gas Transport Properties of Thin 

Polymeric Membranes in the Presence of Silicon Dioxide Particles.” J. Membr. 

Sci. 125. 143-163. 

P1 Ismail, A. F., David, L. I. B. (2001). “ A Review on the Latest Development of 

Carbon Membranes for Gas Separation.” J. Membr. Sci. 193. 1-18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 148

 

 

Reference Convertor: 

 

Number David’s Ref. 
C1 C1 
C2 C2 
C3 C3 
C4 C4 
C5 C5 
C6 C6 
C7 C7 
C8 C8 
C9 C9 
C10 C10 
C11 C11 
C12 C12 
C13 C13 
C14 C14 
C15 C15 
C16 C16 
C17 C17 
C18 C18 
C19 C19 
C19a C19a 
C19b C19b 
C19c C19c 
C20 C20 
C21 C21 
C22 C22 
C23 C23 
C24 C24 
C25 C25 
C26 C26 
C27 C27 
C28 C28 
C29 C29 
C30 C30 
C31 C31 
C32 C32 
C33 C33 
C34 C34 
C35 C35 
C36 C36 
C37 C37 
C38 C38 
C39 C39 
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C40 C40 
C41 C41 
C42 C42 
C43 C43 
C44 C44 
C45 C45 
C46 C46 
C47 C47 
C48 C48 
C49 C49 
C50 C50 
C51 C51 
C52 C52 
C53 C53 
C54 C54 
C55 C55 
C56 C56 
C57 C57 
C58 C58 
C59 C59 
C60 C60 
C61 C61 
C62 C62 
C63 C63 
C64 C64 
C65 C65 
C66 C66 
C67 C67 
C68 C68 
C69 C69 
C70 C70 
C71 C71 
C72 C72 
C73 C73 
C74 C74 
C75 C75 
C76 C76 
C77 C77 
C78 C78 
C79 C79 
C80 C80 
C81 C81 
F1 F1 
F2 F2 
F3 F3 
F4 F4 
F5 F5 
F6 F6 
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F7 F7 
F8 F8 
F9 F9 
F10 F10 
F11 F11 
F12 F12 
F13 F13 
F14 F14 
F15 F15 
F16 F16 
F17 F17 
F18 F18 
F19 F19 
F20 F20 
F21 F21 
B1-4 B1-4 
B3-1 B3-1 
B3-3 B3-3 

B6-2.2 B6-2.2 
B6-2.3 B6-2.3 
B6-2.7 B6-2.7 

B18 B18 
B21-1.1 B21-1.1 
B21-1.2 B21-1.2 

B23 B23 
D1 D1 
G1 G1 
G2 G2 
G3 G3 
G4 G4 
G5 G5 
G6 G6 
G7 G7 
G8 G8 
G9 G9 
G10 G10 
G11 G11 
Th1 Th1 
Th2 Th2 
Th3 Th3 
T1 T1 
T2 T2 
T3 T3 
T4 T4 
T5 T5 
T6 T6 
T7 T7 
T8 T8 
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T9 T9 
P1 P1 
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APPENDIX A: Fiber Spinning Techniques 
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APPENDIX B: Tables of Permeation Results for Pure Oxygen and Nitrogen 
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APPENDIX B-1: Sample PAN 

 

OXYGEN (GPU) NITROGEN (GPU) 

Feed 
Pressure 

(Bar) 
 

Permeability 
 
 

Average 
Permeability

 
 

Permeability

 
 

Average 
Permeability

 
 

Selectivity 
O2/N2 

 
 

Average 
Selectivity

O2/N2 
 

 11.8117  8.0181  1.4731  
1 11.8166 11.7140 8.0372 8.0626 1.4702 1.4531 
 11.5137  8.1324  1.4158  
 21.5680  13.8782  1.5541  

1.5 21.5071 21.4206 13.9227 13.9230 1.5447 1.5385 
 21.1865  13.9681  1.5168  
 27.7219  18.4521  1.5024  

2 27.5712 27.5498 18.4671 18.4671 1.4930 1.4918 
 27.3563  18.4820  1.4802  
 32.7902  23.0600  1.4220  

2.5 32.6729 32.6365 23.1478 23.1976 1.4115 1.4070 
 32.4464  23.3850  1.3875  
 36.6024  28.2960  1.2936  

3 36.3400 36.4449 28.5081 28.4553 1.2747 1.2808 
 36.3922  28.5617  1.2742  
 39.0852  31.7555  1.2308  

3.5 39.2853 39.0742 32.0521 31.9585 1.2257 1.2227 
 38.8522  32.0679  1.2116  
 42.7943  35.0398  1.2213  

4 42.3181 42.4507 35.5863 35.4786 1.1892 1.1967 
 42.2398  35.8097  1.1796  
 46.5672  40.4573  1.1510  

5 46.5197 46.5040 41.3743 41.1062 1.1244 1.1315 
 46.4251  41.4871  1.1190  
 50.1713  45.9298  1.0923  

6 49.5180 49.6290 46.6624 46.4565 1.0612 1.0684 
 49.1977  46.7772  1.0517  

 

T ≡ Pyrolysis temperature (°C) 

D ≡ Heating duration (min) 

F ≡ Flowrate (cm3/min) 
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APPENDIX B-2: Sample T250D60F100 

 

OXYGEN (GPU) NITROGEN (GPU) 

Feed 
Pressure 

(Bar) 
 

Permeability 
 
 

Average 
Permeability

 
 

Permeability

 
 

Average 
Permeability

 
 

Selectivity 
O2/N2 

 
 

Average 
Selectivity

O2/N2 
 

 0.0401  0.0128  3.1403  
1 0.0370 0.0362 0.0117 0.0115 3.1492 3.1489 
 0.0315  0.0100  3.1573  
 0.0289  0.0121  2.3887  

1.5 0.0305 0.0298 0.0137 0.0140 2.2322 2.1538 
 0.0301  0.0164  1.8405  
 0.0229  0.0173  1.3208  

2 0.0239 0.0235 0.0183 0.0181 1.3078 1.3011 
 0.0237  0.0186  1.2748  
 0.0193  0.0144  1.3379  

2.5 0.0221 0.0208 0.0153 0.0151 1.4447 1.3726 
 0.0210  0.0157  1.3351  
 0.0229  0.0139  1.6497  

3 0.0227 0.0224 0.0130 0.0134 1.7411 1.6660 
 0.0216  0.0134  1.6070  
 0.0236  0.0141  1.6710  

3.5 0.0220 0.0225 0.0136 0.0135 1.6226 1.6618 
 0.0218  0.0129  1.6917  
 0.0273  0.0139  1.9603  

4 0.0264 0.0261 0.0148 0.0147 1.7878 1.7850 
 0.0246  0.0153  1.6068  
 0.0238  0.0114  2.0991  

5 0.0236 0.0229 0.0122 0.0115 1.9305 1.9886 
 0.0212  0.0110  1.9363  
 0.0270  0.0096  2.8247  

6 0.0239 0.0249 0.0097 0.0098 2.4586 2.5538 
 0.0238  0.0100  2.3781  
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APPENDIX B-3: Sample T500D60F100 

 

 OXYGEN (GPU) NITROGEN (GPU) 
  

Feed  
Pressure 

(Bar) 
  

Permeability 
  

Average 
Permeability

  
Permeability 

  

Average 
Permeability

  

  
Selectivity 

O2/N2 
  
  

  
Average 

Selectivity
O2/N2 

  
 69.8089  51.5578  1.3540  
1 69.6451 69.6453 54.9463 53.8721 1.2675 1.2941 
 69.4820  55.1121  1.2607  
 113.9428  104.0555  1.0950  

1.5 112.6454 113.0245 105.2316 104.9096 1.0705 1.0774 
 112.4853  105.4418  1.0668  
 140.1286  130.8609  1.0708  
2 138.8178 138.8259 132.8525 132.3079 1.0449 1.0494 
 137.5312  133.2102  1.0324  
 159.0314  151.1355  1.0522  

2.5 160.1038 159.7284 152.8873 152.5673 1.0472 1.0470 
 160.0498  153.6789  1.0415  
 189.7043  164.4735  1.1534  
3 188.4396 188.6823 167.2541 167.0432 1.1267 1.1298 
 187.9028  169.4021  1.1092  
 199.9949  184.3431  1.0849  

3.5 198.2416 198.2517 184.4434 184.6786 1.0748 1.0735 
 196.5187  185.2492  1.0608  
 208.1293  193.2242  1.0771  
4 206.6800 206.6867 191.9744 193.2297 1.0766 1.0697 
 205.2506  194.4905  1.0553  
 232.7784  200.0286  1.1637  
5 240.5612 234.9189 200.1973 200.9382 1.2016 1.1692 
 231.4171  202.5887  1.1423  
 256.6299  204.8257  1.2529  
6 251.7323 251.2827 206.9682 208.4891 1.2163 1.2060 
 245.4859  213.6735  1.1489  
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APPENDIX B-4: Sample T600D60F100 

 

 OXYGEN (GPU) NITROGEN (GPU) 
  

Feed  
Pressure 

(Bar) 
  

Permeability 
  

Average 
Permeability

  
Permeability 

  

Average 
Permeability

  

  
Selectivity 

O2/N2 
  
  

  
Average 

Selectivity
O2/N2 

  
 139.5468  113.5603  1.2288  

1 138.7838 134.2228 115.0399 114.8489 1.2064 1.1692 
 124.3378  115.9464  1.0724  
 218.3532  201.6970  1.0826  

1.5 217.5113 217.2370 203.8227 203.6294 1.0672 1.0669 
 215.8466  205.3686  1.0510  
 269.1788  258.2255  1.0424  

2 272.0639 269.1990 263.5884 261.9836 1.0322 1.0277 
 266.3543  264.1370  1.0084  
 306.0565  294.9434  1.0377  

2.5 310.9778 308.5497 301.7363 300.2248 1.0306 1.0278 
 308.6148  303.9948  1.0152  
 350.3597  329.8709  1.0621  

3 343.2531 345.5060 336.4289 336.1706 1.0203 1.0281 
 342.9053  342.2118  1.0020  
 380.7059  334.9860  1.1365  

3.5 378.7178 377.7537 341.6936 341.2289 1.1084 1.1074 
 373.8375  347.0070  1.0773  
 418.8707  364.7064  1.1485  

4 410.0737 411.4775 375.4965 375.7158 1.0921 1.0962 
 405.4882  386.9446  1.0479  
 488.1455  393.5436  1.2404  

5 465.7535 471.4572 401.3212 403.3793 1.1606 1.1699 
 460.4728  415.2730  1.1088  
 486.2752  388.1279  1.2529  

6 482.1190 481.2473 397.2389 397.3849 1.2137 1.2117 
 475.3476  406.7879  1.1685  
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APPENDIX B-5: Sample T700D60F100 

 

 OXYGEN (GPU) NITROGEN (GPU) 
  

Feed  
Pressure 

(Bar) 
  

Permeability 
  

Average 
Permeability

  
Permeability 

  

Average 
Permeability

  

  
Selectivity 

O2/N2 
  
  

  
Average 

Selectivity
O2/N2 

  
 105.4822  73.7102  1.4310  

1 104.8521 104.9529 73.8071 73.7877 1.4206 1.4224 
 104.5243  73.8459  1.4154  
 172.2074  126.2467  1.3641  

1.5 171.7020 171.0428 128.7205 127.9402 1.3339 1.3371 
 169.2190  128.8533  1.3133  
 208.2116  158.1283  1.3167  

2 206.6185 206.8669 160.6612 160.0632 1.2861 1.2926 
 205.7707  161.3999  1.2749  
 240.8541  183.2534  1.3143  

2.5 240.0306 239.2257 179.4478 182.1848 1.3376 1.3133 
 236.7925  183.8533  1.2879  
 264.1421  197.9111  1.3347  

3 258.3111 259.3148 199.8121 199.9696 1.2928 1.2970 
 255.4911  202.1856  1.2636  
 288.2141  212.2720  1.3578  

3.5 280.1635 281.5607 209.5008 213.2710 1.3373 1.3208 
 276.3045  218.0403  1.2672  
 333.6928  224.3098  1.4876  

4 321.4696 324.3793 231.7127 231.6095 1.3874 1.4022 
 317.9754  238.8060  1.3315  
 405.8322  222.0046  1.8280  

5 373.4519 383.9151 241.0608 236.4709 1.5492 1.6297 
 372.4613  246.3472  1.5119  
 475.6705  230.5713  2.0630  

6 414.9466 432.7782 241.8913 240.4769 1.7154 1.8054 
 407.7176  248.9680  1.6376  
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APPENDIX B-6: Sample T800D60F100 

 

 OXYGEN (GPU) NITROGEN (GPU) 
  

Feed  
Pressure 

(Bar) 
  

Permeability 
  

Average 
Permeability

  
Permeability 

  

Average 
Permeability

  

  
Selectivity 

O2/N2 
  
  

  
Average 

Selectivity
O2/N2 

  
 43.4395  23.1787  1.8741  

1 42.7705 42.9301 23.1867 23.1876 1.8446 1.8514 
 42.5805  23.1975  1.8356  
 54.9577  31.6469  1.7366  

1.5 54.7624 54.7800 31.8585 31.8421 1.7189 1.7204 
 54.6197  32.0208  1.7058  
 61.6480  35.6278  1.7303  

2 61.5852 61.5676 35.6413 35.6774 1.7279 1.7257 
 61.4696  35.7629  1.7188  
 63.0905  37.7030  1.6734  

2.5 63.0652 63.0505 37.6278 37.6279 1.6760 1.6756 
 62.9957  37.5529  1.6775  
 64.3615  38.2179  1.6841  

3 64.3220 64.2304 38.2411 38.2567 1.6820 1.6789 
 64.0077  38.3110  1.6707  
 65.9396  39.2468  1.6801  

3.5 65.6984 65.7404 39.2697 39.2735 1.6730 1.6739 
 65.5833  39.3041  1.6686  
 66.2020  38.8699  1.7032  

4 65.8691 65.9067 39.0373 39.0117 1.6873 1.6894 
 65.6490  39.1280  1.6778  
 67.5215  39.5779  1.7060  

5 66.9036 67.0764 39.8286 39.7731 1.6798 1.6865 
 66.8041  39.9128  1.6737  
 69.0157  40.4504  1.7062  

6 68.4745 68.5598 40.6596 40.6074 1.6841 1.6884 
 68.1893  40.7123  1.6749  
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APPENDIX B-7: Sample T500D10F100 

 

 OXYGEN (GPU) NITROGEN (GPU) 
  

Feed  
Pressure 

(Bar) 
  

Permeability 
  

Average 
Permeability

  
Permeability 

  

Average 
Permeability

  

  
Selectivity 

O2/N2 
  
  

  
Average 

Selectivity
O2/N2 

  
 6.8833  1.7618  3.9069  

1 6.7717 6.7648 1.7947 1.8118 3.7731 3.7379 
 6.6395  1.8790  3.5335  
 13.1705  6.7552  1.9497  

1.5 13.1479 13.0924 6.9154 7.1004 1.9012 1.8497 
 12.9587  7.6306  1.6983  
 18.8773  12.8116  1.4735  

2 18.7846 18.7546 12.8259 12.9173 1.4646 1.4522 
 18.6020  13.1145  1.4184  
 23.0931  18.0729  1.2778  

2.5 22.5545 22.6790 18.2887 18.2812 1.2332 1.2408 
 22.3896  18.4819  1.2114  
 24.4737  18.6990  1.3088  

3 24.3569 24.3190 18.7954 18.7942 1.2959 1.2940 
 24.1266  18.8881  1.2773  
 25.4036  20.0726  1.2656  

3.5 25.1890 25.2573 20.0788 20.0942 1.2545 1.2570 
 25.1793  20.1311  1.2508  
 26.2950  20.7425  1.2677  

4 26.1811 26.1795 21.0659 20.9646 1.2428 1.2488 
 26.0623  21.0853  1.2360  
 27.9563  22.3677  1.2498  

5 27.7034 27.5173 22.2593 22.2579 1.2446 1.2362 
 26.8924  22.1467  1.2143  
 28.5648  23.0861  1.2373  

6 28.1862 28.1760 23.2969 23.2503 1.2099 1.2120 
 27.7771  23.3680  1.1887  
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APPENDIX B-8: Sample T500D30F100 

 

 OXYGEN (GPU) NITROGEN (GPU) 
  

Feed  
Pressure 

(Bar) 
  

Permeability 
  

Average 
Permeability

  
Permeability 

  

Average 
Permeability

  

  
Selectivity 

O2/N2 
  
  

  
Average 

Selectivity
O2/N2 

  
 46.1783  35.9027  1.2862  

1 46.0992 46.0731 36.0615 36.0571 1.2783 1.2778 
 45.9418  36.2070  1.2689  
 74.8198  70.2223  1.0655  

1.5 74.1243 74.3002 70.3876 70.3601 1.0531 1.0560 
 73.9563  70.4705  1.0495  
 120.3609  88.6452  1.3578  

2 95.9112 103.6118 88.9382 89.0179 1.0784 1.1644 
 94.5632  89.4704  1.0569  
 114.1578  99.4005  1.1485  

2.5 113.2570 113.4582 101.6532 100.9986 1.1142 1.1236 
 112.9599  101.9420  1.1081  
 110.3431  103.9501  1.0615  

3 108.3442 108.9887 104.5559 104.5378 1.0362 1.0426 
 108.2788  105.1072  1.0302  
 121.8596  113.4121  1.0745  

3.5 120.5226 120.6249 114.0006 113.8891 1.0572 1.0592 
 119.4925  114.2547  1.0458  
 126.2321  113.4599  1.1126  

4 125.7603 125.2999 115.3072 114.7244 1.0907 1.0923 
 123.9074  115.4061  1.0737  
 141.2740  111.0947  1.2717  

5 133.5618 135.5869 111.4397 112.5153 1.1985 1.2057 
 131.9250  115.0115  1.1471  
 148.0346  115.6044  1.2805  

6 142.1695 143.7520 125.2919 122.6543 1.1347 1.1751 
 141.0519  127.0665  1.1101  
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APPENDIX B-9: Sample T500D60F100 

 

 OXYGEN (GPU) NITROGEN (GPU) 
  

Feed  
Pressure 

(Bar) 
  

Permeability 
  

Average 
Permeability

  
Permeability 

  

Average 
Permeability

  

  
Selectivity 

O2/N2 
  
  

  
Average 

Selectivity
O2/N2 

  
 53.0218  37.1143  1.4286  

1 51.8489 51.9582 37.4366 37.3970 1.3850 1.3895 
 51.0038  37.6401  1.3550  
 91.6082  88.9512  1.0299  

1.5 90.7986 91.0017 89.2215 89.1702 1.0177 1.0206 
 90.5984  89.3379  1.0141  
 109.8417  95.4229  1.1511  

2 108.6798 109.0288 96.0773 96.0803 1.1312 1.1348 
 108.5649  96.7407  1.1222  
 130.7384  108.8141  1.2015  

2.5 129.3666 129.7335 111.5713 111.4077 1.1595 1.1650 
 129.0956  113.8378  1.1340  
 145.1110  117.0144  1.2401  

3 141.1245 142.5829 117.6845 117.6191 1.1992 1.2123 
 141.5132  118.1583  1.1977  
 150.9197  116.9478  1.2905  

3.5 147.8785 148.2792 121.8004 120.4656 1.2141 1.2318 
 146.0392  122.6486  1.1907  
 166.4232  123.6821  1.3456  

4 161.2007 161.3067 124.0804 124.6590 1.2992 1.2944 
 156.2961  126.2145  1.2383  
 190.8457  136.0776  1.4025  

5 187.9365 184.0602 139.1494 136.1219 1.3506 1.3518 
 173.3985  133.1386  1.3024  
 201.0540  143.4897  1.4012  

6 198.3371 197.0225 149.7647 148.4115 1.3243 1.3289 
 191.6765  151.9802  1.2612  

 

 

 

 

 

 

 

 

 

 

 



 164

APPENDIX B-10: Sample T500D120F100 

 

 OXYGEN (GPU) NITROGEN (GPU)   
Feed  

Pressure 
(Bar) 

  
Permeability 

  

Average 
Permeability

  
Permeability 

  

Average 
Permeability

  

  
Selectivity 

O2/N2 
  
  

  
Average 

Selectivity
O2/N2 

  
 72.0512  45.7569  1.5747  

1 71.5262 71.6632 45.3752 45.6592 1.5763 1.5695 
 71.4120  45.8456  1.5577  
 136.4795  81.4074  1.6765  

1.5 137.1773 133.4872 82.6614 82.3799 1.6595 1.6208 
 126.8047  83.0708  1.5265  
 169.8220  103.4116  1.6422  

2 167.5596 165.6984 105.5819 105.2317 1.5870 1.5753 
 159.7135  106.7015  1.4968  
 181.7057  116.1553  1.5643  

2.5 188.9569 186.2455 122.3338 119.3358 1.5446 1.5608 
 188.0739  119.5184  1.5736  
 240.8606  125.8531  1.9138  

3 236.6127 235.4714 132.9627 130.7250 1.7795 1.8034 
 228.9409  133.3592  1.7167  
 225.9209  133.5584  1.6916  

3.5 222.4250 223.7340 135.9264 137.6825 1.6364 1.6267 
 222.8561  143.5627  1.5523  
 247.8314  136.5258  1.8153  

4 241.8739 243.4739 138.5944 138.2252 1.7452 1.7618 
 240.7166  139.5555  1.7249  
 254.7330  169.1085  1.5063  

5 239.5703 239.0943 165.6289 170.4209 1.4464 1.4053 
 222.9796  176.5255  1.2632  
 325.6295  240.4290  1.3544  

6 302.1608 295.2630 272.6817 268.2538 1.1081 1.1157 
 257.9988  291.6508  0.8846  
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APPENDIX B-11: Sample T500D180F100 

 

 OXYGEN (GPU) NITROGEN (GPU)   
Feed  

Pressure 
(Bar) 

  
Permeability 

  

Average 
Permeability

  
Permeability 

  

Average 
Permeability

  

  
Selectivity 

O2/N2 
  
  

  
Average 

Selectivity
O2/N2 

  
 33.1485  25.3383  1.3082  

1 33.0093 32.9037 25.3997 25.4250 1.2996 1.2942 
 32.5535  25.5372  1.2747  
 70.5521  55.0385  1.2819  

1.5 69.3078 69.5708 56.2800 56.1595 1.2315 1.2393 
 68.8524  57.1600  1.2046  
 91.1775  71.1053  1.2823  

2 90.7215 92.4271 70.8915 71.4708 1.2797 1.2931 
 95.3823  72.4156  1.3172  
 91.5670  75.8761  1.2068  

2.5 94.8833 95.2428 77.7527 77.2022 1.2203 1.2334 
 99.2779  77.9777  1.2732  
 103.6874  83.3457  1.2441  

3 102.0715 102.2602 84.2390 84.2455 1.2117 1.2140 
 101.0219  85.1517  1.1864  
 111.7200  86.0373  1.2985  

3.5 111.3507 111.1998 88.8749 88.0862 1.2529 1.2628 
 110.5286  89.3464  1.2371  
 121.6641  93.4913  1.3013  

4 127.8661 124.9826 93.1221 93.9986 1.3731 1.3298 
 125.4176  95.3823  1.3149  
 179.3043  101.8510  1.7605  

5 160.9455 165.2945 103.7558 103.7800 1.5512 1.5945 
 155.6337  105.7332  1.4719  
 160.3980  100.8922  1.5898  

6 192.6349 176.4183 102.0715 101.8561 1.8873 1.7315 
 176.2220  102.6045  1.7175  

 

 

 

 

 

 

 

 

 

 

 



 166

APPENDIX B-12: Sample T500D60F20 

 

 OXYGEN (GPU) NITROGEN (GPU) 
  

Feed  
Pressure 

(Bar) 
  

Permeability 
  

Average 
Permeability

  
Permeability 

  

Average 
Permeability

  

  
Selectivity 

O2/N2 
  
  

  
Average 

Selectivity
O2/N2 

  
 51.8785  15.3598  3.3776  

1 50.6118 51.0067 15.3706 15.4502 3.2928 3.3017 
 50.5296  15.6202  3.2349  
 84.9291  44.4883  1.9090  

1.5 84.7670 84.6450 44.5087 44.6328 1.9045 1.8965 
 84.2388  44.9013  1.8761  
 107.3143  65.0083  1.6508  

2 107.1664 107.1829 64.3357 64.9800 1.6657 1.6496 
 107.0680  65.5961  1.6322  
 116.3788  92.2236  1.2619  

2.5 115.8009 115.9457 92.4685 92.5515 1.2523 1.2528 
 115.6573  92.9622  1.2441  
 124.0724  98.4720  1.2600  

3 123.5793 123.7109 98.5054 98.8207 1.2545 1.2519 
 123.4811  99.4848  1.2412  
 130.6409  103.2975  1.2647  

3.5 130.8976 130.5988 103.8148 103.7874 1.2609 1.2584 
 130.2578  104.2499  1.2495  
 126.3240  107.4273  1.1759  

4 124.9700 125.3990 108.4984 108.5056 1.1518 1.1558 
 124.9031  109.5910  1.1397  
 137.5776  115.6164  1.1899  

5 133.6356 134.6013 116.8579 116.4964 1.1436 1.1555 
 132.5908  117.0149  1.1331  
 132.7606  113.7136  1.1675  

6 130.4217 130.8397 114.6118 114.6166 1.1379 1.1417 
 129.3367  115.5243  1.1196  
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APPENDIX B-13: Sample T500D60F50 

 

 OXYGEN (GPU) NITROGEN (GPU) 
  

Feed  
Pressure 

(Bar) 
  

Permeability 
  

Average 
Permeability

  
Permeability 

  

Average 
Permeability

  

  
Selectivity 

O2/N2 
  
  

  
Average 

Selectivity
O2/N2 

  
 90.5508  61.6287  1.4693  
1 76.9182 80.6720 62.4348 62.5269 1.2320 1.2916 
 74.5471  63.5171  1.1737  
 131.7162  124.9126  1.0545  

1.5 127.3464 128.4264 125.5612 125.4540 1.0142 1.0238 
 126.2165  125.8880  1.0026  
 163.9902  155.5516  1.0542  
2 162.5207 162.7689 158.8206 158.4832 1.0233 1.0273 
 161.7959  161.0774  1.0045  
 202.6516  171.5113  1.1816  

2.5 189.4237 191.4533 177.5992 174.9248 1.0666 1.0953 
 182.2846  175.6641  1.0377  
 213.6315  184.3223  1.1590  
3 209.9226 211.0377 187.1756 184.3509 1.1215 1.1449 
 209.5588  181.5547  1.1542  
 227.2847  204.8257  1.1096  

3.5 224.3329 225.6419 212.8168 210.2991 1.0541 1.0734 
 225.3083  213.2547  1.0565  
 262.0999  229.0065  1.1445  
4 254.7376 254.8717 234.3322 232.7594 1.0871 1.0954 
 247.7775  234.9393  1.0546  
 291.3625  245.9297  1.1847  
5 289.0409 289.0531 260.9686 257.2255 1.1076 1.1251 
 286.7560  264.7783  1.0830  
 300.7847  248.7972  1.2090  
6 294.9157 294.9906 259.4752 257.0440 1.1366 1.1487 
 289.2714  262.8596  1.1005  
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APPENDIX B-14: Sample T500D60F150 

 

 OXYGEN (GPU) NITROGEN (GPU)   
Feed  

Pressure 
(Bar) 

  
Permeability 

  

Average 
Permeability

  
Permeability 

  

Average 
Permeability

  

  
Selectivity 

O2/N2 
  
  

  
Average 

Selectivity
O2/N2 

  
 128.2922  112.2474  1.1429  

1 127.1679 127.4007 112.5376 112.4846 1.1300 1.1326 
 126.7421  112.6687  1.1249  
 217.7022  208.3252  1.0450  

1.5 216.8887 216.3583 209.0757 209.0775 1.0374 1.0349 
 214.4841  209.8316  1.0222  
 271.0433  258.1824  1.0498  

2 268.5352 269.0960 259.7229 259.4685 1.0339 1.0371 
 267.7095    1.0277  
 308.9942    1.1065  

2.5 306.5462 306.8253 279.4835 280.1625 1.0968 1.0952 
 304.9356  281.7447  1.0823  
 357.3855  300.4110  1.1897  

3 351.3281 351.5327 310.0396 309.0865 1.1332 1.1382 
 345.8844  316.8090  1.0918  
 396.0833  316.4635  1.2516  

3.5 367.9591 376.7919 320.5417 320.5772 1.1479 1.1759 
 366.3333  324.7263  1.1281  
 406.0593  346.5729  1.1716  

4 398.6223 399.6570 349.3544 349.3694 1.1410 1.1441 
 394.2895  352.1809  1.1196  
 443.0489  402.1206  1.1018  

5 439.6925 438.2655 406.8183 406.5317 1.0808 1.0782 
 432.0552  410.6562  1.0521  
 483.6617  423.0278  1.1433  

6 468.0598 468.8586 429.2856 425.9407 1.0903 1.1009 
 454.8543  425.5089  1.0690  
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APPENDIX B-15: Sample T500D60F200 

 

 OXYGEN (GPU) NITROGEN (GPU)   
Feed  

Pressure 
(Bar) 

  
Permeability 

  

Average 
Permeability

  
Permeability 

  

Average 
Permeability

  

  
Selectivity 

O2/N2 
  
  

  
Average 

Selectivity
O2/N2 

  
 151.8321  60.6603  2.5030  

1 149.1954 149.9418 61.5461 61.3885 2.4241 2.4429 
 148.7979  61.9592  2.4015  
 241.2782  163.7529  1.4734  

1.5 238.9552 239.2216 172.9179 170.6361 1.3819 1.4034 
 237.4313  175.2376  1.3549  
 287.8548  228.3068  1.2608  

2 284.0480 285.6068 228.6808 228.5873 1.2421 1.2494 
 284.9175  228.7744  1.2454  
 376.6869  260.3442  1.4469  

2.5 375.7365 374.2878 261.8703 262.9241 1.4348 1.4238 
 370.4401  266.5577  1.3897  
 389.4271  250.5332  1.5544  

3 385.3957 386.6066 303.6642 285.7067 1.2692 1.3648 
 384.9972  302.9229  1.2709  
 439.5422  376.3062  1.1680  

3.5 425.4769 429.7881 377.1958 374.8525 1.1280 1.1466 
 424.3453  371.0554  1.1436  
 551.8166  401.1770  1.3755  

4 505.8319 519.9471 407.0251 407.0827 1.2428 1.2780 
 502.1928  413.0462  1.2158  
 578.6926  424.6680  1.3627  

5 564.0792 568.0055 432.8980 433.0064 1.3030 1.3124 
 561.2446  441.4533  1.2714  
 756.6916  537.9946  1.4065  

6 727.1333 727.8741 571.0004 562.3629 1.2734 1.2968 
 699.7975  578.0936  1.2105  
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APPENDIX C: Simplified Correlation Chart for FTIR 
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APPENDIX C: Simplified Correlation Chart for FTIR 

 

Functional Group Type of Vibration Frequency (cm-1) 

C-H Alkanes (stretch) 

-CH3 (bend) 

3000 – 2850 

1450 and 1375 

 -CH2- (bend) 1465 

C=C Alkene 1680 – 1600 

 Aromatic 1600 and 1475 

C-N Amines 1350 – 1000 

C=N Imines and Oximes 1690-1640 

C≡N Nitriles 2260 – 2240 
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APPENDIX D: FTIR Results of Carbon Membranes at Different Pyrolysis 

Conditions 
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