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ABSTRACT

Boundary clement technique is applied to predict the stress distribution in

orthotropic beam. The length-depth ralios (UD) of the beam are chosen within

the range of 1.5 and 4.5. The result from orthotropic analysis is compared with

isotropic analysis. It shows that the stress distribution predicted by orthotropic

analysis is significantly different from isotropic analysis when the 'UD' ratios

less than 4.5.

1 INTRODUCTION

Isotropic analysis is a common method to predict stress in materials. The

analysis assumes that the mechanical properties of the material is similar in all

aspects. However, not all the materials have isotropic properties. Timber, for

example, is an orthotropic material where the mechanical properties are

different in three directions [I]. Due to complexity to develop an orthotropic

fonnulation, several analyse done by previous researchers {2,3] only consider

isotropic assumption, which is possibly not true for orthotropic materials.

Two methods are available to predict the stress in orthotropic materials, i.e.

semi-analytical approach and approximate method (such as finite element

technique). In the semi-analytical approach, the stress is approximated by

combination of analytical part (such as Saint- Venant or Bernoulli theory) and

approximate method such as finite element technique [4,5,6]. The disadvantage

of this method is to assume that the bending stress is linearly distributed along

the beam's depth. The method is also limited to tip-load cantilever. In finite

element technique which is once of the approximate method, the speed of

calculation process is significantly slow due to many elements is needed to give

a converge solution [4,7,8].



15

Based on Lekhnitskii's work [9], one infinite plate with a small circular cavity

is bent up by a moment applied to each two sides and analyse it with

orthotropic and isotropic consideration. His result shows that the stress

pattetn from orthotropic analysis gives a significant difference compared with

isotropic result. In the second case, he considered one cantilever. orthotropic

in properties and applied by one concentrated load at the end. In this case, no

stress distribution is given but in order to derive the stress expression for that

orthotropic cantilever, the plane-sections-remain-plane assumption is used.

This assumption however is quite similar to conventional simple beam theory,

which is cannot be accepted for the stress solution in a short beam analysis

[10,11].

Little information has been found about the stress distribution in orthotropic

beam. Hardy and Pipalzadeh [11] shows several patterns of stress distribution

along the beam's depth with varying 'UO' ratios. Timoshenko [12] also

shows the stress patte_rn along the beam's depth. However, all stress patterns

shown by previous investigators only consider isotropic properties of the

material. To overcome this problems, one type of approximate method, called

boundary element technique, is applied in order to observe the stress

distribution in orthotropic beam. This type of analysis only discretize the

elements at structural boundary and gives faster convergence rale for stress

solution compared with finite element method. Furthermore, the problem of

the plane-sections-remain-plane assumption used in the conventional

orthotropic beam theory (i.e. semi-analytical approach, which is discussed

previously) can be avoided.

2 BOUNDARY ELEMENT FORMULA nON

Boundary element formulation in elastostatic problems is firstly introduced by

Rizzo [13]. This formulation is derived from equilibrium state of forces for

every small elements in the structure. If the material is assumed elastic, the

displacement at a point 'i' (see Fig. I) in the beam structure can be related to

the displacements and tractions at the boundary, as follow [14]:
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Fig. 1 Beam structure
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where:

uIi:;displacement at a point 'i' in direction xl'

r = Domain of structural boundary.

Pk and uk are traction and displacement in direction xk, respectively.

Plk * and ulk * are virtual traction and virtual displacement in direction xk

respectively. This traction and displacement are produced from one virtual

unit load applied at a point 'i' in direction XI.

The plane stress orthotropic assumption is used in the boundary element

formulation. If Xl and X2 are the orthotropic axes of the material (refer to Fig.

1), the stress-strain relationship for one small element in the structure is:

[
£1] [~II ~12 ~16][0"1]£2 = ~21 ~22 ~26 0"2
112 ~61 ~62 ~66 ~12
where:

~ll 1/E
u1

~u ::::: -V
I2
/Euf ~21 ::::: -V21/E22J 1122

1166 ::: I/Gn, llu :::::1326 = 1361 = 1362 ::::: 0

(2)

The parameters f (and y), (} (and 1"), E, v and G in the equation (2) indicate

strain, stress, elasticity modulus, Poisson's ratio and shear modulus of the

material respectively. The subscript index '}' and '2' in these parameters

refers to orthotropic axes, x I and X2.

As was proposed by Cruse [15,16], the virtual displacement, ulk *, in equation

(1) to satisfy the condition given by equation (2) is:

U;I = 2 Re[PIAlIlog ZI + P2AI2 log Zz]

U;2= 2Re[qlAlIlogzl +q2Alzlogz2]

3(a)

3(b)

where'Re' denotes real part of complex number. zk (k=1,2) in the equation

(3a) and (3b) (see also Fig. 1) is a complex number that relates the coordinates

XI and X2, as follow:

'" = x, + Ilkx, (4)

where J..1.kis the root of characteristic equation of the material. The

characteristic equation is given by Lekhnitskii [9], as follow:
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Pk and qk (k= 1,2) in the equation (3) are the material constants which is given

as follow:

Pk = ~1,1l~+ ~12- ~161lk

qk = ~22 / Ilk + ~lzllk - ~Z6

Ajk (j=1,2;k=I,2) in the equation (3) is a complex number. which is obtained

from solving two following equations, i.e.:

The virtual tractions, Plk *, in equation (1) to satisfy the condition given by

equation (2) is [15,16]:

P;k =2Re[Qkl(ll,nj-nZ)An /Z, +Qkz(1l2nj-nZ)A12 /Z2]
(5)

where "1 and "2 are cosine angle of normal vector, n (see also Fig. 1) with

respect to Xl, X2 axes respectively. The parameter Qjk 0=1,2; k=1,2) in

equation (5) is:

(k=I,2)

From equation (3) and (5), all virtual functions are singular if 'Zk' equal to

zero. Therefore, by substituting equation (3) and (5) into equation (l), the

displacement formulation becomes singular if the point 'j' is located at

boundary (i.e. zJ(=O). By introducing one virtual hemisphere at a point 'i' on

the boundary and by using limiting theory, equation (1) reduces to boundary

element formulation, as follow:

(6)

where C~k is a parameter that is a function of geometry of the boundary at a

point'i', The displacement and traction functions, Uk and Pk in the equation (6)

are approximated by quadratic expression, which reduce to nodal unknowns at

the boundary, These unknown values are determined after assembling process

is carried out for each node.
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The two integrals in equation (6) (denote by f) are singular. 1)lis singularity

problem is solved in the assembling process by considering "rigid body

motion' proposed by Cruse [17].

For stress formulating at a point 'j' in the structure, the displacement function,

uli,in the equation (1) is differentiated. which gives:

*Plk .ukdr,J
(7)

(8)

The derivative of the displacement function fonnulated by equation (7) is

related to the displacements and tractions at the boundary. The displacement

derivative function is singular if the point 'i' is located at the boundary caused

by the singularity of the virtual functions, UIkJ. and Plk,/. If the point 'j' is

located close to boundary, the accuracy of displacement derivatives dependent

on the singularity order of virtual functions. The accuracy of displacement

derivatives becomes a problem issue if the singularity order of virtual

functions is higher. However, by a method proposed by Suhaimi and zainai

{14], the accuracy problems can be solved efficiently if the point 'i' is closely

located to the boundary.

After the displacement derivatives have been known, the strain is determined

by the strain.displacement relationship as follow:

E = u
1 l.l

E
2
= U
u

'Y12 = U1.2 + U2,1

Then, the stress can be found by solving of equation (2).

3 BOUNDARY ELEMENT ANALYSIS AND RESULTS

Orthotropic boundary element technique which is formulated in the section 2

is applied to the beam's structure as shown in Fig. 2. The stress predicted

from this technique is studied. Xl and X2 axes in Fig. 2 are referred to

orthotropic axes. A unit width of beam is used in the analysis and three 'lJD'

ratios are studied, that are 1.5,3.0 and 4.5. The elastic modulus and Poisson's

ratio are taken as follow:
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EII= 13900 N/mm' •En= 1200 N/mm'. V [2=0.3 •G,,= 700 N/mm'

1 kNfm
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Fig. 2 A beam structure for boundary element analysis

Isotropic boundary element analysis is also applied to the similar beam's

structure (see Fig. 2) for stress comparison willI orthotropic analysis. The

elastic modulus, E, and Poisson's ratio used in the isotropic analysis are

similar to Ell and Vn from orthotropic analysis. i.e. 13900 N/mm
2
and 0.3

respectively.

In order to determine the number of element required for boundary element

analysis, isotropic boundary element analysis is applied and the predicting

stress is compared to the exact solution. The number of elements is increased

until the result is close to exact solution. Timoshenko's isotropic theory [12)

is a method used for exact solution determination. For the beam with 'UD'

ratio equal to 1.5, 34 elements were found for isotropic boundary element

analysis to give an exact solution, while for 'UD' ratios equal to 3.0 and 4.5,

30 elements and 26 elements were found respectively. The stress distribution

predicted from isotropic boundary element analysis using the above number of

elements are shown in Fig. 3, 4 and 5. The stress distribution from

Timoshenko's theory is also shown in the same figure for comparison. Good

agreement was achieved between iSOlropic result and Timoshcnko's theory. It

is believed that the number of elements needed for orthotropic analysis to give

a converge solution is achieved if the similar number of elements is used for

isotropic analysis. Therefore, the number of elements obtained from isotropic

analysis is used once again for orthotropic analysis.

The bending stress distribution predicted from orthotropic analysis is shown in

Fig. 3. Nonlinear distribution was found. The stress distribution predicted

from isotropic analysis is linear and it shows significantly different from

orthotropic stress when 'UD' ratios equal to 1.5 and 3 (see Fig. 3(a) and 3(b»).

The orthotropic stress is higher than isotropic stress at the top and bottom of

the beam, and reduces toward the middle of the beam's depth. However, the

I

~

~

I
I
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nonlinearity of orthotropic stress is reduced when 'UD' ratio is increased and

the orthotropic stress is approximately equal to isotropic stress when 'LID' ratio

equal to 4.5 (see Fig. 3(c)).

The shear stress distribution predicted from orthotropic analysis is shown in

Fig. 4. It is clearly seen that orthotropic stress is lower than isotropic stress at

the middle of the beam' s depth and increased toward to the top and bottom of

the beam. Significantly different was found for both stresses with 'LID' ratio

1.5 and 3 (see Fig. 4(a) and 4(b)). However, orthotropic stress approach to

isotropic stress when 'LID' ratios equal to 4.5 (see Fig. 4(c».

The transverse stress distribution predicted from orthotropic analysis is shown

in Fig. 5. Orthotropic and isotropic stress was found to be no different for all

'lJD' ratios. It shows that orthotropic properties of-the material do not give

much influence for transverse stress in the beam.

4 CONCLUSION

To conclude this paper, the following remarks are noted:

[1] The distribution of stress predicted from orthotropic and isotropic

analysis is different. This distribution is different if 'lJD' ratio less

than 4.5.

[2] Maximum stress in bending predicted from orthotropic analysis is

greater than that from isotropic prediction. However, maximum stress

in shear is less than from isotropic prediction.

[3] Orthotropic properties do not gives significantly influence for

transverse stress in the beam compared with isotropic prediction.
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