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ABSTRACT 

 

 

 

  

For this project, two types of glucose biosensors namely hydrogen peroxide- 

based glucose biosensor and mediated glucose biosensor have been developed. The 

performance of a glucose biosensor depends mostly on the immobilization method 

and support materials that are being used.  For hydrogen peroxide-based glucose 

biosensor, selection of suitable materials for enzyme immobilization was done.  Four 

types of immobilization materials, including chemically-linked PVA, TMOS sol-gel, 

alumina sol-gel, and freezed-thawed PVA cryogel, were used to immobilize glucose 

oxidase (GOD) to determine the most appropriate material for GOD immobilization.  

Generally the membranes had shown good sensitivity except for the chemically 

cross-linked PVA. However, the main differences with the enzyme immobilization 

methods were enzyme leakage and the values of Km
app. Freeze-thawed PVA-GOD 

membranes, which showed satisfactory sensitivity and adequate value of Km
app was 

chosen as the support material for immobilizing GOD.  The enzyme leakage of this 

type of membrane was improved by reducing enzyme loading. Even though this type 

of sensor is very simple and easy to construct, it suffers from electrochemical 

interferences from common electroactive species present in blood such as 

acetaminophen. Thus, a selective inner layer based on permselectivity was studied. 

pHEMA, at a cross-linking ratio of 0.043 which resulted in a permselectivity of 10, 

successfully  eliminated acetaminophen interference.  Nafion membrane was used as 

the outer membrane to protect the biosensor.   

 

For the mediated based glucose biosensor development, the scopes of work 

include the preparation of active layer, preparation of external layer and the 

fabrication of glucose biosensor.  Three methods of tethering a mediator to an 

enzymatic membrane were studied to construct a non-leaking mediated glucose 
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biosensor. The methods were immobilization of glucose oxidase (GOD) and 

ferrocene redox polymer in cross-linked poly (vinyl alcohol) (CLPVA) with bovine 

serum albumin (BSA) as a protein stabilizer, immobilization of ferrocene carboxylic 

acid and glucose oxidase in a sol gel derived silica (SGS) matrix containing cross-

linked poly (vinyl alcohol) (CLPVA) and nafion, and lastly multilayered construction 

of glucose oxidase and redox poly (allylamine) ferrocene utilizing layer-by-layer 

covalent attachment. After evaluating the biosonser response amperometrically at 

0.363V, the first method, which was immobilization of glucose oxidase and 

ferrocene redox polymer in CLPVA with the addition of BSA was selected for the 

fabrication of disposable glucose biosensor since this type of sensor provided good 

responses over a wide range of concentration.  Nafion was chosen as the external 

layer and the works on the fabrication of the glucose biosensor are ongoing. 
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ABSTRAK 

 

 

 

  

Untuk projek ini, kajian telah dijalankan atas dua jenis biosensor glukosa, 

iaitu biosensor glukosa berdasarkan hidrogen peroksida dan biosensor glukosa 

berdasarkan pengantara.  Prestasi sesuatu biosensor glukosa banyak bergantung 

kepada cara penyekatgerakan enzim dan jenis bahan sokongan yang digunakan.  

Bagi biosensor glukosa berdasarkan hidrogen peroksida, pemilihan bahan yang 

sesuai telah dilakukan.  Empat jenis bahan penyekatgerak telah dikaji iaitu poli(vinil 

alkohol) (PVA) disambung-silang secara kimia, , sol-gel (tetrametoksi)silane 

(TMOS), sol-gel alumina, dan kryogel beku-cair PVA, untuk menentukan jenis 

bahan yang paling sesuai bagi penyekatgerakan glukosa oksida (GOD).  Secara 

umum, membran-membran yang dihasilkan menunjukkan sensitiviti yang baik 

kecuali PVA disambung-silang secara kimia.  Walau bagaimanapun, perbezaan 

utama antara cara-cara penyekatgerakan ialah kebocoran enzim dan nilai Km
app.  

Kryogel beku-cair PVA, yang menunjukkan sensitiviti yang memuaskan dan nilai 

Km
app yang memadai, telah dipilih sebagai bahan sokongan untuk menyekatgerak 

GOD.  Kebocoran enzim bagi membran jenis ini telah diperbaiki dengan 

mengurangkan kuantiti enzim yang dimasukkan dalam proses penyekatgerakan.  

Walaupun sensor yang berasaskan hydrogen peroksida tidak kompleks dan mudah 

untuk dibina, ia menghadapi masalah gangguan elektrokimia daripada spesies 

elektroaktif yang biasanya wujud dalam darah seperti asetaminofen. Oleh sebab itu, 

suatu lapisan dalaman yang boleh menghalang gangguan elektrokimia berdasarkan 

ketertelapan selektif telah dikaji.  Poli(hidroksietil metakrilat) (pHEMA), dengan 

nisbah sambung-silang 0.043 yang menunjukkan selektiviti 10, berjaya 

menyingkirkan gangguan asetaminofen.  Membran Nafion telah digunakan sebagai 

lapisan luaran untuk melindungi biosensor tersebut.   
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Bagi biosensor glukosa berdasarkan pengantara, skop kerja merangkumi 

penyediaan lapisan aktif, lapisan luaran, dan pembinaan biosensor glukosa.  Tiga 

cara untuk mengikat pengantara ke membran yang mengandungi enzim telah dikaji 

untuk membentuk sebuah biosensor glukosa tanpa kebocoran pengantara.  Cara-cara 

tersebut termasuk penyekatgerakan GOD dan polimer redoks ferrocene dalam PVA 

(CLPVA) tersambung-silang dengan menggunakan bovine serum albumin (BSA) 

sebagai agen penstabil protin, penyekatgerakan GOD dan asid karbosilik ferrocene 

dalam matriks sol gel silika (SGS) yang mengandungi CLPVA dan nafion, dan yang 

terakhirnya adalah multi-lapisan GOD dan redoks poli (allilamin) ferrocene 

menggunakan pelekatan kovalen lapisan demi lapisan.  Selepas menilai gerak balas 

biosensor secara amperometrik pada 0.363V, cara pertama, iaitu penyekatgerakan 

GOD dan polimer redoks ferrocene dalam CLPVA bersama BSA telah dipilih untuk 

membentuk biosensor glukosa yang boleh dibuang selepas penggunaan 

memandangkan sensor jenis tersebut menunjukkan gerak balas yang baik dalam julat 

kepekatan yang luas.  Nafion telah dipilih sebagai lapisan luaran dan kerja-kerja 

pembinaan biosensor glukosa yang lengkap sedang dijalankan.   
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CHAPTER 1  

 

 

 

 

INTRODUCTION  

 

 

 

 

1.1 Research Background 

 

 

Diabetes mellitus is a group of metabolic diseases characterized by high 

blood glucose levels, which result from defects in insulin secretion, or action, or both 

(Miller, 2003).  In a person without diabetes, the body is able to regulate the amount 

of glucose in the blood between 3.5 to 6.5 mM with the help of the hormone insulin. 

Many people who are suffering from diabetes mellitus are not able to control their 

blood glucose level. In diabetes, the auto regulation of glucose fails and the blood 

glucose level of a diabetic sufferer may vary between 1 to 30 mM. The consequences 

of poor glucose regulation are at best, long term damage to organs from too much 

glucose (hyperglycemia), coma or death caused by too little glucose reaching the 

(hypoglycemia). 

  

There are two major types of diabetes mellitus. Type 1 diabetes sometimes 

referred to as juvenile diabetes or insulin dependent diabetes mellitus (IDDM), 

usually strikes children and young adults.  The insulin producing islet cells in the 

pancreas are destroyed by the diabetics’ own immune system.  These type 1 diabetics 

usually lose all insulin-producing capabilities and must inject themselves with insulin 

before each meal to allow their bodies to utilize glucose from the food.  The type 2 
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diabetes or also referred as non insulin dependent diabetes mellitus (NIDDM) is very 

complex and usually strikes older people.  Type 2 diabetics can usually increase their 

glucose regulation by losing weight and are initially treated with diet control and 

with drugs that help the body metabolizes glucose.  Type 2 diabetics over time may 

need to start using insulin injections to maintain glucose regulation (Henning and 

Cunningham, 1998). 

 

The findings of Diabetes Control and Complications Trial (DCCT) and 

United Kingdom Prospective Diabetes Study (UKPDS) clearly show that intensive 

control of elevated levels of blood glucose in patients with diabetes mellitus 

decreases the complications of nephropathy, neuropathy, retinopathy, and may 

reduce the occurrence and severity of large blood vessel diseases [Miller, 2003].  

Tightly controlled blood glucose level means achieving fasting glucose level 

between 70-120 mg/dL, and glucose level of less than 180 mg/dL after meals.  

Studies in intensively treated type I patients have shown a decrease of diabetic eye 

disease by 76%, kidney disease by 54%, and nerve disease by 60%.  In patients with 

type II diabetes mellitus, intensive blood glucose control shows similar beneficial 

effects on the eyes, kidneys, nerves and blood vessels (Miller, 2003).   

 

Since the first publication on a glucose biosensor (Clark and Lyons, 1962), 

the detection of glucose has attracted a high degree of interest due to its biological 

importance (Liu et al., 2004).  A biosensor is a sensor that is based on the use of 

biological material for its sensing function.  The bio-component specifically reacts or 

interacts with the analyte of interest resulting in a detectable chemical or physical 

change. The amperometric glucose biosensor represents the most successful 

commercial biosensor development to date.  Amperometric biosensors based on 

enzymes are interesting due to their high sensitivities, excellent selectivities, 

simplicity, low cost and rapid response.   

 

The most frequently used enzymatic methods for glucose determination 

employ glucose oxidase (GOD), due to its high selectivity towards ß-D-glucose.  

GOD happens to be easy and cheap to obtain; secondly, it is one of the most robust 

enzymes around (it withstands greater extremes of pH, ionic strength, temperature 

than many other enzymes), thus allowing less stringent conditions during the 
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manufacturing process and also relatively care-free storage and use by the home-user 

of the biosensor) and thirdly, the concentration range of glucose with which GOD 

reacts optimally happens to coincide with the range of concentrations encountered in 

human blood.  The other, less coincidental factor is that the glucose-test market has 

always been and looks set to remain the largest single market for home-diagnostics 

and biosensors. 

 

Three general strategies are used for the electrochemical sensing of glucose, 

all of which use immobilized glucose oxidase, an enzyme that catalyzes the oxidation 

of glucose to gluconic acid with the production of hydrogen peroxide.  The first 

detection scheme measures oxygen consumption; the second measures the hydrogen 

peroxide produced by the enzyme reaction; and a third uses a diffusable or 

immobilized mediator to transfer the electrons from the glucose oxidase to the 

electrode.   

 

Among the amperometric biosensors, the peroxide based glucose biosensor is 

the simplest.  There are three membrane layers in a peroxide based amperometric 

glucose biosensor which are the outer layer, the active layer, and the inner layer.  The 

electro oxidation of hydrogen peroxide requires high potential that results in 

oxidation of easily oxidable substances in blood simultaneously, thus adding to the 

electrical signal and giving a non-accurate reading of measured glucose 

concentration.  An interfering molecule is a species that is electroactive at the 

operating potential of the amperometric sensor.  This includes ascorbic acid, urate, 

and acetaminophen.  

  

In the efforts to minimize the interference effects, a selective layer is often 

placed between the enzymatic active layer and the electrode to filter out and 

interfering species.  A permselective membrane can be used as the inner membrane 

of the sensor.  A permselective membrane restricts the passage of larger molecular 

weight species based on MWCO (molecular weight cut off) (Kermis et al., 2003). On 

the other hand, the permselective membranes may lead to the diffusional constraints 

to analyte, while excluding the interference species (Poyard et al.,1998).  Therefore, 

studying the characteristics of the permselective layer is required to optimize the 

function of this selective layer.   
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However, the use of an artificial electron acceptor or mediator to replace the 

natural acceptor oxygen in the oxidation of glucose by glucose oxidase is also a 

preferable approach that has been explored to overcome tissue oxygen dependence.  

In addition, the oxidation of the reduced mediator occurs at low potential thus 

reducing the sensitivity of the sensor to interfering substances. Claremont et al. 1986 

were the first who reported an implantable amperometric ferrocene-modified glucose 

sensor.  However, the initial promise exhibited by mediator based glucose sensors for 

in vivo applications, has failed to materialize.  

 

The main problem remains the limited long-time-use stability of mediated 

glucose sensors, which has been attributed to the leaching of the mediator.  In 

addition, the loss of mediator is a particularly important issue for implantable sensors 

because of the inherent toxic effect of the mediators used.  Therefore, in order to 

develop a stable implantable mediated glucose sensor, a suitable immobilization 

method should be investigated to avoid the leaking of mediator as well as the 

enzyme.  However, for disposable mediated glucose biosensor for home monitoring, 

the issues of stability and leakage are not as crucial.  What is more important is an 

immobilization method that results in high sensitivity of the sensor and adequate 

kinetics to extend the detection limit of the sensor. 

 

In this work, for both hydrogen peroxide based glucose and mediated glucose 

biosensor, various immobilization methods were investigated to determine which one 

was the most stable and could able to retain enzyme with good responses over a wide 

range of concentration.  Besides, for hydrogen peroxide-based glucose sensor, the 

characteristic of the permselective layer was studied in order to develop an 

interference-free hydrogen peroxide-based glucose biosensor. Furthermore, for 

mediated glucose sensor, selection of the appropriate method to tether the mediator 

to the enzymatic membrane was important in order to develop a non leaking 

mediator based biosensor.  The methods involved in this research part were 

immobilization of GOD and ferrocene redox polymer in cross-linked poly (vinyl 

alcohol) (CLPVA) with bovine serum albumin (BSA) as a protein stabilizer, 

immobilization of ferrocene carboxylic acid and GOD in a sol gel derived silica 

(SGS) matrix containing cross-linked poly (vinyl alcohol) (CLPVA) and nafion, and 
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lastly multilayered construction of GOD and redox poly(allylamine) ferrocene 

utilizing layer-by-layer covalent attachment. 

 

 

 

 

1.2 Objective 

 

 

The objectives of this work are as follows: 

   

(i) To develop an interference-free hydrogen peroxide-based glucoe 

biosensor 

(ii) To develop a practical and stable mediated amperometric glucose 

sensor 

 

 

1.3 Scopes  

 

 

To achieve objective (i), the following specific areas were investigated: 

 

(i) Selection of the appropriate methods of immobilizing GOD.  The 

enzymatic membranes developed were chemically cross-linked 

poly(vinyl alcohol) (PVA)-glucose oxidase (GOD) membranes, 

freeze-thawed poly(vinyl alcohol) (PVA)-glucose oxidase (GOD) 

membranes, tetramethoxysilane (TMOS) sol-gel -glucose oxidase 

(GOD) membranes , and alumina sol-gel -glucose oxidase (GOD) 

membranes. 

(ii) Determination of the optimum cross-linking density of poly(2-

hydroxyethyl methacrylate) (pHEMA) membrane for it to 

successfully perform as a selective inner membrane. 

(v) Testing of a complete lab-scale sized peroxide-based glucose 

biosensor. 
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 To achieve objective (ii), the following specific areas were investigated: 

 

(i)       Selection of the appropriate methods of immobilizing GOD to the 

polymer to construct a non-leaking mediated glucose sensor. Three 

methods were studied: 

a) Immobilization of glucose oxidase and ferrocene redox polymer in 

cross-linked poly (vinyl alcohol) with bovine serum albumin as 

protein stabilizer 

 

b) Immobilization of glucose oxidase/ferrocene carbozylic acid in 

composite silica sol gel (SGS) /cross-linked poly (vinyl alcohol) 

(CLPVA)/nafion membrane 

 

c) Multilayered construction of glucose oxidase and poly(allylamine) 

ferrocene 

 

(ii)  Preparation of a nafion protective membrane 

 

(iii) Fabrication of the mediator-based glucose sensor 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Historical Overview of Biosensor Technology 

 

 

Figure 2.1 Evolution of home blood glucose monitoring technology 

 

The first prototype biosensor was an enzyme electrode reported in 1962, 

which utilized immobilized GOD on a Clark pO2 electrode for measuring the 

concentration of glucose in solution.  This prototype enzyme electrode later served as 

the basis for the development of the first commercialized enzyme electrode and 

glucose analyzer (Taylor, 1991].  The first step towards commercial exploitation was 

that taken by the Yellow Springs Instrument Company in the seventies.  YSI- in 

close collaboration with Clark- developed a series of laboratory-scale glucose 

sensors.  Much work was invested in finding suitable membranes that rendered the 

GOD-platinum electrode technique reproducible and accurate. 

 

2000+ 
Least/ 

Noninvasive 
& Long Term

Late 1990s 
Painless 
Blood 

Late 1980s 
Minimum 
Procedure 

Blood

Late 1970s
Blood 

Late 1960s 
Urine 



 

 

8

 

The key research that lead to the next generation of home-testing glucose 

sensors was performed in the early 80's by H.A.O.Hill and I.J. Higgins and their 

respective colleagues at the University of Oxford and the Cranfield Institute of 

Technology (Newmann, 2005).  The oxidized form of the mediator reacted with 

reduced GOD instead of oxygen and thus reduced mediator is formed instead of 

hydrogen peroxide.  The reduced mediator is then re-oxidized at the electrode, giving 

a current signal and regenerating the oxidized form of the mediator.  This eliminates 

the problem with variable oxygen concentrations in the sample and partially 

eliminates electrochemical interference. The commercial reality of the mediated 

sensor came with the foundation of Genetics International (later to change name to 

Medisense) and the launch of the pen-sized Exactech glucose sensors in 1987.  The 

system consists of small, disposable, single-use glucose-sensitive electrodes (based 

on a mixture of GOD and mediator in a conductive carbon-paste binder) and the 

corresponding pen-sized (later pocket-calculator-sized) meter containing the 

electronics and an LCD display (Newmann, 2005).   

 

 

 

 

2.2 Principle of Glucose Biosensor  

 

 

Biosensors are a class of extremely sensitive and selective sensors that 

convert a biological action into an electrical signal to detect or quantitatively 

determine a specific compound.  This technology is the creative synergistic 

combination of biotechnology, biochemistry, membrane technology and 

microelectronics.  Biosensors are analytical devices that incorporating a biological or 

a biomimic material, such as tissue, microorganisms, organelles, cell receptors, 

enzymes, antibodies, nucleic acids etc., which recognizes the analyte, and is 

intimately associated with or integrated within a physicochemical transducer or 

transducing microsystem, that translates the recognition event into a signal.  The 

usual aim of a biosensor is to produce either discrete or continuous digital electronic 

signals which are proportional to a single analyte or a related group of analytes 

(Eggins, 1996).  In a glucose biosensor, glucose oxidase enzymes are employed as 
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the biological components of the sensors for molecular recognition.  In the context of 

glucose biosensor, the analyte involved is glucose and it is available in the blood.  

Figure 2.2 shows the schematic representation of possible glucose biosensor 

construction.  

 

 
Figure 2.2 Schematic representation of possible glucose biosensor construction 

 

Glucose biosensors are based on the fact that the enzyme glucose oxidase 

catalyses the oxidation of glucose to gluconic acid. Glucose and oxygen would 

diffuse into the enzyme layer from the sample site and the consequent depletion of 

oxygen would provide a measurement of the glucose concentration.  The most 

common strategies for glucose detection can be partitioned into the following groups: 

those employing glucose oxidase; those using a dehydrogenase enzyme or those 

relying on an inorganic catalyst for oxidation of glucose or fluorescence due to the 

combination of fluorescein and glucose.  The first article describing an immobilized 

enzyme electrode was due to Updike & Hicks in 1967.  They immobilized the 

enzyme glucose oxidase in a polyacrylamide gel at an oxygen electrode. 

 

Since three decades, the search for an ideal glucose biosensor continues to be 

one of the main motivations in this research field.  The refinement of electrochemical 

approaches for glucose sensitivity has occupied many research groups.  Every year 

there are lots of papers in glucose biosensor published. Most papers found by the 

literature search appear to use glucose oxidase to oxidize one of the anomers of 

glucose ( Niu and Lee, 2002; Zhang et al., 2004; Yoon et al., 2000; Hodak et al., 

1997; Koide and Yokoyama, 1999).  Today, glucose sensor research is a relative 
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mature and well-worked research field.  The majority of sensors is based on 

electrochemical principles and employ enzymes as biological component for 

molecular recognition.  A successful biosensor must possess at least some of the 

following beneficial features: 

  

1. The biocatalyst must be highly specific for the purpose of the analyses, be 

stable under normal storage conditions and show good stability over a large 

number of assays (i.e. much greater than 100).  

2. The reaction should be as independent of such physical parameters as stirring, 

pH and temperature as is manageable. 

3. The response should be accurate, precise, reproducible and linear over the 

useful analytical range, without dilution or concentration. It should also be 

free from electrical noise.  

4. If the biosensor is to be used for invasive monitoring in clinical situations, the 

probe must be tiny and biocompatible, having no toxic or antigenic effects 

5. The complete biosensor should be cheap, small, portable and capable of being 

used by semi-skilled operators.  

6. There should be a market for the biosensor 

 

 

 

 

2.3 Three Generations of Glucose Biosensor 

 

 

Sometimes these three modes of oxidation are referred to as first, second and 

third generation biosensors.  First generation is oxygen electrode based sensors and 

second generation is mediator-based sensor.  Meanwhile, the third generation is 

directly coupled enzyme electrode.  However there is some evidence that the mode 

of action of conducting salt electrodes is really the same as that of a mediator, so that 

the third generation description may not be strictly accurate (Eggins, 1996).  The 

advantages of the mediated sensor are numerous.  The reaction of GOD with 

mediator is much better defined because of non-dependence on ambient oxygen.  

Therefore, there is no need to worry about variable oxygen concentrations in blood. 
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Secondly, mediators can be re-oxidized at an electrode at less extreme 

potentials than are necessary for hydrogen peroxide.  This partially eliminates 

electrochemical interference that always occurred when H2O2 detection method is 

used.  Working at such high potentials will increase the risk of interference from 

easily oxidizable compounds.  The hydrogen peroxide method is very sensitive to 

many common interfering species present in the blood such as uric acid, vitamin C 

and paracetamol.   These substances will break down electrochemically and thus give 

interfering signals. Besides mediated biosensors offer other advantages of increased 

linear response and perhaps an extended biosensor lifetime, because hydrogen 

peroxide is not being generated, which can contribute to the deactivation of the 

enzyme (Reynolds et. al., 1992).   

 

 

2.3.1 First Generation Glucose Biosensor 

 

Glucose biosensors are generally based on the enzyme glucose oxidase. This 

enzyme catalyzes the oxidation of β -D-glucose by molecular oxygen producing 

gluconolactone and hydrogen peroxide.  The detail reactions involved are as shown 

below: 

 

β-D-glucose  +  GOD(FAD)  →  Glucono-δ-lactone  +  GOD(FADH2) 

GOD(FADH2)  +  O2  →  GOD(FAD)  +  H2O2 

Glucono-δ-lactone  +  H2O2  →  Gluconic acid 

β-D-glucose  +  O2  +  H2O   →  Gluconic acid  +  H2O2 

 

The very simple first generation glucose sensor, which generates hydrogen 

peroxide in the presence of oxygen and glucose are the most widely used. The signal 

is due to the oxidation of the hydrogen peroxide at a catalytic (usually platinum) 

anode. 
 

H2O2            O2 + 2H+ + 2e- 
 

The most important advantage of the hydrogen peroxide electrode based sensors is 

their ease of fabrication and the possibility of constructing them in small sizes even 

700 mV vs Ag/AgCl

GOD
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when simple technology is used (Wilkins and Atanasov, 1996).  Figure 2.3 shows the 

different between oxygen electrode based sensors and mediator based sensor.    

 

Gluconic AcidGlucose

(a) Hydrogen Peroxide
or

(b) Reduced Mediator

(a) Oxygen
or

(b) Oxidized Mediator

Glucose Oxidase

Electrode

Electrons  
Figure 2.3 The differences between oxygen electrode based sensors and mediator 

based sensor (Clark and Lyons, 1962) 

 

 

2.3.2 Second Generation Glucose Biosensor 

  

 The problems that occur in hydrogen peroxide-based sensor can be overcome 

using mediated glucose sensor, which is second generation glucose sensor.  The 

oxidized form of the mediator reacted with reduced GOD instead of oxygen and thus 

reduced mediator is formed instead of hydrogen peroxide.  The reduced mediator is 

then deoxidized at the electrode, giving a current signal and regenerating the 

oxidized form of the mediator.  This eliminates the problem with variable oxygen 

concentrations in the sample and partially eliminates electrochemical interference.  

Figure 2.4 shows the electron transfer between the mediator and the enzyme. 
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Figure 2.4 The electrical ‘wiring’ of an oxidative redox-enzyme via a diffusional 

electron-transfer mediator shuttling between the enzyme reaction centre and the 

electrode. R: reduced mediator, R+: oxidized mediator (Degani and Heller, 1987) 

 

There are three main steps in the reaction of the mediators with glucose 

oxidase. The first one is the diffusion of the substrate from the bulk solution to the 

surface of the enzyme. And the second one is the transfer of the electron from the 

reaction centre of the enzyme to the mediator. Finally is the transport of the electron 

from the mediators to the electrode. The distance between the electrode and the 

reaction centre of enzyme will influence the membrane response time. Ferrocene 

derivatives, organic dyes, ferricyanide, Ru-complexes and other electrochemically 

active substrates have been employed as diffusional mediator and for the electrical 

activation of soluble redox-enzymes lacking direct electrical contact with the 

conductive support (Bartlett et al, 1991).   

 

A ferrocene is a typical mediator for enzyme biosensor (Kase and Muguruma, 

2004).  Ferrocene fit all criteria of a good mediator such as no reaction with oxygen, 

stable in both the oxidized and reduced forms, independent of pH, show reversible 

electron transfer kinetics and react rapidly with the enzyme (Eggins, 1996).  Besides, 

in order to successfully mediate an enzyme reaction a potential mediator must posses 

the following attributes such as low redox potential, reversible electrochemistry, fast 

electron transfer kinetics and good stability.  There are many ways in which 

mediators can be incorporated into biosensors. In a biosensor, both the enzyme and 

the ferrocene must be immobilized on the electrode. For glucose, the operation of 

mediator is as follows: 
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Glucose + GODOX                Gluconolactone + GODRED + 2H+ 

GODRED + 2Fc+                  GODOX + 2Fc 

2Fc – 2e-                2Fc+ 

 

The actual oxidation of the glucose is carried out by the FAD component of 

the glucose oxidase, which is converted into FADH2.  The FADH2 is reoxidized to 

the FAD by the mediator, Fc+ .  Then, the Fc is reoxidized to Fc+ directly at an 

electrode.  The current flowing through the electrode is an amperometric measure of 

the glucose concentration.  This is better shown in the cyclic diagram in figure 2.5.  

 

 

 
 

Figure 2.5 A ferrocene mediated biosensor for glucose 

 

 

2.3.3 Third Generation Glucose Biosensor 

 

 The third generation is directly coupled enzyme electrode.  It may be strange 

that a mediator is needed to couple an enzyme to an electrode.  It is not possible to 

reduce an enzyme directly on the electrode because the proteins tend to be denatured 

on electrode surfaces.  A better solution was developed by Albery and Cranston 

(1987) and Bartlett (1987) using organic conducting salt electrodes.  Tetrathiafulvane 

(TTF) is reversibly oxidized, and tetracyanoquinodimethane (TCNQ) is similarly 

reversibly reduced.  These conducting salts can be built into electrodes in three ways 

which are as single crystals as pressed pellet or a paste with graphite powder (Albery 

and Cranston, 1987; Bartlett, 1987).  Recently, immobilization techniques have been 

developed to wire an enzyme directly to an electrode, facilitating rapid electron 
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transfer and hence high current densities.  In general they involve an in situ 

polymerization process using redox polymer. 

 

 

 

 

2.4 Enzyme Immobilization 

 

 

Enzymes are biocatalytically active entities upon which the metabolisms of 

all living organisms are based.  They speed up biochemical reactions by lowering the 

energy of activation, without themselves appearing in the reaction products.  The 

catalytic action of enzymes involves their ability to alter the distribution of charges 

on the compound to be converted, thus bringing about a lowering of the energy of 

activation.  Furthermore, they are highly specific, thus side reactions can be avoided 

by employing enzymatic breakdown. A biocatalyst is termed “immobilized” if its 

mobility has been restricted by chemical or physical means.  This limitation of 

mobility may be achieved by widely differing methods, such as trapping in the 

network of a polymer matrix or by membrane confinement.   

 

Immobilization of an enzyme results in a considerable change in the 

microenvironment of the enzyme and may affect the properties of the enzyme, as 

well as changes in the physical and kinetic properties.  These changes may affect 

their usefulness in biochemical analysis.  With immobilized enzymes the measured 

reaction rate depends not only on the substrate concentration and the kinetic 

constants KM and Vmax, but also on immobilization effects.  These effects are due to 

the following alterations of the enzyme by the immobilization process. A variety of 

immobilization methods have been used in the development of successful biosensors.  
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2.4.1 Adsorption 

 

Adsorption of enzymes onto insoluble supports is a very simple method of 

wide applicability and capable of high enzyme loading, which is about one gram per 

gram of matrix.  Simply mixing the enzyme with a suitable adsorbent under 

appropriate conditions of pH and ionic strength, followed by a sufficient incubation 

period, and finally washing off weakly bound or unbound enzyme will produce the 

immobilized enzyme in directly usable form.  The driving force causing this binding 

is usually due to a combination of hydrophobic effects and the formation of several 

salt links per enzyme molecule.  The particular choice of adsorbent depends 

principally upon minimizing leakage of the enzyme during use.  Although the 

physical links between the enzyme molecules and the support are often very strong, 

they may be reduced by many factors including the introduction of the substrate.  

Binding forces should not be weakened during use by inappropriate changes in pH or 

ionic strength (Chaplin, 1990).   

 

 

2.4.2 Entrapment 

 

By matrix entrapment the enzymes are embedded in natural or synthetic 

polymers, mostly of a gel-like structure.  In order for the entrapped enzyme to fulfill 

its catalytic function it is essential that the substrates and products of the reaction are 

able to traverse the matrix.  At the same time, the pores of the matrix should not be 

so large that the enzyme itself can escape.  Entrapment is a convenient method for 

use in processes involving low molecular weight substrates and products.  Amounts 

in excess of 1g of enzyme per gram of gel or fiber may be entrapped.  The advantage 

of entrapping method is that enzymes are not subjected to serious modification, and 

immobilization eliminates the effect of proteases and enzyme inhibitors of high 

molecular weight.  However, the difficulty which large molecules have in 

approaching the catalytic sites of entrapped enzymes precludes the use of entrapped 

enzymes with high molecular weight substrates.  The entrapment process may be a 

purely physical caging or involve covalent binding (Chaplin, 1990).   
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The natural polymers that are used for entrapment of enzyme usually lead to 

relatively soft products.  Subsequent hardening procedures, such as treatment with 

glutaraldehyde are required.  Synthetic polymers produced by polycondensation or 

polymerization are frequently used for entrapping enzymes.  The network of the 

polymer can be made dense enough to retain the enzyme molecules.  One of the 

deficiencies of this method of immobilization is that the enzyme may slowly leak out 

of gel matrix.  This leakage is more pronounced with gels that have high water 

content.  Further linking procedures which provides additional cross-linking are 

needed for enzyme because the mesh diameter is too large to retain single enzyme 

molecules (Chaplin, 1990).   

 

 

2.4.2.1 Sol-gel  

 

An interesting recent entrapment procedure used is the sol gel method.  Sol 

gels are chemically inert, can resist swelling, are processed at low-temperatures, and 

have tuneable porosity. Over 80% of GOD remained active in sol-gels and the 

amperometric response agreed well with theoretical predictions (Audebert, 1993). 

Sol-gel is a low-temperature process that involves the hydrolysis and 

polycondensation of suitable precursors to form ceramic materials (Wu et al., 1999).  

The low temperature gel synthesis facilitates the encapsulation of biorecognition 

elements within the gel, by adding the biological compound to the reaction mixture 

at the onset of polymerization.  The porous inorganic sol-gel matrix possesses 

physical rigidity, chemical inertness, high photochemical, biodegradational, tuneable 

porosity, and experiences negligible swelling in both aqueous and organic solutions 

(Liu et al., 1999)   

 

The sol-gel process involved the initial hydrolysis and polycondensation of 

alkoxides in localized regions, leading to the formation of colloidal particles, which 

is called sol.  As the interconnection between these particles increases, the viscosity 

of the sol starts to increase and this leads to the formation of the porous gel, which is 

used as enzyme encapsulation matrix (Wu et al., 1999).  When dried near room 

temperature, the dried sol-gel matrix provides an aqueous environment inside the 

pores, which host the enzymes (Gudeman and Peppas, 1995).  Due to the porous 
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nature of the matrix, an analyte can interact easily with immobilized enzyme (Lilis et 

al., 2000).   

 

The properties of the porous sol-gel matrix are affected by various process 

factors (Wu et al.,1999).  Rapid hydrolysis occurs under basic condition, which gives 

rise to a more particulate sol-gel, with a larger average pore size (that able to give 

higher initial enzyme activity), but results in a brittle and easily cracked film upon 

drying at room temperature (Lilis et al., 2000).  Cracking occurs due to capillary 

stresses generated by evaporation of water and solvent molecules from the porous 

network (Lilis et al., 2000).  Slower hydrolysis occurs under acidic condition 

creating a polymeric gel with a smaller average pore size, which may lead to 

diffusional restraints in the sol-gel matrix, resulting in a lower initial enzyme activity 

but more rigid enzyme layer (Lilis et al., 2000).  Under acidic condition, aprotic 

solvents such as dioxane promote initial hydrolysis while protic solvents such as 

ethanol retard initial hydrolysis (Lilis et al., 2000).   

 

 
 

In a typical procedure, tetramethoxysilane (or tetraethoxysilane) is mixed 

with water in a mutual solvent such as methanol followed by the addition of suitable 

catalyst.  As the sol becomes interconnected, a macroscopically rigid, hydrated gel is 

formed.  Specific reagents such as proteins, organic dyes, and redox species can be 

trapped into this optically transparent, stable host matrix by simply adding them to 

the sol prior to its gelation.  These materials have been used in numerous applications 

including solid-state electrochemical devices, chemical sensors, catalysts, and 

nonlinear and optic applications (Howells et al., 2000).  An R value, which is the 

water/alkoxide ratio, of 1:3.7 was seen to be optimal (Lilis et al., 2000).  Higher R 

value causes increase in the rate of hydrolysis resulting in a more particulate gel.   
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The utmost important point is the extent to which the entrapped reagents 

maintain their chemical and physical properties when immobilized in this solid host.  

The silica gel matrix is not a completely inert support while stable.  The surface of 

the pore walls contain several kinds of functional groups including siloxane (SiOSi), 

silanol (SiOH), siloxide (SiO-), and possibly unreacted silicon alkoxide groups 

(SiOCH3).  Furthermore, the walls will be negatively charged with pI of silica is 

approximately 2 under most condition.  The degree of surface interactions between 

an entrapped dopant and the walls of the silica host and the extent of surface 

confinement can strongly affect the rotational and translational mobility of the 

entrapped guest and impact the overall performance of sol-gel-based devices.  The 

size, charge, and functionality of the entrapped species as well as the average pore 

size, pore connectivity, tortuosity, and interfacial polarity of the pore walls are 

important variables that need to be considered (Howells et al., 2000).  

 

As mentioned earlier, two types of alkoxides will be applied, the silica 

alkoxide, tetramethoxysilane (TMOS) (C4H12O4Si) (Chen et al, 2002, Wu et al., 

1999; Sapsford, and Ligler, 2004; Wolfbeis et al., 2000), and metal alkoxides, 

alumina (Aluminium isopropoxide) (Al[OCH(CH3)2]3) (Liu et al., 1999; Wei et al., 

2001; Chen et al., 2002) are of interest.   

 

 

 

 

 

               (a)                      (b) 

Figure 2.6 Structure of (a) Tetramethoxysilane (b) Aluminium isopropoxide 

 

The process is based on the inorganic polymerization of silica alkoxide 

Si(OR)4 for which the hydrolysis and condensation concerted reactions are known to 

be relatively slow.  The need for a catalyst is due to the lower reactivity of silicon 

alkoxide as compared to the reactivity of other metal alkoxides such as aluminum, 

titanium, zirconium (Griesmar et al., 2003).  Different alkoxides may give different 

properties to the resulted sol-gel matrix.   

 

           OCH3 
 

H3CO       Si      OCH3 
 

          OCH3 

                OCH(CH3)2 
 

         Al 
 

(CH3)2HCO       OCH(CH3)2
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2.4.3 Covalent Coupling 

 

The formation of covalent bonds between enzyme and an insoluble support is 

the most frequently used techniques.  This technique consists of forming a covalent 

bond between one or more of the enzyme’s amino acid residues and a functional 

group on the insoluble support (Saburo and Tanaka, 1990).  The strength of binding 

is very strong and very little leakage of enzyme from the support occurs.  The 

usefulness of the various functional groups for covalent link formation depends on 

their availability and reactivity (nucleophilic).  The reactivity of the protein side-

chain nucleophiles is determined by their state of protonation, which is the charge 

status, and roughly follows the following relationship where the charges may be 

estimated from the pKa values of the ionizing groups and the pH of the solution. 

  

 

 

The functional groups of enzymes that can be utilized for covalent attachment 

include (Saburo and Tanaka, 1990): 

 

(a) the ε-amino groups of lysine and arginine, and α-amino groups of the 

polypeptide chains 

(b) the ε-carboxyl groups of the aspartate and glutamate residues and the 

α-carboxyl groups of the chains 

(c) the hydroxyl groups of the serine and threonine residues 

(d) the aromatic ring of the tyrosine residues 

(e) the imidazole ring of histidine 

(f) the indole ring of tryptophan 

(g) the sulfhydryl groups of the cysteine residues 

 

Lysine residues are found to be the most generally useful groups for covalent 

bonding of enzymes to insoluble supports due to their widespread surface exposure 

and high reactivity. They also appear to be only very rarely involved in the active 

sites of enzymes (Chaplin, 1990).  The amino groups of a protein can react with a 

large number of functional reagents such as acylating and alkylating agents, 

-S- > -SH> -O- > -NH2 >-COO- > -OH >> -NH3
+ 
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aldehydes, diazonium salts, and isocyanates.  Compared to the amino groups, the 

carboxyl groups of proteins are much less reactive groups. Covalent coupling will be 

quite generally applied, even if little is known about the structure or active site of the 

enzyme (Saburo and Tanaka, 1990). 

 

 

 

 

2.4.4 Cross-linking 

 

In many cases the immobilization of enzymes has been achieved by cross-

linking the enzyme molecules to each other or to some functional groups on a carrier 

matrix.  The result is a coupling one enzyme molecule to another, thus forming large 

matrices of enzyme molecules.  The cross-linking is accomplished with bifunctional 

reagents, which may either contain two identical functional groups or two different 

functional groups (Saburo and Tanaka, 1990).  Of these reagents, glutaraldehyde is 

by far the most widely used.  Glutaraldehyde is used to cross-link enzymes or link 

them to supports.  It is particularly useful for producing immobilized enzyme 

membranes for use in biosensors by cross-linking the enzyme plus a non-catalytic 

diluent protein within a porous sheet.  Carbodiimides are very useful bifunctional 

reagents as they allow the coupling of amines to carboxylic acids.  Careful control of 

the reaction conditions and choice of carbodiimide allow a great degree of selectivity 

in this reaction.  The use of trialkoxysilanes allows inert materials as glass to be 

coupled to enzymes (Chaplin, 1990).   

 

 

2.4.4.1 Chemically Cross-linked Poly(vinyl alcohol) 

 

Chemically cross-linked PVA involves the cross-linking of glucose oxidase 

and the support by using a bifunctional cross-linking agent.  As discussed before, the 

most commonly employed bifunctional reagent for cross-linking is glutardialdehyde, 

simply called glutaraldehyde.  The reaction aldehyde groups at the two ends of the 

glutaraldehyde react with free amino groups (ε-amino groups, N-terminal amino 

groups) of enzymes.   
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Figure 2.7 Cross-linking of enzyme with glutaradehyde (Hartmeier, 1986)  

 

The cross-linking method is to stabilize the immobilized enzyme and to 

minimize enzyme leaking from the matrix.  At the same time, the access to the 

substrate binding sites cannot be block by direct reaction with the sites or by burying 

the sites under excess cross-linking rope.  Cross-linking bridges can be formed by 

two mechanism, include the slow cross-linking, and the fast cross-linking.  The slow 

cross-linking involves aldol condensation between two or more α,β-unsaturated 

aldehydes.  Figure 2.8 shows the aldol condensation equations.  The condensation 

products of glutaraldehyde provided the “glue” for cross-linking in the sense that 

nucleophiles add to α,β-unsaturated aldehydes irreversibly. 

 

2 O=HCH2CH2CH2CH=O  ↔ O=HCH2CH2CCH=O 

       O=HCH2CH2CH2CH 

 

Figure 2.8 Aldol condensation of glutaradehyde 

 

The fast cross-linking process requires glutaradehyde and other precursors, 

containing amine groups.  When the latter are added to glutaraldehyde solutions, a 

complex set of pyrimidine products in a range of sizes are rapidly generated.  These 

products are the cross-linking bridges and thus provide structural “glue” for cross-

linking (Johnson, 1993).   

 

 



 

 

23

 

2.4.4.2 Freeze-thawed PVA 

 

The chemically cross-linked PVA modifies the immobilized enzyme 

drastically and leads to conformational changes and thus results in loss of enzyme 

activity (Braun, 1976).  Physically cross-linked PVA may be a good choice of 

immobilizing the enzyme. While minimizing the chemically cross-linked PVA 

problem, at the same time maintaining the good properties of PVA.  The exposition 

of aqueous PVA solutions to several freezing-thawing cycles leads to reinforced gels 

owing to a densification of the macromolecular structure (Chen et al., 2002) which is 

function of the cycling time and temperatures.  After the freezing-thawing process, 

fine crystallites are formed due to the slow heat treatment.  The chains are physically 

cross-linked by semipermanent entanglements, molecular associations or crystalline 

(Doretti et al., 1997).  Formations of crystallites serve as physical cross-links to 

render the material insoluble in water.   

 

Some characteristics of the physically cross-linked PVA gels include high 

degree of swelling in water, a rubbery and elastic nature, and high mechanical 

strength because the mechanical load can be distributed along the crystallites of the 

three-dimensional structure (Chen et al., 2002).  The properties of gel may depend on 

the molecular weight of the polymer. the concentration of the aqueous PVA solution, 

the temperature and time of freezing and thawing, and the number of freezing-

thawing cycles (Chen et al., 2002).   

 

 
Figure 2.9 Freeze-thawed crystallite structure. A double layer of molecules is held 

together by hydroxyl bonds while weaker van der Waals forces operate between the 

double layers.  A folded chain structure of PVA chains leads to small order regions 

(crystallites), scattered in unordered, amorphous polymer matrix (Peppas et al., 

1985)  
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The freezing-thawing method us characterized by the absence of chemical 

cross-linking agents that could compromise its biocompatibility or of physical 

agents, such as γ radiation that could deactivate the biological substrates, due to 

damage caused mostly by the indirect effect of water radiolysis (Doretti et al., 1997).  

Generally, physical entrapment of enzyme molecules in polymeric membranes is one 

of the most advantageous methods because it is rapid and simple, and the retained 

activity is high (Doretti et al., 1998).  The novel networks are of significant interest 

in the biomedical field because they are nontoxic for organisms, contain no 

impurities, and their water content matches that of biological tissue (Doretti et al., 

1997).   In this work, the parameters that could affect the enzymatic layer of a 

glucose biosensor, such as freezing-thawing cycle and PVA concentration will be 

evaluated. 

 

 

 

 

2.5 Methods of Tethering the Mediator to the Enzymatic Membrane  

 

 

Various methods of tethering the mediator to the enzymatic membrane for the 

second generation sensor have been reported. Cross-linking of the enzyme and the 

redox polymer using glutaraldehyde was reported by Koide and Yokoyama, 1999. 

Redox hydrogel polyallylamine ferrocene was prepared by crosslinking 

polyallylamine hydrochloride with glutaraldehyde and attaching the ferrocene 

covalently.  Amino group of cross linked polyallylamine and carboxyl group of 

ferrocene carboxylic acid was activated by using carbodiimide reagents.   

 

The use of a load protein like albumin improves enzymatic activity because 

of the better mass distribution of the various protein, but it does not alter the 

mechanical properties of the membrane produced.  Koide and Yokoyama, 1999 

suggested that BSA addition prevented the polymer matrix from over-swelling.  

There were decrease in the redox response resulted from the electrode without BSA.  

These results indicate that such a decrease in the redox response resulted from 

swelling of the polymer protein hydrogel. It was because the distance between the 
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redox site of the polymer was extended.  Therefore, the electron transfer rate among 

neighbouring redox redox sites decreased.  Stable cyclic voltammograms were 

obtained for electrode with a greater BSA content than the ratio of redox polymer. 

 

For ferocene mediator, the leaching problem is less severe if electroactive or 

ion exchange polymers, such as nafion, are used to contain the mediator. In a simple 

Nafion–ferrocene film, where entrapment is provided by nafion only, the oxidized 

and the reduced forms of ferrocene are believed to interact differently with the 

hydrophilic and hydrophobic phases of nafion (Niu and Lee, 2002). Thus, the use of 

polyelectrolytes (PE) incorporated SGS to fabricate reagentless mediator-based 

enzyme was firstly reported by Niu and Lee, 2002.  SGS-PE membrane is an 

excellent matrix for the immobilization of enzyme and mediator in the development 

of mediated reagentless biosensors.  The electrode is fabricated by casting in 

sequence of Nafion- ferrocene solution, enzyme solution and PE loaded silica sol.  

Weakly held species as well as leached ferrocene derivatives from the inner Nafion 

mediator layer will be retained by the outer PE-SGS network layer.  The presence of 

hydrophilic PVA and the relatively hydrophobic network of sol gel silica will modify 

the environmental for ferrocene carboxylic acid retention.  The result is a 

consolidation of the effects of polymer, ionomer and sol gel network. 

 

The simultaneous presence of the polyelectrolyte and sol–gel silica has 

greatly improved the selectivity and stability of the sensors.  High stability originated 

from the effective entrapment of mediator and enzyme by the three-dimensional 

interpenetrating network of the PE–SGS matrix.  The co-operative effect from the 

hydroxyl groups of  PVA and the sol–gel environment sustain the rotational freedom 

for the enzyme molecules to adopt the active configuration typical under 

physiological conditions.  The active matrix environment prolongs the life span of 

the enzyme to result in high sensitivity.  Biosensors based on PE–SGS 

immobilization is simple to fabricate, work under lower operating potentials, and 

provide good responses over a wide range of concentrations.  
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2.5.1 Redox Polymer 

 

A promising strategy in biosensor design is the immobilization of both 

enzyme and mediator, which generally require polymeric material. One of the 

approaches to the electrical contacting of polymer-bound enzymes involves the use 

of polymers that are functionalized with redox-units. The advantages of using the 

redox polymer are several with the main advantage is more stable biosensors since 

leaking of mediator from the electrode is minimized and higher and faster responses 

are observed due to proximity between the enzyme and the mediator (Rondeau et al., 

1999).  

  

Polyelectrolytes represent the best choice for the optimization of interactions 

with enzymes and electrodes.  Hydrophilic, charged, flexible chains of 

polyelectrolytes can easily surround protein molecules, and even penetrate inside the 

protein matrix, providing good contact between the protein structures and polymer 

backbone.  Each unit of a polyelectrolyte is weakly adsorbed on an electrode surface, 

but the cooperative effect of the entire polymer chain leads to strong adsorption, 

while some parts of the chain remain unattached, providing binding domains for 

protein molecules.  Three-dimensional redox polyelectrolyte networks that 

electrically connect enzyme redox centers to electrodes have been formed in several 

systems, of which enzyme ‘wired’ hydrophilic epoxy cements are an excellent 

example. 

 

A popular approach has been made to polymerize 4 vinylpyridine on the 

surface (Lyons, 1991).  A similar approach has been used with polypyrroles, poly N 

methylenepyrroles and polythiophenes (Grimshaw and Perera, 1990) using mainly 

covalently attached quinines as the redox group. In this case, the polymeric chain 

consists of a poly(vinylpyridine) backbone of which approximately one-sixth of the 

pyridine units are complexed to [Os(bpy)2Cl]2+ and about one-fifth of the pyridines 

have been reacted with 2-bromoethylamine to form pyridinium-N-ethylamine 

polycationic domains.  This redox polyelectrolyte interacts with enzymes easily and 

‘wires’ their redox centers by penetrating into the protein shell (e.g. of lactate 

oxidase, glycero-3-phosphate oxidase, or cellobiose oxidase) (Heller, 1992; Heller 

and Khatakis, 1992).  Although negatively charged enzymes can strongly interact 
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with this polycationic polymer even without crosslinking, crosslinking with the 

water-soluble diepoxide poly(ethylene glycol) diglycidyl ether can further stabilize 

the system. 

 

A similar positively-charged copolymer of allylamine and ferrocene-

functionalized acrylic acid can interact with negatively charged proteins and be 

crosslinked with glutaric dialdehyde in the presence of GOD to yield stable 

electrically ‘wired’ biocatalytic matrices (Koide and Yokoyama. 1999; Calvo et. al, 

1994).  Figure 2.10 shows the ferrocene containing crosslinked polyallylamine. 

 

 
Figure 2.10 Ferrocene containing cross-linked polyallylamine ((Koide and 

Yokoyama, 1999) 

 

These enzyme electrodes also demonstrate an electrocatalytic current for 

glucose oxidation.  Koide and Yokoyama, 1999 have investigated a cross-linked 

redox polymer that can be prepared readily and characterized mediated enzyme 

electrode using this redox polymer.  Polyallylamine was cross-linked with 

glutaraldehyde and modified successively with ferrocene carboxylic acid (Koide and 

Yokoyama, 1999).  Figure 2.11 shows the cyclic voltammograms of the electrode 

modified with ferrocene-containing crosslinked polyallylamine containing glucose 

oxidase.  Successive additions of glucose at a fixed oxidative potential result in 

increases in the current. 
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Figure 2.11 Cyclic voltammograms of the electrode modified with ferrocene-

containing cross-linked polyallylamine containing glucose oxidase in the polymer 

matrix: (a) in the absense of glucose, (b) with glucose, 1 mM, and (c) with glucose, 3 

mM. Potential scan rate 5 mV s–1.  Inset: amperometric responses of the enzyme 

electrode (at 0.6 V) upon successive additions of glucose.  Numbers show glucose 

concentration in mM 

 

 

2.5.2 Multilayer Systems 

 

Enzymes deposited in ordered monolayers and multilayer systems have been 

described using different assembling techniques for enzyme immobilization such as 

Langmuir-Blodget, self-assembled monolayers, step by steps electrostatic adsorption 

of alternate multilayers, antigen-antibody interaction, avidin-biotin interaction, 

surfactant films and electrostatic adsorption of hyperbranched polyelectrolytes 

(Calvo et al., 2001).  The enzyme content in monolayers is low, however, and 

electrical contact in the presence of a diffusional mediator does not usually result in a 

detectable amperometric response.  Thus, an increase of the enzyme content is 

essential to obtain the detectable current when diffusional mediators are applied.  The 

stepwise deposition of a multilayer assembly results in the increase of the enzyme 

content, resulting in a significantly larger current.  
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Layered construction of proteins into organized systems has attracted 

considerable attention in recent years due to its potential application in the areas of 

bioelectronic and biooptical devices, biosensors, etc.  There have been a number of 

approaches for constructing multilayer protein films on the surface of solid matrices, 

including a layer-by-layer deposition of proteins on the surface of an electrode 

through a coupling reagent and consecutive adsorption of positively and negatively 

charged polyelectrolytes and proteins on a solid surface through an electrostatic force 

of attraction.  Above method have proven to be effective and successful ways to 

fabricate multilayer thin films containing proteins.  However, these procedures are 

complex and somewhat tedious, and the latter are not stable enough (Zhang et al, 

2004).  

 

Multilayered construction of glucose oxidase and redox poly(allylamine) 

ferrocene utilizing layer-by-layer covalent attachment has been reported by (Zhang et 

al, 2004, Yoon et al., 2000 and (Hodak et al., 1997).  In that method, glucose oxidase 

iwas immobilized on a cystamine modified gold (Au) electrode by layer-by-layer 

covalent attachment of periodate-oxidized glucose oxidase and poly(allylamine) 

ferrocene complex (PAA-Fc).  The key to produce the multilayer is by covalent 

bonding through the formation of Schiff base bonds between aldehyde groups of 

periodate-oxidized GOD and amino groups of PAA-Fc on a gold electrode.  In 

addition the formation of Schiff bond is also applied in the preparation of 

polyallylamine ferrocene using ferrocene carboxaldehyde and polyallylamine 

hydrochloride. 

 

As it is well known that the reaction between amino group and carbaldehyde 

group easily proceeds in a moderate condition.  It is not necessary to introduce other 

material or energy to the system and avoid the contamination and deactivation of the 

enzyme (Zhang et al., 2004).  The method has proven to be an efficient and 

experimentally simple way to produce complex layered enzyme structure with 

precise control of layer composition and thickness (Zaborsky et al., 1974, Yoon et 

al., 2000a, Yoon et al., 2000b and Zhang et al., 2004). 
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The deposition of variable numbers of the enzyme layers also allows the 

tuning of the enzyme electrode amperometric output by the control of the number of 

layers.  The enzyme content of monolayer assemblies may also be increased by the 

application of rough electrode surfaces.  Treatment of Au surfaces with Hg results in 

a roughening of the conductive support by the generation and dissolution of an Au-

amalgam. Typically, Au surfaces with initial roughness factor of 1.2-1.5 can be 

roughened to exhibit a roughness factor of 15-25. Multilayers of GOD were linked to 

smooth and rough Au electrodes by coupling to cystamine-functionalized surfaces, 

and ferrocene monocarboxylic acid was applied as a diffusional mediator to contact 

the enzymes. 

 

 

 

 

2.6 Permselective Layer for Hydrogen Peroxide-Based Glucose Sensor 

 

The amperometric detection of hydrogen peroxide via electro-oxidation 

requires high over potential (+700mV) and may cause interferences including 

ascorbic acid, urate acid, and acetaminophen in biological fluids due to easily 

oxidable substances presented in the fluid at the measuring potential (Sirat et al., 

1992).  In order to minimize the interference effects, five approaches have been 

adopted. 

 

The first strategy is to replace the natural electron acceptor, which is oxygen, 

with redox mediators that are able to transfer electrons from the GOD reduced active 

sites to the electrode surface at lower potentials.  However, the mediators for in vivo 

use is limited due to the leaching of the mediator from the electrode, the sensitivity to 

oxygen, and the catalytic oxidation of electroactive interference by the mediator 

(Poyard et al., 1998).The second approach is to prepare a bienzyme glucose sensor 

combining GOD with a wired peroxidase [8] or to incorporate an interference-

removing enzyme (Wan et al., 1990). 
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The third alternative is to apply a permselective membrane, which can 

exclude interferent species through molecular size or charge effects (Palmisano et al., 

1993; Groon and Luong, 1993).  However, such permselective membranes lead to 

the diffusional constraints, which result in low analyte sensitivity [8].  Another two 

methods are the development of optical-based sensors (Gunasingham and Tan, 1992) 

and by applying differential measurements (Vincke et al., 1985). 

 

A variety of materials have been used for this purpose including Nafion 

(Harrison et al., 1988; Hu and Wilson, 1997; Matsumoto et al., 1998), cellulose 

acetate (Zhang et al., 1994), silane film (Jung and Wilson, 1996), alternately 

adsorbed polyions films (Mizutani et al., 1998), and electropolymerized membranes 

(Bartlett and Cooper, 1993; Cosnier, 1997).  The issue with the deposition of Nafion 

and other conventional polymers on the electrode surface is difficult to control so as 

to produce thin, homogeneous, reproducible, and strongly adhesive films by coating 

methods.  Electropolymerized films are attractive for its ability to carefully control 

deposition conditions even with complex electrode shapes (Emr and Yacynych, 

1995; Jung and Wilson, 1996) but the main problem is the maintenance of high 

permselectivity with repeated use (Barlett and Cooper, 1993; Cosnier, 1997; Christie 

et al., 1993; Eddy et al., 1995).   

 

Permselectivity membrane using poly(2-hydroxyethyl methacrylate) 

(pHEMA) has been demonstrated in conjunction with optical glucose affinity sensors 

(Kumar and Chaudhari)  pHEMA also prepared together with a redox hydrogel, 

polypyrrole, in clinically important biosenors, for its biocompatility and high degree 

of swelling (Brahim et al., 2002). 

 

 Another method demonstrated was to utilize selective electroanalysts.  Metal 

based electrodes, such as palladium (Sampath and Lev, 1996), ruthenium (Wang and 

Pamidi, 1997), and iridium (Wang et al, 1997; Tian and Zhu, 2002), exhibits a strong 

and preferential electrocatalytic action towards the enzymatically produced hydrogen 

peroxide, while display no response to coexisting oxidizable substances (Tian and 

Zhu, 2002).  
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Two of the main interference substances, which are urate acid and ascorbic 

acid are charged molecules and thus can be excluded by ionic charge.  While 

acetaminophen, a neutral interference molecules, has to be excluded by molecular 

weight.  In this work, the third alternative is in concern and poly (2-hydroxyethyl 

methacrylate) (pHEMA) is chosen to be the permselective layer due to its specific 

characteristics. 

 

 

2.6.1 pHEMA 

 

Poly (2-hydroxyethyl methacrylate) (pHEMA) was firstly prepared for 

biological use by Wichterle and Lim.  Its well-tolerated safety, good 

biocompatibility, non-toxicity, and non-antigenic properties contribute for its wide 

applications in biomedical field (Hsiue et al., 2001).  Moreover, pHEMA is a kind of 

hydrogel, which is a class of polymeric material.  It has the ability to hold substantial 

amount of water, showing soft and rubbery-like consistency and low interfacial 

tension (Kudela, 1976).  These structural features dominate its surface properties, 

permselectivity, and permeability that gives pHEMA their unique and interesting 

properties and similarity of their physical properties to those of living tissue (Seidel 

and Malmonge, 2000).  The physical properties of the pHEMA can be adjusted 

according to a specific application since it can be fabricated and easily altered in 

various geometric forms (Seidel and Malmonge, 2000). 

 

The bulk polymerization of HEMA can result in a glassy and transparent 

material in dense form that is considered non porous (Chirilla et al.).  In opposite, 

the solution polymerization of this monomer allows the formation of porous 

structures by deciding the type and amount of diluent used.  For water amount less 

than 55.7%, the solution polymerization technique led to formation of non-porous 

hydrogel (Seidel and Malmonge, 2000). 

 

Dense hydrogels show the behaviour of a rigid and fragile material when 

dried and and elastomeric consistence when swelled in water.  Generally dense 

hydrogels show an amorphous structure since it is very difficult the arrangement of 
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the macromolecules and formation of crystallites is in the presence of crosslinks 

(Seidel and Malmonge, 2000). 

 

The non-porous pHEMA membrane has appropriate permselectivity and 

biocompatibility (Peppas et al., 1985).  The diffusion in pHEMA membrane can be 

investigated based on two factors, which are the cross-linking density of the network 

or mesh size, and the degree of swelling (Peppas et al., 1985).  The mesh size of the 

hydrogel is varied through different cross-linking ratio and in order to exclude larger 

species while maintaining the small solute permeability (Peppas et al., 1985). 

 

 

 

 

2.7 Protective Membrane for Mediator-Based Glucose Biosensor 

 

 

Finally, the electrode is coated with a protective layer that renders the sensor 

response to be limited by  mass transfer rather than kinetically controlled and which 

also provides a biocompatible interface with the surrounding environment.  Another 

role of the outer membrane is to protect the enzyme layer and preserve the enzyme 

activity.  Outer membrane is not an option when a sensor is continuously used in 

biological fluids.  If amperometric enzyme based biosensors are to function 

successfully in vivo, they need biocompatible outer membranes that can prevent 

fouling by proteins in physiological fluids.  The outer membrane is especially 

important for in vivo measurement because of its ability to make the enzymatic 

reaction essentially independent of the oxygen partial pressure over a wide range 

while excluding erythrocytes, tissue, catalase and other oxidizable interfering 

substances at the electrodes.  

 

The outer layer is applied to control glucose fluxes in order to optimize 

linearity of sensor response and minimize dependence on oxygen tension.  A variety 

of different polymer coatings were employed in order to attempt to extend the linear 

range of the prepared sensor.  The stability of the sensors life’s time is recognized as 

one of the most important factors with respect of their practical application. Ihab et 
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al., 1995, investigated different concentrations of polyurethane, polyvinylchloride 

and cellulose acetate coating solutions.  The polymer coatings were obtained by 

dipping the face of the sensor in the polymer solution for 20 s.  

 

Increasing the polymer coating solution concentrations extends the linear 

range of the sensor response further, but is accompanied by a corresponding decrease 

in the sensor sensitivity.  This can be explained by assuming that increasing the 

polymer coating concentration produces a thicker or less porous coating.  Increasing 

the coating thickness or decreasing its porosity limits the flux of glucose and thus 

reducing the response of a given glucose concentration. Yang et al., 1998 have used 

Nafion as external diffusion and additional interfering eliminating layer, which 

extend the linear range of the sensor response to over 25mM glucose concentration.  

 

Nafion is a negatively charged polymer.  It can be used to reduce the 

diffusion of negatively charged ions such as ascorbic acid and uric acid to the 

catalytic electrode surface.  The use of Nafion layer casted from solutions of the 

ionomer as an external diffusion control membrane is an attractive approach for 

reducing the interferences caused by small neutral or cationic electroactive molecule 

present in biological media.  The reproducibility of permeability of this layer in 

whole blood and the ease of the film preparation are important features of this 

material.  

 

Also what is significant is the fact that Nafion has many of the features that 

have been suggested as desirable for biocompatibility.  These include having both 

hydrophilic and hydrophobic properties and being chemically inert.  Another 

advantage of choosing Nafion as an external membrane is the resulted fast sensor 

response.  The response time (estimated as time to reach 95% of the steady-state 

value of the current signal) is about 10s. The shorter stabilization period required 

following electrode polarization (1–3 min) and low background current (10–40 nA) 

are also advantageous.  This is achieved as a result of Nafion as the coating 

membrane which effectively limit the access of the larger molecules and anions to 

the electrode (Yang et al., 1998). 

 

 



 

 

35

 

 

 

 

 

CHAPTER 3 

 

 

 

 

MATERIALS AND METHODS 

 

 

 

 

3.1 Chemicals 

 

 

Glucose oxidase (E.C. 1.1.3.4) from Aspergillus niger were purchased from 

Sigma (England).  Hydroxyehtyl methacrylate (HEMA), (3-

glycidoxypropyldimethoxy) silane (3-GPDES), Aluminium isopropoxide 98+%, 

ethylene glycol dimethacrylate (EGDMA),  2,2-dimethoxy-2-phenylacetophenone 

(DMPP), ferrocene carboxylic acid (97%) and ferrocene carboxaldehyde (98%) were 

purchased from Aldrich (Germany).  Cystamine dihydrochloride (98%) were 

purchased from Aldrich (China).  Peroxidase horseradish (E.C. 1.11.1.7, type VI 

from Horseradish), glucose (corn sugar, 99.5%), sodium borohydride (98%), etylene 

glycol, poly (allylamine hydrochloride) (Average MW CA:70 000), triethlamine, 

sodium m-periodate,  HEPES ( 99.5%, pH 6.8-8.2 ), bovine serum albumin (BSA), 

polyvinyl alcohol ( PVA, Average MW 70 000-100 000), glutaraldehyde, lysozyme 

(Grade 1 from chicken egg, 58,100 units/mg solid, and N-cyclohexyl-N%-(2-

morpholinoethyl) carbodiimide metho-p-toluenesulfonate were purchased from 

Sigma (USA).  Nafion solution (5% in a mixture of lower aliphatic alcohols and 

water) were bought from Fluka (USA).  Tetramethylorthosilicate (TMOS), kalium 

di-hydrogen phosphate, di-kalium hydrogen phosphate, kalium chloride, acetic acid, 
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methanol, sulfuric acid and hydrochloric acid were purchased from Merck 

(Germany).  

 

 

 

 

 3.2 Instrumentation 

 

 

Electrochemical measurements were carried out using three-electrode 

configuration.  The working electrode (WE) used was a gold or platinum electrode.  

A platinum auxiliary electrode was used as the counter electrode (CE).  A Ag/AgCl/ 

KCl was employed as the reference electrode (RE). Electrochemical measurement 

was carried out in normal or deoxygenated phosphate buffer solution with a 

computer controlled potentiostat (Metrohm µAutolab Type III). 
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3.3 Methodology for Hydrogen Peroxide-Based Glucose Sensor 

 

 
STAGE I Enzyme Immobilization Layer 

 
                                  Four Different Support Maerials 
 

   
  Chemically           TMOS sol-gel            Alumina sol-gel             Freeze-thawed     
 Cross-linked                                                                                                          PVA 
        PVA 
 

Determination and Comparison of Enzyme Activities 
 
 

STAGE II Permselective Layer 

Synthesis of pHEMA Membranes 
 

Permeability Measurement 
 
 

STAGE III Determination of Overall Performance of Three Layers with  

                             Additonal Nafion Outer Layer 
 

Figure 3.1 Flow chart of research methodology of hydrogen peroxide-based glucose 

biosensor 
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3.3.1 General Casting Method of Free-standing Membrane 

 

 
         

         

15 µl
GOD

T h e  s o l u t i o n  w as
c l a m p e d  w i t h  g l a s s
s l i d e  f o r  p r e s c r i b e d
o f  t i m e

T h e  s l i d e s  w i t h  t h e
m em b r an e  w e r e  s o ak ed
i n  2 5 m L  o f  0 . 1  M
p h o s p h a t e  b u f f e r  p H  6 . 0

90 µl support
material solution

(I)

80 µl
mixture solution

(II)

(IV)

(III)

(V)

Th e  me mb ran e  an d  w as
u n c l a mp ed  a n d  wa s
s t o r e d  i n  t h e  p h o s p h a t e
b u f f e r  p H  6 . 0

 
 

Figure 3.2 General casting method of free-standing membrane 

 

To prepare 280mg/ml GOD aqueous solution, 70mg of GOD lyophilized 

powder was dissolved in 250µl distilled water.  The solution was then stored at 4ºC 

for later use.  The general membrane casting procedures were as shown in figure 3.1.  

An amount of 280mg/ml GOD solution was added to the support material solution at 

a volume ratio of 6:1.  The final enzyme loading was 40mg/ml.  Then, an aliquot of 

the mixture was transferred quickly onto a glass slide and air-dried for 10 minutes 

before it was covered with another glass slide.  The two glass slides were clamped 

together and left for a prescribed amount of time at room temperature.  The thickness 

of the membrane was controlled with 3 layers of aluminium spacer tape which were 

stuck on the first glass slide.  Following the gelation of the membrane, the slides 
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were soaked in 0.1 M phosphate buffer pH 6.0.  The slides were then unclamped and 

the membrane layer was stripped carefully from the slide.  Finally, the membrane 

was washed and stored in phosphate buffer at 4°C for further analysis.  

 

 

3.3.2 Preparation of Chemically Cross-linked PVA-GOD Membrane (Abdul-

Aziz, 2001) 

 

This type of enzymatic layer was prepared by entrapment of GOD in 10% 

PVA (w/v) aqueous solution using the methods established by Abdul-Aziz (2001) 

with modifications.  The PVA solution was prepared by adding 5 g of PVA powder 

in 50 ml distilled water.  Then, the solution was heated up and stirred at a 

temperature of approximately 90°C.  Subsequently, the well-dissolved solution was 

filtered and kept at 4°C.  10 wt% aqueous PVA solution was mixed with 10% acetic 

acid, 50% methanol, and 10% sulfuric acid, in a volume ratio of 5:3:2:1.  An 

appropriate amount of glutaraldehyde was added to this mixture to make up a 

solution with a cross-linking ratio, CR of 0.06 where CR is defined as the moles of 

glutaraldehyde per moles of PVA repeat unit.  Following step III to IV as depicted in 

figure 3.2, the two glass slides were clamped together, and left for 1-8 days at 4°C 

and 24 hours at 25°C.   

 

 

3.3.3 Preparation of Freeze-thawed PVA-GOD Membrane (Hickey and 

peppas, 1995) 

 

The preparation of the freeze-thawed PVA-GOD membranes was as 

described in the general free-standing casting method.  The preparations was based 

on the methods established by Hickey and Peppas (1995) with modifications. The 

mixture solution of PVA and GOD was pipetted onto the plates and maintained at -

20°C for 12 hours to induce crystallization.  Following the freezing process, it was 

allowed to thaw at 25°C for 12 hours.  The freezing and thawing cycle, n, was 
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repeated for 5 times.  The preparation conditions were varied as shown in Table 3.1 

to investigate the effect on the enzyme leakage and apparent enzyme activity. 

 

Table 3.1 Different preparation conditions of freeze-thawed PVA-GOD membranes 

Notation Period (h) / process TFreezing (°C) TThawing (°C) No of cycle, n 

A 12 -20 25 5 

B 6 -20 25 5 

C 12 -20 4 5 

 

 

3.3.4 Preparation of Alumina-PVA-GOD Membranes (Chen et al., 2002) 

Alumina sols were prepared according to the method established by Chen et 

al. (2002) with modifications.  Appropriate amount of Al(i-PrO)3 was added to 

deionized water at 80°C and was stirred for 1h.  Then, 1M of HCl was added into the 

mixture.  The molar ratio of Al(i-PrO)3: water: HCl was 1:100:0.07.  The mixture 

was then heated to 90°C and kept under reflux condition for 24h.  Later, the clear sol 

was decanted and stored at 4°C.  Prior to membrane casting, the sol was dried at 

100°C for 5h to evaporate part of the water and alcohol. 10% PVA solution was 

mixed with the resulting alumina sol (1:2 v/v) to prepare the casting solution.  

Enzyme immobilization was done following the general method in section 3.3.1.  In 

this case, polystyrene petri dish was used instead of glass slide to facilitate the 

peeling of the membrane from the support.   

 

3.3.5 Preparation of TMOS-PVA-GOD Membranes (Wu et al., 1999) 

 

This type of enzymatic layer was prepared using the methods established by 

Wu et al. (1999) with modifications A defined amount of TMOS, acidic water, 

methanol, and pre-calculated volume of (3-glycidoxypropyldimethylethoxy)silane 

were mixed, and stirred for 30min at 300rpm.  Then, a defined amount of aqueous 

acid was added into the mixture, and stirred for 1h to obtain a transparent sol 

solution.  120µL of sol solution was mixed with 20µL of GOD solution.  After that, 
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an aliquot of the mixture was pipetted onto the substrate surface, and spread evenly.  

Gelation occurred within 5min and the ensuing membranes were sealed with 

parafilm and left to age for 24 hours.  

 

 

3.3.6 Determination of Water Content  

 
 The weight of the swollen membrane was recorded until equilibrium 

hydration was achieved.  Subsequently, the membrane was left to dry at 

approximately 55ºC in the oven in order to remove residual water in the membranes.  

The weight of the dehydrated membrane was recorded until constant weight was 

obtained.  Consequently, the water content, H, was determined according to equation 

(3.1): 

 

          (Ww – Wd) 
 H =    × 100               (3.1) 
     Ww 
 

Buffer solutions that were used to store the ensuing membranes were changed 

every 6 hours for the first day, 12 hours for the second day, and every 24 hours 

thereafter.  These washing solutions were collected and analyzed for the amount of 

enzyme released from the membrane into the solutions.   

 

 

3.3.7 Determination of Enzyme Leakage 

 

The free enzyme activity assay was performed using GOD-HRP coupling 

colourimetric method as described in the Worthington Enzyme Manual.  To prepare 

the chromogen solution, 0.1 ml of 1% o-dianisidine was diluted in 12 ml of 0.1 M 

phosphate buffer pH 6.0.  Then, 150 µl of 18% D-glucose solution and 50 µl of 200 

µg/ml HRP were added to 1.25 ml of chromogen solution.  The glucose solution was 

prepared 24 hours prior to use for mutarotation at room temperature.  50 µl of diluted 

enzyme (for the construction of calibration curve) or washing solution was then 

added to the mixture and the reaction was allowed to proceed for 10 minutes at room 

temperature.  Upon termination of the reaction, 100 µl of 4 M HCl was added 
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(Horner, 1997).  The formation of the colour was evaluated by reading the 

absorbance value at 450 nm and compared to the standard GOD calibration curve.   

 

 

3.3.8 Determination of Apparent Enzyme Activity of Membrane  

 

 The apparent enzyme activity was carried out with amperometric method 

using a conventional three-electrode potentiostat system from Metrohm, Netherlands.  

The setup consisted of an Ag/AgCl reference electrode and a platinum sheet counter 

electrode.  A platinum disk electrode with a surface area of 3.14 mm2 was employed 

as the working electrode throughout the work.    

 

Prior to every electrochemical measurement, the working electrode surface 

was polished with alumina powder on a polishing cloth supplied by Metrohm.  Then, 

the enzyme-immobilized layer was secured tightly onto the working electrode 

surface with gauze and rubber ring before immersing into a cell with 10 ml of 0.1 M 

phosphate buffer pH 6.0 at room temperature under constant stirring.     

 

A constant potential, +700 mV versus Ag/AgCl, was applied to the electrode.   

After the background current baseline was stable, 526 µl of 100 mM glucose solution 

was injected into the cell to give a final concentration of 5 mM.  The current 

response based on the oxidation of enzymatically liberated H2O2 at +700 mV was 

recorded until steady state was reached.  

 

 

3.3.9 Enzyme Kinetics 

 

 The modified kinetic parameters of the immobilized enzyme were determined 

by electrochemical measurements as outlined in the previous section.  100 mM 

glucose solution of different volumes was injected successively to obtain different 

concentrations and the response at +700 mV was monitored.     
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3.3.10 Casting of pHEMA Membrane as Permselective Layer 

 

HEMA monomer with 30 vol. % was mixed with ethylene glycol 

methacrylate (EGDMA) at different cross-linking ratio.  The photoinitiator, DMPP 

(2,2-dimethoxy-2-phenylacetophenone) was added to the  mixture solution in a vial 

to achieve a final concentration of 1.6wt% (Lee et al., 2003)).  An aliquot of the 

mixture was transferred onto a clean glass slide or on the electrode surface and spin 

coated at 150rpm for 1min.  Then, the disc was placed under an UV light and 

irradiated for 5 min under continuous purging with nitrogen gas.  The pHEMA layer 

was then soaked in 0.1M PBS pH6.7 for 48h to hydrate the layer.  The water content 

of pHEMA membranes were determined as described in section 3.3.6.   

 

 

3.3.11 Permeability Analysis (Abdul-Aziz, 2001) 

 

Determination of permeability was performed with a rotating disc electrode 

(RDE) system.  Prior to voltammetry experiments, the membrane-electrode surface 

was conditioned by applying a constant potential of 700mV vs Ag/AgCl electrode 

while rotating at 100rpm.  10mM acetaminophen solution was prepared and was 

saturated with nitrogen before run.  10mL buffer into the cell and voltammograms of 

the background current was recorded at rotation speeds from 100-400rpm by 

scanning from 200mV-1100mV (vs Ag/AgCl) at a scan rate of 1mV/s.  

Acetaminophen was added to the buffer solution to achieve a final concentration of 

0.5mM.  Experiments of hydrogen peroxide were performed with the same 

procedure.  Koutecky-Levich graph was constructed by plotting 1/ilim vs 1/ω1/2.  The 

permeability (αDm) of the diffusing species through the pHEMA membrane was 

calculated from the intercept of the plot according to the following equation. 
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where 

ilim ~ limiting current 

dm  ~ membrane thickness 

n ~ number of electrons involved 

F ~ Faraday constant 

αDm  ~ Permeability of the diffusing species through the membrane 

Ddl ~ Diffusion coefficient of the diffusing species in solution 

ν ~ Liquid viscosity 

Cb ~ Concentration of diffusing species 

ω ~ Rotating speed  

 

 

3.3.12 Casting of Nafion Outer Membrane 

 
5 wt% nafion was diluted to 2 wt% with mixture of water and methanol at a 

ratio of 1:9.  Then,10 µL of the solution was deposited on the surface of enzymatic 

layer and spin coated at 300rpm for 2 min.  The ensuing membrane was let dry in the 

air for 15min. 
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3.4 Methodology for Mediator-Based Glucose Sensor 

 

 

Methodology Flow Chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Methodology flow chart of mediator-based glucose biosensor 
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3.4.1 Immobilization of Glucose Oxidase and Ferrrocene Redox Polymer in 

Cross-linked Poly (vinyl alcohol) with Bovine Serum Albumin as Protein 

Stabilizer 

 

3.4.1.1 Synthesis of Poly(allylamine) Ferrocene (PAA-Fc). 

 

Preparation of ferrocene-containing redox polymer was done according to 

Koide and Yokoyama, 1999. 581 mg of polyallylamine hydrochloride and 5 mL of 

20% glutaraldeheyde solution were dissolved in a HEPES buffer (50mM, pH6.8) to a 

total volume of 25mL in a beaker and the solution was then left to gelate.  The cross 

linked gel was crushed through a sieve and freeze dried.  60mg of this polymer was 

suspended in 50mL of HEPES buffer (50mM, pH6.8) containing 115mg of ferrocene 

carboxylic acid. Water soluble carbodiimide was added drop wise during the first 

hour. The reaction was allowed to proceed for 4 days. Small particles of the 

ferrocene modified polyallylamine hydrogel were rinsed with a phosphate buffer 

solution.  These particles were enclosed in dialysis tubes containing phosphate 

buffer.  The outer buffer solution was stirred and exchanged many times with fresh 

buffer.  This dialysis procedure was carried out for 3 days. 

 

3.4.1.2 Cross linking with PVA and BSA Addition 

 

10% PVA stock solution was prepared by dissolving PVA in water and 

heating the solution to 80–90 °C under stirring for about 30 minutes.  Then, the 5% 

PVA stock solution was mixed with 10% acetic acid as a buffer, 50% methanol as a 

quencher, and 10% sulphuric acid as a catalyst in the volume ratio of 5: 3: 2: 1 

(Abdul-Aziz, 2001).  Appropriate amount of 2% glutaraldehyde was added to the 

solution in order to obtain a cross-linking ratio of 0.06. Cross-linking ratio is defined 

as the ratio of the moles of glutaraldehyde per moles of PVA repeat unit. Then, 

polyallylamine ferrocene, BSA and GOD were added to the CLPVA solution and an 

aliquot of the mixture was pipetted on a glass slide and air-dried for 20 minutes. 

Then, it was covered with another glass slide and the two glass slides were clamped 

together and left for 24hr at 4°C. The membranes obtained were swollen in 

phosphate buffer at 4°C.  
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3.4.2 Immobilization of Glucose Oxidase/Ferrocene Carboxylic Acid in 

Composite Silica Sol Gel (SGS) /Cross-linked Poly (vinyl alcohol) 

(CLPVA)/Nafion Membrane. 

 

3.4.2.1 Preparation of Nafion–ferrocene Carboxylic Acid (Nafion-FcA)  

 

Ferrocene carboxylic acid solution in absolute alcohol was mixed with 2% 

Nafion solution(diluted from 5% Nafion solution with absolute alcohol)  in the 

volume ratio of 5:1 (Niu and Lee, 2002).  The ethanol content in the final mixture 

was 91% (v/v).  At such high ethanol content, the Nafion film cast on the electrode 

surface should be stable and capable of good mediator retention. 

 

3.4.2.2 Preparations of Cross-link with PVA (CLPVA) solution  

 

10% PVA stock solution was prepared by dissolving PVA in water and 

heating the solution to 80–90 °C under stirring for several hours.  For preparation of 

CLPVA solution, 10% PVA stock solution was mixed with 10% acetic acid, 50% 

methanol, and 10% sulphuric acid in the volume ratio of 5: 3: 2: 1 (Abdul-Aziz, 

2001).  Later 2% glutaraldehyde was added in such a way that the cross-linking ratio 

was 0.06. Cross linking ratio is defined as the ratio of the moles of glutaraldehyde 

per moles of PVA repeat unit. 

 

3.4.2.3 Preparation of SGS-CLPVA Solutions. 

 

The TMOS stock sol gel was prepared by mixing TMOS, 50% methanol, 

hydrochloric acid (HCl) and water in the mole ratio of (1: 3: 0.0013: 3.7) at 4ºC for 2 

hours, based on 3.7 as water/silicate mole ratio. The long mixing time was to make 

sure that the reaction occurred completely. Since TMOS and water were immiscible, 

TMOS was initially mixed with methanol under constant stirring at room 

temperature, followed by water and hydrochloric acid. Freshly prepared TMOS was 

stored in fridge when not in use.  

 

Then, the TMOS sol gel solution was mixed with the CLPVA solution in a 

volume ratio of 1:4 (Cajlakovic et. al., 2001). Three – dimensional network 
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formation could be achieved using composition of PVA / TMOS equals to 80-90 / 

20-90% to result in crack-free film (Cajlakovic et. al., 2001). Finally, nafion was 

added to the mixed silica sol solution based on 1:1 of optimal weight ratio of nafion 

and PVA (Shao et al., 2002). The performance of the membrane would be optimal by 

using this dry wieght ratio (Shao et al., 2002). The mixture was then stirred using 

vortex mixer until homogenus. The silica sol will only be prepared immediately 

before the fabrication of sensors. 

 

3.4.2.4 Casting of SGS-CLPVA/nafion Membranes 

 

Two types of membranes with different GOD concentrations, 40mg/mL and 

20mg/mL, were fabricated separately by casting the following solutions in sequence: 

36µL Nafion–FcA solution, 54µL of respective GOD aqueous solution, and 36µL 

SGS-CLPVA solution. Every layer was dried under ambient condition after each 

casting before storage in a refrigerator at 4 °C overnight.  The enzymatic membranes 

were kept at 4 °C in the refrigerator when not in use. 

 

 

3.4.3 Multilayered Construction of Glucose Oxidase and 

Poly(allylamine)ferrocene 

 

3.4.3.1 Preparations of Surface Carbaldehyde Groups  

 

Carbohydrate groups on the peripheral surface of the glucose oxidase 

molecule was oxidized with periodate to carbaldehydes according to established 

procedure (Yoon et al., 1997).  20µM GOD solution in 5mL of 0.1 M phosphate 

buffer solution (pH 6.8) was stirred slowly with 30 mg of sodium metaperiodate for 

1 h at 4 °C in the dark.  The reaction was stopped with the addition of 25mM of 

ethylene glycol for 30min at 25 °C.  The product was purified by membrane dialysis 

against water and freeze-dried. 
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3.4.3.2 Synthesis of Poly(allylamine)ferrocene (PAA-Fc). 

 

Poly(allylamine) ferrocene (PAA-Fc) used was synthesized according to the 

method established by Zhang et al 2004 with modifications.  16mg ferrocene 

carboxaldehyde was dissolved in 10mL methanol and was added drop wise within an 

hour to 60mL of anhydrous methanolic solution of 80 mg of poly(allyamine) 

containing 0.52mL of triethylamine.  The mixture was stirred for another hour at 

room temperature. Then sodium borohydride was carefully added in portions at 0 °C, 

and the stirring was continued for 90 min.  Finally the mixture the mixture was dried 

at 35˚C and the residue was extracted with distilled water (Hodak et al., 1997).  The 

aqueous solution was further purified by membrane dialysis against water. 

 

3.4.3.3 Production of Covalently Linked Enzyme Multilayer Films 

 

Prior to the construction of enzyme multilayer films, amino functionalities 

was introduced on the glass slide by pipetting 40µL aqueous solution of cystamine 

dihydrochloride (10mM, 2h).  Then, 40µL of periodate-oxidized GOD solution in 

0.1M phosphate buffer (pH 6.8) was added to the modified glass slide containing 

amino groups at room temperature. The GOD/PAA-Fc bilayer was formed by 

pipetting 40µL PAA-Fc solution in 0.1 M phosphate buffer on the resulting enzyme 

monolayer. A covalently attached enzyme multilayer film was fabricated by 

repeating the last two steps in a cyclic fashion. Then, it was followed by rinsing with 

buffer solution. Schiff bond was reduced by dipping the membrane in 5mM solution 

of cyanoborohydride at 4 ºC in the dark for 30 minute.  The remaining carbaldehyde 

on the periphery was blocked with 10mM ethanolamine (pH 9.5, will be titrated with 

concentrated HCL) for 30 minute to avoid self-polymerization (Yoon et al., 2000).  . 
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3.4.4 Electrochemical Measurement 

  

Electrochemical measurement was carried out for all three types of enzyme 

electrodes separately.  Before use,  the electrode was rinsed with doubly distilled 

water, and immersed in the 0.1 M phosphate buffer (pH 7.0) until a stable 

electrochemical response is produced by the immobilized ferrocene.  Generally, 

freshly prepared biosensors could attain a stable electrochemical response after 5–

10 min of rinsing. Glucose stock solutions were allowed to mutarotate at room 

temperature overnight before use.  The electrolyte solutions were deoxygenated with 

nitrogen bubbling for 90 min before each voltammetric run. The amperometric 

studies were run at 363 mV vs Ag/AgCl. All experiments were performed at a 

temperature of 25±1 °C and under nitrogen atmosphere, unless otherwise specified.  

 

3.4.4.1 Kinetics Properties of Ferrocene Based Membrane 

 

For kinetic studies and response time studies, the amperometric studies were 

run at 363 mV vs Ag/AgCl. Following background current stabilization, an 

appropriate amount of the stock 0.1M glucose solution was injected into the cell to 

give a pre-selected concentration.   

 

3.4.4.2 Stability of Ferrocene Based Membrane 

 

To investigate the effect of storage on the stability of the membrane, all 

membranes were prepared and than stored in buffer at 4ºC for different time periods. 

The electrochemical response of the membranes to 5mM glucose solution was then 

measured. 

 

 

3.4.5 Ferrocene Leakage Detection 

 

Leakage of ferrocene derivatives mediator was measured electrochemically. The 

washing solution was subjected to cyclic potentials from 600mV to -100mV with 

scan rate 10mVs-1. The concentration of the mediator was determined using a 

calibration curve.   
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3.4.6 Enzyme Leakage Detection 

 

Leakage of enzyme was measured colorimetrically. The chromogen solution 

was prepared by diluting 0.1 mL of 1% O-dianisidine in 12 mL of 0.1 M phosphate 

buffer, pH 6.7.  Then, 150µL of 18% aqueous glucose solution and 50µL of 

200µg/mL peroxidase solution were added to 1.25 mL of the chromogen solution.  

The mixture was then placed in a water bath at 25˚C for temperature equilibration.  

Then, 50µL of the washing solution was added to the mixture.  The reaction was 

allowed to proceed for 5 minutes before 100 µL of 4 M HCL was added to stop the 

reaction.  The amount of colour formed was measured by reading the absorbance 

value at 450nm (Abdul-Aziz, 2001). 

 

 

3.4.7 Preparation of Nafion Protective Membrane 

 

The nafion layer preparation was based on the description in section 3.3.12. 

 

 

3.4.8 Fabrication of Glucose Sensor 

 

 This part of the research has not been completed yet. Empty strips with three-

electrode configuration will be used in the fabrication of mediated glucose biosensor. 

The electrodes are a working electrode, a counter electrode and reference electrode. 

Prepared enzymatic membrane solution will be coated onto the empty strips. After 

that, the enzyme strips will be connected to the potentiostat for electrochemical 

measurements.  
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CHAPTER 4 

 

 

 

 

RESULT AND DISCUSSION 

 

 

 

 

4.1 Hydrogen Peroxide-Based Glucose Sensor 

 

4.1.1 Chemically cross-linked PVA-GOD Membrane 

 

In this work, the effects of immobilization temperature, and the content of 

protein-based stabilizing agent (PBSA) have been investigated.   

 

4.1.1.1 Temperature of Immobilization 

 

In order to compare the apparent enzyme activity of membranes immobilized 

at different temperatures, one of the conditions of the membranes that must be fixed 

was the equivalent cross-linking density, which was evaluated by its water content at 

both temperatures. Different duration of membrane clamping process that allows the 

cross-linking reaction and dehydration or vaporization of water and other volatile 

components contained in the membrane mixture solution would affect the water 

content of a membrane and thus the cross-linking density.  Membranes that are 

immobilized at higher temperature would have lower water content relative to 

membranes that are immobilized at lower temperature.  In this work, water content 

for membranes prepared at 25°C was compared to water content for membranes 

prepared at 4°C with different clamping period.   
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Table 4.1 Water content of membranes clamped for different period 

Temperature (°C) Clamping Period (Day) Water content, H (%) % Difference

25 1 76.73±3.07 - 

4 1 81.07±1.73 5.66 

 2 84.33±2.00 9.91 

 3 86.86±1.57 13.20 

 4 85.66±1.98 11.65 

 5 86.69±2.29 12.99 

 6 81.62±5.98 6.38 

 7 77.18±1.63 0.59 

 8 74.39±1.07 3.05 

 

From the result obtained, the membranes immobilized at 25°C had the lowest 

water content, which was 76.73%.  There was no significant difference in water 

content for membranes clamped for 2-6 days, which ranged from 81.0%-86.0%.  

While lower water content was observed for membranes clamped for 7-8 days.  This 

is expected, as water content is inversely proportional to the period of dehydration of 

immobilized membranes.  From the percent difference in water content of GOD-

PVA membranes immobilized at 4°C, it was clear that GOD-PVA membranes 

dehydrated for 7 days had identical water content with the GOD-PVA membranes 

immobilized at 25°C 

 

However, water content for membranes immobilized at 4°C, which were 

clamped for 1 day, had 81.07% of water content, which was an unexpectedly low 

value.  It should be pointed here that the membranes that were clamped for 1 day 

were only partially gelled and very watery.  Therefore the weights of the fully 

swollen membrane obtained were less than a completely gelled membrane and thus 

might result in inaccurate water content determinations.   

 

Thus, it was concluded that membranes immobilized at 4°C have to be 

clamped for 7 days for dehydration in order to have comparative cross-linking 

density with membranes immobilized at 25°C and left dehydrated for 1 day. 
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In this study, the effect of immobilization temperature on the ability of the 

PVA-GOD membranes to retain the immobilized enzyme was investigated.  Washing 

solutions were collected at certain period for enzyme activity determination.   

 

Figure 4.1 shows that the enzyme activities of the washing solutions for the 

PVA-GOD membranes demonstrate a declining profile for the whole period of 

investigation both for membranes immobilized at 4°C and 25°C.  
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Figure 4.1 Comparison of leaking profile of membranes immobilized at different 

temperature 

 

As expected, the enzymes activities reached zero within 18 hours for 

membranes immobilized at both temperatures.  This clearly states that the chemically 

cross-linked PVA is effective in retaining the enzyme within the matrix.   

 

Colourimetrical enzyme assay based on the oxidation of o-dianisidine 

through a peroxidase-coupled system had been performed on the PVA-GOD 

membranes to investigate and compare the apparent enzyme activity of membranes 

immobilized at 4°C and 25°C (L. Doretti et al., 1997).  Furthermore, the stability of 

the repeated-use PVA-GOD membranes was examined as well since the decay of 

apparent enzyme activity over time and limited lifetime of the enzyme layer of a 

biosensor have been reported (L. Doretti et al., 1996, Azila Abdul Aziz, 2001).  The 

enzyme activity of the membranes was tested at 5 days after the membranes were 

unclamped and until 22 storage days.   
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The comparison of apparent enzyme activity for membranes immobilized at 

both temperatures is represented in Figure 4.2.  
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Figure 4.2 Apparent enzyme activities for membranes immobilized at different 

temperature 

 

Membranes fabricated at 4°C showed initial decline in apparent enzyme 

activity followed by stabilization until day 22.  This demonstrates that there was slow 

deterioration and denaturation of the immobilized GOD in the chemically cross-

linked PVA membrane.  Hydrogen peroxide generated during the enzymatic reaction 

was observed to be retained on the membranes surfaces, which can result in 

poisoning of the membranes (C.E. Hall and E.A.H. Hall, 1993).  As mentioned 

before, the retention of hydrogen peroxide could be a result of high mass transfer 

resistance to substrates and products imposed by the extensive cross-linking imposes 

mass transfer resistance.  The diffusional resistance encountered by the product 

molecules results in the product to accumulate near the center of the gel to an 

undesirable high level, leading to product inhibition for the enzyme.  

 

The activity of the membranes formed at 25°C seemed to be stable 

throughout the 22 days and did not show the same initial declining profile in 

apparent enzyme activity such as that demonstrated by PVA-GOD membranes been 

cast at 4°C.  
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In conclusion, it can be said that membranes immobilized at 4°C and 25°C 

with comparable cross-linking density showed comparable long term activities.  

However, membranes formed at 25°C seemed to be more stable than the membranes 

formed at 4°C.   

 

4.1.1.2 Content of Protein-based Stabilizing Agent  

 

It is well known that glutaraldehyde is a very effective cross-linking agent in 

immobilizing enzyme.  However, as compensation, it causes serious conformational 

changes to the enzyme and decreases the sensitivity as well as the operational life of 

the enzyme (Broun, 1976).  One of the solutions for this obstacle is the addition of a 

protein-based stabilizing agent.  The choice of the stabilizing agent must be inert to 

the biological reaction involved, and provide complimentary surface (Chang and 

Mahoney1995).  Aside from bovine serum albumin (BSA), lysozyme has been found 

to be efficient for this purpose (Gouda et al, 2002).   
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Figure 4.3 Comparison of current response of chemically cross-linked PVA-GOD 

membranes with different concentration ratio of lysozyme upon 5mM glucose 

  

 The comparison of apparent enzyme activity of chemically cross-linked 

PVA-GOD incorporated with different ratio of lysozyme is shown in Figure 4.3.  The 

current was generated from the electrochemical oxidation of hydrogen peroxide at 
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the surface of the platinum working electrode at 700mV.  It can be clearly seen that 

lysozyme at concentration ratio of 0.5 to GOD concentration has revealed the highest 

current response.  This might be attributed to the formation of intermolecular bonds 

between GOD and the stabilizing protein.  As a result, the linkages functioned as a 

protective barrier to the enzyme and intramolecular bonds between GOD and 

glutaraldehyde could be avoided (Gouda et al, 2002).  On the other hand, higher ratio 

of lysozyme may impart a diffusive obstruction to the substrate and thus did not able 

to improve the current response towards 5mM glucose.       

 

 

4.1.2 Freeze-thawed PVA-GOD Membrane 

 

PVA prepared from freeze-thawing method has been studied extensively for 

drug delivery.  In this work, the period of freeze and thaw process was investigated 

for the feasibility as an immobilization support.  The effect of thawing temperature 

was also evaluated.   

 

Table 4.2 Freeze-thawed PVA-GOD prepared at different conditions 

Notation Period(h)/process TFreezing (°C) TThawing (°C) 

A 12 -20 25 

B 6 -20 25 

C 12 -20 4 

 

The comparison of the enzyme leaking for freeze-thawed PVA-GOD 

membranes is as in Figure 4.4.   
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Figure 4.4 Comparison of leaking profile of freeze-thawed PVA membranes at 

different conditions. (a) Enzyme leakage from 0 hour (b) A clearer picture of enzyme 

leakage omitting the 0 hour leakage 

 

 Compared to PVA-GOD membranes that were cross-linked with a 

bifunctional agent, enzyme leakage from freeze-thawed PVA had taken more than 2 

weeks.  From the freeze and thaw process, the PVA-GOD membrane was cross-

linked with a physical means while entrapping GOD within its matrix.  The 

insufficient capacity of the matrix to effectively retain the enzyme loaded might be 

the main explanation for the inadequate immobilization.  Among the 3 types of the 

membranes, membrane A has shown the highest leaking while membrane C showed 

the least.  It is suspected that enzyme leaked out during the thawing process at 25°C 

for membrane A and has shown an excessive leaking after the membranes were 
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unclamped.  As for membrane B, unexpectedly the short hours of freezing and 

thawing process might resulted in a looser matrix and the enzyme leaked out slowly 

throughout the leaking period.              

 

From the aspect of apparent enzyme activity, membrane A distinctly shows a 

lower current response towards 5 mM glucose in 60 days of storage period as shown 

in Figure 4.5.  This might be due to longer period of exposure of membrane A to 

higher temperature that may denature the immobilized enzyme.   
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Figure 4.5 Comparison of current response of freeze-thawed PVA-GOD membranes 

at different conditions upon 5mM glucose 

  

 

4.1.3 Alumina-PVA-GOD Sol-gel Derived Organic/Inorganic Membrane 

 

In this work, in the beginning only alumina was used to cast the sol-gel 

material. Free-standing and crack-free alumina-GOD membranes were obtained.  An 

obvious problem with sol-gel derived material is the brittleness of the matrix formed 

(Xu et al., 2006).  As low mechanical strength was observed in alumina membranes, 

a binder was required to strengthen the matrix. With the compatibility of alumina sol 

and PVA which both possessed hydroxyl group, PVA appeared to be a good choice 

of the binder (Yang et al., 1996).  Addition of PVA into the casting solution was able 

to reduce the surface tension of the membranes and thus avoid cracking (Yang et al., 

1996). This allowed the membranes to be peeled off from the support easily. 
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Figure 4.6 shows that the enzyme activities of the washing solutions for the 

alumina-PVA-GOD membranes which decreased with time.  
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Figure 4.6 Leaking profile of alumina-PVA-GOD composite membrane 

 

However, the enzyme leaked out for more than 16 days.  A very small 

amount of enzyme activity still can be observed until day 25.  Moreover, for the first 

ten days high leakage was shown. The amount of enzyme leakage and the leaking 

period were so much higher compared to chemically cross-linked PVA-GOD 

membranes with the same concentration of GOD immobilized as reported before.  

The results might be attributed to high concentration of enzyme added to the 

membranes, which exceeded the immobilization capacity of the membranes. Without 

a cross-linker such as glutaraldehyde, the enzymes were merely adsorbed within the 

matrix. Though this will contribute to the retention of the apparent enzyme activities, 

it resulted in poor retention of the enzymes. Compared to freeze-thawed PVA 

membrane, the enzyme leakage was lower in amount but dragged for a longer period.  

Lower concentration of enzyme might be employed to investigate the immobilization 

ability of such material. Besides, addition of an appropriate coupling agent such as 

(3-aminopropyl)trimethoxysilane might be able to enhance the matrix formation as 

well as to increase the enzyme immobilization capacity (Chen et al., 2002).       

 

Long term stability of the alumina-PVA-GOD membranes was investigated 

to determine the shelf life of the sensor.  The apparent enzyme activities of the 

membranes were tested for 65 storage days.   
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Figure 4.7 Current response of Alumina-PVA-GOD composite membrane upon 

addition of 5mM glucose 

 

 From Figure 4.7, it was shown that the alumina-PVA-GOD membranes were 

stable over a period of 60days.  This agrees with the study reported by Chan et al.  

For a period of 65 days, it was observed that the apparent enzymatic activities of the 

membranes immobilized were quite high compared to the chemically cross-linked 

PVA-GOD membranes.  This can be attributed to the relatively mild immobilization 

condition.  Though the leaking problem with alumina-PVA membranes was more 

serious, the large amount of the remaining enzymes immobilized within the alumina 

sol-gel matrix was still able to give higher response.  As compared to freeze-thawed 

PVA-GOD membrane, it is observed that the current response of alumina-PVA sol-

gel membrane was relatively lower.   

 

 

4.1.4 TMOS-PVA-GOD Sol-gel Derived Organic/Inorganic Membrane 

 

By using a different precursor, tetramethoxysilane (TMOS), the effect of 

cross-linker was investigated in the effort to reduce enzyme leakage.  PVA was also 

incorporated for the purpose of increasing mechanical strength.  An optimum volume 

ratio of cross-linker to silane of 0.6 has been reported (Jian Wu et al., 1999) based on 

the current response.  In this work, the same ratio was investigated on the effect of 

enzyme leakage.     
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Figure 4.8 Comparison of leaking profile of TMOS-PVA membranes D (without 

cross-linker) and membranes E (with cross-linker) (3-glycidoxydiethoxysilane) (a) 

Enzyme leakage from 0 hour (b) A clearer picture of enzyme leakage omitted 0 hour 

leakage 

 

Figure 4.8 shows the comparison of the leaking profile of TMOS-GOD 

membranes with addition of a cross-linker, (3-

glycidoxypropyl)dimethylethoxysilane.  The cross-linker was included in the sol-gel 

system to covalently couple the backbone of the sol-gel matrix through a 

condensation reaction.  The hydroxy group of the cross-linker can also react with the 

enzyme amine group (Jian Wu et al., 1999).  Thus, it was expected the enzyme not 

only be physically entrapped but also covalently coupled to the sol-gel matrix.  In 

addition, it was also expected that denser gel would be formed to reduce enzyme 
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leaking.  However, addition of the cross-linker did not show improvement in enzyme 

retention even though higher ratios of cross-linker were investigated. 
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Figure 4.9 Comparison of current response of TMOS-PVA-GOD membrane at 

different conditions upon addition of 5mM glucose 

 

From Figure 4.9, TMOS-PVA-GOD membrane without cross-linker has 

shown higher response to 5mM glucose.  The cross-linker, (3-

glycidoxypropyl)dimethylethoxysilane, might lead to the denaturation of the 

immobilized enzyme at some extent similar to the characteristic shown by 

glutaraldehyde although it was not as serious.    

 

 

4.1.5 Overall Comparison of Performance of Different Membranes 

 

From the four types of membranes with immobilized GOD, it can concluded 

that chemically cross-linked PVA membrane has the highest ability in retaining the 

enzyme within the matrix which stopped leaking within 1 day after being unclamped.  

TMOS-PVA sol-gel leaked for 1 week while alumina-PVA and freeze-thawed PVA 

leaked for about 15 days.  From the aspect of biosensor response, however, the 

lowest response was observed in chemically cross-linked PVA membrane.  With the 

optimum PBSA ratio of 0.5, the current response was approximately 4.5nA whilst 

other membranes were able to achieve more than 1µA.  In contrast, apparent 

Michaelis-Menten constant, Km
app, of the chemically cross-linked PVA was very 
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high, which was around 70-90 mM.  Km
app of sol-gel materials were less than 5mM.  

In terms of response time, sol-gel derived materials in general have shown faster 

response compared to PVA membranes.  Overall, high loading of enzyme for 

immobilization may attribute to the good stability (Pfeifer D., 1997).  From the 

advantages and disadvantages reviewed, freeze-thawed PVA-GOD membrane has 

been selected as the best choice.  

 

 

4.1.6 Permselectivity Analysis 

 

With the risk of electrochemical interference commonly faced by hydrogen 

peroxide-based biosensor, a permselective membrane fabricated from 

poly(hydroxyethyl methacrylate) (pHEMA) was studied in order to eliminate the 

interference.  The electro-active substance which was represented by acetaminophen 

in this work can be oxidized at 700mV, the potential where oxidation of hydrogen 

peroxide took place, thus generating interfering current.  At certain cross-linking 

ratio, the passage of acetaminophen through the pHEMA membrane was expected to 

be restricted.  

  

 As discussed previously, water content of a membrane revealed the cross-

linking density as well as the mesh size of the membrane.  Using ethylene glycol 

dimethacralyate (EGDMA) as cross-linker, pHEMA membrane was prepared with 

30 vol.% of HEMA monomer at different cross-linking ratio to provide different 

mesh size (Kermis et al., 2003).  The membranes were rubbery after swelling and 

were transparent.  As shown in Figure 4.10, water content of the membrane 

decreased with increased cross-linking ratio, which indicated that denser networks 

were obtained.   
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Figure 4.10 Water content of pHEMA permselective layer at different cross-linking 

ratio 

  

 The analysis of permeability was performed according to Koutecky-Levich 

plot with the following equation.   

 

   
2/16/13/2

lim

1
62.0

11
ωνα

bdlbm

m

CnFADCDnFA
d

i −
+=  

 

A typical Koutecky-Levich plot was shown below.  
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Figure 4.11 Typical Koutecky-Levich plot of acetaminophen and hydrogen peroxide 

through pHEMA membrane 
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The diffusion characteristics of pHEMA membranes are shown in Table 4.3. 

As shown in Figure 4.12, the permeability of acetaminophen dropped when cross-

linking ratio was increased.   

 

Table 4.3 Permeability performance of pHEMA membranes at different cross-

linking ratio 

Cross-linking 

Ratio 

Water Content, 

H (%) 

Phpx106 

(cm2/s) 

Pacx106 

(cm2/s) 

Selectivity,

σ 

0.015 35.6 ± 0.33 7.85 ± 0.75 1.28 ± 0.23 5.5 ± 0.7 

0.043 27.2 ± 0.53 5.43 ± 0.46 0.53 ± 0.01 10.2 ± 0.6 

0.060 24.9 ± 0.61 3.63 ± 0.02 0.30 ± 0.01 12.1 ± 0.5 
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Figure 4.12 Permeability of acetaminophen at different cross-linking ratio 

 

Although by decreasing mesh size of the network resulted in the diffusion of the 

interfering molecule, the permeability of hydrogen peroxide also declined in the 

same trend as depicted by Figure 4.13.   
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Figure 4.13 Permeability of hydrogen peroxide at different cross-linking ratio 

 

To achieve the objective of rejecting acetaminophen while maintaining a 

reasonable passage of hydrogen peroxide, selection of an optimum cross-linking ratio 

was performed by calculating the permselectivity of hydrogen peroxide over 

acetaminophen.  Figure 4.14 shows the dependence of the selectivity of pHEMA 

membrane to different cross-linking ratio. 
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Figure 4.14 Selectivity of pHEMA membranes at different cross-linking ratio 
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 By increasing the cross-linking ratio from 0.015 to 0.043, the selectivity was 

doubled.  Further increment of cross-linker concentration resulted in only slight 

improvement of selectivity. As a conclusion, pHEMA membrane cross-linked at the 

ratio of 0.043 was selected.   

 

 

4.1.7 Performance of Three Layers Biosensor 

 

Freeze-thawed membrane type B was selected to be the enzymatic active 

layer. PHEMA membrane with the cross-linking ratio of 0.043 was selected to be the 

inner layer and a 2% Nafion layer was selected to be the outer layer.  The complete 

lab-scale biosensor was tested for performance analysis.  As shown in Figure 4.14, 

no significant current response of interference was shown with pHEMA membrane 

CR=0.043.  
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Figure 4.15 Amperometric current response with injection of 5mM glucose and 

0.2mM acetaminophen 
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4.2 Mediator-Based Glucose Biosensor 

 

4.2.1 Cyclic Voltammetry for Ferrocene Carboxylic Acid  

 

 For oxidation redox potential determination, ferrocene carboxylic acid 

solution was subjected to cyclic potentials from 600mV to -100mV with scan rate 

10mVs-1. Figure 4.16 shows cyclic voltammograms at different concentrations of 

ferrocene carboxylic acid. Each cyclic voltammogram shows two peaks, one 

corresponding to the reduction of the original substrate and the second corresponding 

to the re-oxidation of the product back to the original substrate.  The average of this 

the two peak potentials equals the standard redox regardless of the concentration of 

substrate or its diffusion coefficient or rates of electron transfer.  The obtained 

oxidation redox potential was 0.363V.  This is the same value obtained by Calvo and 

Danilowicz, 1997 for ferrocene/ferricinium couple in polyallylamine ferrocene 

hydrogel polymer.  Meanwhile, the reduction potential obtained was 0.278V.  Thus, 

the mean peak potential, E0 was 0.321V for ferrocene carboxylic acid.   
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Figure 4.16 Height of the current peaks correspond to concentration of ferrocene 

carboxylic acid a) 1.4 mM  b)1.0mM  c) 0.5mM  d) 0.2mM  e) 0.1mM  f) 0.05mM 

and  g) 0 mM in phosphate buffer 
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The heights of current peak corresponded to the concentration of ferrocene 

carboxylic acid as seen in Figure 4.1. It can be seen that the anodic peak current 

increased with increasing concentration of ferrocene carboxylic acid.  Solution with 

highest concentration of mediator gave highest current responds.  Meanwhile, 

solution with lowest concentration of mediator gave lowest current response.  

Therefore, by doing cyclic voltammetry experiments to the solutions that were used 

to wash the immobilized enzyme and ferrocene, the concentration of the leaking 

ferrocene mediator, if any, can be detected using a calibration curve. 

 

4.2.2 Glucose Oxidation 

 

 As shown in Figure 4.16, in the absence of glucose and enzyme, only the 

electrochemical behavior of ferrocene carboxylic can be observed. With the addition 

of glucose and glucose oxidase to ferrocene carboxylic acid in phosphate buffer, 

enzymatic reaction will occur. Figure 4.17 shows linear sweep voltammograms for 

ferrocene carboxylic acid with and without the addition of glucose and glucose 

oxidase. Increase in current response was observed when 0.1M glucose and glucose 

oxidase were added to ferrocene acid carboxylic in phosphate buffer solution. 
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Figure 4.17 Linear sweep voltammograms for ferrocene carboxylic acid before (a), 

and after (b) addition of glucose and GOD in 0.1M phosphate buffer, ph 7.0 at scan 

rate 10mVs-1 
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Before the addition of glucose and the enzyme, the current obtained was 

1.91µA. After addition of glucose and GOD to ferrocene acid carboxylic solution, 

the current response increased about 65.96% to 3.59µA. It showed that the current 

signal was given by the reduced mediator that was re-oxidized at the electrode to 

generate the oxidized form of the mediator.  

 

 

4.2.3 Immobilization Methods for Mediated Biosensor 

 

4.2.3.1 Immobilization of Glucose Oxidase and Ferrocene Redox Polymer in 

Cross-linked Poly (vinyl alcohol) with Bovine Serum Albumin as Protein 

Stabilizer 

 

1) Retention of enzyme and mediator in membranes 

 

To investigate the ability of the membranes to retain GOD and ferrocene 

mediator, the washing solutions for the CLPVA-GOD/Fc membranes were assayed 

for any sign of enzyme activity and also leakage of the mediator. Figure 4.18 and 

4.19 show the leaking profiles of GOD and ferrocene for the CLPVA-GOD/Fc 

membranes.  
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Figure 4.18 Leaking profile for CLPVA-GOD/Fc membrane with different GOD 

and BSA loading a) 1:1 (weight ratio of GOD: BSA) 
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Figure 4.19 Leaking profile for CLPVA-GOD/Fc membrane with different GOD 

and BSA loading b) 1:3 (weight ratio of GOD: BSA) 

 

 As shown in Figure 4.18 and 4.19, the leaking of enzyme as well as mediator 

decreased with time. No sign of enzyme activity was observed in the washing 

solutions after 15 days for membranes with the weight ratio of 1:3 (GOD: BSA), 

which was 1 day earlier compared to membranes with the weight ratio of 1:1 (GOD: 

BSA). Meanwhile, leakage of ferrocene from membranes with the weight ratio 1:3 

(GOD: BSA) stopped after 11days, which was 2 days later than the membranes with 

the weight ratio of 1:1 (GOD: BSA).The retention of enzyme and mediator in the 

membranes were very poor although CLPVA was applied as a solid support. For 

both membranes, the leakage of ferrocene stopped earlier compared to the enzyme. 

However, the leaking of ferrocene should not have occurred since ferrocene was 

covalently attached to the polyallylamine hydrogel. The leaking might be due to high 

concentration of enzyme as well as ferrocene redox polymer that might have 

exceeded the immobilization capacity of the membranes. The excess enzymes and 

mediator were not immobilized within the solid support and leached out easily from 

the membrane. 
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2) Kinetics properties of the membranes 

 

The response time to arrive at 95% at the steady state current for CLPVA-

GOD/Fc membranes with 1:1 and 1:3 (weight ratio of GOD: BSA) were 

approximately, 262s and 443s, respectively. Both membranes were quite thick, with 

160 microns and 221 microns respectively, thus the distance between the electrode 

and the reaction center of the enzyme was large. As a result, the time required to 

reach 95% of the steady state current was relatively long. Typical calibration curves 

for CLPVA-GOD/Fc membranes at an applied potential of 360mV in aerated 

condition is shown in Figure 4.20. It shows the current – time response of CLPVA-

GOD/Fc membranes for successive additions of 0.1M glucose stock solution in 

10mL phosphate buffer. 

 

Figure 4.20 Typical glucose calibration curves for CLPVA-GOD/Fc membranes 

with different GOD and BSA loading a) 1:1 b) 1:3 (weight ratio of GOD: BSA) 

 

 The ferrocene functioned well as mediator, shuttling electrons between GOD 

and the platinum electrode. Current increased stepwise with addition of glucose. 

Michaelis-Menten kinetics were determined from steady state currents and the 

electrochemical version of the Lineweaver-Burk equation. Figure 4.21 shows the 

Lineweaver Burke plot for this membrane for enzyme kinetics study. 
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Figure 4.21 Double–reciprocal (Lineweaver Burke) plots of CLPVA-GOD/Fc 

membranes with different GOD and BSA loading a) 1:1 b) 1:3 (weight ratio of GOD: 

BSA in mg) 

 

The apparent Michaelis-Menten constant, Km
app for membranes with weight 

ratio (GOD: BSA) 1:1 and 1:3 were approximately, 21.48mM and 25.45mM, 

respectively. Meanwhile, the corresponding maximum current, Imax for both cases 

were 0.08µA and 0.16µA respectively. The membranes with higher BSA gave higher 

current response towards glucose. BSA stabilized the enzymes, creating a ‘biological 

like’ environment. Albumin improves enzymatic activity because of better mass 

distribution of the various proteins without altering the mechanical properties of the 

membrane. BSA could also prevent the polymer matrix from over-swelling (Koide 

and Yokoyama, 1999), which could extend the distance between the redox sites of 

the polymer. As the distance increased the electron transfer rate among neighbouring 

redox sites would decrease.   

  

The apparent Michaelis-Menten constants, Km
app were 21.48mM and 

25.45mM respectively for membranes with weight ratio (GOD: BSA) of 1:1 and 1:3. 

These values were larger than the Km
app of glucose oxidase in solution that has been 

reported to be approximately 12.43mM and 15.94mM at temperature 25°C and 30°C, 

respectively (Liu et al., 1996). Besides, the Km
app of glucose oxidase in solution also 
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has been reported to be approximately 20mM (Wilson and Turner, 1992) Generally, 

the Km
app of an immobilized enzyme will be larger than that of the free enzyme in 

solution due to the effect of the diffusion of substrate to the active sites (Abdul-Aziz, 

2001). In this work, membranes with high loading of BSA had lower Km
app. The low 

Km
app suggested that the enzyme had a high affinity for the substrate (Shuler and 

Kargi, 2002).  

 

3) Stability of CLPVA-GOD/Fc membranes 

 

Stability of CLPVA-GOD/Fc membranes was investigated to determine the 

shelf life of the sensors. The current outputs of the membranes to 5mM glucose at 

certain period were measured. Figure 4.22 shows the effect of storage time on the 

stability of CLPVA-GOD/Fc membranes. 
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Figure 4.22 Stability of CLPVA-GOD/Fc membranes with different GOD and BSA 

loading a) 1:1 b) 1:3 (weight ratio of GOD: BSA) 

 

As shown in Figure 4.22, the membranes retained approximately only 

38.87% and 66.00% of the initial current after 1 month, for membranes with weight 

ratio (GOD: BSA) 1:1 and 1:3, respectively.  Then, after 2 month, only 3.5% and 

9.7% of the initial current remained, respectively for both membranes. The stability 

of CLPVA-GOD/Fc membranes was not good. This could be due to the deterioration 
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of the immobilized GOD or problems with the mediator. Brooks et al., however, 

reported that the loss of activity of ferrocene glucose sensors was more strongly 

influenced by the loss of enzyme by denaturation or detachment (Brooks et al., 

1984). The addition of extra ferrocene to spent electrodes did not affect activity but 

the addition of more glucose oxidase rejuvenated the sensitivity to glucose.  Thus, 

stability of CLPVA-GOD/Fc membranes could be improved if the immobilization 

process was more effective. 

 

 

4.2.3.2 Immobilization of Glucose Oxidase/Ferrocene Carboxylic Acid in 

Composite Silica Sol Gel (SGS) /Cross-linked Poly (vinyl alcohol) 

(CLPVA)/Nafion Membrane 

 

1) Retention of enzyme and mediator in membranes 

 

 Two types of enzymatic membranes were prepared.  One contained 40mg/mL 

GOD and the other contained 20mg/mL GOD. To investigate the ability of the 

membranes to retain GOD and ferrocene mediator, the washing solutions for the 

SGS-CLPVA/nafion membranes were assayed for any sign of enzyme activity and 

also leakage of the mediator. Figure 4.23 and 4.24 show the enzyme and ferrocene 

leaking profile for SGS-CLPVA/nafion membranes. 
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Figure 4.23 Enzyme leaking profile for SGS-CLPVA/nafion membranes 
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Figure 4.24 Ferrocene leaking profile for SGS-CLPVA/nafion membranes 

 

As shown in Figure 4.23 and 4.24, the leaking of enzyme as well as mediator 

decreased with time for the two types of membranes with different GOD 

concentrations. No sign of enzyme activity was observed in the washing solutions 

after 12 days for both types of membranes. Meanwhile, leakage of ferrocene from 

membranes with 40mg/mL of GOD stopped after 2 days, which was 1 day earlier 

than the membranes with 20 mg/mL of GOD. For both membranes, the leakage of 

ferrocene stopped earlier compared to the enzyme. With high ethanol content, the 

Nafion film cast should be stable and capable of good mediator retention (Niu and 

Lee, 2002). However, if there were weakly held species as well as leached ferrocene 

derivatives from the inner Nafion mediator layer, they will be retained by the outer 

SGS-CLPVA network layer. However, the leaking of the enzyme still occurred for a 

long period for both of membranes. As shown in Figure 1, by reducing the enzyme 

concentration, the amount of leached enzyme was reduced instead of the leaking 

period. The leaking of enzyme might be due to the possibility that the enzyme 

concentration might have exceeded the immobilization capacity of the membranes. 

The excess enzymes were not immobilized within the solid support and leached out 

easily from the membrane. 
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2) Kinetics properties of the membranes 

 

 Figure 4.25 show the typical current response towards 5mM glucose solution.  
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Figure 4.25 Typical current response of SGS-CLPVA/nafion membranes 

 

 As shown in Figure 4.25, the response time to arrive at 95% at the steady 

state current for membranes with GOD concentration of 40mg/mL and 20mg/mL 

were approximately, 87s and 73s, respectively. The response time for the two 

membranes was almost same. Both membranes were quite thin, 82 microns and 76 

microns respectively, thus the distance between the electrode and the reaction center 

of the enzyme was small. As a result, the time required to reach 95% of the steady 

state current was relatively short. However, the contact between the redox site and 

reaction center of enzyme must be improved to get shorter response time of around 

10s-20s.  

  

 Imax is the current at very high and saturated concentrations of substrate. 

Under these conditions, every enzyme molecule will have substrate attached to it and 

will be interacting with it to convert it to product as fact as it can.  Imax for the 

membrane with 40mg/mL GOD was 0.51µA higher than Imax for membrane with 

20mg/mL GOD. It shows that in this case Imax depended on enzyme concentration.   

Sato and Okuma (2006) reported that current response was found to increase with the 

amount of enzyme, but it would be constant after reaching a maximum unit of GOD.  

This effectively says that in the presence of sufficient amounts of GOD, the response 
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current is independent of the amount of GOD.  Figure 4.26 shows typical calibration 

curves for both types of membrane for kinetics study. 

Figure 4.26 Typical calibration curves for SGS-CLPVA/nafion membranes 

  

Michaelis-Menten kinetics were determined from steady state currents and the 

electrochemical version of the Lineweaver-Burk equation. Figure 4.27 shows the 

Lineweaver Burke plot for this membrane for enzyme kinetics study. 
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Figure 4.27 Double–reciprocal (Lineweaver Burke) plots of SGS-CLPVA/nafion 

membranes 
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The corresponding maximum current, Imax, for both cases was 1.23µA and 

0.72µA, respectively.  The apparent Michaelis-Menten constant, Km
app for 

membranes with GOD concentration of 40mg/mL and 20mg/mL was approximately, 

3.80mM and 3.08mM, respectively. The Km
app obtained for both types of membranes 

were quite low and with only 0.72mM differences between the two of them.  The 

high sensitivity and the small Km
app mean that the immobilized glucose oxidase 

possessed a higher enzymatic activity. Km
app is independent of enzyme concentration. 

The Km
app value depends on the strength of the bonds between enzyme and substrate. 

If these bonds are strong, the Km
app will be low, indicating that the immobilized 

enzyme retained its bioactivity and possessed high biological affinity to glucose. The 

high degree of affinity of the enzyme to the substrate may be explained by a 

favorable change in the structural organization of the enzyme due to the 

immobilization procedure (Arica et al., 1995). Consequently, the active sites of the 

enzymes could be more readily available for enzymatic interactions.  

 

3) Stability of SGS-CLPVA/nafion membranes 

 

The stability of SGS-CLPVA/nafion membranes was investigated to 

determine the shelf life of the sensors. The current outputs of the membranes when 

subjected to 5mM glucose at certain periods were measured. As shown in Figure 

4.28, after 1 month, the membranes containing 40mg/mL and 20mg/mL GOD 

retained approximately 82.30% and 95.50% of the initial activities, respectively.  

After 2 months, only 59.50% of the activities of the membranes with 40mg/mL of 

GOD remained.  On the other hand, the membranes with 20mg/mL GOD were still 

quite stable with 83.60% of the initial activity remained.  
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Figure 4.28 Stability of SGS-CLPVA/nafion membranes 

 

 As shown in Figure 4.28, the stability of membranes was quite good. This 

could be due to the excellent SGS-CLPVA/nafion matrix. CLPVA was applied as a 

solid support due to the ability to form very homogenous films with high quality. The 

presence of hydrophilic PVA and the relatively hydrophobic network of sol gel silica 

will modify the environment for ferrocene carboxylic acid retention. SGS was used 

to increase the encapsulation capacity for the enzyme and mediator. The presence of 

nafion, a negatively charged polymer, not only prevented the cracking of pure sol-gel 

derived silica film but also improved the sensitivity and stability of the 

enzyme/mediator membrane by minimizing the leaching of the mediator. The result 

is a consolidation of the effects of polymer, ionomer and sol gel network. 
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4.2.3.3 Multilayered Construction of Glucose Oxidase and Polyallylamine 

Ferrocene 

 

1) Kinetics properties of the membranes 

 

 Figure 4.29 shows the typical current response towards 5mM glucose solution   
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Figure 4.29 Typical current responses of multilayered membranes 

 

 As shown in Figure 4.29, the response time to arrive at 95% at the steady 

state current for multilayered membrane was approximately 80s. The thickness of 

multilayered membranes was 90 microns. Thus the distance between the electrode 

and the reaction center of the enzyme was small. As a result, the time required to 

reach 95% of the steady state current was relatively short. Figure 4.30 shows typical 

calibration curves for multilayered membrane for kinetics study. 
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Figure 4.30 Typical calibration curves for multilayered membranes 

 

 The ferrocene functioned well as mediator, shuttling electrons between GOD 

and the platinum electrode. The current increased stepwise with addition of glucose. 

Michaelis-Menten kinetics were determined from steady state currents and the 

electrochemical version of the Lineweaver-Burk equation. Figure 4.31 shows the 

Lineweaver Burke plot for this membrane for enzyme kinetics study. 
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Figure 4.31 Double –reciprocal (Lineweaver Burke) plot of multilayered membranes 

 

 The corresponding maximum current, Imax, and apparent Michaelis-Menten 

constant, Km
app for membranes were 0.21µA and 1.79mM respectively.  The Km

app 

obtained was very low. The high sensitivity and the small Km
app mean that the 

immobilized glucose oxidase possessed a higher enzymatic activity. Km
app is 

independent of enzyme concentration. The Km
app value depends on the strength of the 
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bonds between enzyme and substrate. If these bonds are strong, the Km
app will be 

low, indicating that the immobilized enzyme retained its bioactivity and possessed 

high biological affinity to glucose. The high degree of affinity of the enzyme to the 

substrate may be explained by a favorable change in the structural organization of the 

enzyme due to the immobilization procedure (Arica et al., 1995). 
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CHAPTER 5 

 

 

 

 

CONCLUSION AND RECOMMENDATIONS 

 

 

 

 

5.1        Hydrogen Peroxide-Based Glucose Biosensor 

 

For the selection of a suitable support material for the immobilization of 

glucose oxidase, four types of matrixes had been investigated.  The selection was 

mainly based on the current response, enzyme leakage, long term stability, kinetic 

parameter, response time and sensitivity.  Chemically cross-linked PVA-GOD 

membrane has shown the shortest leaking period, which indicated that the ability in 

retaining the enzyme within the matrix was high.  The apparent Michaelis-Menten 

constant, Km
app, shown was the highest too.  However, its current response as well as 

sensitivity were very much lower compared to the others even when lysozyme was 

incorporated as a stabilizing agent.  On the other hand, even though freeze-thawed 

PVA-GOD membrane leaked for a considerable longer period, approximately 2 

weeks, it showed satisfactory current response.  Besides, even though its Km
app was 

low, it was still acceptable especially when combined with an appropriate external 

membrane.  Both types of organic-inorganic sol-gel derived materials, 

tetramethoxysilane (TMOS), and alumina were brittle and PVA was added during 

membrane fabrication in order to increase the mechanical strength.  The enzyme 

leakage was a problem with the mild immobilization condition and Km
app was lower 

than freeze-thawed PVA membrane.  However, both of them had shown good 

sensitivity and shorter response time as compared to PVA.  In general, the 
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membranes were stable over a period of 60days.  With an adequate level of 

sensitivity and Km
app, freeze-thawed PVA-GOD membrane has been chosen as the 

support material for GOD immobilization.  The enzyme leakage of this type of 

membrane has been overcome by reducing the enzyme loading.  Moreover, the Km
app 

can still be improved with a proper outer membrane.   

  

 To eliminate the interference suffered by hydrogen peroxide-based biosensor, 

an inner membrane fabricated from poly(hydroxyethyl methacrylate) (pHEMA) was 

studied to restrict the passage of acetaminophen, a model of an interfering molecule.  

This was done by controlling the mesh size of the resulted network.  A pHEMA 

membrane with the cross-linking ratio of 0.043 was found to successfully obstruct 

the diffusion of acetaminophen at a selectivity of 10.  Significant reduction of 

acetaminophen response was shown while maintaining reasonable diffusion of 

hydrogen peroxide.   

 

 

 

 

5.2 Mediator-Based Glucose Biosensor 

 

 

For the first method, immobilization of glucose oxidase and ferrocene redox 

polymer in CLPVA with the addition of BSA has been done. A membrane with 

greater BSA content gave higher current response with larger Km
app. For both 

membranes, the large Km were obtained but with low current responses. However, 

retention of enzyme and mediator as well as the membrane stability were very poor. 

Therefore, further study must be done to improve the retention of enzyme and 

mediator as the CLPVA, which had been shown to be an excellent retainer of GOD 

(Abdul-Aziz, 2001) was not able to retain both GOD and ferrocene redox polymer 

effectively. This would ultimately influence the stability of the membranes. 

 

For the second method, immobilization of glucose oxidase and ferrocene 

carboxylic acid in SGS-CLPVA/nafion was done. The immobilization technique 

resulted in an enzyme/mediator membrane that was simple to cast, resulted in 
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minimal mediator losses and very stable at lower operating potentials. A membrane 

with greater GOD concentration gave higher current response. However, Km
app was 

independent of enzyme concentration. Furthermore, the low value of Km
app might 

eventually decrease the detection limit of the biosensor. However, SGS-

CLPVA/nafion is a good matrix for the immobilization of mediator as well as an 

enzyme. The co-operative effect from the hydroxyl groups of PVA and the sol–gel 

environment is hoped to sustain the rotational freedom for the enzyme molecules to 

adopt the active configuration typical under physiological conditions.  The active 

matrix environment prolongs the life span of the enzyme to result in high sensitivity. 

The simultaneous presence of the sol–gel silica will greatly increase the selectivity 

and stability of the sensors.   

 

Lastly, for the third method, multilayered construction of glucose oxidase and 

polyallylamine ferrocene has been done. Ferrocene was covalently bound to the 

pollyalylamine by aldehyde and amino groups.  Layer-by-layer covalent attachment 

of periodate-oxidized glucose oxidase and poly(allylamine) ferrocene complex 

(PAA-Fc) did not allow the loss of ferrocene into solution. However, the current 

response and the Km were quite low.  Thus the low value of Km
app might eventually 

decrease the detection limit of the biosensor.  

  

 After comparing the three almost totally different approaches, the first 

method, which was the immobilization of glucose oxidase and ferrocene redox 

polymer in CLPVA with the addition of BSA was selected for the fabrication of 

disposable  glucose biosensor, based on the Km value. Although the current response 

was low, the Km value obtained for this method was very high compare to the other 

method. By attaching the developed nafion external layer to the enzyme layer, this 

mediated glucose sensor will provide good responses over a wide range of 

concentration. However, implantable glucose biosensor could not be constructed 

using this method since the mediator and enzyme retention as well as the stability 

was not very good. But, the leaking was not a problem for disposable glucose sensor.  

 

 In the future, extensive study should be done on the external layer. Instead of 

using nafion, as in this study, many other polymer coatings can be use as an outer 

layer, such as polyurethane, polyvinylchloride, polycarbonates and cellulose acetate 
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coating solutions. By increasing the polymer coating solution concentrations, the 

linear range of the sensor response can be extended (Yang et al., 1998). Therefore, 

hopefully, with the new external layer, Km value for the second and the third method 

could be improved. It is important since those two methods display better membranes 

stability and mediator retention. 

 

  

 

 

5.3 Recommendations 

 

 For hydrogen peroxide-based glucose biosensor, it is recommended that a 

more complete model should be investigated on each material including the 

optimization of each component’s concentration in a membrane, such as the cross-

linker and solvents used in membrane casting.  Besides, a proper study on optimum 

enzyme loading for each type of membrane should be performed to overcome 

enzyme leakage problem.  On the other hand, other types of outer membrane such as 

polycarbonate should be investigated in the effort to enhance the kinetic parameters 

of the immobilized enzyme.   

 

 One factor that can be studied in term of immobilization is diffusional 

limitation in immobilized enzyme systems.  Diffusional resistances may be observed 

at different levels in immobilized enzyme.  These resistances vary depending on the 

nature of the support material, hydrodynamical conditions surrounding the support 

material and the distribution of the enzyme inside or on the surface of the material.  

Whether diffusion resistance has a significant effect on the rate of enzymatic reaction 

depends on the relative rate of the reaction rate and diffusion rate, which is 

characterized by the Damkohler number (Da). 

 

Da= maximun rate of reaction / maximun rate of diffusion 

                          = Vm / kL [Sb] 

 

where kL is the mass transfer coefficient (cm/s) and [Sb] is the substrate concentration 

in bulk liquid (g/cm3). 
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 The rate of enzymatic conversion may be limited by diffusion of the substrate 

or reaction, depending on the value of the Damkohler number.  If Da >> 1, the 

diffusion rate is limiting.  For Da << 1, the reaction rate is limiting, and for Da ~ 1, 

the diffusion and reaction resistances are comparable.  Diffusion and enzymatic 

reactions may be simultaneous, with the enzymes entrapped in a solid matrix, or may 

be two consecutive phenomena for adsorbed enzymes. 
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