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The nonabelian tensor square, G G⊗ , of a group G is generated by 
the symbols g h⊗ , where ,g h G∈   subject to the relations 

' ( ' )(g g )gg h g h g h⊗ = ⊗ ⊗  and ' ( )( ')h hg hh g h g h⊗ = ⊗ ⊗ for all , ', , ' ,g g h h G∈  
where 1' 'g g gg g−=  is the conjugation on the left. The nonabelian 
tensor square is a special case of the nonabelian tensor product 
which has its origins in homotopy theory. The Bieberbach groups 
are extensions of a point group and a free abelian group of finite 
rank. The rank of the free abelian group is the dimension of a 
Bieberbach group. In this study, we will compute the nonabelian 
tensor square of one family of Bieberbach groups with cyclic point 
group of order 2 and dimension 3 or, denoted by . This group 
is polycyclic since it is an extension of polycyclic groups. The 
nonabelian tensor squares are obtained using computational method 
developed by R. Blyth and R. F. Morse in 2008 for polycyclic 
groups. 

2 (3)B
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9.1 OVERVIEW 

An important algebraic invariant of flat manifold is its 
fundamental groups. These groups are known as the Bieberbach 
groups and turn out to have many interesting algebraic properties. 
The Bieberbach groups are torsion free crystallographic groups. 
These groups G are extension of a free abelian group L of finite 
rank by a group P. Thus, there is a short exact sequence shown as 

 
.11 ⎯→⎯⎯→⎯⎯→⎯⎯→⎯ PGL ψ  

 
such that ( )

G PLψ ≅ . The group L is called the lattice group and P 

is a point group, also known as a holonomy group. The dimension 
of G is called the rank of L.  

The nonabelian tensor square is a specialisation of the more 
general nonabelian tensor square product introduced by Brown, 
Johnson & Robertson [1]. This group’s construction has its roots in 
algebraic K-theory and topology extending ideas of Whitehead [2]. 
The nonabelian tensor square appears independently in Dennis’s 
work [3] on K-theory and is based on the ideas of Miller [4].    
Brown, Johnson & Robertson [1] consider the nonabelian tensor 
square from a group theoretic point of view and they compute the 
nonabelian tensor squares of all nonabelian groups up to order 30. 
By computing the nonabelian tensor square we mean finding a 
standard or simplified presentation for the nonabelian tensor square 
for these groups. Many papers have appeared in computing the 
nonabelian tensor squares for various groups and classes of groups 
since the publication of Brown, Johnson and Robertson seminal’s 
work. This include 2-generator nilpotent of class 2 groups in 
Kappe & Bacon [5], and Kappe, Sarmin & Visscher [6], 
metacyclic groups in Kappe & Beuerle [7] and free nilpotent 
groups in Blyth, Moravec & Morse [8]. The main goal of this 
paper is to calculate the nonabelian tensor squares of the 
Bieberbach group, given by 
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2(3) , , , | , , , [ , ] 1, [ , ] 1for , 1,2,32 1 2 3 3 1 2 2 1 3

a aB a l l l a l l l l l a l l l i ji j= = = = = = = . 

 
Our method for computation will use the techniques 

developed by Blyth & Morse [9]. The following lemma identifies 
the structure of the group . The proof of the lemma is given in 
Section 9.3. 

2 (3)B

 
Lemma 9.1.  The groups  is a Bieberbach group of dimension 
2 with point group , where  the cyclic group of order n. 

2 (3)B

2C nC
 

By Lemma 1 we see that  is an extension of a finitely 
generated abelian group by a finite cyclic group. Any finitely 
generated abelian group is polycyclic. Since the polycyclic’s 
property is closed under extensions, we have  is polycyclic. 
Our method for computing the nonabelian tensor squares of  
will rely on the fact that this group is polycyclic. The following 
lemma [10] provides a method for creating a family of Bieberbach 
groups from a given Bieberbach group B that have the same point 
group. 

2 (3)B

2 (3)B

2 (3)B

 
Lemma 9.2.  Let G be any Bieberbach group of dimension n with 
point group P and lattice group L. Let   where  is a 
free abelian group of rank m. Then B is a Bieberbach group of 
dimension   with point group P. 

ab
mFGB ×= ab

mF

mn +
 
Lemmas 1 and 2 allow us to define the following family of  
Bieberbach groups.   
 
 
Definition 9.1.  The group, 

2 2( ) (3) ab
nB n B F −= × 3 ,  for  3n ≥
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is a Bieberbach group with point group  of dimension n, where 
 is a free abelian group of rank m. 

2C
ab

mF
The first main result of the paper is the computation of the 

nonabelian tensor square of  . 2 (3)B
 

Theorem 9.1.  The nonabelian tensor square 2 2(3) (3)B B⊗  is 
abelian and isomorphic to , 5

2 0C C×
where  is the infinite cyclic group. 0C
 

Computing the nonabelian tensor square of  follows 
from Theorem 9.1 and the following lemma found in Brown, 
Johnson & Robertson [1]. 

2 ( )B n

 
Lemma 9.3.  Let G be any group such that BAG ×= . Then 

 
( ) ( ) ( ) ( ) ( ) (ab ab ab abG G A B A B A A A B B A B B⊗ = × ⊗ × = ⊗ × ⊗ × ⊗ × ⊗ )  

 
where  and  are the abelianisations of A and 
B respectively. 

'/ AAAab = '/ BBB ab =

 
We note that the nonabelian tensor square of two abelian 

groups is equivalent to the ordinary tensor square for abelian 
groups. By our construction of , Lemma 9.3 reduces the 
computation of the nonabelian tensor square of these groups to 
computing the nonabelian tensor square of the group and the 
ordinary tensor products of abelian groups. 

2 ( )B n

2 (3)B

 
Corollary 9.1.  For the Bieberbach group , 2 ( )B n

 
2( 1) 1

2 2 2 0( ) ( ) nB n B n C C − +⊗ ≅ × ,  for . 3n ≥
 
Section 9.2 outlines the techniques developed by Blyth & Morse 
[9] for computing the nonabelian tensor squares of polycyclic 
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groups. In Section 9.3 we give structural results for , and the 
proofs of Theorem 9.1 and Corollary 9.1. 

2 (3)B

9.2 PRELIMINARIES 

Our approach to computing the nonabelian tensor square 
involves the group )(Gν  as defined below. This group was 
independently investigated  by Rocco [11] and Ellis & Leonard 
[12]. 
 
Definition 9.2 [11]. Let G be a group with presentation RG  and 
let  be an isomorphic copy of G via the mapping  for 
all . The group 

ϕG ϕϕ gg →:
Gg ∈ )(Gν  is defined as 

 
GkhghghghgGGG kkkk ∈∀=== ,,],,[]),([],[,)( ϕϕϕϕϕν . 

 
The importance of  )(Gν  is that GG⊗  is isomorphic to a subgroup 
of )(Gν . 
 
Theorem 9.2 ([11],[12]). Let G be a group. Then the map  

  defined by  for all 
 is an isomorphism. 

)(],[: GGGGG νσ ϕ <→⊗ ],[)( ϕσ hghg =⊗

Ghg ∈,
 

Since there is an isomorphism from GG⊗  to , then all 
tensor computations of a group G can be translated into 
commutator computations within the subgroup  of 

],[ ϕGG

],[ ϕGG )(Gν . A 
commutator calculus that explicitly  translates commutator 
computations in )(Gν  into tensor computations was initiated by 
Rocco [11] and have been extended further by Blyth & Morse [9] 
and Blyth, Moravec & Morse [8]. This commutator calculus allows 
us to make a computations of GG⊗  within the subgroup .  ],[ ϕGG
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Since all conjugations and commutators in this paper are done 
using conjugation from the left, a few basic commutator identities 
are given for the convenience of the reader.  Let G be any group 
and x, y and z be elements of G. The conjugation of y by x is 

. The commutator of x and y is  and the 
commutators are left normed, i.e 

1−= xyxyx 11],[ −−= yxyxyx
]],,[[],,[ zyxzyx = . There are list 

some of the commutator identities as below: 
 
 ;yyxyx ],[=
 [ , ] [ , ];z z zx y x y=

 ;],].[,[],[ zxzyzxy x=

 ;],[].,[],[ zxyxyzx y=

 ;11111 ],].[],[,[],[],[
1 −−−−− ==
−

yxyxxyxyx x

  ;11111 ],].[],[,[],[],[
1 −−−−− ==
−

yxyxyyxyx y

 1 1 1 1 1 1[ , ] [ ,[ ,[ , ]]].[ ,[ , ]].[ ,[ , ]].[ , ].x y x y x y y x y x x y x y− − − − − −=

 
The following lemmas record some basic identities used in 

this paper. 
 
Lemma 9.4 ([8],[9]).  Let G be a group. The following relations 
hold in )(Gν : 

(i )     ],[],[],[ 21
],[

21
],[

21
],[ 434343

ϕϕϕ ϕϕ

gggggg gggggg ==

         for all in G; 4321 ,,, gggg
(ii)   1 2 3 1 2 3 1 2 3[ , , ] [ , , ] [ , , ]g g g g g g g g gϕ ϕ ϕ ϕ= = =   
        1 2 3 1 2 3 1 2 3[ , , ] [ , , ] [ , , ]g g g g g g g g gϕ ϕ ϕ ϕ ϕ= =  
         for all  in G; 321 ,, ggg

(iii)   ;],,[]],[,[ 1
132321

−= ϕϕ gggggg

(iv)    is central in ],[ ϕgg )(Gν  for all g in G; 
(v)  is central in ],][,[ 1221

ϕϕ gggg )(Gν for all  in G; 21 , gg

(vi)     for all g in . 1],[ =ϕgg 'G
 
The following identities can be found in [9] and [10]. 
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Lemma 9.5.   Let g and h be elements of G such that 1],[ =hg . 
Then in )(Gν ,  

(i)     for all integers n; ])(,[],[],[ nnn hghghg ϕϕϕ ==

(ii)  [ , ( ) ][ , ( ) ] ([ , ][ , ]) ;n m m n nmg h h g g h h gϕ ϕ ϕ ϕ=

(iii)    is in the center of ],[ ϕhg )(Gν . 
 
The following three lemmas will be used in the sequel. 
 
Lemma 9.6 [10].   Let G and H be groups and let Gg ∈ . Suppose φ 
is a homomorphism from G to H. If ( )gφ  has finite order then 

( )gφ  divides g . Otherwise, the order of ( )gφ  equals the 
order of g. 
 
Lemma 9.7 [13].  Let A, B and C be any abelian group. Consider 
the ordinary tensor product of two abelian groups. Then, 

 
(i)     AAC ≅⊗0  , 
(ii)    000 CCC ≅⊗  , 
(iii)   ),gcd( mnmn CCC ≅⊗  , for n,m ∈ Z , and 
(iv)   )()()( CABACBA ⊗×⊗=×⊗ . 

 
Lemma 9.8 [10].  Let A be a finitely generated abelian group and 
a is a basis element in A. If a has infinite order then a a⊗  in A A⊗  
has  infinite order. 
 

Blyth & Morse [9] have shown that if G is polycyclic, then 
 and GG⊗ )(Gν  are polycyclics. Hence, for finite and infinite 

polycyclic groups both GG⊗  and )(Gν  are finitely presented. The 
following proposition gives us a finite generating set for  in 
terms of a polycyclic generating set of G, independent of the 
polycyclic presentation of 

],[ ϕGG

)(Gν . 
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Proposition 9.1 [9].  Let G be a polycyclic group with a polycyclic 
generating sequence  . Then  a subgroup of kgg ,...,1 ],[ ϕGG )(Gν , 
is generated by 
[ , ] [ , ], [ , ( ) ], [ , ( )][ , ( )]i i i j i j j iG G g g g g g g g gϕ ϕ ε ϕ δ ϕ= ϕ for 1 , , ,i j k i j≤ ≤ <  
where 

⎩
⎨
⎧

∞=±
∞<

=
||1

;||1

i

i

gif
gif

ε   and   
⎩
⎨
⎧

∞=±
∞<

=
.||1
;||1

i

i

gif
gif

δ

 
We conclude this section with three statements about the 

structural results of the nonabelian tensor square. 
 
Lemma 9.9 [10].   Let G be any group such that  is cyclic, then 

 is abelian. 
'G

GG⊗
 
The following two theorems are from Brown, Johnson and 
Robertson [1]. 
 
Theorem 9.3.  Let G be a group. Then there exists a commutator 
mapping  

: 'G G Gκ ⊗ →  
defined by ( ) [ , ].g h g hκ ⊗ =  The kernel of κ is in the center of G G⊗ . 
 
Theorem 9.4.  Let G and H be groups such that there is an 
epimorphism : G Hε → . Then there exists an epimorphism 

 
: G G H Hα ⊗ → ⊗  

 
defined by ( ) ( ) ( )g h g hα ε ε⊗ = ⊗ . 
 

In the next section, all lemmas, proposition and theorems in 
this section will be applied in computing the nonabelian tensor 
squares of groups  and . 2 (3)B 2 ( )B n
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9.3 THE NONABELIAN TENSOR SQUARES OF and 2 (3)B

2 ( )B n  

In this section we compute the nonabelian tensor squares of 
 and . We start the investigation of the structure of  

by proving Lemma 1 and showing the generators in the definition 
of  form a polycyclic generating sequence. This information 
will allow us to apply Proposition 1 in computing the tensor square 
of this group. 

2 (3)B 2 ( )B n 2 (3)B

2 (3)B

 
Proof of Lemma 9.1.  Consider the subgroup 1 2 3, ,L l l l=  of . 
Since ,  and  commute to each other then L is an abelian 
group of rank 3. We can see that for any element  in L and 

2 (3)B

1l 2l 3l
il x  in 

, 2 (3)B 1
ixl x L− ∈ . Hence  is a normal subgroup in . All 

elements of  have infinite orders, so that all elements in  are 
elements of infinite order. It follows that  is a free abelian of rank 

3. Since 

L 2 (3)B

2 (3)B L
L

1 2 3
2 2

1 2 3

, , ,(3) / , ,
a l l lB L a Cl l l= ≅ ≅ , then  is an 

extension of group  by . We conclude that  is a 
Bieberbach group with point group  and dimension 3.   

2 (3)B

L 2C 2 (3)B

2C
 

The following lemma is an immediate consequence of the 
proof of Lemma 9.1. 

 
Lemma 9.10.  The generators given in the definition of  form 
a polycyclic generating sequence. 

2 (3)B

 
Proof.  The normal subgroup 1 2 3, ,L l l l=  from the proof of Lemma 

9.1 is polycyclic and the factor 2 (3)B
L  is cyclic of order 2. Hence 

a, ,  and  form a polycyclic generating sequence.   1l 2l 3l
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The following lemma will be used to prove the nonabelian tensor 
square of  is abelian. 2 (3)B
 
Lemma 9.11.  The groups  has cyclic derived subgroup and 

its abelianisation 
2 (3)B

2

2

(3)
(3) '

B
B ≅  0C C0×  is generated by the cosets 

 and  of order infinity, respectively. 2 2 (3) 'l B 3 2 (3) 'l B
 
Proof.  From the relations of group , since 2 (3)B 1 2

al l=  and 2 1
al l= , 

we have 1 1 1
1 1 1 1

aal a l l l− − −= 1
2 1l l −=  

1≠  and 1 1 1
2 2 2 2

aal a l l l− − −= 1
1 2l l −= 1≠ . It follows that and  are 

the only nontrivial elements in  and therefore 
],[ 1la 2[ , ]a l

2 (3) 'B 1
2 1 2 (3) 'l l B− = .  

The factor group 2

2

(3)
(3) '

B
B  is generated by the cosets 

, ,  and . However 2 (3) 'aB 1 2 (3) 'l B 2 2 (3) 'l B 3 2 (3) 'l B 2 3 2(3) ' (3) 'aB l B∩  and 
 are not trivial. Hence 1 2 2 2(3) ' (3) 'l B l B∩ 2 3 2(3) ' (3) 'aB l B=  and 
. It follows that  and  of infinite order 

respectively. Therefore, 
1 2 2 2(3) ' (3) 'l B l B= 2 2 (3) 'l B 3 2 (3) 'l B

2
2 2 3 2 0 0

2

(3) (3) ', (3) '(3) '
B l B l B C CB = ≅ ×  as 

needed.  
To complete the proof of Theorem 9.1, we prove a series of 

lemmas specific to 2( (3))Bν . 
 
Lemma 9.12.  The following identities hold in 2( (3))Bν : 

(i) 1 2 2 1[ , ] [ , ]l l l lϕ ϕ= ;   and   
(ii)  1 1 2 2[ , ] [ , ]l l l lϕ ϕ= . 

 
Proof. From the relation of group , 2 (3)B 1

al l2=  and 2
al l1= . Then, 

from equation (9.2) and Lemma 5(iii) we obtain 
 

1 2 2 1 2 1 2 1[ , ] [ , ] [ , ] [ , ].a a al l l l l l l lϕ ϕ ϕ= = = ϕ

ϕ

 
 Also,  1 1 2 2 2 2 2 2[ , ] [ , ] [ , ] [ , ].a a al l l l l l l lϕ ϕ ϕ= = =
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Lemma 9.13. The elements 1

1[ ,a l ]ϕ− , 1
1[ , ]a l ϕ− − , 1[ , ]a l ϕ− , 1

2[ ,a l ]ϕ− , 
1

2[ , ]a l ϕ− − , and 2[ , ]a l ϕ−  of 2( (3))Bν  can be written as 1 1
1 2[ , ] [ , ]a l a lϕ ϕ− −= , 

1

1 1
1 1 2 1 1[ , ] [ , ][ , ] [ , ]a l l l l l a lϕ ϕ ϕ ϕ− − −= 1 1

2 1] [ , ]a l a lϕ ϕ− −=

= 1 1
1 1 2 2 2 2[ , ] [ , ] [ , ][ , ]a l l l l l a l

, [ , , 
 , 1 1

2 1 2 2 2 2[ , ] [ , ][ , ] [ , ]a l l l l l a lϕ ϕ ϕ ϕ− − − ϕ ϕ ϕ ϕ− − −=

]

, 
and 

1 1
2 1 2 1 1 1[ , ] [ , ] [ , ][ ,a l l l l l a lϕ ϕ ϕ− − −= ϕ

2

. 
 
Proof.  Using the relations of , we have, 2 (3)B

 1 1 1 1
1 1 2

a l a l a a al a a l
− − − −= = = ,  and

 1 1 1 1
2 2 1

a l a l a a al a a l
− − − −

1= = = .
 
Using these two equations we obtain, 
 

11
1[ , ] [ , ]aa l a lϕ −− = 1

1
ϕ −                       (from 9.5) 

              = 1 1
1[ , ( ) ]aa l ϕ− −            (from 9.2) 

              = 1
2[ , ]a l ϕ −                           (from 9.8); 

1
1 1

1 1[ , ] [ , ]la l a lϕ ϕ−− −=
1 1 1

1 1 1,[ , ] ][ , ]l a l a lϕ ϕ

                      (from 9.6) 
             = [ − − −  since        [ , ]ab a b b=

             = 1 1
1 1 1[ ,[ , ] ][ , ]l a l a lϕ ϕ− − −  

             = 1 1
1 2 1 1[ , ( ) ][ , ]l l l a lϕ ϕ 1− − −  

             = 1
1 2[ , ]l l ϕ− − 1

2 1
1 1[ , ]l l l ϕ

− − 1
1[ , ]a l ϕ −   (from 9.4) 

             = 1 2[ , ]l l ϕ 1
1 1[ , ]l l ϕ − 1

1[ , ]a l ϕ − ; 
11

1 1[ , ] [ , ]aa l a lϕ −− − − −= 1ϕ                      (from 9.5) 
               = 1 1

1[ , ( ) ]aa l ϕ− − −           (from 9.2) 
  = 1

2[ , ]a l ϕ− −                      (from 9.8); 
11

2
1[ , ] [ , ]aa l a lϕ ϕ−− −=

1 1( ) ]aa l ϕ−

2                      (from 9.5) 
              = [ ,           (from 9.2) −

2

                         (from 9.9);               = [ , 1
1 ]a l ϕ −

1
2 1

2[ , ] [ , ]la l a lϕ −− = 2
ϕ −

1

                     (from 9.6) 
             = 1 1

2 2 2[ ,[ , ] ][ , ]l a l a lϕ ϕ− − −  since        [ , ]ab a b b=
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             = 1 1
2 2 1 2[ , ( ) ][ , ]l l l a lϕ ϕ 1− − −  

             = 1
2 2[ , ]l l ϕ− 2

2 1[ , ]l l l ϕ 1
2[ , ]a l ϕ −       (from 9.4) 

             = 1 2[ , ]l l ϕ 1
2 2[ , ]l l ϕ − 1

2[ , ]a l ϕ − ; 
11

2 2[ , ] [ , ]aa l a lϕ −− − − −= 1ϕ                       (from 9.5) 
               = 1 1

2[ , ( ) ]aa l ϕ− − −            (from 9.2) 
  = 1

1[ , ]a l ϕ− −                       (from 9.9) 
               = 1

1 2[ , ]l l ϕ −
1 1[ , ]l l ϕ 1[ , ]a l ϕ ;    and finally, 

1 1
1 2[ , ] [ , ]a l a lϕ ϕ− − − −= = 1

1 2[ , ]l l ϕ −
2 2[ , ]l l ϕ

2[ , ]a l ϕ .  
 
Lemma 9.14.  The nonabelian tensor square of  is generated 
by the elements [ ,

2 (3)B
]a aϕ , 1 1[ , ]l l ϕ , 1 2[ , ]l l ϕ , 1[ , ]a l ϕ , 2[ , ]a l ϕ , 1 1[ , ][ , ]a l l aϕ ϕ and 

2 2[ , ][ , ]a l l aϕ ϕ . 
 
Proof.  From Lemma 9.10, the group  is a polycyclic group 
with polycyclic generating sequence 

2 (3)B

1 2 3, , ,a l l l . Therefore we can 
apply Proposition 9.1 and obtain that 2 2(3) (3)B B⊗  is generated by  

 
1 1 2 2[ , ], [ , ], [ , ],a a l l l lϕ ϕ ϕ  

3 3[ , ]l l ϕ ,  1
1 1 1[ , ], [ , ], [ , ],a l a l a lϕ ϕ ϕ 1

1[ , ],a l ϕ− −− −

− − −

a l ϕ− − 1
1 2 1 2 1 2, ], [ , ], [ , ],l l l l l lϕ ϕ ϕ− −

− −

− − l l ϕ− −

2[ , ],a l ϕ

1 1
2 2 2[ , ], [ , ], [ , ],a l a l a lϕ ϕ ϕ−

3[ , ],a l ϕ   1
3[ , ],a l ϕ−

3[ , ],a l ϕ− 1
3[ , ],  [  

1
1 2[ , ],l l ϕ− − 1

1 3 1 3 1 3[ , ], [ , ], [ , ],l l l l l lϕ ϕ ϕ 1
1 3[ , ],l l ϕ− −  

1
2 3 2 3 2 3[ , ], [ , ], [ , ],l l l l l lϕ ϕ ϕ 1

2 3[ , ], 1 1[ , ][ , ],a l l aϕ ϕ  
2 2[ , ][ , ],a l l aϕ ϕ

3 3[ , ][ , ],a l l aϕ ϕ
1 2 2 1[ , ][ , ]l l l lϕ ϕ , 

1 3 3 1[ , ][ , ]l l l lϕ ϕ  and 2 3 3 2[ , ][ , ]l l l lϕ ϕ .  
 
These generators need not be independent. We show that each of 
these generators can be expressed as products of powers of 

   and 1 1[ , ], [ , ],a a l lϕ ϕ
1 2[ , ],l l ϕ

1[ , ],a l ϕ 1 1[ , ][ , ],a l l aϕ ϕ
2[ , ],a l ϕ

2 2[ , ][ , ]a l l aϕ ϕ . By 
Lemma 9.12 (i) and (ii),  

 
2 2 1 1[ , ] [ , ]l l l lϕ ϕ= , and  . 2

1 2 2 1 1 2[ , ][ , ] [ , ]l l l l l lϕ ϕ ϕ=
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Since , we can substitute and using Lemma 9.5(i) to have as 
follows: 

2
3a l=

2 2 4
3 3[ , ] [ , ] [ , ]l l a a a aϕ ϕ= = ϕ

ϕ

2ϕ −

ϕ −

2ϕ

4

; 
 ; 2 2

3[ , ] [ , ] [ , ]a l a a a aϕ ϕ= =

 ; 1 1 2
3[ , ] [ , ] [ , ]a l a a a aϕ ϕ− −= =

 ; 2 2
3[ , ] [ , ( ) ] [ , ]a l a a a aϕ ϕ− −= =

 ; and 1 1 2
3[ , ] [ , ] [ , ]a l a a a aϕ ϕ− − − −= =

 . 2 2
3 3[ , ][ , ] [ , ( ) ][ , ] [ , ]a l l a a a a a a aϕ ϕ ϕ ϕ ϕ= =

 
By Lemma 9.13, we have 

1 1
1 2[ , ] [ , ]a l a lϕ ϕ− −= ; 

            1[ , ]a l ϕ− = 1 2[ , ]l l ϕ 1
1 1[ , ]l l ϕ − 1

1[ , ]a l ϕ − ; 
1

1[ , ]a l ϕ− − = 1
1 2[ , ]l l ϕ −

2 2[ , ]l l ϕ
2[ , ]a l ϕ ; 

1 1
2 1[ , ] [ , ]a l a lϕ ϕ− −= ; 

2[ , ]a l ϕ− = 1 2[ , ]l l ϕ 1
2 2[ , ]l l ϕ − 1

2[ , ]a l ϕ − ; 
1

2[ , ]a l ϕ− − = 1
1 2[ , ]l l ϕ −

1 1[ , ]l l ϕ 1[ , ]a l ϕ . 
 
Since ,  and  commute in , by Lemma 9.5 (i)  1l 2l 3l 2 (3)B

1 1
1 2 1 2[ , ] [ , ]l l l lϕ ϕ− −= , 1

1 2 1 2[ , ] [ , ]l l l lϕ ϕ− −= ,   
1

1 2 1 2[ , ] [ , ]l l l lϕ ϕ− − = , 1 1
1 3 1 3[ , ] [ , ]l l l lϕ ϕ− −= , 

1
1 3 1 3[ , ] [ , ]l l l lϕ ϕ− −= , 1

1 3 1 3[ , ] [ , ]l l l lϕ ϕ− − = , 
1 1

2 3 2 3[ , ] [ , ]l l l lϕ ϕ− −= , 1
2 3 2 3[ , ] [ , ]l l l lϕ ϕ− −= , 

1
2 3 2 3[ , ] [ , ]l l l lϕ ϕ− − = . 

Next,  
2

1 3 1[ , ] [ , ]l l l aϕ ϕ= = 1 1[ , ] [ , ]al a l aϕ ϕ = 1 2[ , ][ , ]l a l aϕ ϕ  and 
2

2 3 2[ , ] [ , ]l l l aϕ ϕ= = 2 2[ , ] [ , ]al a l aϕ ϕ = 2 1[ , ][ , ]l a l aϕ ϕ . 
 

Note that  and  can be written as 1[ , ]l aϕ
2[ , ]l aϕ

1
1 1 1[ , ] [ , ][ , ]a l a l l aϕ ϕ ϕ−  and 1

2 2 2[ , ] [ , ][ , ]a l a l l aϕ ϕ ϕ− . Using Lemma 9.5 (ii) and 
substituting 2

3a l=  we obtain 
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2
1 1([ , ][ , ])a l l aϕ ϕ = 2 2

1 1[ , ][ , ]a l l aϕ ϕ  
                         =  3 1 1 3[ , ][ , ]l l l lϕ ϕ

                         = 1
1 3 1 3 3 1 1 3[ , ] [ , ][ , ][ , ]l l l l l l l lϕ ϕ ϕ ϕ−  

                         = ,   and  1 3 3 1[ , ][ , ]l l l lϕ ϕ

2
2 2([ , ][ , ])a l l aϕ ϕ = 2 2

2 2[ , ][ , ]a l l aϕ ϕ  
                         = 3 2 2 3[ , ][ , ]l l l lϕ ϕ  
                         =  1

2 3 2 3 3 2 2 3[ , ] [ , ][ , ][ , ]l l l l l l l lϕ ϕ ϕ ϕ−

                         = 2 3 3 2[ , ][ , ]l l l lϕ ϕ . 
 

Therefore, 1 3[ , ]l l ϕ ,  and 1 3 3 1[ , ][ , ]l l l lϕ ϕ
2 3 3 2[ , ][ , ]l l l lϕ ϕ  can be 

expressed in terms of the generating elements proposed. Then, all 
the generators of 2 2(3) (3)B B⊗  given by Proposition 9.1 can be 
expressed as products and powers of the generating set given in the 
Lemma and the proof is complete.  

 
Proof of Theorem 9.1.  By Lemma 9.11 the derived subgroup of 

 is cyclic. Therefore the nonabelian tensor square of  is 
abelian by Lemma 9.9. We first compute the orders of each of the 
seven generators of  

2 (3)B 2 (3)B

2 2(3) (3)B B⊗  identified in Lemma 9.14. The 
derived subgroup of  is generated by 2 (3)B 1

2 1l l − . Then, 
 

1 2
1 2 1 1([ , ] [ , ])l l l lϕ ϕ−      

2 2
1 2 1 1[ , ] [ , ]l l l lϕ ϕ−=   

= 1
1 2[ , ]l l ϕ − 1

1 2[ , ]l l ϕ −
1 1[ , ]l l ϕ 1 1[ , ]l l ϕ  

= 1 1[ , ]l l ϕ 1 1[ , ]l l ϕ 1
1 2[ , ]l l ϕ − 1

1 2[ , ]l l ϕ −     (by Lemma 9.4(iv)) 
= 2 2[ , ]l l ϕ

1 1[ , ]l l ϕ 1
1 2[ , ]l l ϕ−

2 1[ , ]l l ϕ−     (by Lemma 9.5 & 9.12) 
= 1 1

2 1 2 1[ , ( )l l l l ]ϕ− −    (by (9.3) & (9.4)) 
= 1 

 
Hence, 1

1 2 1 1[ , ] [ , ]l l l lϕ ϕ−  has order dividing 2. 
The mapping κ from 2 2(3) (3)B B⊗  to  defined in 

Theorem 9.3 gives  and . Since 
2 (3) 'B

1([ , ]) [ , ]k a l a lϕ = 1 22([ , ]) [ , ]k a l a lϕ =
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1

1 2 1[ , ]a l l l −= 1≠  and 1
2 1 2[ , ]a l l l −= 1≠  in  has infinite order it 

follows from Lemma 9.6 that 
2 (3)B

1[ , ]a l ϕ  and 2[ , ]a l ϕ  have infinite orders. 
We define the abelianisation of  by  with natural 
homomorphism  

2 (3)B 2 (3)abB

 
2 2: (3) (3)abB Bε → . 

 
By Theorem 9.4, there is an epimorphism 
  

2 2 2 2: (3) (3) (3) (3)ab abB B B Bα ⊗ → ⊗  
                                               0 0 0 0( ) (C C C C )≅ × ⊗ × . 
By Lemma 9.7, we have 
  

0 0 0 0 0 0 0 0( ) ( )C C C C C C C C× ⊗ × ≅ × × × . 
 
By Lemma 9.11 the group  is generated by 1(2)abB 1( )lε  and 2( )lε  of 
order 2 and infinity respectively. Lemma 9.7 gives 
 
  2 2( ) ( )l lε ε 0C⊗ ≅    
  2 3( ) ( )l lε ε 0C⊗ ≅  
  3 2( ) ( )l lε ε 0C⊗ ≅  
  3 3( ) ( )l lε ε 0C⊗ ≅ .   
 
Therefore the image 3 3 3 3( ) ( ) (l l l l )α ε ε⊗ = ⊗  has infinite order. Hence 
by Lemma 9.6, 3l l3⊗  has infinite order. However, 
 
  2 2 4

2 2[ , ] [ , ( ) ] [ , ] .l l a a a aϕ ϕ= = ϕ

 
We conclude that [ , ]a aϕ  has infinite order as needed. Also, if 

 is generated by 2 (3)abB ( )aε and 1( )lε ,  
 
  0( ) ( )a aε ε C⊗ ≅    
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  1 0( ) ( )a lε ε C⊗ ≅  
  1 0( ) ( )l aε ε C⊗ ≅  
  1 1( ) ( )l lε ε 0C⊗ ≅ . 

 
Since the image of 1 1( ) ( ) (l a l a)α ε ε⊗ = ⊗  has infinite order, 

hence by Lemma 9.6, 1l a⊗  has infinite order.  Then 1[ , ]l aϕ  has 
infinite order. With similar argument, if  is generated by 2 (3)abB

( )aε and 2( )lε , this will give 2[ , ]l aϕ  has infinite order. However, 
1 1[ , ][ , ]a l l aϕ ϕ  and 2 2[ , ][ , ]a l l aϕ ϕ generate the same elements as 1[ , ]l aϕ  

and 2[ , ]l aϕ . Therefore, 1 1[ , ][ , ]a l l aϕ ϕ  and 2 2[ , ][ , ]a l l aϕ ϕ  have infinite 
orders.  

We have shown that 1
1 2 1 1[ , ] [ , ]l l l lϕ ϕ−  has order 2 and the orders 

of [ , ]a aϕ , 1[ , ]a l ϕ , 2[ , ]a l ϕ , 1 1[ , ][ , ]a l l aϕ ϕ  and 2 2[ , ][ , ]a l l aϕ ϕ  are all 
infinite. Therefore we have 

5
2 2 2(3) (3)B B C C⊗ ≅ × 0

3

, 
as needed. 
 

The proof of Corollary 9.1 is an application of Theorem 9.1, 
Lemma 9.3 and Lemma 9.7. 
 
Proof of Corollary 9.1.  Since the group 2 2(3) (3) ab

nB B F −= ×  for , 
by Lemma 9.3 

3n ≥

 
2 2 2 2 2 3 3 2 3( ) ( ) ( (3) (3)) ( (3) ) ( (3)) ( )ab ab ab ab

n n n nB n B n B B B F F B F F− − −⊗ = ⊗ × × = ⊗ × ⊗ 3−

0

0C

 
 
By Theorem 9.1, . By Lemma 9.11 we 

have  and 

5
2 2 2(3) (3)B B C C⊗ ≅ ×

2 0(3)abB C≅ × 3
ab

nF − ≅ 3
0
nC − . Using Lemma 9.7, this leads to 

2 3(3) ab
nB F −⊗ ≅ 0 0( )C C× ⊗ 3

0
nC −  

                        = 3
0 0( )nC C −⊗ × 3

0 0( )nC C −⊗   
                        = 3

0 0
n nC C 3− −⊗ .                
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By symmetry, 3

3 2 0 0(3)ab ab n n
n

3F B C C− −
− ⊗ = × . Finally, 

 by repeated use of Lemma 9.7. 
Therefore, 

23 3 (
3 3 0 0 0

ab ab n n n
n nF F C C C− − −
− −⊗ = × = 3)

)

 
25 3 3 3 3 ( 3

2 2 2 0 0 0 0 0 0( ) ( ) n n n n nB n B n C C C C C C C− − − − −⊗ = × × × × × ×    . 
 
Collecting terms, we get 
 

25 ( 3) ( 3) ( 3) ( 3) ( 3)
2 2 2 0( ) ( ) n n n n nB n B n C C + − + − + − + − + −⊗ = ×  

                       = 2 2 2
2 0

n nC C − +×  
                       = 2( 1) 1

2 0
nC C − +×  

 
and this completes the proof.  

9.4 CONCLUSION 

Any Bieberbach group with point group  is a polycyclic 
group. In this paper, using computational methods developed by 
Blyth and Morse for polycyclic groups, we calculated the 
nonabelian tensor squares for one family of Bieberbach groups of 
order 2 and dimension 3, labeled by  with point group  
whose nonabelian tensor square is abelian. Here we generalized the 
nonabelian tensor square of this group to n dimension, i.e .  

2C

2 (3)B 2C

2 ( )B n
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