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this paper a0 alpernative formulation to deal with crack analysis
i concrete is proposed. The procedure is derived grom the well
yenown dual houndary elemend method (DBEM) and the fictitious

The DBEM reported bY Portela, Aljabadi & Rooke 14) has been
estabhshed as an alternative 1o solve the general mixed mo de cra
propagation using & single—region formilation. The technigue is

one of the crack surfaces and traction poundary integral equation
on the other crack surface- This method gvercomes t0e difficulty of
modelling the crack surfaces i the conventional M as WO coin-
cident source points are in the same integration path. The DBEM
sllows the sinulation of crack growth na straight forWa:fd manner
without remesing 88 the crack pathis calculated from the previous
gtep. The application of boundary elernent method (BEM) to the

analysis of cracking in concrete is celatively new and there are only

example PY Petersson 138 Ingraffea g Gerstle (o, Carpinten and

yalente [10] and Gerstle g Xie (1. _
p this papel: the three—point hending test specimen is used
to demonstrate the results ysing the BEM 'approax:h. he resuts
are compared with the results by FEM analysis and experimental
resulis.

9 The fictitious crack model
The FCM is hased on the sgsumphion that the fracture ZONe grarts

o develop at, one point when the maximui pr'mcipal stress reaches
the maximum tensile stress of the material- The fractur® ZONe



Opening displacement, This crack that appears on the particular
viewing surface of the concrete jg not a real crack hut rather a fe-
titious crack. Fig. 1(a) shows these forces acting on both sides of
the crack in the fracture zone. The linear and bilinear variatjon of
stress~displacement js considered as shown ip Fig. 1(b) and i{c).

cal value, Au,, the fictitious will become a res) crack (fraction-
free crack). The élastic~softenmg fracturing process for the linear
stress—deformatjon curve (SL) can be Summarized as follows:

o = Fe for e< €, .
T(Ayery = ft’.(l — %?TT) for 0< Ager < Ay, (1)
O'(Aucr) 0 - fol' Aucr > Auc

where o, ¢ and £, are the stresses, the straing and Young’s mod-
ulus of concrete, respectively; f! and €y are the ultimate tensile
strength and the ultimate tensile strain of concrete respectively;
and 9(Ayery is the stregg corresponding to the crack Opening, Ay°r,
at the fictitious crack,
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as

cstepu) [ Tl x0T
= ] Uiy (o, %)t (x)dT ()
iy

where 4 and j denote Cartesian components, T;;{(x',x) and Us; (x',x)
represent the Kelvin traction and displacement: fundamental solu-
tions, respectively. The coefficient c;;(x’) is given by 6i;/2 for the
smooth boundary at the point x' (6; is the Kronecker delta) and
f the Cauchy principal value integral.

The boundary integral representation of the traction compo-
nents, can be written for a point on a crack surface as

(2)

)+ mal) [ Suag o s ()AT)
.«-— ni(x’) erij(X’,X)tk(X)dF(X)r

3)

where Sgi; (%', %) and Dy (X', x) are linear combinations of deriva-
tives of T3;(x/,x) and Uy;(x', ), respectively. The n; denotes the
ith component of the unit outward normal to the boundary at point
x'. The coeflicient. ¢;;(x') is given by 85 /2 for the smooth boundary
and [ denotes the Hadamad principal value integral.

In FCM, the cohesive forces in the fracture zone create an extra
unknown which should be evaluated simultaneously during each of
the iteration processes. These forces are related to tractions by
the definition of the DBEM context. They can be introduced into
the dual boundary element formulation by separating the ‘bound-
ary into two parts, i.e. the non-crack boundary represented by T'
and the crack boundary represented by Ier. Hence, the boundary
integral of the displacement components, eqn (2) can be written in
terms of boundary point as '
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where ug" (x) is the component of the displacement and 7 (x) is
the unknown distributed cohesive forces applied at one of the crack
surfaces, I er-

The boundary integral representation of the traction compo-

nents, eqn (3), can be written for a point on a crack surface as

O+ i) [ Syt xudry
+ () /P Siii (O XN ()T (x)
Jr.. (5)

S——— f Diis (%', X)48" (x)dLop ()

== ni(x’) /I“‘_F Dkgj(x’,x)tk(x}df(x)'

where uS" (x) is the component of the displacement and & (x) is
the unknown distributed cohesive forces applied at the other erack
surfaces, I',.. For traction—free cracks, 17 = =, Equations
(4) and (5) constitute the basis of the DBEM to include an extra
unknown of the cohesive forces in the formulation

Equation (4) and (5} can be expressed in matrix form as

(3 g ] e l={ ) e

in which 4 is coefficient cdrresponding to the vector X contajn.
ing the unknowns 4 and t, and F' contains the known values of u

and 7 for the non—crack boundary. [#,,] and [Ger] are coefficients

corresponding to the unknown displacement Uer and the unknown
cohesive forceg ter respectively, for the crack boundary. [Cer] and
[De,] are the Aetitions crack boundary conditions corresponding to
the vector {tter} and {ter} respectively; and vector {5} is a ma-
terial parameter. For the linear relation of o — AuT, matrices [Cer)
and [D,,] contain 4 x 4 submatrices given by

-y L 10009
0 -1 0° _10 00 0
(Cor] = 0 0 0o o’ [p“’"] 1101 g
0 0 9 g 0190 1
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and vectors {ucr}, {fer} and {S.r} are given by

us t 5
R B RS 5
ud 2 0

Q

where [N] is the t{ransformation matrix from the global to the lo-
cal reference system varying node by node on the fictitious crack
surface. a denotes one of the crack surface and b for the other.

4 Crack modelling strategy

The general modelling strategy developed in the present paper can

be summarized as follows [12]:

i. The crack boundaries are modelled with discontinuous quadratic -

elements, as shown in Fig. 2.

ii. The displacement boundary integral equation, €g- (4), is applied
when the source point is Jocated on one of the crack boundary.

iii. The traction boundary integral equation, eq. (5), is applied
when the source point is located on the opposite crack bound-
ary. :

jv. The displacement boundary integral equation, eq. (4), is ap-

plied when the source point is iocated on the remaining non—
crack boundaries of the body.

v. Continuous quadratic element are used along the remaining
boundary of the body, except at the intersection between a
crack and an edge, where discontinuous elements are required
on the edge in order to avoid a common node at the intersec-
tion (see Fig. 2).

The above modelling strategies are the key points of the DBEM.
For a given crack problem, once the modelling strategy is defined,
the discretization of the boundary was followed and then the final
step was to transform the integral equation into a system of linear
algebraic equations, from which the unknown discrete boundary
variables could be obtained.
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5 Numerical examples

A series of numerical simulations were conducted to demonstrate
the ability of the developed boundary element program to capture
the behaviour of the nonlihear fracture zone in concrete materials.
The simulations include the comparison with the finite element
method and experimental results.

5.1 Example 1: the development of the fracture
zone

Fig. 3 shows a notched beam subjected to three—point bending and
the material properties used in the analysis. It is assumed that
the o — € curve and the o — Au curve are straight lines. The
depth, A = 0.2 m, the notch depth, @ = 0.00 m and the beam span,
{ = 0.8 m were used as the geometry of the bearn. The analysis
is a plane stress analysis with the width of 1 unit. The initial
boundary element mesh contains 73 nodes with 33 elements. The
crack extension length is chosen to be 10 mm.

In Fig. 4 the fracture zone and the stress distribution in front of -

the crack tip are shown for different positions on the load—deflection
curve. The fracture zone starts to develop as the specimen is sub-
jected to the load. At the early stage of loading a small fracture
zone has developed. The fracture zone further develops until the
maximum load is reached, where the depth of the fracture zone
is about 60 mm. The stress distribution at the maximum load is
shown in Fig. 4{b). _

It can be observed from this example that the material in front
of the crack tip is still able to transfer stress even after the maxi-
mum load is reached. A traction free crack will not propagate until
iteration 10 is reached, where the fictitious crack depth is about 100
mm. This indicates that for a material like concrete, there exists a
noticeable fracture process zone in front of the real erack tip, which
cannot be defined in material like metal. Therefore, the analysis of
concrete using the fictitions crack model is reasonably accurate for
analysing a crack propagation of standard beam sizes.
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5.2 Example 2: comparison with FEM and ex-
perimental results

Among the variety of Mode I fracture experiments, the three—point
bending of a notched beam, tested by Petersson [8], was selected for
the analysis. The major advantage of this example is that this beam
has been repeatedly used in experiments so that the necessary ma-
terial parameters, such as fracture energy, G, are carefully spec-
ified. This allows the numerical results to be fairly matched with
the experimental results. In the experimental investigation [8], six
beams were tested in order to determine the value of Gp. The
highest value of Gg obtained was 137 N/m and the lowest was 115
N/m. In the numerical analysis, the value of Gr of 124 N/m was
chosen as a reasonable value to fit the experimental investigation.
The beam is of depth & = 0.2 m, span length [ = 2.0 m, thickness
b = 0.05 m and the ratio between the notched depth and the beam
depth, a/h, is chosen as 0.5. The material properties of the beam
are K, = 30000 MPa; f/ = 3.33 MPa; v = 0.2 and Gr =124 N/m.
In the BEM analysis, the ¢ — Au®" curve is assumed to be a linear
straight line (SL) and a bilinear line (BL). The initial boundary
elemient mesh is shown in Fig. 5(a) and contains 93 nodes with 41
elements. The analysis of the crack growth was performed by incre-
menting the crack length for 10 mm at every iteration. Figures 5(b)
and (c¢) also shows the deformated shape of the beam for iteration

4 and 8.

‘The companson of the numerical and experimental load—deﬂectlon

curve is shown in Fie: 6 for the same value of G with two different
shapes of the softening curve, namely a linear straight line (SL) and
a bilinear line (BL). A good agreement was found for both BEM
analysis and FEM analysis. An accurate match for the experiment
is obtained when the bilinear line is applied. In contrast, the lin-
ear straight line leads to a solution that clearly falls outside the
experimental scattér. Hence, for this type of concrete the bilinear
line proposed by Petersson [8, obviously comes close to the exper-
imental result and at least is a better presentation than the linear
straight line. Therefore, it is shown that the numerical simulation
for such types of fracture problems is found to be extremely sensi-
tive to the input of the basic softening properties, i.e. the shape of
the softening branch and the value of Gp.
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s mnfinitely seiff.

The results shown D Fig. 10 indicated that the pattern of the
Curves agreed for al} of the analyses and it falls picely within the
experimental ccatter at an early stage of loading, but started tO°
deviate after the peak load Was reached. The experimental Te-
sults obtained by Arrea & Ingrafiea (13} lie in the chaded ared- In
this fgure, the 10adﬂCMSD curves obtained pumerically by Rots

were as0 sPOWE- The former used 2 prescribed crack path while the’
latter used a nonfprescribed crack pash. In the analysis, Rots con-

curve produced by the BEM analysis agreed well with the FEM

From this paper it can be concluded ghat the dual boundary element
forraulation in conjunction with fictitious .crack model has been
developed and showh computatiohally effective t0 analyse crack
propagation in concrete. The use of the fictitious crack model to



U8ar strajght line (SL) and 4 bilineay
line (BL). An accurate fit. ¢, the EXperiment ig Obtained When the
bilineay line jg applied.
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Figure 2: General modelling strategy of the dual boundary element method.

5= 3.0 MPa
Gp = 75 N/m

i‘i £, = 30.000 MPa
ash = 0.25
5 = 1 unil
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Figure 3: The notched beam subjected to the three-point bending and its
maberial properties.
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‘Figute 8: (a) The initial boundary element mesh and the deformation of the
beam at {b) iteration 5, (c) iteration 8 and (d) iteration 11.
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Figure 9: The crack path 2t (a) iteration 4, {b} iteration 6, (c) iteration 8

and (d} iteration 10.



