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ABSTRACT

TO DEVELOP AN EFFICIENT VARIABLE SPEED COMPRESSOR
MOTOR SYSTEM

(Keywords: Variable speed drive, induction motor, compressor, efficiency optimization, neural network
controller)

This research presents a proposed new method of improving the energy
efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of
V8D are reviewed with emphasis on the efficiency and power losses associated with the
operation of the variable speed compressor motor drive, particularly at low speed
operation.

The efficiency of induction motor when operated at rated speed and load torque
is high. However at low load operation, application of the induction motor at rated flux
will cause the iron losses to increase excessively, hence its efficiency will reduce
dramatically. To improve this efficiency, it is essential to obtain the flux level that
minimizes the total motor losses. This technique is known as an efficiency or energy
optimization control method. In practice, typical of the compressor load does not
require high dynamic response, therefore improvement of the efficiency optimization
control that is proposed in this research is based on scalar control model.

In this research, development of a new neural network controller for efficiency
optimization control is proposed. The controller is designed to generate both voltage
and frequency reference signals simultaneously. To achieve a robust controller from
variation of motor parameters, a real-time or on-line learning algorithm based on a
second order optimization Levenberg-Marquardt is employed. The simulation of the
proposed controller for variable speed compressor is presented. The results obtained
clearly show that the efficiency at low speed is significant increased. Besides that the
speed of the motor can be maintained. Furthermore, the controller is also robust to the
motor parameters variation. The simulation results are also verified by experiment.

Key researchers :

Prof. Dr. Abdul Halim Mohd Yatim (Head)
Mr. Wahyu Mulyo Utomo
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ABSTRAK

PENGEMBANGAN KECEKAPAN PADA SISTEM MOTOR KOMPRESSOR
KELAJUAN BOLEHUBAH

(Keywords: Sistem pemacn kelajuan bolehubah, motor arubhan, kompesor, optimisasi kecekapan,
kendali nenral network)

Kajian ini membentangkan implementasi serta mencadangkan kaedah
memperbaiki kecekapan untuk Sistem Pemacu Kelajuan Bolehubah (VSD). Perinsip
berhubung VSD diulang kaji dengan penekanan terhadap permasalahan kecekapan dan
pembaziran kuasa yang timbul bagi implementasi pemacu kelajuan bolehubah untuk
motor kompresor, terutamanya untuk tindakan laju rendah.

Kecekapan motor aruhan untuk tindakan kelajuan dan muatan daya kilas
nominal adalah tinggi. Namun untuk tindakan dengan muatan daya kilas rendah,
kecekapannya turun. Untuk memperbaiki kecekapan, ialah penting untuk menentukan
tingkatan fluks motor yang dapat menghasilkan rugi-rugi motor paling sedikit. Cara ini
dikenali sebagai pengawal kecekapan atau kuasa secara optimal. Pada amalannya, jenis
muatan daya kilas kompressor tidak memerlukan tanggapan dinamik yang tinggi,
karenanya kaedah memperbaiki kecekapan yang dicadangkan ialah didasarkan pada
metode scalar control.

Kajian ini mencadangkan pengawalan kelajuan yang baru menggunakan
kecerdasan buatan,untuk menghasilkan kecekapan yang optimal dalam tindakan
perubahan kelajuan. Pengawal kelajuan ini menghasilkan dua tahap pengeluaran, iaitu
acuan voltan dan frekuensi dikira secara bersama-sama. Untuk meningkatkan kekokohan
pengawal ini terhadap perubahan parameter motor, sebuah pembelajaran neural network
secara terus, menggunakan optimisasi tingkat ke dua Levenberg-Marquardt adalah di
gunakan. Simulasi untuk pengawal kecekapan yang yang digunakan pada pemacu
kelajuan bolehubah motor kompressor dibentangkan. Keputusan yang diperoleh jelas
menunjukkan efficiency pada laju rendah adalah ditingkatkan. Selain itu kelajuan pada
motor juga dapat di kawal dan stabil terhadap perubahan parameter motor. Keputusan
simulasi ini disahkan dengan keputusan ujikaji.

Key researchers :

Prof. Dr. Abdul Halim Mohd Yatim (Head)
Mr. Wahyu Mulyo Utomo

E-mail : halim@jiece.org
Tel. No. : 07-5535202
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CHAPTER 1

INTRODUCTION

1.1  Background

Electricity today is mostly generated from non-renewable or fossil fuel
resources such as oil, natural gas and coal. During the energy crisis of the early
1970’s, that cause increasing energy costs and the impact of greenhouse gases on
world climate are among the key forces that encourage efforts and progress for

electrical energy efficiency or saving (Bose, 2000).

World wide, approximately around 70% of total electrical energy is
consumed by electric motor (Sen et al., 1996). In 1994 the production of the electric
motor used as a driver accounts over 4 billion motors (Valentine, 1998). This is an
equivalent manufacturing rate of nearly 11 million motors per day. With an expected
8.5% combined average growth rate, the number will increase to 29 million motors
per day before the end of this year 2006. In additions, around 96% of the total

electric motors are consumed by the induction motor (Abrahamsen et al., 1998).

Induction motors have many advantages compared to DC motors. Therefore,
today induction motors are used in various appliances including households,
industrial, commerce, public service, traction and agriculture. These motors have
direct impact on the quality of life and providing essentials such as heating, cooling
and work machines driver. Because of high energy consumption and the very large



number of installed units, even a small increase in efficiency improvement can have

major impact on the total electrical energy consumptions (Callcut et al., 1997).

The important segment to save the energy consumed by induction motors is
heating ventilating and air conditioning system (HVAC) application (Domijan et al.,
1992; Stebbins, 1994 and Abrahamsen et al., 2001). This segment constitutes a high
percentage of electrical energy consumption and spends considerable time running at

low loading.

In developed country such as the USA, based on Energy Information
Administration (EIA) survey, it is estimate that the energy used to operate the HVAC
can represent over half of the total electrical energy use in a typical commercial
building (Johnson et al., 1994). In Malaysia electrical consumption for cooling
system, refer to previous works on energy audit and surveys of official building by
ASEAN USAID was reported that the energy consumed to cooling the building is

about 68% of the total electrical energy consumptions (Loewen et al., 1992).

In cooling systems such as air conditioning or refrigerator-freezers system,
electric motors are used for inlet fan drive, outlet blower and compressor. The main
consumption of electric energy in air conditioning is consumed by the compressor
motor drive which is about 80% (Domijan et al, 1992). In most existing air-
conditioning systems the compressor is driven by an induction motor and set at

constant speed or control by thermostat technique.

Usually, motor drives in the cooling system is designed for nominal capacity,
although historically its fully loaded occurs only for a few times per day (Domijan et
al, 1992 and Stebbins, 1994). Therefore without prejudice to occupant thermal
comfort filling, implementation of variable speed drives in air conditioner to avoid
the wasteful use of energy associated with its overuse can result in substantial saving
of energy. Besides that, it has the potential to increase the energy saving because the
typical load torque profile of the compressor is proportional to the square of the

speed, hence the input power profile is proportional to cubic speed (Bose, 2000).



Furthermore, replacing the fixed speed motor compressor driver with variable
speed drive also can be used to increase the lifespan of the air conditioner (Chen and
Tsay, 2004). The reason is with the thermostat technique, the switching on-off of the
compressor at high speed and high torque suddenly will produce the huge starting

current and cause stress on the compressor bearings.

1.2 Energy Saving of a Variable Speed Induction Motor Drive

Variable speed electrical drives have facilitated the revolution of industrial
automation leading to better quality and higher productivity in various industries and
home appliances. Over the past decades, DC motors have been used extensively in
variable speed drive systems. This is because; DC motors offer simple control

structure. In addition, the speed and armature voltage are always linear.

Despite their simple control structure, there are some major limitations
associated with the DC motor. For instance, they require regular maintenance and
cannot be operated in explosive environment, their speed is limited by the
mechanical commutator and they are heavy and also expensive. Although, the
induction motor is more rugged and reliable, however its control is very complex and
needs intricate signal processing to obtain the comparable performance of the DC
motor drive (Bose, 1982).

Not until a decade later, when semiconductor and fast microprocessors or
digital signal processor become available, the implementation of a variable speed
induction motor drive system becomes popular and widely employed (Sen, 1990). In
addition, due to the superiority of the induction motor drive, for the next decade it
will encourage to replace the application of the DC motor drives in many industrial

and home appliances.



In terms of the efficiency, operation of the induction motor at rated flux
results in good utilization of the motor iron hence high efficiency and torque per
stator ampere can be achieved. At rated flux the nominal electromagnetic torque can
be developed at all frequencies. However, at light load the motor flux may be greater
than necessary for development of required load torgue. In this condition the iron and
stator copper losses increase excessively hence the total losses become high and the
efficiency drops dramatically (Domijan et al., 1992; Abrahamen et al., 1998 and
Bose, 1997).

According to the load condition, the induction motor drive efficiency can be
obtained by reducing the motor air gap flux. In scalar control method, the flux can be
indirectly controlled by adjusting both stator voltage and frequency (Ohnishi et al,
1988; Couto and Martin, 1994; Cleland et al., 1995 and Zidani et al., 2002).

The main problem of the efficiency optimization control of the induction motor
drive system at variable load operation is to obtain the optimum motor flux level that
minimizes the total motor losses and the maximum efficiency is achieved (Abrahamen
et al., 2001; Kioskederis and Margaris, 1996 and Ohnishi et al., 1988). At the same
time it is also important to ascertain that the rotor speed of the motor is still stable. In
addition, the nonlinearities of the induction motor characteristic and the varying of the
motor variable parameters due to the temperature variations and magnetic saturation

need to be considered when designing a robust efficient optimization control.

1.3 Research Objectives and Contributions

The objective of this research is to investigate, implement and improve
efficiency of the variable speed compressor motor drive, particularly at low speed
and load operation. The controller is based on the implementation of a scalar control

model of the induction motor drive system.



This research proposes an improvement of efficiency optimization control of
the variable speed induction motor for driving compressor by developing the neural
network with on-line/real-time learning algorithm of a second order Levenberg-
Marquardt optimization. The controller is designed to generate both voltage and
frequency reference signals simultaneously. The design of the controller is verified
by simulation and laboratory experiment. While performing the study, the significant

contributions are listed as follows:

1. A new efficiency optimization control scheme for the variable speed
compressor motor drive using neural network control is developed, in which

the technique does not require knowledge of the motor parameters.

2. A new structure neural networks controller as a combination between
recurrent and feed forward networks with multiple outputs is developed. This
controller generates voltage and frequency reference signals simultaneously.
By this approach both of the speed and efficiency of the motor can be control

simultaneously too.

3. A new neural network controller scheme with real-time/on-line learning
algorithm with the second order Levenberg-Marquardt optimization method
is developed. By this technique the controller becomes adaptive hence

completely insensitive to motor parameters variation and more robust.

4. The simulation and experimental set-up to verify the proposed neural network
efficiency optimization control for the variable speed compressor motor drive
was developed. The simulation is conducted using S-Function on
MATLAB/SIMULINK. from the Borland C++, Inc. and the experimental set-
up is centered on TMS320C31 Texas Instruments DSP.



1.4 Project Report Organizations

The broad outline of this report is as follows:

Chapter 2 describes the basic principles of the efficiency optimization control
of the induction motors drive. Various aspects and problems associated with the
efficiency optimization control are discussed. The losses of the induction motor drive
system and various methods for minimizing the motor losses are explained. Besides
that, reviews of previous and current research conducted in efficiency optimization

control of the induction motor drive system are described.

Chapter 3 presents the development of the proposed method. The prospective
of the neural network control on the efficiency optimization control is discussed. The

design of the neural network efficiency optimization control is described in detail.

Chapter 4 provides an explanation on the hardware and experimental setup
used in this research. The major components of the experimental set-up, which
centered on the TMS320C31 Digital Signal Processor are presented and described.

Chapter 5 verifies the proposed controller. To show the feasibility of the
proposed controller scheme, the simulation studies by using Simulink-Matlab are

presented with the results verified by relevant experimental results.

Finally, main conclusions of the research and recommendation for future

research directions are presented in Chapter 6.



CHAPTER 2

OVERVIEW AND PREVIOUS WORK OF EFFICIENCY OPTIMIZATION
CONTROL OF VARIABLE SPEED INDUCTION MOTOR DRIVE
SYSTEMS

2.1 Introduction

This chapter presents an overview of efficiency optimization control of
variable speed induction motor drive, followed by its theoretical background. The
equivalent circuit and related equations of the induction motor drive is first
described. Then the concept of efficiency optimization control is described. Some
control strategies which have been implemented in the induction motor drive system

are discussed. Advantages and disadvantages of previous work are also discussed.

2.2 Variable Speed Induction Motor Drive System

Variable speed electrical motor drive technology has advanced dramatically
in the last two decades with the advent of new power semiconductor devices and
magnetic materials (Sen, 1990 and Shepherd et al., 1995). This technique provides
continuous wide ranges speed compared to the mechanical variable speed drive.
Therefore, compared to the mechanical variable speed drive, the electrical variable

speed drives have potential for energy savings (Rice, 1988).



Before the emergence of Power Electronic, the DC motor with its mechanical
commutator and brushes was the undisputed choice for variable speed drive
application. The DC motor provide inherent decouple of torque and flux and hence is
simple to control (Sen et al., 1996). In that time, the induction motors were
commonly applied as fixed speed machines due to their connection to a fixed voltage

and frequency supply.

Recent advantages in power electronic, microelectronic and microcomputer
technologies have made it possible to implement variable speed induction motor in

many applications (Sen, 1990 and Bose, 1997).

Induction motor was first developed by Galileo Ferraris in 1885 and Nicola
Tesla in 1886 (Boldea and Nasar, 2002). They were rugged and easier to construct
and have many advantages compared to the DC motor. However, its motor has a
highly coupled, multivariable structure and nonlinear characteristic. By these
reasons, control performance of the induction motor drive generally requires more
complicated control algorithms implemented by fast real-time signal processing unit
(Sen, 1990; Bose, 1997 and Cirstea et al., 2002).

Basically, the variable speed induction motor drive is composed of some
distinguish elements such as a controllable power converter, an electric motor which
drives a mechanical load at an adjustable speed and also driver controller (Murphy
and Turnbull, 1988 and Shepherd et al., 1995). The main elements of the Variable
Speed Drive (VSD) system are shown in Figure 2.1.



Main power
supply Power p—,
é ﬁ .
converter : Mechanical
Load
Reference T
Signal
Controller |

Figure 2.1: Block diagram of a variable speed induction motor drive

The power converter receives ac or dc supply voltages from the main power
supply and feeds the motor with appropriately condition voltage, current and
frequency. In close loop the controller receives command from reference signal and
actual speed information from the load. The actual speed should follow the reference
signal command value as accurately as possible in a short time without ripple and
overshoot. The mechanical load has a torque-speed characteristic representing the

counter torque which must be overcomed by the drive motor.

2.3  Power Losses of A Variable Speed Induction Motor Drive

The output power developed by the motor is proportional to the product of
the shaft torque and the shaft rotational speed. The value of the development torque
usually varies automatically to satisfy the demand of the load torque plus any torque
associated with friction and windage. Any significant change in motor speed,
however must be obtained in a controlled manner by making some adjustment to its

electrical supply.

Associated to the power flow of the motor drive system, the input power of
the system generates mechanical output and power losses. The power losses occur in
components of the VSD which includes the power converter and the induction motor
losses. Correlation between input, losses and output power of the VSD is given by

following equation:
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P, =P

in inv,losses

+P

im,losses

+P

mech losses (2 1)
where: P;, : the input power

Py iosses - the inverter power losses

Pimosses - the induction motor power losses

Pecn,iosses - the mechanical power losses

2.3.1 Inverter Losses

Nowadays, the Pulse Width Modulation Voltage Source Inverter (PWM-VSI)
converter topology is used as a standard power converter for variable speed induction
motor drive system (Cirstea et al., 2002). Configuration of the three phases Voltage
Source Inverter (VSI) using Insulated Gate Bipolar Transistors (IGBT) and diode for

the induction motor drive system is shown in Figure 2.2.

IGBT, l IGBT; l IGBTs l 5
H ep, HTp, °
o— 0— o—
DC B —O AC
supply © —— O Output
0
IGB IGBT IGRT
L{ & Bo_e{zs 5o
Dy Ds
o— 0— 0—
o !

Figure 2.2: Circuit of a three phase IGBT inverter
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The inverter is used to convert the DC supply (fixed) to variable
frequency/voltage AC supply. The losses powers of the inverter occur in the power
semiconductor devices such as IGBTs and diodes. These losses compose of
conduction and switching losses (Rashid, 1993 and Mohan et al., 1995).

Conduction losses are due to the fact that the voltage across the switch in the
on state is not zero, but typically in the range of 1 to 2 V for IGBTs (Skvarenina,
2002). In addition, a resistive element of the semiconductor device will generate
power dissipation.

In the ideal case of a switching event, there would be no power loss in the
switch since either the current in the switch is zero (switch open) or the voltage
across the switch is zero (switch closed). In reality, the switching losses are the
second major loss mechanism and are due to the fact that, during the turn-on and
turn-off transition, current is flowing while voltage is present across the device. Also
the losses will generate in the dc-link capacitor and the filter components. However
the losses in the dc-link capacitor are disregarded (Grigsby, 2001).

In order to avoid audible noise being radiated from motor windings or
transformers, most modern inverters operate at switching frequencies substantially
above 10 kHz (Bose, 2001). The maximum switching frequency needs to be

carefully considered due to Electromagnetic Interference (EMI) factor.

The inverter losses are also influence by the inverter modulation strategy
(Trzynadlowski and Legowski, 1994 and Emadi, 2005). For drives with the size of
some kilowatts, the inverter losses only constitute a small fraction of the total motor
drive losses (Abrahamsen et al., 1998). By this reason, it is not commented further in

this thesis.
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2.3.2 Induction Motor Losses

Power losses in the induction motor are portions of the input power that
eventually transform to heat rather than driving the load. Losses in induction motor
occur in windings, magnetic cores, besides mechanical friction and windage losses
(Boldea and Nasar, 2002). These losses can be classified as follows (Garcia et al.,
1994):

1. Stator Resistance - current losses in the windings.

2. Rotor Resistance - current losses in the rotor bars and end rings.

3. Iron Core Losses - magnetic losses in laminations, inductance and eddy
current losses.

4. Stray Losses - magnetic transfer loss in the air gap between stator and rotor.

5. Windage and Friction - mechanical drag in bearings and cooling fan.

Losses in the induction motor also can be classified based on their electrical
frequency such as: fundamental and harmonic losses. Frequency harmonics are to be
considered only when the induction motor is static converter fed, and thus the
voltage time harmonics content depends on the type of the converter and the pulse
width modulation used with it (Boldea and Nasar, 2002).

2.3.2.1 Stator Resistance Losses
It is known that resistor components in the stator winding will generate heat

proportional to the square of the current. The stator power losses are a function of the

current flowing in the stator winding as defined by:

=1°R (2.2)
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where: P, :stator copper losses per phase.
I : stator current.

R, : stator resistance.

The stator resistance will vary in accordance to the temperature, correction

for the resistance of the stator winding is given by (IEEE standard-112, 2004):

T, +T 2.3
RsT = Rst L ( )
T, +t

where: Rgrand R, : stator resistance at temperature 7and ¢ .
Ty : 234.5 for cooper and 212.9 for aluminium.

High frequency time harmonics in the supply voltage of IMs may occur either
because the induction motor itself is fed from a PWM static power converter for
variable speed or because, in the local power grid, some other power electronic
devices produce voltage time harmonics at the induction motor terminals. For
voltage-source static power converters, the time harmonics frequency content and
distribution depends on the PWM strategy and the switching period (Boldea and
Nasar, 2002).

The variation of resistance R and leakage inductance L, for conductors in
slots with frequency is at first rapid, being proportional to f°. As the frequency
increases further, the field penetration depth gets smaller than the conductor height
and the rate of change of R and L; decreases to become proportional to f* as shown
in Figure 2.3 (Boldea and Nasar, 2002).
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R,L,

L R

v
~

Figure 2.3: R and L, variation with frequency

For high frequencies, the equivalent circuit of the induction motor can be
simplified by eliminating the magnetization branch as given in Figure 2.4.

L \mf)  nXamf) ) nX,i(nf)
—\\——" W——m

!
|

Figure 2.4: Equivalent circuit for voltage time harmonic

In general, the reactance prevails at high frequencies and a value of the

current harmonic is defined:

| (2.4)
" 24 ,L (1)

L, (f)) = Ly (f,) + L, (F,) (2.5)
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where: I, : harmonic current.
L, : leakage inductance.
Va : harmonic voltage.
fi : fundamental frequency.
fn : harmonics frequency.
n : harmonic number.

The frequency harmonic loss in the stator winding time harmonic losses is

given by:

P =312R,(f,) (2.6)

cu,sn

where: P, :harmonic stator winding power loss.

2.3.2.2 Rotor Resistance Losses

The rotor copper loss is a function of the current flowing in the rotor winding

or rotor bar as defined by:

P, =I1°R (2.7)

cu,r r r

where: P.,, :rotor copper losses.
I, : rotor current.

R, : rotor resistance.
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The rotor resistance will vary accordance to the temperature, correction for

the resistance of the rotor winding is given by (IEEE standard-112, 2004):

T, +T (2.8)

where: R.rand R,, : rotor resistance at temperature 7 and ¢.

The most common rotor bar is developed by aluminium, although copper may also

be used.

The frequency harmonic loss in the rotor winding time harmonic losses is

given by:
I:)cu,rn :3|§Rr(fn) (29)

where: P, :harmonic rotor winding power loss.

2.3.2.3 Core Losses
The core losses in the induction motor comprise the hysteresis and eddy
current power losses. The losses occur in both the stator and rotor core. There are

several variant of the calculation core losses, the core loss due to fundamental

frequency mutual flux in the stator can be approached by (Sousa et al., 1992):
P, =k, f®? (2.10)

P, =k, f?®’ (2.11)



P.=P +P

C es

=k, fd? +k, f*®?

where: P . stator core power loss.
P, - hysteresis power loss.
P, . eddy power loss.
ky - hysteresis coefficient.
k. : eddy current coefficient.
(/] : air gap flux/motor flux.
f . stator voltage frequency.

Corresponding rotor core losses is approached as:

P, =k, sf®? +k,(sf )’ @2

where: P, : rotor core power loss.

s :slip.
The total core losses can be rearranged as follows:

Pc = Pcs + Pcr

As the air gap flux is related to air-gap voltage as given by:
@= ke

where: k. : core coefficient.

Vin > air-gap voltage.

17

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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The total power losses can be rewritten as:

Pc = kc(kh@+ke(l+ S)Z)\/rﬁ (2.18)

The equivalent core loss resistance can be derived as:

1 (2.19)

Assuming that the coefficients of hysteresis and eddy current losses remain
the same at harmonic frequency and since the harmonic slip is unity, the equivalent

core losses resistance at harmonic frequency can be obtained from the fundamental

core resistance as:

05 (2.20)

2.3.2.4 Stray Load Losses

The stray load losses are additional core and eddy current losses caused by
the increase in air-gap leakage flux with load and losses caused by high frequency

pulsation fluxes. These losses can be divided into six components as follows (Sen

and Landa, 1990):

1) The eddy current loss in the stator copper due to slot leakage flux.
2) The losses in the motor end structure due to end leakage flux.

3) The high-frequency rotor and stator surface losses due to zig-zag leakage flux.
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4) The high-frequency tooth pulsation and rotor IR losses also due to the zig-

zag leakage flux.
5) The six-times-frequency (for three-phase machines) rotor I°R losses due to

circulating currents induced by the stator belt leakage flux.

6) The extra iron losses in motors with skewed slots due to skew leakage flux.

For the fundamental current, the stray losses essentially concentrate at the

stator, this losses can be approached by (Sousa et al., 1992):

2.21
Pstray,1=k5|: khf+kef2 :||§ ( )

where: Pgyqy,; - Stray load power losses at fundamental frequency.

kg : stray load coefficient.

The equivalent resistance Ry Can be represented in series with the stator

leakage reactance as given by:

Rstray,l = ks [kh f+ ke f 2] (222)

The stator per phase stray loss at harmonic frequency f, is given by (Sousa et

al., 1992):

(2.23)
SR LSV
stray,n s,n f e |Vs,n

where: Pgyay,n - Stray load power losses at harmonic frequency.
ks,  :stray load coefficient.

Varay,n - Stray leakage voltage at harmonic frequency.
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The loss can be represented by an equivalent resistance Ry, in parallel with

the leakage inductance as:

N 1 (2.24)

strayn — [, ]
K, {kh + ke}
o f

Kioskeridis and Margaris (1996) approach the stray loss arise on the copper

and iron of the induction motor as:

P C,lZ+c,®

212 2
stray — “zb s Is + Ceals (225)
where: Pqyqy : total stray load power losses.

C. , Cs and C,: constantans.

a . per-unit frequency.

Sen and Landa (1990) described that the value of the C , C; and C,
are dependent on the skin effect, flux density, no-load current, stator current and

other empirical factors.

2.3.2.5 Mechanical Loss

The mechanical loss which consists of friction and windage power losses is
due to friction of the bearing and air friction caused by the motion of the moving part
through the surrounding medium. These losses are relatively fixed and a small
percentage of the total motor losses, which can be broken down by the following
equations (Dabala, 2001):
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1. Friction power loss in bearing is approximated by:

2.26
P =15F 'mejg=s (2.20)
dbe
where: P, friction loss in bearing.
F.;. :radial force in the bearing.
dp. : average diameter on the roller elements.
Vase - perimeter speed on the bearing race surface.
2. Windage power loss of outside fan is approximated by:

H..Q (2.27)

P —

mw

e

where: P,,,  :windage power loss.
H,, :fanpressure.
0 : coolant output volume.

He : fan energetic efficiency.

3. Friction air power losses of rotor and windage losses of two internal fans are

approximated by:

P

mwin

= 2pP (2.28)

mw

where: Py,in  friction air power loss.

p : pole pairs number.
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4. Friction power loss of V-ring seals is approximated by:

P. =5233u,F,Nd10° (2.29)

where: P,  : friction power loss of V-ring seals.
Hms . Ccoefficient of friction.
F,s :force between rubber V-ring seal and end-shield.
: rotor speed (rpm).

d : diameter of seal.

In simple calculation, Sen and Landa (1990) described that the total
friction and windage losses are approximately proportional to the square of
the speed and to the contact surface area. The total mechanical induction
motor losses can be approximated by:

P

mech, losses

Y (2.30)

Where: Puecniosses: Mechanical power losses.

Cfiv : mechanical losses coefficient.

Sen and Landa (1990) assumed that the mechanical induction motor

losses to be unaffected by voltage harmonic distortion.
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2.4 Efficiency Optimization of an Induction Motor Drive System

The efficiency of the induction motor is determined by the relationship
between input power, power losses and output power as given by:

(2.31)

(2.32)

% 4P

out loss

where: Pps  : power losses.

P,,, :mechanical output power.

Equation 3.32 shows that the only way to increase the efficiency of an
induction motor operating at a given level of output power is to reduce the losses
within the motor (Umans, 2004).

To optimize the efficiency of induction motor drive by means of power losses
reduction reports that, Kusko and Galler in 1983 suggest three categories of
efficiency optimization motor drive (Ta and Hori, 2001) i.e.:

1. Motor selection and design improvement.
2. Improvement of the waveforms supplied by power inverter.

3. Utilizing a suitable control method.

In the case of the motor drive duty cycle operating less than the rated torque
and speed condition most of the time, it is not possible to improve the efficiency by
machine design or by waveform shaping techniques. Utilizing of the suitable control

flux method that optimized the motor efficiency is more flexible.
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2.4.1. Relationship of Induction Motor Variables

The three phase induction motor with balance input voltage can be analysed
by single phase equivalent circuit. In steady state mode, the per-phase equivalent
circuit of the induction motor in fundamental frequency is given in Figure 2.5.

Ry, R aXi aXy’
W\ Il ,
' v Lo I

y N v
Via é § ’
R, E %aXm R./S

Figure 2.5: Per-phase induction motor equivalent circuit

In the equivalent circuit of Figure 2.5, the stray losses are represented by
equivalent resistance Ry, in the stator branch. The stray losses are mainly attributed
to the rotor current, since the rotor current in the squirrel cage induction motor is not
measurable, the stray losses are expressed as a function of the stator current
(Kioskeridis and Margaris, 1996).
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Referring to the Figure 2.5, in the per-unit system, the induction motor

equation will be determined. The per-unit frequency is given by:

[
1-5s
Where: w,  : supply frequency(r/s).
o : base speed(r/s).

W : motor speed (r/s).

The magnetizing current is determined by:

E/a
I, = _Xm
)
= X
where: I, : magnetizing current.
E : the air-gap emf.
X : mutual reactance.

The rotor current is determined by:

d

\/(R;/S af + X2

r

where: I,’ : rotor current referred to the stator.
R, : rotor resistance referred to the stator.
X, :rotor leakage reactance referred to the stator.

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)
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From Equation (2.37) the air-gap flux can be obtained by:

o=1R /s af +X (2.38)

The electromagnetic torque is given by:

(2.39)

Substitution Equation (2.36) into (2.38) the electromagnetic torque can be obtained

by:

R, /s a (2.40)

Usually, the induction motor operates with a small slip and the condition

R;/sa >>aX, holds. By this assumption, the air-gap flux and torque electromagnetic

can be approached by:

o Rl (2.41)
 sa

_— s aq)2 (2.42)
e - R;

T =01 (2.43)
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The stator current of the induction motor can be determined by (Kioskeridis
and Margaris, 1996):

12=12+c.17? (2.44)
where:
' 2.45
c =1+ Zﬁ (2.45)
X

m

The magnetization current curve can be approximated by (Kioskeridis and
Margaris, 1996):

|, =5,® +5,0°+5,0° (2.46)

Hence the magnetizing reactance is given by:

@ (2.47)

B 1 (2.48)
s, +5,0° +5,0"

where: s;, s;and s3  : constantans.
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2.4.2. Efficiency Control of an Induction Motor

The efficiency of the induction motor is high when it is operated at the rated
flux, load and speed. However, at light loads the flux at rated operation causes
excessive core loss, thus impairing the efficiency of the induction motor drive (Sousa
et al., 1995 and Bose et al., 1997). In this condition the motor flux is more than the
necessary for the development of the required torque. Therefore to improve the

induction motor efficiency, the motor air gap flux must be reduced.

The technique to minimise the motor drive by adjusting the motor flux level
according to the motor load is called energy optimal control (Abrahamsen et al.,
1998). This technique is also known as efficiency optimization control (Garcia el al.,
1994 and Sousa et al., 1995) or loss minimization control (Vukosavic and Levi,
2003)

The optimal operating point is achieved when the sum of the induction motor
losses components is minimum (Abrahamsen et al., 1998; Kioskeridis and Margaris,
1996; Moreno et al., 1997; Sousa et al., 1995 and Bose et al., 1997).

The basic principle of the efficiency optimization control is hereafter
described with the main focus on the motor losses minimization. The

electromagnetic torque of the induction motor can be approximated by (Bose, 2001):

Te = kte I m I r (249)
where: T, : electromagnetic torque.
I, : magnetizing current.
I, . rotor current.

ke : constantan.
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From Equation (2.49), the electromagnetic torque of the induction motor can
be generated by the numbers of combinations of magnetizing and torque producing
rotor current. It is thus possible to obtain the same torque with different combination
of flux and current value. For every load and speed condition, there exists a

magnetizing current where the motor losses are minimal (Abrahamsen et al., 1998)

Illustration of its combination associated to the phasor diagram of the voltage

and current of the motor is as shown in Figure 2.6 (Murphy and Turnbull, 1988).

I, E

v

(@)

(b)

Figure 2.6: Phasor diagram of the induction motor voltage and current at light load

operation: (a) at rated stator voltage and (b) at half rated stator voltage.

From Figure 2.6 the influence of the stator voltage to the motor losses can be
described as follows. At light load operation and at rated stator voltage, the rotor
current I, is quite small, but the stator current Is and magnetic current I, are high as
shown in Figure 2.6(a). If the voltage E is reduced by half, as shown in Figure

2.6(b), the rotor current I, must double in order to develop the same electromagnetic
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torque as before. The motor flux and magnetizing current I, are also halved and the

total stator current I is reduced.

By a proper adjustment of the magnetic flux, an appropriate balance between
copper and iron losses can be achieved to minimize the total motor drive losses.
Beside that, from Equation (2.25), the stray loss reduces while the motor flux

decreases.

However, the motor speed decrease while the magnetizing current decrease
and in order to maintain the speed, the speed component of supply such as stator
current for vector control and the stator frequency for scalar control must be

increased.

A number of methods have been published on efficiency optimization control
of the induction motor drive system. The technique allowing the efficiency
improvement can be divided into two categories (Kioskeridis and Margaris, 1996;
Moreno et al., 1997; Bernal et al., 2000; Ta and Hori, 2001 and Chakraborty et al.,
2002):

1. A Loss-model-based controller (LMC).
2. A search controller (SC).

The following section shows that by controlling the motor flux level or its
equivalent variable command, the required speed and electromagnetic torque can be
established.
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2.4.3. Loss-Model-Based Controller Method

The loss-model-based approach consisting of computing the losses by using
the machine model and selecting the flux level that minimizes these losses. In the

literatures, different LMC approach model can be found.

2.4.3.1. Principle of Loss-Model-Based Controller Method

Basically, the LMC method determines the optimum flux function by deriving
the equation of the power losses of the motor drive. If rotor iron and inverter losses
are neglected and expressing stray and mechanical losses using a simple assumption,
the total power losses in the induction motor drive are given by (Kioskeridis and
Margaris, 1996):

P = RIZ+R 17 + (ky+ k0 )02 + ¢y 0?17 +C (2.50)
where: ¢, »’l’ : stray power loss.
C @ : mechanical power loss.

Eliminating the stator and rotor current in Equation (2.50) by substituting
Equations (2.36) and (2.44) yield:

2

P.= (CLRS +R, +Cstra)2)21-;2 +(kha)+kea)2 + ;5 jCD2 +Co,@°

loss

2
m

The sensitivity function of input power motor drive with respect to the air gap
flux at steady state is determined as follows:

S Ploss _ aPIoss (252)

o aq) Tew
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2

| (2.53)
S;':S = 2|:— (C,_Rs +R, +Cstra)2)%+(kha)+ kea)z * )ljs ](D j|

The second derivative of the function in Equation (2.51) is given by:

2

| (2.54)
P Z{S(CLRS ‘R +cww2%+(khw+ke“’2 3 J }

oD 2

At any motor flux value, the Equation (2.54) is:

82 Ploss (255)
—8(13 > >0

Based on Equation (2.55) it can be concluded that function of Equation (2.51)
Is concave and it means that there is a value of flux that will generate minimum power

losses (Blanusa and VVukasovic, 2003).

The losses minimization condition with respect to air-gap flux of the induction
motor can be determined by the sensitivity power losses Equation (2.53) equal to
zero. Substitution of the Equation (2.43) for the loss minimization condition is given

by:

(2.56)

2
m

((:LRs +R, +cstrw2)l 2= [kha)+kea)2 + )Ijs }DZ

Condition of the Equation (2.56) can be used in the wound-rotor induction

motor, but in the squirrel cage induction motor, the rotor current must be substituted

by the stator current, since the former cannot be measured. Solving for optimum air-
gap flux by substituting Equation (2.40) and (2.48) in Equation (2.56) yields:



where:

C.R +R

S r

T X, k, +k, /@
R

S

where: @,,, : optimal air-gap flux.
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(2.57)

(2.58)

(2.59)

(2.60)

(2.61)
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An example of a block diagram of the LMC of the induction motor drive that
had been proposed by Kioskeridis and Margaris (1996) is given in Figure 2.7.

—
3Phase Watt C PWM ™
Supply = Meter T- VSl
\\
pcLink 1 .1 N
w, V' O
I
A\ 4
0" Speed Wy Loss O
m Model <
Controller _’® <
A Control
Om
Om

Figure 2.7: Block diagram of the LMC of the induction motor drive

2.4.3.2. Previous Work on the Loss-Model-Based Controller Method

Under specific speed and torque, Chen and Yeh (1992) derive the induction
mathematic model for efficiency optimization. Without harmonic frequency effect
consideration, the optimum voltage and slip frequency to achieve the minimum power
losses are obtained by:

T, (Ry +R, /s +X2) (262)

e R +R./s
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a)sl = a)r

R, (2.63)
S

where: Vi, : the optimal stator voltage.

T : the load torque.
Ry, : the Thevenin equivalent resistance.
X : the Thevenin equivalent reactance.

Wasynczuk et al. (1998) described efficiency optimization in vector control of
induction motor drives. They suggested that in order to maintain maximum efficiency,
the induction motor should operate at a constant slip. The function of the efficiency in

terms of slip frequency is derived after considerable algebraic expression is given by:

P 1-41-4(T,)°d (2.64)

sl,opt — T c
e

The slip frequency that result the maximum efficiency is determined by:

H er
Is,opt = \/i \/X

m

\/ 1 (2.65)
+7T

r“sl,opt
Tr a)sl ,opt

Garcia et al. (1994) and Leindhold and Garcia (1998) described efficiency
optimization in vector control induction motor drive. The focus of these papers is the
minimization of the copper and core losses at steady state. The optimum torque
current (1) for maximizing the efficiency is determined by differentiating the power
losses function with respect to the torque current (Z;) and equalling it to zero. With M,
the mutual inductance between the stator and rotor of the induction motor equivalent

circuit, the optimal torque current (1) for maximum efficiency is given by:

L R.(R, +R, )+R.R, (2.66)
@ T R(R, +R, )+ M20?
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Bernal et al. (2000) proposed loss minimising control scheme for induction
motors in vector control. With neglecting saturation and L, is d-axis inductance, the

optimal torque current (1) to achieve the minimum losses is given by:

(R, +R)R, + L2o? (2.67)
Lo =l TR R T 20
s'‘c d

2.4.4 Search Controller Method

Search controller (SC) method also known as on-line efficiency optimization
controller is a control technique based on the minimum input power tracking
approach. The operation principle of the search controller is that the input power is
first measured and then the motor flux function is gradually decreased to achieve the
minimum input power associated to the minimum power losses or maximum

efficiency.

2.4.4.1 Principle of a Search Controller Method

The philosophy of search controller is to minimize the motor drive input
power by iterative adjustment of the motor flux or its equivalent variable command.
The input power of the motor drive is a parabolic function of the flux, that has
strictly positive second derivative with regime-dependent minimum that can be
found by various search procedures (Sousa et al., 1995; Kioskeridis and Margaris,
1996; Moreno et al., 1997; Hasan et al., 1997; Bose et al., 1997; Vukosavic and
Levi, 2003; Abdin et al., 2003; Chakraborti and Hori, 2003 and Pryymak et al.,
2005).
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Assume that the machine operates initially at rated flux in steady state with

low load torque at a certain speed as indicated in Figure 2.8 (Cleland et al., 1995).

P in s T, @ Om
4 torque
speed
—~—~—_input
powers
. . é .
minimum point
tator
volta
> time
P loss
A
\ total power
T~ __Joss
iron loss copper loss
c
> time

Figure 2.8: On-line search method of flux programming efficiency

optimization control.

The motor flux is decreased gradually by reducing the stator voltage of the
supply. As the core losses decrease with a decrease of flux, the copper losses
increase but the total losses on the system decrease, hence the overall efficiency is
improved. This is reflected in the decrease of the dc link power, as shown for the

same output power.
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Decreasing the stator voltage is continued until the system settled at the
minimum input power, which means that the power losses become minimum and the
efficiency become maximum. Any search attempt beyond minimum point adversely
affects efficiency and forces the search direction such that operation always settles at

minimum point.

This method has the advantage of the control not requiring knowledge of the

motor parameters and it is universally applicable to any arbitrary machine.

An example of a block diagram of the search controller method of the
induction motor drive that had been proposed by Kioskeridis and Margaris (1996) is
given in Figure 2.9.

—
Phase. | wart c - PWM
Supply Meter T VSI
—
\
A A S
' DC Link 1 S
w,
P, O

O Speed o Search P;
Controller _’® «— "

y ¥ Controller

wm
Om

Figure 2.9: Block diagram of the search controller method of the induction motor

drive
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2.4.4.2 Previous Work on the Search Controller Method

Sul and Park (1988) proposed a technique that maximizes the efficiency by
means of optimal slip in scalar control model. To find the optimal slip, a given
torque-speed curve is automatically sectioned by the microprocessor according to the
torque and speed. The optimal slip is first searched hence the minimum input power
is achieved, and stored in the microprocessor memory as a lookup table. The
controlled system is then forced to track the optimal slip given in the lookup table.
The technique can be considered as an indirect way to minimize the input power.

Famouri and Cathey (1991) proposed an adaptive perturbing controller that
minimizes the input power of a variable speed motor drive system on the scalar
control model. A proportional-integral controller is developed to regulate the value
of the stator voltage that adjusts the volt per hertz ratio. The subcontroller also added

to control the inverter output frequency that obtains the motor speed.

Sousa et al. (1995) proposed the search controller on the vector control model
by adaptively reducing the flux current reference compensator by the fuzzy logic
controller. Input of the fuzzy logic controller is stator current and the output is the
flux current reference compensator. The block diagram of the proposed fuzzy logic

control is given in Figure 2.10.

Id AId
Fuzzy
Logic [—>
I, > Control

Figure 2.10: The block diagram of the fuzzy logic control scheme proposed

by Sousa et al.
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Huang and El-Sharkawi (1996) proposed the search controller in the scalar
control model by adaptively obtaining the stator voltage per hertz ratio use fuzzy
logic controller. Input of the fuzzy logic controller is the change of input power and
volt per hertz ratio. The output is the new change of volt per hertz ratio. The block
diagram of the fuzzy logic control of the proposed model is given in Figure 2.11.

AP(k AV/Hz(k
( ) — > Fuzzy z( )
> Logic ’
AV/Hz(k-1) Control

Figure 2.11: The block diagram of the fuzzy logic control scheme proposed by
Huang and EIl-Sharkawi.

Cleland and Turner, (1996) proposed the search controller in the scalar
control model by adaptively reducing the stator voltage reference with the use of a
fuzzy logic controller. The torque pulsation problem is overcome with the help of
feed-forward pulsating torque compensation. Input of the fuzzy logic controller is
stator voltage and input power and the output is the voltage reference compensator.
The block diagram of the fuzzy logic control of the proposed model is given in
Figure 2.12.

AV AV
—» Fuzzy

Logic
. —_— >
AP, Control

Figure 2.12: The block diagram of the fuzzy logic control scheme proposed by

Cleland and Turner
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Choy et al. in 1996 used a neural network to perform the search control.
Based on the steady state induction motor model calculation, the neural network
controller is trained in different operating points. The back propagation learning
algorithm is employed. The neural controller consists of three layers, two neurons in
the input layer and the output layer is slip speed reference. Input of the proposed
controller consists of torque and speed of the motor. The network structure of the

proposed efficiency optimization is given in Figure 2.13.

Figure 2.13: The structure of neural network-based efficency optimization

control scheme proposed by Choy et al.

Hasan et al. in 1997 and Zang and Hasan (1999) used a neural network to
perform the search controller function in the vector control induction motor drive
system. Based on the steady state induction motor model, the motor power losses are
calculated as a training data. The back propagation learning algorithm is employed to

train the neural network controller in different operating point.

Their proposed neural control model has one input layer, two hidden layer
and one output layer. The input layer consists of speed and load torque reference
signals. The output layer has only one neuron for the magnetizing current. The first
hidden layer has ten neurons and the second hidden layer has five neurons. The

proposed network structure model is given in Figure 2.14.



42

Figure 2.14: The structure of neural network-based efficency optimization

control scheme proposed by Hasan et al .

Moreno et al. (1997) compare the different flux optimization algorithms to
improve efficiency at steady state in a vector controlled induction motor drive. In this
paper the conventional numeric search algorithm such a Rosenbrock, proportional,
gradient, Fibonacci method and intelligent search fuzzy logic control is reviewed.
The fuzzy logic control employed 14 rule based, with the error speed signal as an

input. The block diagram of the proposed fuzzy logic control is given in Figure 2.15.

Fuzzy Al
Ao, Logic
Control

Figure 2.15: The block diagram of the fuzzy logic control scheme proposed by
Moreno et al.
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Bose et al. (1997) stated that the main advantage of using fuzzy control
instead of classical search control scheme. The controller was implemented in a
sensorless stator flux oriented vector control motor drive. However, it was the first
time that search control was realized in sensorless drive. He proposed the input
power and flux current error as an input of the controller. The block diagram of the

fuzzy logic control is given in Figure 2.16.

Fuzzy AD”

¥ Logic
AP, Control

v

Figure 2.16: The block diagram of the fuzzy logic control scheme proposed by Bose

et al.

Ta and Hori (2001) proposed a technique that maximizes the efficiency
model in vector control for electrical vehicle load model. The optimal torque current
reference is searched by golden section scheme. To limit torque pulsation by the
stepwise decrease in the flux current, the low pass filter is added in the controller.

Chakraborty et al., (2002) and Chakraborty and Hori (2003) proposed a
technique that maximizes the efficiency model in vector control by two steps. The
optimal flux current reference is calculated based on the steady state loss model. The
optimal flux current estimation employed is the same as that had been developed by
Garcia et al. (1994) and Leindhold and Garcia (1998). In real-time application the
optimal current flux reference is searched around the optimal current that has been
determined by the LMC method. They claim that the convergence time can be

reduced.
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Pryymak et al. in 2005 used a neural network to perform the search controller
in the vector control induction motor drive system. The difference to Hassan et al.,
(1997) paper is that the changes of the resistance value due to temperature variation
and the change of the inductances due to core saturation curves are considered in the

power losses calculation.

Pryymak et al., use the Levenberg-Marquardt learning algorithm, the neural
network was trained with an off-line scheme. The neural controller consists of three
layers, three neurons in the input layer and the output layer is the current flux
reference. Input of the proposed controller consists of electromagnetic torque, rotor
resistor and speed of the motor. However, they did not perform an experimental

validation. The structure of the proposed controller is given in Figure 2.17.

Figure 2.17: The structure of neural network-based efficiency optimization

control scheme proposed by Pryymak et al.
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2.5 Summary

The principle of the efficiency on the VSD mainly on the induction motor has
been described. The review of the efficiency optimization control on VSD also has
been reported. It is clear that the implementation of the efficiency optimization
control is focused on minimizing the losses of the induction motor drive by
controlling the motor flux function. The concept of efficiency optimization control
has been described and shown that maintaining the flux of a motor is ideal to
optimize the efficiency during speed and load variation.

The previous work on LMC method shows that the main advantage is
simplificity of this method i.e. does not require extra hardware. However, it is
mandatory that an accurate knowledge of motor parameters is known, which change
considerably with temperature, saturation and skin effect. In real-time application,
the difficulty in measuring the motor parameters of the loss model does not permit
the implementation of the LMC (Sul and Park, 1988; Kioskeridis and Margaris,
1996; and Famouri and Cathey, 1991).

The previous works on the SC method show that to achieve optimal
efficiency, the flux is decremented in steps until the measured input power for a
certain load torque and speed condition settles down to the lowest value. This
method does not require any knowledge of the motor parameters, is completely
insensitive to motor parameter variation and the algorithm is applicable universally

to any arbitrary drive (Bose et al., 1997).



CHAPTER 3

DEVELOPMENT OF A NEURAL NETWORK EFFICIENCY FOR
EFFICIENCY OPTIMIZATION

3.1 Introduction

This chapter discusses the development of an efficiency optimization control
technique of a variable speed compressor motor drive system. The prospective of
adaptive neural-network on the search control method of the efficiency optimization
control will be described first. Before proceeding to the detail of development of the
adaptive neural network efficiency optimization controller scheme, it is essential to
understand the concept of the on-line learning neural network controller strategy
itself. Finally, the function of the proposed adaptive neural network controller for

efficiency optimization of variable speed compressor motor drive is presented.

3.2  The Neural Network Perspective on the Efficiency Optimization Control
Method

A linear control system with invariant plant parameters can be designed
easily with classical design techniques, such as Nyquist and Bode plots. However in
induction motor drive applications, where the parameters of the drive hardly remain
constant, the performance of a conventional feedback controller is difficult to

maintain. The effect of the parameters variations can be compensated to some extent
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by a high-gain negative feedback loop, but excessive gain may cause an under-

damping or instability problem (Bose, 2001).

The plant parameters variation require adaptation of the controller parameters
in real-time known as adaptive control technique (Astrom and Wittenmark, 1995;
Narendra and Annaswami, 1989; Mills et al., 1996; Gupta and Sinha, 1996 and Lu,
1996). Generally, the adaptive control system can be thought of as having two loops.
The first loop is a normal feedback based on the process and the other loop is the

parameter or mechanism adjustment loop.

Referring to the previous works that have been described in the Chapter 2,
Choy et al., (1996); Hasan et al., (1997); Zang and Hasan (1999) and Pryymak et al.,
(2005) employees Neural Network Controller (NNC) to perform the search
efficiency optimization control function. In these cases the neural network controller
is trained off-line or through a batch learning algorithm. Initially, in training mode a
model of the induction motor drive is developed to train the neural network in
different operating points. In running mode, the controller is performed by the neural

network alone.

The development of the neural network controller for the -efficiency
optimization control produce good results, however these developments are still
limited to simulation work or off-line learning experimental work. Therefore its real-
time application, with the induction motor parameters not constant, the performance

of the off-line learning neural network controller is doubted (Abrahamsen, 2000).

Based on the reason mentioned, to successfully implement neural network
controller of the efficiency optimization control of a variable speed compressor
motor drive, a real-time or on-line learning algorithm of the neural network

controller known as adaptive neural network control is proposed.
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33 Concept of a Neural Network Control

Inspired by the successful function of the human brains, the Artificial Neural
Network (ANN) was developed for solving many large scale and complex problems.
The need to meet demanding control requirements in increasingly complex
dynamical control systems under significant uncertainty makes the use of Neural

Networks in control systems very attractive (Widrow and Lehr, 1990).

The main reasons behind this are their ability to learn to approximate
functions and classify patterns and their potential for massively parallel hardware
implementation. Beside that, development of on-line/real-time learning technique,
makes the controller become adaptive and robust to the dynamic plant system or
known as adaptive neural network controller (Narendra and Annaswami, 1989;

Mills et la., 1996 and Gupta and Sinha, 1996).

Neural networks consist of many simple computational elements called nodes
or neurons each of which collects the signals from other nodes which are connected
to it directionally. Among the neurons are connected by weighted links passing

signals from one neuron to another. The architecture of these models is specified by:

1. Neuron/node characteristics,
2. Network topology and

3. Learning algorithm.

3.3.1 Structure of the Neuron

The basic processing element of the connectionist architecture is often called
neuron by analogy with neurophysiology. Other names such as Perceptron by
Rosenblatt in 1958 or Adaline by Widrow and Hoff in 1960 are also used. Neurons
in artificial neural networks are very simple processors inspired by their biological

counterparts.
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The basic model of a neuron is illustrated in Figure 3.1 (Haykin, 1994). The

neuron is composed of three components:

1. A set of synapses or connecting links, each of which is characterized by a

weight or strength of its own.
2. A weight summer or an adder for summing the input signals, weighed by the

respective synapses of the neuron. The operations could constitute a linear

combiner.

3. A non dynamical, nonlinear function which is also called activation function,

use for limiting the amplitude of the output of a neuron

a;

Jaen()  ——>

Figure 3.1: Basic model of neuron

From a functional point of view, a unit is simply an active element with some

number of inputs and only one output. Equation of the weighted summer is given by:

n, 0 =3 wx, (© G-

where: n; : neuron transfer function
Xi : the neuron inputs
w; : the weight connection

t : the time variable.
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The matrix form of the Equation (3.1) can be written as follow:

N, () =WX(t) (3.2)

According to Figure 3.1, after the input mapping, the neuron produces an
output using an activation function. This activation function transforms the value
produced by the input mapping to a value which is suitable for another neuron. The
nonlinear function f,., is an activation function gives the signal a; in the term of the

output n;(?) is given by:

a‘i = factv(nj(t)) (33)
where: facen : the activation function
a; : the neuron output.

The activation function of a bipolar neuron generates both positive and
negative output, while the unipolar ones generate only positive values (Cirstea et al.,
2002). Depending on the type of the neuron, the activation function has several forms

as given in the following function.

1. Linear:
the simplest of the activation functions is a linear mapping from input to

output defined by:
factv (nj) = nj (34)
The gradient of the linear activation function is given by:

K et} N (3.5)

on.
J
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2. Sigmoid:

the sigmoid activation function is a bipolar function and defined as:
factv (nj )= Sig(nj )

1 (3.6)

—-N.

1 +exp J

Derivative of the sigmoid activation function is given by (Spooner et al.,

2002):

afactv (nj )

(3.7)
T = (1 - factv (n J )) factv(nj )

3. Hyperbolic Tangent:
the hyperbolic tangent activation function is a unipolar function and defined

as:
fac (nj )= tanh(nj )

-n. (3.8)
_l-exp J
=

1+exp J

Derivative of the hyperbolic tangent activation function is given by (Spooner

etal., 2002):

afactv (nj )

2 (3.9)
on, :1_(factv(nj))
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3.3.2 The Network Architecture

The neural network also can be viewed as a weighted directed graph in which
artificial neurons are nodes and directed weighted edges represent connections

between neurons. Local groups of neuron can be connected in either (Leondes, 2003):

1. A feed-forward architecture and

2. A recurrent architecture.

3.3.2.1 Feed-Forward Neural Network Architecture

Architecture of the feed-forward can be represented by a direct acycli graf as
given in Figure 3.2. Each neuron is connected only to neurons in the next layer and

there is no connection between neurons in the same layer.

Figure 3.2: A single layer feed-forward neural network
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3.3.2.2 Recurrent Neural Network Architecture

The recurrent neural network distinguishes itself from a feedforward neural
networks in that it has at least one feedback loop. It so that the output of the neuron
can be fed back to the inputs of other neurons in the same or previous layers as

shown in Figure 3.3.

w a;

z! >

7! >
1

> Z .,

Figure 3.3: A single layer recurrent neural network

The feedback loop presents involve the use of particular braches composed of
unit-delay elements denoted by Z”, which causing the network to display a non-

linear dynamic behaviour (Haykin, 1994).

3.3.3 Learning in the Neural Networks

A neural network has to be configured such that the application of a set of
inputs produces the desired set of outputs. Various methods to set the strengths of the
connections exist. One way is to set the weights explicitly, using by knowledge.
Another way is to train the neural network by feeding it teaching patterns and letting
it change its weights according to some learning rule. There are two kinds of well
known learning rules in neural network training, i.e. supervised learning rule and

unsupervised learning rule.
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Principle of the supervised neural network system is given in the following

section.

3.3.3.1 Supervised Learning Model

An essential ingredient of supervised learning is the availability of an external

teacher, as indicated in the arrangement of Figure 3.4 (Haykin, 1994).

Y
_ X
Environment »| Teacher
] Y ) 4
Learning ¢ Ve
system '\E
e

Figure 3.4: Block diagram of supervised learning

The learning feedback or driving force in supervised learning is the error (e)
between the model’s output (¥.) and the system teaching patterns (¥y). Training
consists of presenting input and output data to the network. This data is often referred
to as the training set. During the training of a network the same set of data is
processed many times as the connection weights are ever refined. Then the network
parameters are modified according to the particular correction method depending on

the learning low algorithm.
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Supervised learning can be performed in an off-line or on-line scheme. The
function of learning in the neural controller is to automatically adjust the parameters
of the controller to provide a satisfactory or desired control response (Lu, 1996,
Omatu et al., 1996 and Vas, 1999). As a result of learning, the system response or
behaviors can be consistently improved even when the system environment is

significantly disturbed.

The off-line learning scheme is also called batch learning. In this scheme, a
separate computational facility is used to design the supervised learning system.
Once the desired performance is accomplished, the design is frozen, which means

that the neural network operates in a static operation.

The on-line learning scheme also called as real-time learning. In the on-line
learning the learning procedure is implemented solely within the system itself, not
requiring a separate computational facility. During the running process the network
parameters of the controller are updated continuously. This mode the updating is
performed successively on each partial error function associated with one given

pattern in the training data.

3.3.3.2 Neural Networks Performance index

The ultimate propose of the training process in the neural network controller
is to minimize the performance index of the network. A criterion commonly used for
the performance index is the Mean-Square Error (MSE) criterion. For single data pair

that be used in the on-line learning, the performance index function is defined by:

F(x):%eTe (3.10)

where: F()  :the neural network performance index function

e : controller error signal
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The error signal of the controller is given by:

=D - 3.11
e DC Yc (3.11)
where: Y, : actual response signal
D, : desire response signal

The function of the performance index is also known as error surface neural

network function or neural network cost function.

In a linear function model, the general error surface function is given in
parabolic function, which means that it is smooth bowl-shape with single minimum
value. However in the neural network, the error surface function is much more
complex. It is characterized by an unhelpful feature such as local minima point. The
local minima point is lower than the surrounding terrain, but above the minimum

global.

3.3.3.3 Neural Network Learning Laws

In the learning process there are several schemes that can be used to update
the network parameters. The back propagation algorithm developed by Rumelhart et
al in 1985, is a first order iterative gradient search algorithm designed to minimize
the mean square error between the actual output a multilayer feedforward network
and the desired output (Leondes, 2003). This scheme is based on a linear

approximation of the neural network performance index given by:

F(x+AX) = F(x) + (VF ()T Ax (3.12)
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The weight update is given by:

OF (X) (3.13)
OX

AX =—«

Where:a : the learning rate or step size.

The second order learning algorithm is motivated by the desire to accelerate
the typical slow convergence associated with the back propagation method (Hagan
and Menhaj, 1994). The neural network performance index of the basic second order

learning algorithm approximation is given by:

F(x-+ 80 = F0) + (VFOO)T ax-+ axT V2R (0ax (3.14)

The weight update is given by:

-1 3.15
Ax:—(sz(x)) VF(x) G139

3.3.4 Multi Layer Perceptron

The Multilayer Perceptron (MLP) is a network model in which the neurons
are configured in layers, whereby the neurons of a layer are generally all connected
with the neurons of the following layer. This network is able to process analogue
input patterns and learns in supervised mode, employing the back-propagation

algorithm.

In a multilayered neural network, the zero or lower is called input layer

consists of input neurons. The last or upper is called output layer which is composed
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of output neurons. The remaining, so called hidden or intermediate layers contain
hidden neurons.
According to Haykin (1994), a multilayer perceptron has three distinctive

characteristics:

- The model of each neuron in the network includes a non-linearity at the output
end.

- The network contains one or more layers of hidden neurons that are not part of
the input or output of the network.

- The network exhibits a high degree of connectivity, determined by the

synapses of the networks.

The Multilayered Perceptron is a natural extension to the single layer
perceptrons that were very popular in the 1960°s. These multi-layered perceptrons
are able to overcome the severe limitation of its single layer predecessor. This plus
the availability of several learning algorithms for finding suitable weights and

thresholds or biases have made multilayered perceptrons widely popular.

Figure 3.5 shows the multilayer neural network with single hidden layer. The
notation employed in the figure can be described which includes: X;, a;, Yx, W;;and
W« representing the input unit vector, hidden unit vector, output unit vector, weights
(including bias) between input layer and hidden layer, and weights (including bias)

between hidden layer and input layer respectively.
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Figure 3.5: Architecture of multi layer perceptron with one hidden layer

The input layer has I neurons that receive real valued in the form of an /-
dimensional vector in X'. This layer also includes an additional bias neuron.
Similarly, the hidden layer has p neurons that receive signal from the input layer. A
bias neuron has been additionally included in the hidden layer to generate a +1 signal
for bias connections of the output layer neurons. The output layer comprises m

neurons.

Finally, the network signals that emanate from the last layer of neurons
comprise a m-dimensional vector of real numbers. The neural network thus maps a

point in X’ (the input) to a point in ¥ (the output).

According to Haykin (1994), a single hidden layer is optimum in the sense of

learning time and ease of implementation.

3.3.5 Neural Network Control Scheme

In comparison with other control paradigms, the neural controllers have
certain advantages such as they are able to learn in real-time and able to represent
almost any nonlinear relationship between control variables and system output
(Narendra and Parthasarathy, 1990; Cabrera and Narendra, 1999; Vas, 1999 and
Leondes, 2003).

Architecture of the neural controller can be classified into several types such
as direct inverse neural network control, direct adaptive neural network control
reference model and indirect neural network control reference model (Omatu et al.,
1996, Vas, 1999 and Bose, 2001). Figure 3.6 shows the schematic of the direct

inverse neural network controller.
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Figure 3.6: Block diagram of the direct inverse neural network control.
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The direct inverse neural network controller utilizes the plant inverse model.

Initially, the inverse model of the plant is obtained by using an Artificial Neural

Network Identifier (ANN-I) and this is simply cascaded with the controller plant.

The input of the artificial neural network controller (ANN-C) is the reference signal

Xy and also the actual output plant ¥, and the output of the ANN-C is the control

action ¥..

In the direct adaptive neural network control model, the parameters of the

controller are directly synthesized from the error between the desired and actual

output plant responses. In this model the adaptation mechanism is designed to adjust

the approximator causing it to match some unknown nonlinear controller that make

the closed-loop system achieve its performance objective. Configuration of the direct

adaptive neural control reference model is shown in Figure 3.7.
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Figure 3.7: Block diagram of the direct adaptive neural control reference model.

The indirect direct adaptive neural control reference model, first an
identification scheme is employed to estimate a parametric model of the plant from
input-output data, and then the controller parameter are adjusted by assuming that the
identified model represents the true pant parameters. Figure 3.8 shows the schematic

of the indirect adaptive neural control reference model.
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Figure 3.8: Block diagram of the indirect adaptive neural control reference model.
3.4  Development of the Proposed Neural Network Efficiency Optimization

Control

Before proceeding to the detail development of the proposed neural network
efficiency optimization controller, the practical issues of design and implementation

of the ANN controller is described.

3.4.1 Neural Network Controller Design Issue

They are several types of important and practical issues in the design and
implementation of the ANN controller. Basically these issues can be grouped in to
two categories (Omatu et al., 1996 and Leondes, 2003) i.e.: appropriate design of
neural network architecture and the other is related to the improvement of learning

efficiency.

3.4.1.1 Appropriate Design of Neural Network Architecture.

Determining the number of neurons in each hidden layer and the number of
hidden layers is a critical decision in the design of neural network. As mentioned
earlier, the ANN is essentially a nonlinear mapping function f{x,w) with x as input

and w as parameter set.

Increasing the number of hidden neurons enhances its ability to approximate
input-output data patters, but also increase the number of free parameters. This
increases model complexity. In fact a basic issue in designing ANN is proper balance

of model complexity and approximation ability.
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Unfortunately there is no clear guideline for determining the number of
neurons in the hidden layers. However, enough neurons must be provided to enable
the network to perform the required mapping function satisfactorily (Haykin,1994).

Haykin (1994) proposed heuristic rule for characterizing the relationship
between the number of structural parameters of a neural network, the size of training
or validation data set, and desired error goal call as resampling approach. With this
approach, several networks of different number of hidden neurons and or different
number of hidden layers are created, and trained with same set of data points. The
approximation errors are collected. The networks are then tested with a different set
of data through cross-validation to obtain generalization error. The best network
architecture is determined by comparing and making trade-off between the

approximation error and the validation error.

3.4.1.2 Improvement of Learning Efficiency.

For many practical problems, simple backpropagation training takes a very
long time due to the nature of gradient descent (Hagan et al., 1995) and (Haykin,
1994). This algorithm is insensitive to the local shape of performance function (error

surface) due to a fixed learning rate.

Determination of the learning rate coefficient is a difficult task. A large
learning rate often causes the learning steps bouncing between the opposite sides of a
deep valley instead of following the contour to reach the bottom (a local minimum).
On other hand, a small learning rate results in a very slow convergence on a

relatively flat surface.

A nonlinear network usually has many local minima on its error surface. Pure
gradient descent search is easily trapped by these local minima. The convergence to a
global minimum is not guaranteed. To address these issues and improve the simple

backpropagation algorithm, several techniques can be used such as:

- Adaptive learning rate (Bahera at al., 2006)
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- Second order optimization method (Hagan and Menhaj, 1994; Wilamowski et
al., 1999; Wilamowski et al., 2001; Ampazis and Perantonis, 2002 and
Wilamowski, 2003).

3.4.2 The Proposed Neural Network Controller Design

Figure 3.9 shows a block diagram of the conventional scalar control model
constant volt per hertz (V/f). In this scheme, the controller generates the slip
frequency reference signal wy . The voltage reference signal is generated from a look

up table voltage reference signal generator block (Murphy and Turnbull, 1988).

+ —
S&I))ily — —— Inverter M » Load
A A
Vi w;
a)*

Speed
+ Controller

Dm

Figure 3.9: The block diagram of scalar constant volt/hertz with slip regulation

In this thesis, a direct feedback adaptive neural network controller for
efficiency optimization of the variable speed compressor motor drive is proposed. In
this scheme the controller receives the system observed output variables and then
provides its control action to the controlled system environment to optimize the
control criterion through real-time information processing. The block diagram of the

proposed method is shown in figure 3.10.
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Figure 3.10: The block diagram of the proposed neural network efficiency

optimization control

The proposed controller generates both of the voltage and frequency
reference signal simultaneously. The difference of this with the methods discussed in
chapter 2 is that they only generate the voltage reference signal and the frequency
reference signal is generated by the other controller which is assumed ideal. By this
strategy the efficiency of the motor drive can be increased and the performance of the

speed also can be maintained simultaneously.

To control both of the reference signals simultaneously, a neural network
control with multi output and learning algorithm is developed. The controller will
receive three input signal i.e. the speed reference signal (w"), error speed signal (w -
w) and error input power signal (Pref* - Pi,). The output of the controller that consist

of stator voltage reference signal or modulation index (Vs* = m;) and frequency
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reference signal or modulation frequency (f = my) is fed to the space vector PWM

modulator.

In this scheme the input power reference model (P,ef*) block is determined as
follows. With the load torque characteristic of the compressor assumed proportional

to the square of the speed as given by:

=k N? (3.16)

Where: Tjpea : compressor load torque
ki : load torque coefficient

N : motor speed=compressor speed

The power of the compressor as a mechanical motor load with friction and

windage are not considered can be defined as (Shepherd et al., 1995) :

P

load = Tioad N (3.17)

load

I:)Ioad :(kLNz)N

_K N (3.18)

where: Pjyeq  : compressor load power

If efficiency of the motor drive is targeted with the efficiency at nominal speed (#,0m)

for all speed operation, the input power reference model can be defined as:

(3.19)
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. kN (3.20)

ref
77nom

Where: P',,; : the input power motor reference.
Huom - the nominal motor efficient.

3.4.2.1 Neural Network Efficiency Optimization Control Structure

In the present research, a new structure of neural-network -efficiency
optimization control is developed. The idea is based on the theory of a scalar control
constant volt per hertz, where the frequency reference signal output is feedforward to
the voltage reference signal generator block that have been described in chapter 2.
Referring to this concept, in this network structure one of the output neuron in the
last layer will be set as the frequency reference signal and fed back to the network to

generate the voltage reference signal.

Basically, to design the neural network controller, the number of inputs and
outputs neuron at each layer are equal to the number of input and output signals of
the system respectively. Further the number of hidden layers and the total neurons is
depended on the complexity of the system and the required training accuracy. Based
on the type of the task to be performed, the structure of the proposed neural network

controller is shown in Figure 3.11.
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Figure 3.11: Architecture of the neural network efficiency optimization control
The structure of the neural network controller consists of three layers. Based
on the neuron number in each layer this structure is known as 2-6-2 network
structure. The first layer is the input, which consists of two input signals X; and X.
X; received signal from the speed reference or speed command w", while X; received

signal from the output layer ¥; as a feed back loop or recurrent structure model.

In order to let the neural network interface with the real-world environment, a
normalization of the input value is required. With the min-max approach the input

signal of the controller is normalized by equation:

X nor = (X f:g?x (_X)fnanzcl):’n_X;: i:lin_)x irr:mx )+ X ir;lin (321)

Where: X,,» :normalized input value
Xi : input value
X0 : maximal normalized input value
Xuor" : minimal normalized input value
X ™ : maximal input value

X;,™ : manimal input value

By using in-start model, each of the neuron signals in the input layer is
feedforward to all neurons in the hidden layer via the weight connections between
the input and the hidden layers. The connections weight between neuron i and j in the

Jun neuron at my, layer respectively are represented by w™;i.

The second layer also known as hidden layer consists of six neurons a'; a’;,
.. a' ¢ respectively. Besides receiving signal from input layer, it also receives the bias
signal. A transfer function of the neuron in the hidden layer at the jy neuron is

defined by:
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"= wiX, +b! 322
i-1
Where: n;! : neuron transfer function in hidden layer
X; : input value that has been normalized
w! ji - weight connection parameter value between input layer to hidden
layer
bjl : bias parameter value in hidden layer

At the hidden layer the tangent hyperbolic activation function (Equation 3.8)

are employed. The neuron output function in this layer is given by:

(3.23)

The output layer consist of two neurons, the first neuron is used as a reference
signal frequency (¥;=f ) and the second neuron is used as a reference signal voltage
(Y=V,). The activation function employed in this layer is known as the linear
activation function (Equation 3.4). The neuron output function in this layer is used as

an output variable as given by:

n 3.24
nt=> wjal +bj (3.24)
i=1

Y, =n? (3.25)
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In order to let the neural network interface with the real-word environment, a
denormalization of the output controller value is required. With the min-max

approach the output signal of the controller is denormalized by:

Y B ( dr;ax _ Ydr;]m XYOUt _ Yorlﬁax )+ Y i (326)
den max min out
-Y
Yo =Y )
where: Y4 : normalized output value
You: :output value

Yien"™ : maximal normalized output value
Yier " : minimal normalized output value
Your " : maximal output value

Your " : manimal output value

3.4.2.2 Levenberg-Marquardt Optimization

After the neural network architecture is developed, the next stage of the
neural network control design is to determine the learning algorithm for updating the
network parameters. The learning process will update the network parameter to
optimize performance of the network. Generally, to define the network parameters, a
sufficient training of the input-output mapping data of the plant is required. By this
technique, the neural network controller is able to know the characteristics of the

plant, hence the control signal can be defined accurately.

The learning algorithm of the Levenberg-Marquardt for the multilayer

network is described as follows.
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If the performance index of the network is represented by F(x), where x is the
scalar parameter of the network, the second order Taylor series expansion at nominal

point x" is given by:

F(x)= F(x*)+%F(x) | (x=x)
1 . (3.27)
+§WF(X) | (X=X

Because the network parameters consist of many variables, it is more

convenient to write in matrix form as given.

F(x)=F(x')+ Vx| (x-x)

+%(x—x*)TV2F(x) | (X=X (3.28)

where VF(X) is the gradient of the performance index, and is defined:

5 5 5 T (3.29)
VF(X) = e F(x)a—x2 F(x)...a F(x)}

and V’F(X) is the Hessian, and is defined as:

- a7
622 F0—2 Fx. & (39
OX; OX,0X, OX,0X,,
82
V2F(X) =| 0x,0x,
M

F(X)% F(X)... F(x)

OX,0X,
M M
62
OX,

2 2
0 F(x) 0 F(X)...
| OX,0X, OX,0X

F(x)

n
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To analyze the gradient and Hessian matrixes of the performance index, the

general form of the quadratic function is given:

F(X)=%XTAX+dTX+C (3:31)
Based on the properties of gradient matrix equation as given by:
V(h"x)=V(x"h)=h (3.32)
Vx'Qx=Qx+ Q" x =20Qx (3.33)
where: h : a constant vector.
The gradient of Equation (3.31) can be written as follow:
VF(x) = Ax+d (3.34)
where A is the Hessian of the F(x) given by:
A=V?F(x) (3.35)

Therefore for the quadratic function, the Taylor series expansion for xx+; can

be defined by:

P )= Pl + 8% )= Flox )+ 0785 + L ] A (30
where gy is the gradient of F(x;) and can be defined as:
gk EVF(X) X=X, (337)
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The gradient of this quadratic function with respect to 4x; and setting it to zero is

given by:

g, +AAX, =0 (3.38)

The equation (3.38) can be solved as follows:

Ax, =-A'g, (3.39)

X = X — A[‘Qk (3.40)

If the F(x) in a sum of squares function given by:

N 3.41
F(X)=ZV3(X)=VT(X)V(X) 341
The gradient for jy, element is given by:

_OF(X) < oV; (X) (3.42)
VFOOl =5, =205 =

J J
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In matrix form the gradient can be rewritten as follows:

VF(x)=2J3" (X)v(X) (3.43)
where:
) M, W) ] (3.:44)
0X, oX, oX,
M0 M0, ()
Jx)=| X OX, oX,
M M M
ovy(X)  ovy(X) vy (X)
| ox, ox, Xy |

The Hessian for j,, element is given by:

) N | Av. oV o%v. (3.45)
[v2Foo), = 22{_&( e axvla(xx.)}

J J

In matrix form, the Equation (3.45) can be expressed by:
VZE(X) =237 (X)J(X) +2S(X) (3.46)

where:

S00= >V, 0072, (x) (3.47)

For small value of S(x), the approximation of the Hessian matrix is given by:

VIF(X) =237 (X)J(X) (3.48)
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From the gradient and Hessian equations, iteration of each element is given by:
-1
Xea =X =0T ()T (x0] IT (X V(%) (3.49)

Therefore it does not require calculation of the second derivative, however
the matrix H=J'J may not be invertible. However this can be overcomed by using

the following modification to approximate the Hessian matrix (Hagan et al., 1995):

G=H+u (3.50)

Suppose that the eigenvalues and the eigenvector of the Hessian are (A1, A2, . .

.A) and (z;, 7, . . . Zn), then

Gz, =(H + ul)z,
=Hz + 1z,
=47 + 1z,
= (4 +p)z, (3.51)

Therefore the eigenvector of G are the same as the eigenvector of the H and

the eigenvalues of G is given by:
AL(G)=4+u (3.52)
By this reason matrix G can be made positive definite by increasing g until

(4i + u)>0 for all i, and therefore the matrix will be invertible. Then the Equation

(3.49) can be rewritten as:

X = X = [‘] TO4)IT () ) + 44| :I»l IT (V%) (3.53)
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3.4.2.3 Levenberg-Marquardt Neural Network Optimization

The important step in Levenberg-Marquardt neural network algorithm is the
computation of the Jacobian matrix. For two output neuron, the Jacobian matrix J of

the neural network is given by:

[ oe,  oe oe, | (3.54)
oW, AW, T ab2
J =
oe, oe, oe,
ow), ow!, 7 b}

Back propagation derivation of Jacobian matrix weight parameters is
described by the following function.
oe, oe. on" (3.55)
oW/ oni oW

Where the first term on the right hand side is defined as the Marquardt sensitivity is

given by:

. 3.56
gm oe, (3.56)

! ony

Derivative of the neuron output function against to the weight parameter is given by:

onm (3.57)
ow [

Substitution Equations (3.56) and (3.57) into Equation (6.55) is result in:

oe, _ g (3.58)
oW,




77

With same procedure, the back propagation derivation of Jacobian matrix

bias parameters is described by the following function.

oey _ g (3.59)
oby !
The updating neural network parameters can be written by:
Xe =X — [T ()3T () + 2,1 37 (% )e(%,) (3.60)
Or
(3.61)

Ax =[3T )3T )+ [ IT (xe(x,)

3.4.2.4 Direct Adaptive Neural Network Control Reference Model Algorithm

The algorithm of the proposed on-line learning neural network as direct

adaptive neural network control reference model algorithm is given in the following

steps:
Step 1: - Initialization of network parameters i.e.: bias and weight.
Step 2: -  Measured of input data i.e.: input power and rotor speed.
- Normalization input data i.e.: input power and rotor speed by using
Equation (3.21).
Step 3: - Calculation of error and incremental error input power and rotor speed

- While stopping update condition is true: error fall into the given

acceptable error range or error change very little, then go to step 5.
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Step 4:

Calculation of updating neural network parameters by using Equations:

(3.54) up to (3.61).

Step 5:

Calculation of output of the neural network by using Equations:
(3.22) up to (3.25).
- Denormalization output neuron in the output layer using Equation

(3.26).

Step 6: Repeat by going to step 2.

3.5 Summary

In this chapter, the proposed neural network efficiency optimization control
of a variable speed compressor motor drive has been introduced. The basic operation
of the neural network control has been described. Development of the proposed
controller has been presented. The neural network architecture of a direct feedback
neural network controller has been developed. Derivation of the second order
Levenberg-Marquardt neural network optimization also has been explained. Finally,
the algorithm of the proposed real-time/on-line learning neural network efficiency

optimization control has been presented.



CHAPTER 4

EXPERIMENTAL SET-UP OF THE NNEOC VARIABLE SPEED
COMPRESSOR MOTOR DRIVE

4.1 Introduction

The set-up and implementation of the proposed neural network efficiency
optimization control for variable speed compressor motor drive system is presented
in this chapter. The proposed drive system consists of major components namely a
DSP-based controller board, gate drive, inverter circuit, sensor and a standard
squirrel-cage induction motor along with a dynamometer acting as the compressor

load. Figure 4.1 shows the components used in the proposed system.
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Figure 4.1: Block diagram of the experimental set-up

The neural network model and its controls are implemented through the DSP
controller board. In the prototype of the drive system, the rotor mechanical speed is
sensed by DC generator speed sensor and the torque by the torque sensor fitted to the
dynamometer, while the input power is sensed by current and voltage sensor fitted to

the universal power analyser.

In the following sections, each hardware components are described in more
detail. Figure 4.2 shows a photograph of the experimental set-up of the proposed

controller of the variable speed compressor motor drive system.
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Figure 4.2: The experimental set-up

4.2 DS1102 Controller Board

The single board system of the DS1102 DSP controller board is shown in
Figure 4.3 (dSPACE GmbH, 1996). As the term reveal, this board is designed to
build a complete real-time control system with just one board. The controller board
includes a fast digital signal processor and I/O components for a variety of
applications in the rapid control prototyping, development of digital high-speed

multivariable controlling and real-time simulations.
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The DS1102 board is a standard 16-bit PC/AT card that can be slotted
straight in to the PC using ISA bus. The DS1102 controller board consists of a
TMS320C31 floating point digital signal processor as a main processor and a
TMS320C14 as a co-processor. The board is manufactured by dSPACE digital

processing and control engineering, GmbH, Germany.

The board provides a fast instruction cycle time for numeric intensive
algorithms. The board interfaces to the host (a standard PC) via a standard PC AT
interface bus. The block diagram and the data sheet of the DS1102 controller are

given in Appendix A. Some of the features contained on the board are:

- TMS320C31 floating-point DSP

- Slave-DSP TMS320P14

- Four 12-bit Digital to Analogue Converter (DAC)
- Two 16-bit Analogue to Digital Converter (ADC)
- Two 12-bit ADC

- Twenty six digital input-output (I/O)

Some of the major tasks performed by the DS1102 controller board are to

develop the proposed controller which includes:
- Signal normalization :

To interface the input signals from the output device such as the speed and
input power sensor to the neural network controller program, it is required to
normalize the entire input signal.

- Neural network controller:
In this program the input voltages from the speed and power sensors that fed

to the ADC channel on the controller board are processed to obtain the speed and

input power of the motor.



- Real-time learning neural network algorithm:

&3

To update the neural network parameters, the real-time learning technique is

performed entirely in software.

- Space Vector PWM:

Computed results of the controller are then employed to determine the IGBT

switching state using the Space Vector PWM (SVPWM) signal generator

technique.

Implementation of the reference speed using analog signal method is however

easily subjected to disturbance from noise. Thus, to avoid this problem the reference

speed of the drive system is developed in the Control Desk instrument panel program

Release 3.3, which is included with DS1102 controller board. This program provides

graphical output and interactive modification of variables on the DS1102 board.

Layout of the proposed controller is shown in Figure 4.3.
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Figure 4.3: Layout of the proposed controller in the Control Desk program
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4.3 Power Analyser

The power analyser is used to measure and record the input power of the
induction motor drive via analog output connector. It is manufactured by Voltech
with part number PM3000ACE (Voltech, 1996). The block diagram of the
PM300ACE is given in Appendix B.

4.4 Power Circuit and Gate Driver

The power supply module for the drive system is made up of three units of
SEMITRANS IGBT modules rated at 1200V and 50A. It is manufactured by
Semikron with part number SKM 50 GB 123 D. The datasheet of this IGBT is given
in APPENDIX C. Each module consists of top and bottom IGBT for one leg or arm

of inverter. The schematic of the VSI module is shown in Figure 4.4.

+ o0 .I_.
}A+o_| Z S }B+o_| Z S 3 C*o_| Z S

Figure 4.4: Schematic of the IGBT module
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The VSI module receives DC link voltage from a DC power supply unit. To
protect the IGBT module, a RCD snubber is installed for each the IGBT device. The

circuit of the RCD snubber is shown in Figure 4.5.

D

N
4

C R

0 | | \/ o

Figure 4.5: RCD snubber circuit

The gate drives receive the signal from DS1102 controller board and amplify
them to the correct level to drive the IGBT devices. The power supply gate drivers
are generated from the low-side power supply and transferred and isolated through
power transformers. Beside that the gate drivers also isolate the signal controller
using optocoupler HCPL-A3120 from the DS1102 controller board to the IGBT
module. Figure 4.6 shows the schematic of DC-DC isolation and signal isolation of

the gate driver circuit.
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Figure 4.6 (a): Schematic of DC-DC isolation of the gate driver circuit
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Figure 4.6 (b): Schematic of signal isolation of the gate driver circuit
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Figure 4.7 shows the gate drivers, snubber and voltage source inverter.

DC-link RCD
capacitor

Gate
driver

Figure 4.7: Gate driver and voltage source inverter



45 Induction Motor

The induction motor used in the experiment is manufactured by Feedback
Inc. It has stator windings in which are connected in delta and a squirrel cage rotor. It
is rated at 120V, 0.25hp, 50 Hz and with rated speed of 1400 rpm. Block rotor and no
load test are performed to determine the motor’s parameters. The parameters of the

induction motor used in the experiments are given in Tabel 4.

1.

Table 4.1: Induction motor parameters

Stator resistance, Ry 520
Rotor resistance, R, 4.0Q
Stator self inductance, L 0.347 H
Rotor self inductance, L, 0.347 H
Mutual inductance, L, 0.336 H
Combined inertia, J 0.000153 kg-m”

Figure 4.8 show the photograph of the three phase induction motor.

Figure 4.8: Induction motor 0.25 hp
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4.6 Dynamometer

The dynamometer used as the load is manufactured by Feedback Inc. model
ETL-174N. The dynamometer is operated through a controller model ELT-174 R.

The tachogenerator as a speed sensor is fitted to the dynamometer. Output
voltage of the tachogenerator is fedback to the dynamometer controller to adjust the
torque of the dynamometer. This dynamometer controller provides two types of load
function i.e. constant torque and torque that is proportional to speed. Photograph of

the dynamometer and dynamometer controller are shown in Figure 4.9.

Figure 4.9: Dynamometer and the dynamometer controller
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4.7 Summary

This chapter has presented the major components used in the experimental

set-up. These include:

- The controller board DS1102
- 3-phase VSI and gate drivers

- Induction motor and dynamometer

The tasks performed by the controller board have been discussed. The parameters
and specifications of the VSI, gate drivers and the induction motor have also been

explained.



CHAPTER V

SIMULATION AND EXPERIMENTAL RESULTS AND DISCUSSION

51 Introduction

This chapter presents the simulation and experimental results and discuss on
the proposed method towards the achievement of the research objective. The chapter
begins by looking at the simulation results of the proposed controller. In the
simulation, the effect of on-line/real-time learning control scheme to the robustness
of the neural networks controller against the motor parameter variation is

investigated.

In order to verify the efficiency improvement of the neural network efficiency
optimization control, the developed controller is compared with the neural network
constant volt per hertz method. The proposed Neural Network Efficiency
Optimization Controller (NNEOC) is then applied to the experimental set-up. In this
set-up, the comparison between the proposed controller and Neural Network
Constant Volt per Hertz (NNV/f) is verified. This chapter also presents the
advantages of the proposed controller in efficiency optimization control area, and
some of its limitations. The chapter ends by presenting a summary of the results.
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5.2 Simulation Results

Simulation of the efficiency optimization of the proposed control scheme is
carried out using various block developed to represent the actual system using the
MATLAB/SIMULINK program. The Simulink block consists of three major blocks,
i.e. the three phase induction motor and compressor load block, three phase space
vector PWM inverter block and the controller block. These blocks are designed in

the S-function block by employing Borland C++ program.

Based on the proposed control scheme as shown in Figure 3.10, development
of the Simulink blocks of a variable speed compressor motor drive system is shown
in Figure 5.1.
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Based on the neural network and learning algorithm equations that have been
described in the section 3.4, a detail Simulink block of the proposed neural network

efficiency controller is shown in Figure 5.2.

f*

NNEOC

pin

S-Function

V*

Pin

Figure 5.2: Simulink block of the neural network efficiency optimization

controller

Detail simulation blocks and S-function program of the induction motor,

compressor load and space vector PWM are given in APPENDIX D.

5.2.1 Control Performance Against Motor Parameter Variations

It has been described in the Chapter 2 that, the induction motor parameters
value is not constant, but these parameters vary with temperature and magnetic
saturation. To simulate the induction motor with parameter variation, particularly on
the resistance variation due to temperature variation, a temperature Simulink block is
added and fed into the induction motor block. The stator and rotor resistances

variation on this simulation are determined by equation 2.3 and 2.7.
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To illustrate the robustness of the proposed motor drive controller against the
parameter deviation, a parallel block of the proposed controller with on-line and off-
line learning scheme at same reference speed command and same load condition was
developed. Figure 5.3 show the development of the Simulink block with parallel

controller.
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For this purpose the stator and rotor resistance of the motor are changed with
the increase in temperature from the ambient (20°C) to a maximum (105°C) for A
class isolation (Boldea and Nasar, 1997). At the start of the plot, the motor was
operated under ambient temperature and after that at 5 second the temperature is

increased up to the maximum value.

Response of the rotor speed when temperature is changed to maximum value
at reference speed 1000, 800 and 600 rpm are shown in Figure 5.4a, 5.4b and 5.4c
respectively.

1100 : ! |

1080
1060 - | : , 5 |
1040 |- 5 5 y

1020 -

on-line NNEOC

1000 B \(‘\ B

080 | ' -
off-line NNEOC

speed (rpm)

920 - ‘ § : |

900 i i | i | i i
4 45 5 55 6 6.5 7 7.5 8
time (s)

()

Figure 5.4: Simulation results, response of the rotor speed when the temperature is
switched from 20°C to maximum 105°C at (a) a speed reference command of 1000
rpm, (b) a speed reference command of 800 rpm and (c) a speed reference command
of 600 rpm.
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Figure 5.4: (continued).
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The simulations results in Figure 5.4 (a), (b) and (c) show that, increasing the
resistances due to the temperature variation causes disturbance to the rotor speed.
However by using the proposed on-line learning scheme, the deviation of the rotor
speed can be compensated and return to the original speed reference command.

It should be emphasized that, by using the proposed on-line learning scheme,

the controller is more robust against the resistance parameters variation.

5.2.2 Efficiency Improvement of the Neural Network Efficiency Controller

To investigate the efficiency improvement of the proposed controller, two
Simulink controller blocks of the proposed controller and neural network constant
volt per hertz are developed in parallel. In order to switch the controller from the
proposed controller to neural network constant volt per hertz or vice versa, a switch
selector block is added and fed to the controller. Simulink block of the parallel

controller is shown in Figure 5.5.
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At the start of the plot, the variable speed compressor motor drive system was
operated by neural network constant volt per hertz, after the system is stable at 3
second the controller is switched to the proposed controller. Figure 5.6 shows the
response of the input power, rotor speed and stator voltage of the motor when the
control is switched from the neural network constant volt per hertz to the proposed

controller at speed reference command of 500 rpm.
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60 - 3 g : -
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(@)

Figure 5.6: Simulation results (a) input power consumption of the motor (b) speed
of the motor (c) stator voltage of the motor when the controller is switched from
NNV/f to proposed method at t=3 second for the same speed (500 rpm) and load

(0.163 Nm) condition
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Figure 5.6: (continued)
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Other simulation result for the same test at a speed reference command of 600

rpm is shown in Figure 5.7.
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Figure 5.7: Simulation results (a) input power consumption of the motor (b) speed
of the motor (c) stator voltage of the motor when the controller is switched from the
neural network constant volt per hertz to proposed method at t=3 second for the
same speed (600 rpm) and load (0.235Nm) condition
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5.3 Experimental Results

Based on the experimental set-up that has been described in the chapter 4,
both of the on-line learning schemes proposed controller and neural network constant
volt per hertz control are developed in the DSP controller board. The speed reference
command and switching selector command to choose between the proposed
controller and neural network constant volt per hertz are developed as an interactive
variable via Dspace Control Desk program. The source codes of the developed
programs of the DSP are given in APPENDIX E.

In this experiment, to verify the efficiency improvement of the proposed
controller, the same procedures that have been done in the simulation test in section
5.2.2 is developed. Initially, the motor is run at reference speed command by using
neural network constant volt per hertz, and maintaining the same load condition the

controller was changed to the proposed controller.

Figure 5.8 show responses of the rotor speed, electromagnetic torque, stator
voltage and input power motor when the controller is switched from the neural
network constant volt per hertz to the proposed controller at a speed reference
command of 500 rpm.
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Figure 5.8: Experimental results (a) input power consumption of the motor (b) speed
of the motor (c) stator voltage of the motor when the controller is switched from the
neural network constant volt per hertz to proposed method at t=3 second for the

same speed (500 rpm) and load (0.163 Nm) condition
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Figure 5.8: (continued)
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Other experimental result for the same test at a speed reference command of

600 rpm is shown in Figure 5.9.
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Figure 5.9: Experimental results (a) input power consumption of the motor (b) speed
of the motor (c) stator voltage of the motor when the controller is switched from the
neural network constant volt per hertz to proposed method at t=3 second for the

same speed (600 rpm) and load (0.235Nm) condition
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The experimental results show that, by using the proposed controller, the
input power consumption and stator voltage reduce, and the speed of the motor can
be maintained constant in accordance to the speed reference command. Comparison
of the efficiency between proposed controller and neural network constant volt per

hertz is for several speed operations is given in Figure 5.10.

100

90 4 - ——NNEOC —s—NNV/FA |

efficiency (%)

0 200 400 600 800 1000 1200 1400
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Figure 5.10: Comparison of the efficiency between the proposed controller and

neural network constant volt per hertz
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5.4 Summary

In this Chapter, verification of the proposed efficiency optimization control
for variable speed compressor motor drive has been presented. The robustness of the
on-line learning scheme neural network efficiency optimization against motor
parameters variation has been tested by simulation, particularly based on the
temperature variation. It was found that the proposed on-line learning scheme is

more robust to the stator and rotor resistance deviation.

Comparison of the efficiency between the proposed controller and the neural
network constant volt per hertz has been verified by using simulation and
experimental set-up. It was found that, by using the proposed controller the
efficiency of the motor can be increased. In addition, at the same time the rotor

speed can be maintained constant according to the speed reference command.



CHAPTER VI

CONCLUSSION AND FUTURE WORK

6.1 Conclusions

This report has presented the theoretical and practical improvement on
efficiency optimization of variable speed compressor motor drives. The major issue
related to the basic methods of the efficiency optimization control which is based on

mathematic derivation and power input measurement have been discussed.

Previous research works conducted in these areas were briefly reviewed. This
includes the model loss control and search control methods control scheme to
optimize the motor flux as well as to increase the efficiency. The various artificial

intelligent techniques for efficiency optimizations were briefly reviewed.

Improvement on efficiency optimization control on the scalar control method
of a variable speed compressor motor drive has been proposed in this thesis.
Development of the neural network control to optimize the efficiency of the

compressor motor at low speed operation has been presented.

The adaptive neural network controller has been proposed by on-line learning
scheme. Simulations on the neural network efficiency controller with on-line and
without on-line learning scheme have been conducted to investigate the robustness of
the proposed controller. It is shown that the on-line learning technique improves the

robustness of the controller.
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To increase the efficiency of the compressor motor drive particularly at low
speed and load operation, a neural network efficiency optimization control to

optimize stator voltage and frequency has been proposed.

Simulation and experiments on the variable speed compressor motor drive
system with neural network efficiency optimization control and neural network
constant volt per hertz scheme have been conducted to verify the efficiency
improvement of the proposed controller. The results obtained clearly show that the
efficiency at low speed is significantly increased.

6.2 Future Work

Several recommendations of future work are listed as follows:

a. Currently the proposed controller intended to improve the efficiency
optimization of the compressor motor drive load model, of which the
typical load does not require high dynamic response. Therefore for other
types of load that need high dynamic response, the vector control of

neural network efficiency control can be considered.

b. In this proposed efficiency optimization, the development was based on
the motor flux level optimization. Currently in this thesis three phase
sinwave generator symmetric space vector PWM was employed.
Incorporating to the overall losses on the motor drive system, it is also
important to minimize the losses of drive system by development of the

optimal space vector PWM technique.
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APPENDIX A

DS1102 CONTROLLER BOARD

DS1102 Block Diagram
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Figure A.1 Block diagram of DS1102 Controller Board

Figure A.1 Block diagram of DS1102 controller board
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B. Data sheet of IGBT
-
e e e a1
Absolute Maximum Ratings Values SEMITRANS® M
Symbol | Conditions ! ..123D units | |GBT Modules
:av, G :gg 3 SKM 50 GB 123D
oon ae = L1 KM L
|- Tease = 2580 °C 50740 A s S0 GAL 123D
I Teass = 2580 °C Iy = 1 ms 100/ 80 A
Yazs +20 v
Piat par IGBT, Tewe = 25 °C 310 w
T (Teg) -40. . .+150(125) C
Wou AC, 1 min, 2500 v
humidity | DIN 40 040 Class F
cimate DINIEC88T.1 40/125/56
Dicdes
==l Teats = 25/80 “C 50440 A
Iyt = Bang | Tesse = 25/80 "Citp= ¥ s 100 7 B0 A SEMITRANS 2
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It ty= 10 ms; Ty = 150 °C 1500 a’s
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Venices Vag=0,lc=1mA 2z Vees - - 14 GAL
Vot Vor = Veg, lc = 2 mA 45 55 6.5 v
legs Vee=0 |Ty= 25°C - 03 1 R Fenmrn_
Vee = Vees | Ty= 125 °C - 3 - mA *+ MOS mput (vellage conltrotied)
Lok Vor = 20V, Ve = 0 3 4 200 1A * N channal, Homogeneous Si
Voew | ko= d0A { Vee=15V: 1| - 2581 3sn| Vv DA i i s O
Veew | l=50Al Tim2s(2s)el | - 2738 - v % REREY DAVSIEN EH UL SRS oW
A Vee =20V, s =40 A 20 s s tomporature dependence
+ High shor circull capability,
Coc por IGBT - - 350 pF sall [imiting 10 6 * Ly
Cy 1 Voe=0 - 3300 4000 pF « Lalchwup frea
Cenr [ Veg =25V = 500 600 pF * Fast& soft inverse CAL
Co f=1MHz + 220 300 pF diodes™
[ - - 30 nH + Isolated copper basopinte
laioe Vee =600 V - 70 - ns uging DCB Direct Coppar Bon-
L Vg 4w 15V /. 15 - 60 - ns ding Technology
Lo | 1c =40 A, indload - 400 - ns = Largo clearance (10 mm) and
i Réson = Fgan = 27 0 - a5 = ns creepage Gistances (20 mm).
E; , ] fi=125°C & b - mWs
Eg™ = 45 3 mWs ‘l’yplcﬂl Applications; —+ 8 6-85
5 - Three phase invertor drives
VieVeo |le=40Af Vee=0V: || - 185186 22 | V $ - SRAANG ) 5 N el
VezVee | rw50A L Ty=25(125) C = 2.001.8) = v B Tiyee = 25 °C. unloss othonwise
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i =128 0 = i a2 i # lp=-lg, Va = 600V
ok LAt T=25028 ¢ -~ 2338 - A e 2
a I = 4D A T,=25 (425 on 287 ¢ : hefdt = BOO Afps Ver=0V
- Ll g 25 (e i 37) o [ U Use Vggm=-5..-15V
Thetrnal Chasaclenstics % Seafig. 2 + 3 Rae = 27 1)
P par IGET - - 04 | ‘CW B CAL « Conlraliod Axial Lifatima
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PM3000ACE POWER ANALYSER

APPENDIX C

C. Block diagram of PM3000ACE
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APPENDIX D

SIMULATION OF NEURAL NETWORK EFFICENCY OPTIMIZATION
CONTROL

Equations of the induction motor, space vector PWM -voltage source
inverter and neural network controller models are represented using the S-function
and SIMULINK blocks. The S-function is written using C language and compiled as
a MEX-file using mex utility (Mathwork, 1997).

D.1 Simulink Block of Induction Motor

The induction machine model used for the simulation is developed by

equations (Wade et al., 1994 and Nik-1dris, 2000):

v, =2y iy _1Ly (D.1)
gs 3 as 3 bs cs
oty 1 (D.2)
Vg = \/gvbs + \/§Vcs
. RL  —alj, ~abyl, | L, 0 ©3)
isq :L @Lfn RL agLL -RL !sq+ 1 0 L ||V
ig| Lk all, RL  all [i| L-LLI L 0]V
i —aLl, RL, -aLlL RL i 0 L,
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20, (. .. (D.4)
Te =§§ Lm(lrdlsq _Irqlsd)
4o, _ 2 do, (D.5)
dt p dt
:Te _Tload _a)rB (D6)

The inputs to the induction motor Simulink block are the stator voltage and
the rotor speed. The outputs are the stator rotor currents and electromagnetic torque.
In this simulation the input power, mechanical power and efficiency also be

calculated. The Simulink block of the induction motor is given in Figure D.1.

1 _h » 2
va Pin
- IM-Medel
v i
Ind
Te
e : Integrator
rad's=rpm ‘ )
speed Te
-ﬂ—._ @ - .
.
friction Eff
p mech
| u{1*u{1}~8.525=-7
Je{ Thoz
T load S = - =®
pul I Pmech

Figure D.1: Induction motor Simulink block
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D.2  Simulink Block of Space Vector PWM

The representation of rotating vector in complex plane is shown in Figure
D.2.

V3(010) V(11 0)

VA0 V(1 00)
1

V(0 0 0)
V7(111)

Vs(00 1) Ve(101)

Figure D.2: Inverter state and switching plane

The required time duration can be calculated by following equation (Zhou
and Wang, 2002):

Sector 1:

J3 (D.7)

t, =—mT, cos(« +£)
2 6

Ne (D.8)

3z
t, =—mT. cos(a +—
b 2 S ( 2)
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Sector 2:

3 117 (D.9)

t, =—mT, cos(a + —)
2 6

a

(D.10)
t, = @ mT, cos(a + 7—ﬁ)
2 6
Sector 3:
(D.11)
t, = ﬁ mT, cos(a + 3—7[)
2 2
(D.12)
t, = @ mT, cos(e + 5—7[)
2 6
Sector 4:
(D.13)
t, = ﬁmTS cos(a + 1L
2 6
(D.14)
t, = ﬁ mT, cos(a + Z)
2 2
Sector 5:
(D.15)
t, = ﬁ mT, cos(a + 5—7[)
2 6
J3 (D.16)

T
t. =—mT.cos(a +—
b 2 S ( 6)
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Sector 6:
(D.17)
t, = ﬁ mT, cos(e + Z)
2 2
(D.18)
t, = ﬁ mT, cos(e + ﬁ)
2 6
(D.19)

t,+t, =T, —t, —t,

The construction of the symmetrical pulse pattern for each switching period is shown

in Figure D.3.
to/ 2 ta/ 2 tb/ 2 to/ 2 to/ 2 1:b/ 2 ta/ 2 tO/ 2
0 1 1 1 1 1 1 0
to ta ty o to ty ta to
o ta ty to to ty ta to
1o ta ty to to ty ta to
ty to ts ts ts ts t7

Figure D.3: Symmetrical switching state period for sector 1.
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The switching sequence in Figure D.3 related to equations D.7-D.19 is given by:

D.20
(=t = tZO (D.20)
t, (D.21)
tz = t6 = E
t (D.22)
gzgzg

The inputs to the space vector PWM Simulink block are the modulation index
(voltage reference) and modulation frequency (frequency reference) signals. The
outputs are the IGBT switching signal state. Then these signals are fed to voltage
source inverter. The Simulink block of the space vector PWM and VSI are given in
Figure D.4.

Switch A

SV-PW

Figure D.4: Space Vector PWM and VSI Simulink block
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Line to line fundamental voltage in rms is given by:

\Bav, (D.33)

\Y
ab \/Eﬂ' 2

D.3 Simulink Block of Neural Network Controller

The neural network efficiency optimization controller used for the simulation
is based on equations (2.22) - (2.60). Figure D.5 shows the Simulink block of the

controller.

Meural Control

Figure D.5: Neural network controller Simulink block



137

APPENDIX E

SOURCE CODE LISTINGS

DSP source code listing for space vector pulse width modulation of the

inverter

[*=====NNEOQOC.¢ =====================================/
* 1. Space Vector PWM and *
* 2. Neural Network Efficiency Controller *
*  Using Levenberg Marquardt Algorithm *
* Writen by Wahyu Mulyo Utomo *
*o——————————=———————=——————=—————————=——————=———===c%/

#include <brtenv.h>
#include <math.h>
#define pi 3.141592654
#define DT 0.000150
#define DT2 0.01
#define input(u) \
ds1102_ad_start(); \
in1=ds1102_ad(1); \
in2=ds1102_ad(2); \
in3=ds1102_ad(3);
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#define output(y) \
ds1102_da(1,oul); \
ds1102_da(2,0u2); \
ds1102_da(3,0u3);

float exec_time;

int dcamin3a=0;
float dcamin3=0;

int spinla=0;
float spin1=0;
float in1=5;
float in2=0;
float in3=0;
float oul=0;
float ou2=0;
float ou3=0;

int power_input();
int signal_port=0;
int on=2;
int start=2;
int control=0;
float sp_on=300;
int time_on=1;
float sp_off=1450;

int time_off=1;

int speed_ref();
int sp_ref=1450;



int sp_runref=145;
float sp_nom=1450;
float sp_min=500;
int five=0;
int six=0;
int sev=0;
int eig=0;
int nine=0;
int ten=0;
int fteen=0;
float sp_in=500;
int up=0;
int dw=0;

float inisnn();
float softst();
float run();
float svpwm();

float run_pin();

float softst()
{
if (sp_on<sp_nom){

sp_on=sp_on+0.15;}

else {sp_on=sp_on;}
mf=sp_on/sp_nom;
mi=mf;
annmf=mf;
pinann=mij;
sp_ref=sp_on;
if (sp_ref>=sp_nom) {

sp_ref=sp_nom;}
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return;

}

int power_input()
{
if (on==1){
start=1,
time_off=1;

sp_off=sp_on; }

if (on==0){
start=0;
time_on=1;
sp_on=300; }
return;

}

float run()
{
sp_ref=sp_runref*10;
xin=sp_ref/30;
mtrsp=rpm_rotor/30;

errsp=(xin-mtrsp);

if (annmf>0.25){
if (annmf>=1){
if (errsp<0){
learning(); }
}
else {
learning();}
}

else {
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if (errsp>0){
learning(); }
}
neural_net();
return;
}

float run_pin()

{
pin_ref();
pin_sensor();
scale_pin();
if (pinann>0.25){
if (pinann>=1){
if (pinerr<0){
learn_pin(); }}
else {
learn_pin();}}
else {
it (pinerr>0){
learn_pin(); }}
nn_pin();
return;
¥

float speed_sensor()

{

rpm_rotor=rpminc;

return;

}
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float speed_sensor();

int rpm_rotor=1000;
float mtrsp=0;

int rpminc=0;

int spinc1=0;

float spinc2=0;

int vinc=0;

float rpmincft=0;

int soinc=0;

[* 2. Space Vector - PWM  --------m-m-mmmmmemmem oo */

float mi=0;

float mf=0;
float freq=0;
float period=0;

int counter();
int q=0;

float sin_waves();
int n=0;
float w=0;
float va=0;
float vb=0;
float vc=0;
float vd=0;
float vq=0;

float ampl_theta ();
float amp=0;

float ang=0;
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int sector ();

int sec=0;

float time_abnul();

float ta=0;

float th=0;

float tnul=0;
float tcycle=0;
float dtcycle=0;
float tmax=0.0;
float tabgain=0.7846;

int gate_abc ();
float t_one=0;
float t_two=0;
float t_three=0;
float t_four=0;
float t_five=0;
float t_six=0;
float t_mdI1=0;
float t_mdI2=0;
float t_ mdI3=0;
int ga=0;
int gb=0;
int gc=0;
int swA=0;
int swB=0;
int swC=0;

int enabl=0;
float vab=0;
float vbc=0;

float vca=0;



int out;
int emergency=0;

int reset=0;

int counter()
{
static int g=0;
Q++;
if (>(1/(mf*DT*50)))
{9=0:}
return(q);

float sine_waves ()
{
freqg=mf*50;
period=1/freq;
w=2*pi*mf*50;
n=counter();

va=mi*sin(n*w*DT);

vb=mi*sin(n*w*DT-(120*pi/180));
ve=mi*sin(n*w*DT+(120*pi/180));

vd=(va-0.5*vb-0.5*vc)*2/3;
vg=(vb-vc)/sqrt(3);

return;

}
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float ampl_theta ) {
amp=sqrt(vd*vd+vg*va);

if (vd>=0 && vg>=0){

ang=atan(vqg/vd); }
else if (vd<0 && vg>=0){
ang=pi+atan(vg/vd); }
else if (vd<0 && vg<=0){
ang=-pi+atan(vg/vd); }
else{
ang=atan(vqg/vd); }
return;
}
[* - Sector References ---------------------- */

intsector ) {
if (ang>=0 && ang<=1.047){
sec=3;
ta=tabgain*mi*tmax*cos((3*pi/2)+ang);
tb=tabgain*mi*tmax*cos((5*pi/6)+ang); }
else if (ang>1.047 && ang<=2.0944){
sec=1,
tb=tabgain*mi*tmax*cos((pi/6)+ang);
ta=tabgain*mi*tmax*cos((3*pi/2)+ang); }
else if (ang>2.0944 && ang<=3.1416){
sec=5;
ta=tabgain*mi*tmax*cos((5*pi/6)+ang);
tb=tabgain*mi*tmax*cos((pi/6)+ang); }
else if (ang>-3.1416 && ang<=-2.0944){
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sec=4,
tb=tabgain*mi*tmax*cos((7*pi/6)+ang);
ta=tabgain*mi*tmax*cos((pi/2)+ang); }
else if (ang>-2.0944 && ang<=-1.047){
sec=6;
ta=tabgain*mi*tmax*cos((pi/2)+ang);
tb=tabgain*mi*tmax*cos((11*pi/6)+ang); }
else{
sec=2;
tb=tabgain*mi*tmax*cos((11*pi/6)+ang);
ta=tabgain*mi*tmax*cos((7*pi/2)+ang);
}

return;

float time_abnul ()

{ tmax=1,
dtcycle=0.102;
tcycle=tcycle+dtcycle;
if (tcycle>=tmax){
tcycle=0; }

tnul=(tmax-ta-tb);
if (tnul<0){
tnul=0;}

return;

}



int gate_abc () {
t_one=tnul/4;
t_two=(tnul/4)+(ta/2);
t_three=(tnul/4)+((ta+tb)/2);
t_four=(3*tnul/4)+((ta+tb)/2);
t_five=(3*tnul/4)+tb+((ta)/2);
t_six=(3*tnul/4)+ta+tb ;

if (tcycle<t_one || tcycle>t_six ){
ga=0;
gb=0;
gc=0; }

else {

if (sec==3){
if (tcycle<t_two){
ga=1;
gb=0;
gc=0; }
else if (tcycle<t_three){
ga=1;
gb=1;
gc=0; }
else if (tcycle<t_four){
ga=1;
gb=1;
gc=1; }
else if (tcycle<t_five){
ga=1;
gb=1;
gc=0; }
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else {
ga=1;
gb=0;
gc=0; }

if (sec==1){
if (tcycle<t_two){
9a=0;
gb=1;
gc=0; }
else if (tcycle<t_three){
ga=1;
gb=1;
gc=0; }
else if (tcycle<t_four){
ga=1;
gb=1;
gc=1; }
else if (tcycle<t_five){
ga=1;
gb=1;
gc=0; }
else {
9a=0;
gb=1;
gc=0; }
}
it (sec==5){
if (tcycle<t_two){
9a=0;
gb=1;
gc=0; }
else if (tcycle<t_three){
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ga=0;
gb=1;
gc=1; }
else if (tcycle<t_four){
ga=1;
gb=1;
gc=1; }
else if (tcycle<t_five){
9a=0;
gb=1;
gc=1; }
else {
9a=0;
gb=1;
gc=0; }
}
it (sec==4){
if (tcycle<t_two){
ga=0;
gb=0;
gc=1; }
else if (tcycle<t_three){
9a=0;
gb=1;
gc=1; }
else if (tcycle<t_four){
ga=1;
gb=1;
gc=1; }
else if (tcycle<t_five){
ga=0;
gb=1;
gc=1; }
else {
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ga=0;
gb=0;
gc=1; }
¥
if (sec==6){
if (tcycle<t_two){
ga=0;
gb=0;
gc=1; }
else if (tcycle<t_three){
ga=1;
gb=0;
gc=1; }
else if (tcycle<t_four){
ga=1;
gb=1;
gc=1; }
else if (tcycle<t_five){
ga=1;
gb=0;
gc=1; }
else {
9a=0;
gb=0;
gc=1; }

if (sec==2){
if (tcycle<t_two){
ga=1;
gb=0;
gc=0; }
else if (tcycle<t_three){
ga=1;
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gb=0;
gc=1; }
else if (tcycle<t_four){
ga=1;
gb=1;
gc=1; }
else if (tcycle<t_five){
ga=1;
gb=0;
gc=1; }
else {
ga=1;
gb=0;
gc=0; }
}
}

return;

}

float learning();
float errsp=0;

float dwasi=0;
float dwbsi=0;
float dwcsi=0;
float dbasi=0;
float dbbsi=0;
float dbcsi=0;



152

float dwasiold=0;
float dwbsiold=0;

float dwecsiold=0;

float dbasiold=0;
float dbbsiold=0;
float dbcsiold=0;

float erdwasi=0;
float erdwbsi=0;
float erdwcsi=0;
float erdbsi=0;

float neural_net();
float xin=0;
float annmf=0.25;

float wasi=0.0066;
float wbsi=0.0044;
float wcsi=0.0055;
float walo=0.4043,;
float wblo=0.302;
float wclo=0.353;
float wate=0.384;
float wbte=0.293;
float wcte=0.34;

float ba=0.0958;
float bb=0.0958;
float bc=0.0958;

float pin_ref();
float pinrunref=250;
float pinref=250;
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float pin_sensor();
float pinin=0;
float pinflt=0;
int pinint=0;
float pinin2=0;

float scale_pin();
float refpin=0;
float pin=0;

float pinerr=0;

float learn_pin();
float efdwa=0;
float efdwb=0;
float efdwc=0;
float efdba=0;
float efdbb=0;
float efdbc=0;

float efdwao=0;
float efdwbo=0;
float efdwco=0;
float efdbao=0;
float efdbbo=0;
float efdbco=0;

float eferdwa=0;
float eferdwb=0;
float eferdwc=0;
float eferdb=0;
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float nn_pin();
float pinann=0.25;

float efwal=0.4591;
float efwb1=0.3682;
float efwc1=0.2982;
float efwa2=0;
float efwb2=0;
float efwc2=0;
float efwa3=0;
float efwh3=0;
float efwc3=0;

float efba=-0.08276;
float efbb=-0.07485;
float efbc=-0.06485;

float inisnn () {
wasi=0.266;
whsi=0.2666;
wcsi=0.2676;
walo=0;
wblo=0;
wclo=0;
wate=0;
whbte=0;

wcte=0;

ba=0.07934;
bb=0.08899;
bc=0.09897;
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dwasi=0;
dwbsi=0;
dwcsi=0;
dbasi=0;
dbbsi=0;
dbcsi=0;

dwasiold=0; // delta wa_old
dwbsiold=0;
dwcsiold=0;

dbasiold=0;
dbbsiold=0;
dbcsiold=0;

erdwasi=0; // error delta (dwa-dwaol)
erdwbsi=0;
erdwcsi=0;
erdbsi=0;

return;

}

float pin_sensor()

{
pinin2=pinin;
return;

}
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float pin_ref()

{
pinrunref=(0.000215*sp_ref-0.18)*sp_ref+57;

pinref=pinrunref;

return;

}

float scale_pin()

{
refpin=pinref*0.0054;
pin=pinin2*0.0054;
efxin=pin
pinerr=(refpin-pin);
return;
}

float learning()

{
dwasi=(-errsp*(1-mtrsp*mtrsp)*wasi*alfa);
dwhbsi=(-errsp*(1-mtrsp*mtrsp)*wbsi*alfa);

dwecsi=(-errsp*(1-mtrsp*mtrsp)*wcsi*alfa);

dbsi=(-errsp*(1-mtrsp*mtrsp)*alfa);

erdwasi=dwasi-dwasiold:;
erdwbsi=dwbsi-dwbsiold;

erdwcsi=dwecsi-dwcsiold:;

dwasiold=dwasi;
dwbsiold=dwbsi;
dwecsiold=dwvcsi;

wasi=wasi+dwasi;



whsi=whbsi+dwbsi;

wcsi=wcesi+dwecesi;

ba=ba+dbsi;

bb=bb+dbsi;

bc=bc+dbsi;
return;

}

float neural_net()

{
walo=xin*wasi+ba;
whblo=xin*wbsi+bb;

wclo=xin*wcsi+bc;

wate=(1-exp(-2*walo)/ (1+exp(-2*walo);
whbte=(1-exp(-2*wblo)/ (1+exp(-2*wblo);
wcte=(1-exp(-2*wclo)/ (1+exp(-2*wclo);

annmf=wate+wbte+wcte;

if (annmf<=0.25){

annmf=0.25;:
}
if (annmf>=1){
annmf=1.0;
}
return;

}
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float learn_pin()

{
ej1=(1-efwa3*efwa3)*efxin;
ej2=(1-efwb3*efwb3)*efxin;
ej3=(1-efwc3*efwc3)*efxin;
ej4=(1-efwa3*efwa3);
ej5=(1-efwb3*efwh3);
ej6=(1-efwc3*efwc3);

eujjt=efalf+ejl*ejl+ej2*ej2+ej3*ej3+ejd*ej4+ej5*ej5+ej6™e)6;

ejtjl=((eujjt-ej1*ejl)+ej2*ej2+ej3*ej3+ejd*ej4+ej5*ej5+ej6*ej6) *ejl;
ejtj2=(ejl*ej1l+(eujjt-ej2*ej2)+ej3*ej3+ejd*ej4+ej5*ej5+ej6*ej6)*e)2;
ejtj3=(ejl*ejl+ej2*ej2+(eujjt-ej3*ej3)+ejd*ej4+ej5*ej5+ej6*ej6)*ej3;
ejtjd=(ejl*ejl+ej2*ej2+ej3*ej3+(eujjt-ej4*ej4)+ej5*ej5+ej6*ej6)*ej4;
ejtj5=(ej1*ejl+ej2*ej2+ej3*ej3+ejd*ej4+(eujjt-e]5*e]5)+ej6*ej6)*e)5;
ejtj6=(ejl*ejl+ej2*ej2+ej3*ej3+ejd*ejd+ej5*ej5+(eujjt-ej6™*ej6)) *ej6;

efdwa=(ejtj1*pinerr)/(efalf*eujjt);
efdwb=(ejtj2*pinerr)/(efalf*eujjt);
efdwc=(ejtj3*pinerr)/(efalf*eujjt);

efdba=(ejtj1*pinerr)/(efalf*eujjt);
efdbb=(ejtj2*pinerr)/(efalf*eujjt);
efdbc=(ejtj3*pinerr)/(efalf*eujjt);

efwal=efwal+efdwa;
efwbl=efwbl+efdwb;
efwcl=efwcl+efdwec;

efba=efba+efdba;
efbb=efbb+efdbb;
efbc=efbc+efdbc;
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eferdwa=efdwa-efdwao;
eferdwb=efdwb-efdwbo;

eferdwc=efdwc-efdwco;

efdwao=efdwa;
efdwbo=efdwb;

efdwco=efdwc;

return;

}

float nn_pin()

{
efwa2=efxin*efwal+efba;
efwb2=efxin*efwb1+efbb;
efwc2=efxin*efwcl+efbc;

efwa3=(1-exp(-efwa2)/ (1+exp(-efwa2);

efwb3=(1-exp(-efwhb2)/ (1+exp(-efwh2);

efwc3=(1-exp(-efwc2)/ (1+exp(-efwc2);

pinann=efwa3+efwhb3+efwcs3;

if (pinann<=0.25){

pinann=0.25;
¥
it (pinann>=1){
pinann=1.0;
}
return;

}
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void sv_genl ()
{
power_input();
speed_sensor();
pin_sensor();

if (start==1){
if (control==0){
softst();
sp_runref=145;
pinrunref=250;
pinref=250; }

if (control==1){
run();
run_pin();
mf=annmf;

mi=pinann;

if (control==2){
run();
mf=annmf;

mi=mf;



if (start==0){
sp_on=300;
control=0;
sp_runref=145;
sp_off=sp_ref;
sp_ref=sp_nom;
mf=0.24,
mi=0.24;
inisnn ();}
return;

}

float svpwm()
{
sine_waves ();
ampl_theta();
sector();
time_abnul();
gate_abc ();
enabl=1;

return;

}

void sv_gen ()

{
if ((Mf>=0.25)&&(mi>=0.25))

{

svpwm ();

¥
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else {
ga=0;
gb=0;
gc=0;
enabl=0;}

vab=ga-gb;
vbc=gc-gb;

vca=gc-ga;

return;

¥

void isr_t0()

{
out=(ga*1)+(gb*2)+(gc*4);

/*timerQ interrupt service routine*/

[*output switching gates*/

ds1102_pl14 pin_io_write(out);

isr_t0_begin();
host_service(1,0);
ticO_start();

sv_gen();
exec_time=tic0O_read();

isr_t0_end();
}

[*overload check*/
[*call TRACE service*/

[*start execution time measurement*/

[*calculate execution time*/

/*end of interrupt service routine*/
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/* ____________________________________________________ */
[* --- Main_t1 Program -------------=-------ememeououo- */
void isr_t1() [*timer1 interrupt service routine*/
{
isr_t1_begin(); [*overload check*/
host_service(1,0); /*call TRACE service*/
input(u);

pinflt=12.35*in3;
pinint=pinflt*100;

pinin=pinint;

rpmincft=15.81*in1;

rpminc=rpmincft*1000;

output(oul);
output(ou?2);

oul=mf/2; [*output NN Speed controller*/

ou2=mi/2;

sv_genl();

isr_t1 end(); /*end of interrupt service routine*/

}

void main ()
{
init();
ds1102_pl14 pin_io_init(Oxffff);
msg_info_set(MSG_SM_RTLIB, 0, "System started.");

isr_t0_start(DT);
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isr_tl start(DT2);

while (1)
{
while (msg_last_error_number()==DS1102_NO_ERROR)

host_service (0,0);
}
isr_t0_disable();
isr_t1_disable();

while (msg_last_error_number()!=DS1102_NO_ERROR)
{

host_service (0,0);

}

isr_t0_enable();

¥
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PRELIMINARY IP SCREENING & TECHNOLOGY ASSESSMENT FORM

(To be completed by Project Leader submission of Final Report to RMC or whenever IP protection arrangement is required)

PROJECT TITLE IDENTIFICATION :

To Develop an Efficient Variable Speed Compressor Motor System

Vote No: | 74535

PROJECT LEADER :
Name : Prof. Dr. Abdul Halim Mohd Yatim

Address: Fakulti Kejuruteraan Elektrik , Universiti Teknologi Malaysia
Skudai, Johor Baru 81310

Tel : 07-5535202 Fax : 07-5566272 e-mail : halim@ieee.org

DIRECT OUTPUT OF PROJECT (Please tick where applicable)

Scientific Research Applied Research Product/Process Development
DAIgorithm Method/Technique |:| Product / Component
|:| Structure Demonstration / |:| Process
|:| Prototype

Data |:| Software

[ ] other, please specify [ ] oOther, please specify [ ] Other, please specify

INTELLECTUAL PROPERTY (Please tick where applicable)
Not patentable Technology protected by patents

Patent search required Patent pending

Patent search completed and clean Monograph available
Invention remains confidential Inventor technology champion

No publications pending Inventor team player
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No prior claims to the technology Industrial partner identified
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LIST OF EQUIPMENT BOUGHT USING THIS VOT
. Dynamometer

. DC Suppy

. Computer

. Laser Jet Printer

. Power Semiconductor Device

. Electronic Components
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. Mechanical Components and Tools

STATEMENT OF ACCOUNT

a) APPROVED FUNDING RM : 400,000
b) TOTAL SPENDING RM : 400,000
C) BALANCE RM: 0

TECHNICAL DESCRIPTION AND PERSPECTIVE

Please tick an executive summary of the new technology product, process, etc., describing how it
works. Include brief analysis that compares it with competitive technology and signals the one
that it may replace. Identify potential technology user group and the strategic means for
exploitation.

a) Technology Description

This project includes the modelling, simulation and development of a variable speed
compressor motor drive. This project proposes a method that improves the efficiency of the
variable speed induction motor for driving compressor load by controlling the motor flux. A
digital signal processor (DSP) based on online learning neural network efficiency optimization
control is developed. The controller is designed to generate optimum flux by controlling both
the stator voltage and frequency. The simulation is verified by experimental test. The results
obtained clearly show that the efficiency at low speed is significantly increased. The project
has also produced 1 PhD graduate and also involved a number of final year undergraduate

students.

b) Market Potential
For the future, the energy cost will raise and the people were looking for the product with
high efficiency. Therefore this product very potential, because compared to the existing product

efficiency of this research product is significantly increased.
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C) Commercialisation Strategies

A Number of local variable speed compressor motor drive manufactures are aware of this

project and they interested to proceed further for commercialisation aspect.

RESEARCH PERFORMANCE EVALUATION
a) FACULTY RESEARCH COORDINATOR

Research Status () () () () () ()

Spending () () () () () ()

Overall Status () () () () () ()
Excellent Very Good Good Satisfactory Fair  Weak

Comment/Recommendations:

Signature and stamp of Date I
JKPP Chairman
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b) RMC EVALUATION

Research Status () () () () () ()
Spending () () () () () ()
Overall Status () () () () () ()
Excellent Very Good Good Satisfactory Fair Weak
Comments:-
Recommendations:

Needs further research
Patent application recommended

Market without patent
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No tangible product. Report to be filed as reference

Signature and Stamp of Dean / Date & i,
Deputy Dean
Research Management Centre




End of Project Report

A. Project number :
Project title: To Develop An Efficient Variable Speed Compressor Motor System
Project leader: Prof. Dr. Abdul Halim Mohd Yatim

Tel: 07-5535202 Fax: 07-5566272

B. Summary for the MPKSN Report (for publication in the Annual MPKSN Report, please summarise
the project objectives, significant results achieved, research approach and team strucure)

This project includes the modelling, simulation and development of a variable
speed compressor motor drive. This project proposes a method that improves the
efficiency of the variable speed induction motor for driving compressor load by
controlling the motor flux. A digital signal processor (DSP) based on online learning
neural network efficiency optimization control is developed. The controller is designed to
generate optimum flux by controlling both the stator voltage and frequency. The
simulation is verified by experimental test. The results obtained clearly show that the
efficiency at low speed is significantly increased. The project has also produced 1 PhD

graduate and also involved a number of final year undergraduate students.
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Objectives achievement

e Original project objectives (Please state the specific project objectives as described in Section Il of

the Application Form)

To develop an efficient variable speed compressor motor drive.

e Objectives Achieved (Please state the extent to which the project objectives were achieved)

The project objectives have been met whereby a small scale laboratory working
prototype was tested and working satisfactorily.

e Objectives not achieved (Please identify the objectives that were not achieved and give reasons)

None

Technology Transfer/Commercialisation Approach (Please describe the approach planned to

transfer/commercialise the results of the project)

Technology and expertise obtained from the outputs of the project can be
transferred through collaboration work with the variable speed compressor motor drive
industries. Such industries in Malaysia should take this opportunity as part of their
strategies in facing future energy saving product competition. Thus collaboration is also
needed with other organizations or industries that are focus on the application of variable

speed compressor drive such as air conditioning or refrigeration manufacturing.




E. Benefits of the Project (Please identify the actual benefits arising from the project as defined in Section Il of
the Application Form. For examples of outputs, organisational outcomes and sectoral/national impacts, please refer
to Section Il of the Guidelines for the Application of R&D Funding under IRPA)

e Outputs of the project and potential beneficiaries (Please describe as specifically as possible
the outputs achieved and provide an assessment of their significance to users)

The following outputs should be achieved by the project:
e A new conceptual design of a variable speed compressor motor drive with high
efficiency for low speed operation.

e A New control technique that improve the efficiency of the variable speed compressor
motor drive and maintain the speed output of the motors according to the speed
reference command.

e The direct beneficiaries of the project are the efficient variable speed compressor motor
drive system.

e Organisational Outcomes (Please describe as specifically as possible the organisational benefits
arising from the project and provide an assessment of their significance)

Contributions of the project on the level of the research organization are highlighted as

follows:

e 1PhD degree and 1 research staff with new specialization

¢ Royalties from consultation work that can be offered by the researchers based on the
technology, experience and expertise obtained from the project.

e Better facilities which include new equipments and staffs with practical expertise and
experience in Energy Conversion Department, UTM as a result of the hardware
development of the controller.

The Energy Conversion Department, UTM get recognition as a local center with
expertise and experience in the development of efficient variable speed compressor
motor drive, where the variable speed compressor industries can opt to refer to, instead
of depending on foreign expertise.

¢ National Impacts (If known at this point in time, please describes specifically as possible the potential
sectoral/national benefits arising from the project and provide an assessment of their significance)

Contribution of the project on the national level:

¢ In modern countries like Japan, U.S.A and Europe active moving towards
commercialization of efficient variable speed compressor motor drive, output of the
project can definitely be a stepping stone for Malaysia towards linkages with these
foreign research institutions as a platform in exchanging ideas and experience.




Assessment of project structure

e Project Team (Please provide an assessment of how the project team performed and highlight any
significant departures from plan in either structure or actual man-days utilised)

There is no problem of manpower as the researcher is a PhD candidate.

e Collaborations (Please describe the nature of collaborations with other research organisations and/or

industry)

Technical drive was also granted from Compressor Laboratory of Mechanical Faculty, UTM
in term of ideas and suggestions

Assessment of Research Approach (Please highlight the main steps actually performed and indicate
any major departure from the planned approach or any major difficulty encountered)

Research approach follows as planned

Assessment of the Project Schedule (Please make any relevant comment regarding the actual duration
of the project and highlight any significant variation from plan)

The project schedule duration was extended due to the long process of purchasing of
components and equipment especially from overseas whereby approval was need from the
relevant authorities.




l. Assessment of Project Costs (Please comment on the appropriateness of the original budget and
highlight any major departure from the planned budget)

No departure from planned budget

J. Additional Project Funding Obtained (In case of involvement of other funding sources, please
indicate the source and total funding provided)

Nil

K. Other Remarks (Please include any other comment which you feel is relevant for the evaluation of this
project)

Date : Signature :




Benefit Report

1.

Description of the Project

w NN PP

Project identification

Project number : 03-02-06-0031-PR0023/11-02

Project title : To Develop An Efficient Variable Speed Compressor Motor System
Project leader : Prof. Dr. Abdul Halim Mohd Yatim

Type of research

Indicate the type of research of the project (Please see definitions in the Guidelines for
completing the Application Form)

[ ] Scientific research (fundamental research)
[ ] Technology development (applied research)
Product/process development (design and engineering)

|:| Social/policy research

Objectives of the project
Socio-economic objectives

Which socio-economic objectives are adressed by the project? (Please indentify the sector,
SEO Category and SEO Group under which the project falls. Refer to the Malaysian R&D
Classification System brochure for the SEO Group code)

Sector: Energy, Mineral and Geo Science
SEO Category: Energy Resources (S 20400)
SEO Group and Code: Preparation and supply of Energy Source Materials (S 20403)

Fields of research

Which are the two main FOR Categories, FOR Groups, and FOR Areas of your project?
(Please refer to the Malaysia R&D Classification System brochure for the FOR Group Code)

Primary field of research

FOR Category: F10700 Engineering Sciences

FOR Group and Code: F10710 Mechanisation and Design Engineering

FOR Area: Other Mechanisation and Design Engineering

Secondary field of research

FOR Category: F10600 Applied Sciences and Technologies

FOR Group and Code: F10602 Manufacturing and Process Technologies and Engineering

FOR Area: Other Manufacturing and Process Technologies and Engineering
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Project duration
What was the duration of the project?

60 Months

Project manpower
How many man-months did the project involve?

27 Man-months

Project costs
What were the total project expenses of the project?

RM 400,000

Project funding
Which were the funding sources for the project?
Funding sources Total Allocation (RM)

IRPA RM400,000




Direct Outputs of the Project

A

1.

2.

Technical contribution of the project

What was the achieved direct output of the project :

For scientific (fundamental) research projects?
Algorithm
Structure

Data

i

Other, please specify :

For technology development (applied research) projects :
Z | Method/technique

7 | Demonstrator/prototype

NN

Other, please specify :

For product/process development (design and engineering) projects:
Product/component
Process

Software

UL

Other, please specify :

How would you characterise the quality of this output?
l:l Significant breakthrough
Major improvement

|:| Minor improvement




Contribution of the project to knowledge

How has the output of the project been documented?

[ ]
[ ]

Detailed project report
Product/process specification documents

Other, please specify :

Did the project create an intellectual property stock?

UL

Patent obtained
Patent pending
Patent application will be filed

Copyright

What publications are available?

N D

Articles (s) in scientific publications
Papers(s) delivered at conferences/seminars
Book

Other, please specify :

How Many: 6

How Many: 6

How significant are citations of the results?

L

Citations in national publications
Citations in international publications
None yet

Not known

How Many:

How Many: 2




Organisational Outcomes of the Project

A

Contribution of the project to expertise development

How did the project contribute to expertise?

PhD degrees

[ ] MsScdegrees

Research staff with new specialty
I:I Other, please specify:

How Many: 1

How Many:

How Many: 1

How significant is this expertise?

E One of the key areas of priority for Malaysia

|:| An important area, but not a priority one

Economic contribution of the project?

How has the economic contribution of the project materialised?

Sales of manufactured product/equipment
l:l Royalties from licensing

|:| Cost savings
|:| Time savings
[ ] Other, please specify :

How important is this economic contribution ?
|:| High economic contribution
Medium economic contribution

|:| Low economic contribution

Value:

Value:

Value:

RM

RM

RM




3. When has this economic contribution materialised?
Already materialised

Within months of project completion
Within three years of project completion

Expected in three years or more

JNDUL

Unknown
C Infrastructural contribution of the project
1. What infrastructural contribution has the project had?
New equipment Value: RM 194,880
l:l New/improved facility Investment: RM

|:| New information networks

[ ] Other, please specify:

2. How significant is this infrastructural contribution for the organisation?
I:I Not significant/does not leverage other projects
|:| Moderately significant

Very significant/significantly leverages other projects

D. Contribution of the project to the organisation’s reputation

1. How has the project contributed to increasing the reputation of the organisation
I:I Recognition as a Centre of Excellence
I:I National award

International award

Demand for advisory services

Invitations to give speeches on conferences

Visits from other organisations

JNDUL

Other, please specify:




2.

How important is the project’s contribution to the organisation’s reputation ?

[ ]
[ /]
[ ]

Not significant
Moderately significant

Very significant




1V. National Impacts of the Project

A. Contribution of the project to organisational linkages
1. Which kinds of linkages did the project create?

|:| Domestic industry linkages

|:| International industry linkages

E Linkages with domestic research institutions, universities

|:| Linkages with international research institutions, universities
2. What is the nature of the linkages?

l:l Staff exchanges

|:| Inter-organisational project team

|:| Research contract with a commercial client

Informal consultation
[ ] Other, please specify:

B. Social-economic contribution of the project
Who are the direct customer/beneficiaries of the project output?

Customers/beneficiaries: Number:

2. How has/will the socio-economic contribution of the project materialised ?
Improvements in health

Improvements in safety

Improvements in the environment

Improvements in energy consumption/supply

Improvements in international relations

JUN UL

Other, please specify:




3. How important is this socio-economic contribution?
l:l High social contribution
E Medium social contribution
[ ] Lowsocial contribution
4. When has/will this social contribution materialised?
Already materialised
Within three years of project completion

Expected in three years or more

UNDL

Unknown

Date: Signature:
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UNIVERSITI TEKNOLOGI MALAYSIA
Invention Disclosure

This form contains disclosure of invention or copyrightable material and should be submitted in
confidence to The Secretariat, Intellectual Property Committee, Research Management Centre
(RMC), Universiti Teknologi Malaysia, 81310 UTM Skudai.

1.

2.

5.

6.

Type of Material : Invention Iz/ Copyright |:|

Title of Invention or Copyright :

AN EFFICIENT VARIABLE SPEED COMPRESSOR MOTOR DRIVE.

Inventot(s) Full Name Department/Institute/
Approximate Centre/Unit % Contribution
3.1 Principal Prof. Dr. Abdul Halim ENCON/FKE 70%
Mohd Yatim
3.2 Associates Wahyu Mulyo Utomo ENCON/FKE 30%
3.3 Others

Identify sources and estimate % of support (materials, facilities, salaries) contributing to the
development of the invention :

Government Funds (IRPA, grants and /or contract) 100 %
UTM-RMC Funds 0 %
Other Institution (s) :
Name : %
Other source : %o

If developed with Government Funds :

Has invention been reported to granting agency ? Yes |:| No Izr
Agency Name : TRPA Report Date:
Grant Number : 74535

Has notification been made to the relevant Government Agency for retention of rights

to invention ?
Yes |:| No

Please attach copies of any correspondence with any Government agency related to
disclosure of invention or rights to invention.

If developed with other funds (industry sponsor, foundation grant, etc.) :

Has the invention been reported to the sponsor? Yes |:| No |:|

Source name : Report Date :

Please attach copies of relevant correspondence with the sponsor.

UTM Invention Disclosure Page 1 of 3
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7.

10.

Record of Invention :

7.1 Invention was first conceived on or about (Date) : 12/01/2004
7.2 An oral disclosure has been made :

(Name) Wahyu Mulyo Utomo on (Date) 01 / 11 / 2005
(Name) on (Date) _/__/

7.3 First sketch or drawing was made on (Date) : / / disclosed to and
understood by (Name ) : Wahyu Mulyo Utomo on (Date) : 12 / 01/ 2004

That document is now located at: P07-112-01

7.4 First written description was completed on (Date) : / / and that

document is now located at :

7.5 First reduction to practice was successfully tested on (Date) : / / and

the records of that test are now located at

7.6 First publication disclosing the invention was dated (Date ) : / /

List companies or individuals with whom you may have discussed this project and append
copies, showing dates, of all correspondence relating to their interest.

(Name) (Cotrespondence Date): __ / _ /

(Name) (Cotrespondence Date): __ / _ /

If you have communicated, via telephone, with any additional companies, please list the
company names, giving dates, and append a brief summary of your conversations.

(Name) (Communication Date): ___ /__ /

Summary of conversation:

(Note : Valuable rights to inventions may be lost if disclosed to outside parties unless signed
Confidentiality Agreement is obtained)

Has invention or components thereof been described in a draft of an article or lecture ? If so,
please attach copies of drafts of abstracts, manuscripts, or reprints and give proposed
presentation and/or publication dates.

(Type & Title of Draft) :

(Proposed Presentation Date) : / /
(Note : Premature disclosure of invention in lectures, articles, etc. may result in loss of all
right to obtain patent)

Briefly outline your views regarding potential commercial application of your invention :
10.1List potential licensees or manufacturers or companies active in this field.

Name : Focus Dynamic Technology Bhd.
Name : Schneider Scott & English Electric Sdn Bhd.
Name : Advance Control Engineering Sdn Bhd.

UTM Invention Disclosure Page 2 of 3
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10.2What is potential market ?

Focus Dynamic Technology Bhd

10.3Estimate commercial market in RM and USD : RM 5,000 USD

11. List independent referees with expertise in the area of the invention with whom we may
communicate for additional information (with your approval) :

(Name, address, contact nos. ) : Sio Kee Hong, 03-78450896

(Name, address, contact nos.) : Nik Rumzi Nik Idris, 019-7205854

12. Please append a full description of the invention which should include the following :

12.1 Drawings, diagrams, figures, flowcharts, sketches etc. which illustrate the invention.

12.2 Chemical structural form (if the invention is a new chemical compound).

12.3  List of equivalents which can be substituted for the invention or for components of
the invention.

12.4 Reprints of articles or patents describing inventions, methods etc. similar to the one
described in this disclosure.

12.5 Describe why your product or process is sufficiently novel compared to those already
available to warrant patentability.

Principal Inventor : Dean/Director :
(Signatnre) of Faculty/Centre/Institute  (Signature)
Name : Prof, Dr. Abdul Halim Name :
Mohd Yatim
Address: ENCON, FKE, UTM Address :
Telephone / Fax: 5535860/5578150 Telephone / Fax :
Date: 12 / 01 / 2006 Date : / /

UNIVERSITI TEKNOLOGI MALAYSIA RETAINS TITLE TO ALL INVENTIONS AND
PATENTS AS PROVIDED FOR IN THE INTELLECTUAL PROPERTY POLICY.

If you have any enquiry about this set of forms, or intellectual property protection in general,
please contact Deputy Director (IP Secretariat), Research Management Centre, UTM 81310
Skudai at 07-5502382 ot e-mail td2@rmc.utm.my.
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