IMPLEMENTATION OF MRAC, SVMPC AND PID CONTROL BASED ON DIRECT DIGITAL CONTROL APPLICATION FOR DC SERVOMOTOR

SALEHA BTE MOHAMAD SALEH

A project report submitted in partial fulfillment of the requirement for the award of the degree of Master of Engineering (Electrical - Mechatronics & Automatic Control)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > NOVEMBER, 2005

To my husband, Zairulazha. Thanks for your tremendous love and support. I owe a lot to you.

ACKNOWLEDGEMENT

Alhamdulillah, a lot of praise and 'syukur' to ALLAH. I wish to express my sincere gratitude and appreciation to my supervisor, Associate Professor Dr. Mohd. Fua'ad bin Haji Rahmat for giving me a chance to handle this project. Without his neverending guidance, patience and encouragement throughout this project, I would never finish the thesis as it is. Thank you very much! Not forget to the laboratory assistant, Mr. Fazli, who spends time to help my researches in the lab.

I would like to thank the Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM) for sponsoring my study in the form of a scholarship. I also would like to thank Mr. Mohd. Ariff Mat Hanafiah and Mr. Syed Najib Syed Salim, to whom I owe thanks for helping me, secure the scholarship.

A very special thanks to my beloved parents, Mariah Abdullah and Mohamad Saleh Ahmad, for their enduring patience, understanding and for all the pray. Without both of you, I do not think that I can get through this. Last but not least, I would like to use this opportunity to say thank you to my beloved brother and his wife, Mohamad Nor, for taking care of our mum and dad. Finally, I would like to express my appreciation to all my friends, especially to Zuraida and Herdawati, thanks for your love and constant moral support.

Thank you to all of you Assalamualaikum.

ABSTRACT

The project focused on speed control of DC servomotor under load variation using Direct Digital Control technique. The main objective is to design and develop GUI software for speed control experiment, where Single Variable Model Predictive Control (SVMPC), Model Reference Adaptive Control (MRAC) and PID controllers' design approaches has been applied. The main purpose of using the SVMPC is to achieve perfect control using an Internal Model Control (IMC) strategy. The desired behavior of the adaptive controller is expressed by utilizing reference model, and the algorithms have been realized using the Lyapunov method and MIT rules.

The Direct Digital Control approach is selected to replace the conventional method regarding on controlling the speed of DC motor because of its advantages in terms of cost reduction, simplicity, flexibility and give better performance than previous one. The original speed control experiment is conducted and data is recorded. Based on the information that been gathered, the controllers have been designed and the system is simulated using MATLAB to analyze their initial performance. The computer is connected to MS150 Modular Servo System via AX5412 data acquisition card and Microsoft Visual Basic 6.0 is used to conduct the experiment. Field-testing is implemented to compare the results between the original and modified system within three types of controller. Finally, the performance of the system is analyzed and validation is done in terms of time response, robustness and percentage of error.

ABSTRAK

Projek ini memfokuskan kepada sistem kawalan halaju bagi motor servo arus terus yang dikenakan pelbagai beban dengan menggunakan teknik kawalan digital secara langsung. Objektif utama projek ini adalah untuk merekabentuk dan membangunkan perisian interaktif komputer untuk ujikaji sistem kawalan halaju, di mana teknik Kawalan Model Ramalan bagi satu pembolehubah, Kawalan Adaptasi Model Rujukan dan Kawalan PID diaplikasikan bagi rekabentuk sistem kawalan untuk motor tersebut. Matlamat utama menggunakan Kawalan Model Ramalan bagi satu pembolehubah adalah untuk mendapatkan kawalan sempurna dengan menggunakan strategi Kawalan Model Dalaman (IMC). Manakala sifat kawalan yang dikehendaki diterjemahkan dalam bentuk model rujukan dengan menggunakan kaedah Lyapunov dan aturan MIT.

Teknik kawalan digital secara langsung dipilih untuk menggantikan kaedah lama dalam pengawalan halaju bagi motor arus terus kerana kelebihan-kelebihannya iaitu dari aspek pengurangan kos, fleksible, mudah dan memberikan prestasi yang lebih baik dari kaedah terdahulu. Eksperimen asal bagi kawalan halaju telah dijalankan dan data-datanya telah direkodkan. Berdasarkan daripada maklumat yang didapati, sistem kawalan telah direkabentuk dan simulasi bagi sistem dilakukan untuk menilai prestasi asal dengan menggunakan perisian MATLAB. Komputer telah disambungkan kepada sistem servo MS150 menerusi kad DAQ dan perisian Microsoft Visual Basic 6.0 telah digunakan untuk menjalankan eksperimen. Ujian terhadap sistem dijalankan untuk tujuan perbandingan di antara sistem asal dengan sistem yang telah diubahsuai. Prestasi sistem dianalisa dan pengesahan telah dibuat dari aspek tindakbalas masa, ketegapannya dan peratus sisihan dengan nilai yang dikehendaki.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF APPENDICES	xvi
	LIST OF ABBREVIATIONS	xvii

1	INTI	RODUCTION	1
	1.1	Direct Digital Control Overview	1
	1.2	The benefit of Direct Digital Control	4
	1.3	Objectives	5
	1.4	Scopes of Work	5
	1.5	Research Methodology	5
	1.6	Thesis Outline	8
2	LITH	ERATURE REVIEW	10
	2.1	The Virtual Laboratory	10
	2.2	Enhancing Electrical Engineering Teaching	13
		Method	
	2.3	Design of PID controller for speed control	15
			10
3	SPEI	ED CONTROL OF DC SERVOMOTOR	19
	3.1	Introduction	19
	3.2	Power Supply Unit 150E	19
	3.3	Motor Unit 150F	20
	3.4	Servo Amplifier 150D	21
	3.5	Attenuator Unit 150B	21
	3.6	Reduction Gear Tacho Unit	22
	3.7	Operational Amplifier Unit 150A	23
	3.8	Loading Unit 150L	23
	3.9	Armature Control	24
4	MFT	THOD OF ANALYSIS	26
-	4 1	Modeling of the system	20 26
	4.1	System Identification	31
	ч.2 Д З	Controller Design for DC Servomotor System	33
	т.Э	4.3.1 PID controller	22
		4 3 1 1 Ziegler-Nichols Methods	35
		4.3.1.2 Controller Modes	27
		T.J.1.2 COMPONED WIDGES	51

		4.3.2	Model Reference Adaptive Control	41
			(MRAC)	
		4.3.2.	1 The MIT rule	42
		4.3.2.2	2 Lyapunov stability theorem	45
		4.3.3	Single Variable Model Predictive	46
			Control (SVMPC)	
		4.3.3.	1 Internal Model Control	47
		4.3.3.	2 The IMC Strategy	48
		4.3.3.	3 Practical Design of IMC	51
5	DIR	ECT DIO	GITAL CONTROL	53
	5.1	Introdu	action	53
	5.2	Device	Driver Installation	54
	5.3	AXIO	M's Hardware Device Setup	55
	5.4	Conne	ction	57
	5.5	Creatin	ng Graphical Interface Forms	59
6	RES	ULT AN	D ANALYSIS	63
	6.1	Introdu	action	63
	6.2	Origin	al Experiment	64
		6.2.1	Experiment 1: Determination of	64
			Tachometer Gain	
		6.2.2	Experiment 2: Speed – input voltage	67
			curve at no load	
		6.2.3	Experiment 3: Open Loop Speed	69
			Control System	
		6.2.4	Experiment 4: Gain effect on speed	72
			when load varies	

6.3	Simulation Result using MATLAB Simulink	75
	6.3.1 Experiment 5: MRAC controller on	75
	speed control	
	6.3.2 Experiment 6: IMC controller on speed	77
	control	
6.4	Interactive Learning	77
	6.4.1 Graphical User Interface (GUI)	78
	6.4.2 Experimental Result via DDC	84
	Technique	
	6.4.2.1 Experiment 1 – To determine	84
	tachometer gain	
	6.4.2.2 Experiment 2 – To determine speed-	85
	input voltage curve	
	6.4.2.3 Experiment 3 – Open-loop speed	86
	control system	
	6.4.2.4 Experiment 4 – Gain effect on speed	86
	when load varies	
	6.4.2.5 Experiment 5 – MRAC controller on	88
	speed control	
	6.4.2.6 Experiment 6 – IMC controller on	91
	speed control	
6.5	Comment on Performance of Controllers	92
CON	CLUSION	94
7.1	Conclusion	94
7.2	Future Work	95
REF	ERENCES	97
APP	ENDIX A	99
APP	ENDIX B	158

LIST OF TABLES

TABLE	DESCRIPTION	PAGE

2.1	Advantages of a Virtual Laboratory	11
4.1	Ziegler Nichols Rules	36
5.1	Action between modules	62
6.1	Result for Experiment 1	66
6.2	Result for Experiment 2	68
6.3	Result for Experiment 3 (Attenuator at position '10';	70
	Vin = 14.41V)	
6.4	Result for Experiment 3 (Attenuator at position '1';	70
	Vin = 0.8V)	
6.5	Result for Experiment 4 (Gain = 1 (Attenuator at	73
	position 10))	
6.6	Table for Experiment 4 (Gain = 5 (Attenuator at position	73
	1))	
6.7	Comparison regarding on the performances among P,	87
	PD, PI and PID controllers	
6.8	Comparison regarding on the controller's performance	92

LIST OF FIGURES

FIGURE DESCRIPTION

Equipment Setup	2
Block Diagram Comparison (a) The Original Closed	3
Loop Speed Control System (b) The Modified Closed	
Loop Speed Control System	
Components that been eliminated (a) attenuator (b)	4
operational amplifier (c) oscilloscope	
Design flow	7
Hardware structure of the virtual laboratory	12
PID controller	16
Control system block diagram	18
Power Supply Unit	20
DC Motor Unit	20
Servo Amplifier Unit	21
Attenuator Unit	22
Tachogenerator Unit	22
Operational Amplifier Unit	23
Loading Unit	24
Equipments of speed control of dc servomotor	24
Armature Control	25
Speed vs. Voltage	25
Speed vs. Torque	25
	Equipment SetupBlock Diagram Comparison (a) The Original ClosedLoop Speed Control System (b) The Modified ClosedComponents that been eliminated (a) attenuator (b)operational amplifier (c) oscilloscopeDesign flowHardware structure of the virtual laboratoryPID controllerControl system block diagramPower Supply UnitDC Motor UnitServo Amplifier UnitAttenuator UnitTachogenerator UnitOperational Amplifier UnitEquipments of speed control of dc servomotorArmature ControlSpeed vs. VoltageSpeed vs. Torque

PAGE

4 1	A	26
4.1	Armature-controlled dc motor with load	26
4.2	Block diagram of a dc motor (armature-controlled)	28
4.0	system	20
4.3	Block diagram of the system (a) Open loop system	30
	(b) Closed loop system	
4.4	Input output form	31
4.5	Identification of the system	32
4.6	S-shape response curve	36
4.7	P-controller algorithm (with sampling period is about	37
	50 ms)	
4.8	PI-controller algorithm (with sampling period is	38
	about 50 ms, $Ti = 50$ ms and $KI = KP * Ts/Ti$)	
4.9	PD-controller algorithm (with sampling period is	39
	about 50 ms, $Td = 50$ ms and $KD = KP * Td/Ts$)	
4.10	PID-controller algorithm (with sampling period is	40
	about 50 ms, Td = 50 ms, Td = 50 ms, KI = KP *	
	Ts/Ti and $KD = KP * Td/Ts$)	
4.11	Block diagram of an adaptive system	41
4.12	Block diagram of a model reference adaptive control	42
4.13	MRAC using the MIT rule's algorithm	44
4.14	MRAC using the Lyapunov's stability theory	46
4.15	Open loop control strategy	47
4.16	Schematic of the IMC scheme	48
4.17	Internal Model Control (IMC) algorithm	52
5.1	AX5412 Data Acquisition Card	54
5.2	Device Manager Window	55
5.3	Device setting	56
5.4	Base Address Switch Setting	54
5.5	AX5412 (CN1) Pin Assignment	58
5.6	Hardware connection	59
5.7	Communication between modules	61
6.1	Overall Project	64
6.2	Connection for Experiment 1	65

6.3	Graph of motor speed vs. tachometer voltage	66
6.4	Graph of motor speed vs. input voltage	68
6.5	Graph of motor speed vs. brake position	71
6.6	Connection for Experiment 4	72
6.7	Graph of motor speed vs. brake position	74
6.8	Simulation result for Experiment 5 (a) MRAC using	76
	Lyapunov stability theory (b) MRAC using MIT rule	
6.9	Simulation result for IMC controller	77
6.10	Graphical User Interface for Speed Control of DC	78
	Servomotor (Setting)	
6.11	Graphical User interface for Speed Control of DC	80
	Servomotor (Run the Experiment)	
6.12	Graphical User Interface for Speed Control of DC	81
	Servomotor (Result)	
6.13	Graphical User Interface for Speed Control of DC	82
	Servomotor (MRAC)	
6.14	Graphical User Interface for Speed Control of DC	83
	Servomotor (IMC)	
6.15	Result for Experiment 1 (a) Speed vs. tachometer	84
	voltage (b) Tachometer gain	
6.16	Result for Experiment 2 (a) Speed vs. input voltage	85
	(b) Speed motor and input voltage's ratio	
6.17	Result for Experiment 3 (Speed vs., Position of the	86
	Magnetic Brake)	
6.18	Result for Experiment 4 (a) P and PD controller (b)	87
	PI and PID controller	
6.19	Graph of the Speed via PID controller (at no-load)	88
6.20	Result for Experiment 5 using Lyapunov method (a)	89
	Reference model and actual output response (b)	
	Current output voltage	
6.21	Result for Experiment 5 using MIT rule (a)	90
	Reference model and actual output response (b)	
	Current output voltage	

6.22 Result for Experiment 6 (a) Reference model and 91
actual output response (b) Desired output (c)
Current output

LIST OF APPENDICES

APPENDIX	DESCRIPTION	PAGE	
Appendix A	Software Source Code	99	
Appendix B	Formula Derivation	158	

LIST OF ABBREVIATIONS

ADC	-	Analog-Digital Converter
API	-	Application Program Interface
DAC	-	Digital-Analog Converter
CD	-	Compact Disc
CN	-	Connector
CV	-	Control Variable
DAS	-	Data Acquisition System
DAQ	-	Data Acquisition
DC	-	Direct Current
DDC	-	Direct Digital Control
Err	-	Error
GPIB	-	General Purpose Interface Bus
GUI	-	Graphical User Interface
IMC	-	Internal Model Control
I/O	-	Input / Output
J	-	Loss function
LSLNR	-	Linear System Learner
MIMO	-	Multi Input Multi Output
MIT	-	Massachusetts Institute of Technology
MPC	-	Model Predictive Control
MRAC	-	Model Reference Adaptive Control
OS	-	Overshoot; operating system
PC	-	Personal Computer
PCI	-	Peripheral Component Interface
PI	-	Proportional-Integral
PID	-	Proportional-Integral-Derivative

PLC	-	Programmable Logic Control
PV	-	Process Variable
OOP	-	Object-Oriented Programming
O/P	-	Output
ISA	-	Integrated System Architecture
SP	-	Set point
SVMPC	-	Single Variable Model Predictive Control
t _p	-	Peak Time
ts	-	Settling Time
VB	-	Visual Basic
Ve	-	Error Voltage
Vg	-	Tachometer voltage
Vin	-	Input voltage
rpm	-	rotation per minute

CHAPTER I

INTRODUCTION

1.2 Direct Digital Control Overview

The major change occurring at the present is the increasing number of user friendly software that make it possible for student to experience new and fast ways of learning. In minutes, simulation, controller and real world interfacing can be created. The software package is developed to help students to learn and explore the experiment with an interesting way. A picture worth a thousand words.

In DDC, the control laws are implemented in a digital computer as a computer programs. In realizing a real time computer controlled system in which a digital computer, specifically a microcomputer or PC is one of the major component that acts as a controller in the control loop [1]. The computer must be connected somehow to the external event and the program instructions are necessary to direct the interaction between the computer and the external activity.

There are two major parts:

- Hardware Interfacing connecting the computer to external equipment.
 Figure 1.1 shows the equipment setup for this project
- Software Design programming the computer to carry out its control calculation (control laws) while interacting with external components. Visual Basic will be used to program the DAS board since this program is easy to learn it's code programming and user friendly

Figure 1.1: Equipment Setup

Figure 1.2 shows the comparison between the original and modified closed loop speed control system. The system (plant) under control is a continuous-time system. The 'heart' of the controller is a digital computer. The problem of realizing a digital controller is mainly one of developing a computer program.

Figure 1.2: Block Diagram Comparison (a) The Original Closed Loop Speed Control System (b) The Modified Closed Loop Speed Control System

Digital controllers present significant advantages over classical analog controllers. One of them is a greater flexibility in modifying the controller's features. For classical analog controllers, any change in the characteristics of the controller is usually laborious and expensive, since it requires changes in the structure and the elements of the controller. In digital controller, the designer has the flexibility to use the same hardware equipment to realize and test different control algorithms. This can be done because only the program that realizes the control algorithm has to be changed for every controller realization. However, the performance of the digital control is strongly dependent on many factors, among which are the sampling period, possible computational, the word length in the microprocessor and the interface devices used [2].

1.2 The benefit of Direct Digital Control

Benefit of using DDC are listed below:

Improve Accuracy and Performance
 The gain provided by connecting operational amplifier and attenuator unit is
 different with the gain calculated because the tolerance of the gain defining

different with the gain calculated because the tolerance of the gain defining resistor values, which will not be exactly the nominal values. Meanwhile, by using DDC technique the controller gain is exactly the value set by user

ii. Improve Effectiveness

By using DDC method, it is more flexible in changing set points and the overall control logic. Students are able to see system response through the virtual oscilloscope

iii. Reduce Cost

The number of hardware will be reduced since the controller function takes place in software. Figure 1.3 shows the components that will be eliminated in closed-loop speed control system and replace by software. It permits fast and low cost implementation of even more sophisticated control system since the associated control law can simply be programmed.

Figure 1.3: Components that been eliminated (a) attenuator (b) operational amplifier (c) oscilloscope

1.3 Objectives

The objectives of this project are as follows:

- i. To apply Direct Digital Control technique on the speed control of DC motor.
- ii. To improve the system performance through designing and tuning of the controllers.
- iii. To design a graphical user interface (GUI) for speed control experiment and analyze the system response.

1.4 Scopes of Work

- i. Applying the Direct Digital Control method towards controlling speed of DC motor.
- ii. Implementing the proposed controller: MRAC, SVMPC and PID.
- iii. Designing the programming structure for controller via Microsoft Visual Basic 6.0.
- iv. Using AX5412 Data Acquisition Board to interface between the computer and DC Servomotor.

1.5 Research Methodology

- i. Literature review to understand the concept and identify the techniques, problems and current works.
- ii. Define the modeling and the method will be used for the system. Also understand the theory of conventional controllers.

- iii. System identification and MATLAB simulation of the system.
- iv. Conducting the procedures of the original system and get the results.
- v. Learn up VB programming and the Axiom driver functions.
- vi. Design and writing program to modify the system using DDC application.
- vii. Interface with hardware between computer and DC servomotor through DAS card.
- viii. Field-testing is conducted to compare the results between the original and modified system. Analyze the system's performance.

Design steps of work methodology can be simplified as shown in Figure 1.4.

Figure 1.4: Design flow

1.6 Thesis Outline

Chapter 1: Introduction

This chapter gives the introduction to the project report, objectives, scope of works and methodology taken. It also described briefly the hardware and software used in completing this project.

Chapter 2: Literature Review

This chapter covers the literature review on the Virtual Laboratory, Enhancing Electrical Engineering Teaching Method and Design of PID controller for speed control, how it works and its components.

Chapter 3: Speed Control of DC Servomotor

DC Servomotor devices are explained through this chapter. The DC servomotor principle of operation is discussed. Device characteristics and functions are also included.

Chapter 4: Method of Analysis

There are several concepts will be introduced in this chapter. Starting with modeling of the system, discretize the analog controller and parameter tuning process of PID. MRAC and IMC controller design implementation.

Chapter 5: Direct Digital Control

This chapter will explain how the Direct Digital Control application will be implemented in this project. Including the installation and connection of the devices.

Chapter 6: Result & Analysis

The results are determined through the original experiments of the speed control, simulation and through the experiment where the used apparatus has been modified. Analysis regarding on the performance of the controller design also has been analyzed and validated.

Chapter 7: Conclusion

This last chapter presented the overall conclusion for the project. For the future work, some suggestions have been included in order to improve the work that has been conducted.

REFERENCES

- Benjamin C. Kuo. *Digital Control System*. Holt, Rinehart and Winston, INC, 1980
- [2] P. N. Paraskevopoulos. *Digital Control Systems*. Prentice Hall, 1996
- [3] Saul Goldberg, William F. Horton and Thomas Agayoff. Teaching Power Conversion in a Virtual Laboratory. *IEEE*, 2001
- [4] C.C.Ko, Ben M. Chen, Jianping Chen, Yuan Zhuang and Kay Chen Tan. Development of a Web-Based Laboratory for Control Experiments on a Coupled Tank Apparatus. *IEEE Transactions on Education*, Vol 44, No.1, 2001
- [5] K.K.Tan and C.Y.Soh. Instrumentation on the Internet. *Engineering Science and Educational Journal*, 2001
- [6] Raymond C. Garcia and Bonnie. Enhancing Classical Control Education via Interactive GUI Design. *IEEE Control System*, 1999
- [7] J. C. Basilio, S. R. Matos. Design of PI and PID Controllers with Transient Performance Specification. *IEEE Transactions on Education*, Vol 45, No.4, 2002
- [8] P. E. Silveira, Souza, Biazotto. Speed Control of an Autonomous Mobile
 Robot Comparison between a PID Control and a Control using Fuzzy Logic.
 J. Braz. Soc. Mech. Sci. Vol 24, No.2, 2002

- [9] Feedback Instrument Ltd. Modular Servo System MS150Mk2 DC, Synchro, & AC Basic Experiments. Book 1
- [10] M. Gopal. Control Systems Principle and Design. McGraw Hill, Second Edition, 2002
- [11] Norman S. Nise. Control Systems Engineering. John Wiley & Sons, 2000
- [12] Katsuhiko Ogata. Discrete-Time Control System. Prentice Hall, 1995
- [13] Curtis D. Johnson. Process Control Instrumentation Technology. Prentice Hall, 2000
- [14] Karl Johan Astrom and Bjorn Wittenmark. *Adaptive Control*. Addison-Wesley Publishing Company, Inc, Second Edition, 1995
- [15] E. F. Camacho and C. Bordons. *Model Predictive Control*. Springer, Second Edition, 2004
- [16] Thomas E. Marlin. Process Control Designing Processes and Control Systems for Dynamic Performance. Second Edition, 2000
- [17] Axiom Technology Co., Ltd. AX 5412 High Speed Data Acquisition Board User's Manual
- [18] Deitel, T. R. Nieto. Visual Basic 6 How to program. Prentice Hall, 1999
- [19] Richard C. Dorf and Robert H. Bishop. *Modern Control Systems*. Prentice Hall, Tenth Edition, 2005