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ABSTRACT 

 

 

 

 

 Chromium especially chromium (VI) species is a well-known toxic heavy-

metal for biological systems and is known to be a human carcinogen.  However, hard 

chromium plating which uses chromium (VI) solutions is still the preferred method 

due to the higher deposition rates and ability to produce thick coatings.  Thus the 

high concentration of chromium (VI) in chromium electroplating wastewater needs 

to be removed before being discharged.  Due to the disadvantages and limitations of 

conventional techniques, particular attention is paid to the use of biological systems 

for heavy-metal removal from industrial wastewater.  In this study, indigenous 

microorganisms in local textile wastewater were isolated and investigated for their 

chromium (VI) uptake in both simulated and real chromium electroplating 

wastewater.  Preliminary studies showed that among the three bacteria: 

Acinetobacter calcoaceticus genospecies 3, Clavibacter agropyri and 

Cellulosimicrobium cellulans, Acinetobacter calcoaceticus genospecies 3 showed the 

highest chromium (VI) uptake at pH 8 with optimum biomass dosage of 0.75% and 

contact time of 120 hours.  Acetic acid-pretreatment of this bacterial biomass was 

found to reduce chromium (VI) uptake.  Chromium (VI) adsorbed on untreated 

biomass of Acinetobacter calcoaceticus genospecies 3 was suggested to occur as a 

multilayer based on the Brunauer, Emmett and Teller isotherm.  The results from 

Transmission Electron Microscopy and infrared spectroscopy confirmed the 

involvement of amines, phosphate and carboxylate in surface adsorption of the metal 

with minor intracellular accumulation.  Upon interaction with chromium 

electroplating wastewater, this bacterial biomass showed chromium (VI) uptake of 

3.82 ± 0.31 and 3.29 ± 0.67 mg/g at acidic (3.75) and alkaline (8.08) pH 

rescpectively.  However, this bacterial biomass could not reduce the chromium (VI) 

concentration to the legal limits. 
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ABSTRAK 

 

 

 

 

 Kromium terutamanya spesis kromium (VI) adalah terkenal sebagai logam 
berat yang toksik kepada sistem biologi and diketahui sebagai karsinogen kepada 
manusia.  Namun demikian, penggunaan kromium (VI) untuk penyaduran kromium 
keras masih digunakan kerana kadar penyaduran yang lebih tinggi serta 
keupayaannya untuk menghasilkan penyaduran yang tebal.  Maka, kepekatan 
kromium (VI) yang tinggi di dalam air sisa industri penyaduran kromium perlu 
disingkirkan sebelum dibuang.  Kelemahan dan kekangan teknik konvensional telah 
menyebabkan perhatian dialihkan kepada penggunaan sistem biologi untuk 
penyingkiran logam berat daripada air sisa kilang.  Kajian ini melibatkan pemencilan 
mikroorganisma setempat daripada air sisa kilang tekstil dan penyelidikan 
keupayaannya untuk menjerap kromium (VI) daripada air sisa industri penyaduran 
kromium (buatan dan sebenar).  Kajian awal mendapati daripada ketiga-tiga bakteria: 
Acinetobacter calcoaceticus genospesies 3, Clavibacter agropyri and 
Cellulosimicrobium cellulans, didapati Acinetobacter calcoaceticus genospesies 3 
menunjukkan keupayaan penjerapan kromium (VI) yang tertinggi pada pH 8 dengan 
dos biomas optimumnya 0.75% dan masa interaksi selama 120 jam.  Pra-rawatan ke 
atas biomas bakteria ini dengan asid asetik telah menurunkan keupayaan penjerapan 
kromium (VI).  Penjerapan kromium (VI) pada biomas Acinetobacter calcoaceticus 
genospesies 3 adalah secara pelbagai lapisan berdasarkan isoterma Brunauer, 
Emmett and Teller.  Keputusan daripada mikroskopi elektron transmisi dan 
spektroskopi infra-merah mengesahkan penglibatan kumpulan berfungsi amina, 
fosfat dan ion karbosilat dalam penjerapan logam ini pada permukaan di samping 
sedikit pengumpulan dalam sel.  Biomas bakteria menunjukkan keupayaan 
penjerapan kromium (VI) sebanyak 3.82 ± 0.31 and 3.29 ± 0.67 mg/g masing-masing 
dalam keadaan berasid (3.75) dan alkali (8.08) daripada air sisa penyaduran 
kromium.  Namun begitu, biomas bakteria ini tidak berupaya menurunkan kepekatan 
kromium (VI) ke paras yang dibenarkan. 
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INTRODUCTION 

 

 

 

 

1.1 Electroplating Industry 

 

 

 

 

1.1.1 Basic of Electroplating 

 

 

Electroplating or electrodeposition may be defined as the production of metal 

coatings on solid substrates by the action of an electric current.  In contrast to various 

other process of applying coatings, electroplated coatings are applied to improve 

appearance, corrosion resistance and physicochemical properties of the surfaces 

(hardness, electrical and thermal conductivity, solderability, reflectivity etc.).  Some 

of the advantages of electroplated coatings over the other methods of applying 

coatings are absence of an intermediate layer between the coatings and the substrate 

metal as in the case of hot dip and diffusion processes, fine structure and often very 

valuable physical properties mentioned above and easy control of the coating 

thickness to fractions of a micrometer.  Besides these, it is the most convenient 

method of applying coatings of metals with high melting points such as copper, 

nickel, chromium, iron, silver, gold and platinum (Noor Hisham, 1994). 
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1.1.2 Processes of Electroplating 

 

 

In general, electroplating process is divided into three stages i.e. pretreatment, 

electroplating and post treatment.  The nature of finish and design of the product 

dictate the procedures to be adapted in order to produce quality finish.  Table 1.1 

shows the activities involved in the different stages (Noor Hisham, 1994). 

 

 

Table 1.1 : Activities involved in different stages of electroplating process. 

Stage Activities  

Product Semi finish, finish 

Pretreatment Mechanical/chemical surface preparation. 

Plating Alkaline cyanide, alkaline non-cyanide, acid 

Post treatment Chromation, passivation, blackening and antiquing, heat treatment, 

hot air blow drying, centrifugal drying etc. 

 

 

 

 

1.1.3 Chromium Plating 

 

 

There are two principal types of chromium plating i.e. decorative and hard.  

Conventional chromium plating solutions contain chromic acid and a small amount 

of sulfuric acid or a mixture of sulfuric acid and fluosilicate or fluoride ions.  The 

ratio of the concentration of chromic acid to the catalyst acid radicals or anions 

ranges from about 50:1 to 250:1 and preferably should be about 100:1 (Sittig, 1978). 
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1.1.3.1 Decorative chromium plating 

 

 

In decorative plating, a thin chromium coating serves as a protective, 

nontarnishing, durable surface finish.  It is difficult to obtain dense pore-free 

chromium deposits, and therefore chromium is generally applied over coatings of 

copper plus nickel or nickel alone.  These metals have greater ductility and good 

corrosion resistance (Sittig, 1978). 

 

 

Typical parts coated with decorative chromium include: exterior and interior 

automotive parts; boat hardware, household appliances; home, office and school 

furniture; plumbing fixtures; bicycle hardware and cabinet hardware (Sittig, 1978). 

 

 

The trivalent baths are used for thin, decorative chromium, since the process 

is self-limiting and the deposition rate tends to be low.  Hexavalent solutions offer 

higher deposition rates, thus making them cheaper for decorative coatings (Legg et 

al., 1996). 

 

 

 

 

1.1.3.2 Hard chromium plating 

 

 

In hard (also known as industrial or engineering) chromium plating, heavier 

coatings are used to take advantage of the special properties of chromium plating, 

such as the ability to withstand heat and corrosion (Sittig, 1978).  Besides these, hard 

chromium is used because of its ease of application, wear resistance and ability to 

provide a smooth finish (Legg et al., 1996).  Unlike decorative chromium plating, 

hard chromium is generally applied to the base metal without an intermediate coating 

(Sittig, 1978). 
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Representative applications for hard chromium plating include: restoration to 

original dimensions of worn, mismachined or undersized parts; coating of tools, dies 

and gauges and other parts to minimize wear and to reduce galling, friction and 

corrosion; coating of electrotypes, engraving plates and other items intended for 

prolonged runs (Sittig, 1978). 

 

 

Hexavalent solutions have higher deposition rates and can be used to produce 

thick coatings.  For this reason, hexavalent solutions are at present the only method 

used for commercial hard chromium plating (Legg et al., 1996). 

 

 

Electrolytic hard chromium plating as currently practiced is a source of 

several types of environmental hazard.  Direct human exposure occurs as a result of 

air emissions (bath mist results from the bursting of gas bubbles) and skin contact to 

the plating solution.  The toxic wastes can consist of spent plating solution, bath 

drag-out (solution pulled from the bath on the parts), spent acids and bases used in 

cleaning and stripping operations, lead sulfate sludge from anode decomposition, 

waste rinse water (very high volumes of water are required for rinsing both parts and 

scrubbing filters) and contaminated mask material (typically wax and paint) (Legg et 

al., 1996). 

 

 

The primary problems with hard chromium plating are that it uses a 

hexavalent chromium solution and produces large volumes of chromium -

contaminated toxic waste.  While chromium metal and trivalent chromium are fairly 

benign, hexavalent chromium in solution is a known human carcinogen and creates 

other health problems such as skin and lung irritation (Legg et al., 1996). 

 

 

In order to dispose off its large volumes of spent solutions and contaminated 

water, the plating operation must remove all toxic materials by precipitation and 

evaporation, discharge the water to the sewer system and ship the solids to a toxic 

waste dump.  The shipping and disposal of toxic wastes are becoming increasingly 
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expensive and pose a threat to companies by exposing them to potentially ruinous 

future liability suits.  Furthermore, mistakes in waste processing frequently result in 

fines for illegal sewer discharges (Legg et al., 1996). 

 

 

 

 

1.1.4 Sources of Contaminants to Electroplating Wastewater 

 

 

Contaminants in the wastewater from electroplating shops originate in several 

ways.  The most obvious source of pollution is the drag-out of various processing 

baths into subsequent rinses, the amount of pollutants contributed by drag-out is a 

function of several factors such as the design of the racks or barrels carrying the parts 

to be plated, the shape of the parts, plating procedures and several interrelated 

parameters o the process solution, including concentration of toxic chemicals, 

temperature, viscosity and surface tension.  With conventional rinsing techniques, 

drag-out losses from process solutions result in large volume of rinse water 

contaminated with relatively dilute concentration of cyanide and metals (Cushnie, 

1985). 

 

 

Discarded process solutions are another source of wastewater contaminant.  

These solutions are primarily spent alkaline and acid cleaners used for surface 

preparation of parts before electroplating.  The solutions are not usually made up of 

metals; however a few cleaners contain cyanide.  Plating baths and other process 

solutions containing high metal concentrations, such as chromate solutions are rarely 

discarded.  However, some shops do discard such solutions on a regular basis 

(Cushnie, 1985). 

 

 

Accidental spills, leaks and drips of process solutions also can contribute 

significantly to wastewater contamination.  In some shops, the dripping of plated 

parts is a significant source of pollution.  Process solution tanks and rinse tanks are 
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often separated by several fleet.  Carrying the racks pf parts between tanks will cause 

plating solution or drag-out to drip on the floor and enter the drain system (Cushnie, 

1985). 

 

 

Other sources of contaminants include sludges from the bottom of plating 

baths generated during chemical purification, backwash from plating tank filter 

systems and stripping solutions.  These sources, however are not as common as those 

described earlier (Cushnie, 1985). 

 

 

 

 

1.1.5 Regulation of Electroplating Wastewater 

 

 

The high concentrations of metals in wastewater discharges from 

electroplating operations will cause severe effects on the environment and public 

health unless being removed before discharge.  In Malaysia, the electroplating 

industry has been reported as one of the major polluter to Straits of Malacca.  This 

industry generates pollutants such as heavy or trace metals including chromium 

(Mohd Nizam, 1995).  This heavy metal especially the Cr(VI) species has been 

known as toxic heavy-metal and being carcinogenic.  The chemistry of chromium 

and the health issues arise from Cr(VI) are as described in section 1.3.1.5 and 1.3.1.6 

respectively.  Due to their high toxicity, the industrial wastewaters containing heavy 

metals are strictly regulated and must be treated before being discharged in the 

environment.  The industrial wastewaters must meet the parameter limits as stated in 

the Environmental Quality (Sewage and Industrial Effluents) Regulations 1978 

(Table 1.2) (Malaysia, 1986). 
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Table 1.2: Environmental Quality Act 1974. 
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1.2 Heavy-metals and Their Toxicity  

 

 

 

 

1.2.1 Heavy-metals 

 

 

Heavy-metals are metals with a density above 5 gcm-3, which is five times 

higher than water.  Of the 90 naturally occurring elements, 21 are non-metals, 16 are 

light-metals and the remaining 53 (with As included) are heavy-metals.  Most heavy-

metals are transition elements with incompletely filled d orbitals.  These d orbitals 

provide heavy-metal cations with the ability to form complex compounds which may 

or may not be redox-active.  Thus, heavy-metal cations play an important role as 

trace elements in sophisticated biochemical reactions (Nies, 1999). 

 

 

A trace element is considered essential if it meets the following criteria: it is 

present in all healthy tissues of living things; its concentration from one animal to the 

next animal is fairly constant; its withdrawal from the body induces, reproducibly the 

same physiological and structural abnormalities regardless of the species studied; its 

addition either reverses or prevents these abnormalities; the abnormalities induced by 

deficiency are always accompanied by pertinent, significant biochemical changes 

and these biochemical changes can be prevented or cured when the deficiency is 

corrected.  A total of 30 elements are now believed to be essential to life (Figure 1.1).  

They can be divided into the 6 structural elements, 5 macrominerals and 19 trace 

elements (Florence, 1989). 
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  Figure 1.1 : Essential elements and the periodic table. 

 

 

Virtually, all metals whether essential or inessential can exhibit toxicity 

above certain threshold concentrations which for highly toxic metal species may be 

extremely low.  The toxicity caused by heavy-metals is generally a result of strong 

coordinating abilities (Gadd, 1992).  Certain metals have been known to be toxic for 

centuries.  For example, Theophrastus of Erebus (370-287 B.C.) and Pliny the Elder 

(23-79) both described poisonings that resulted from arsenic and mercury.  Other 

heavy-metals, such as cadmium were not recognized as poisonous until the early 

nineteenth century (Young, 2000). 

 

 

 

 

1.2.2 Biogeochemistry of Heavy-metals 

 

 

Heavy-metals occur naturally in the environment in rocks and ores and cycle 

through the environment by geological and biological means.  The geological cycle 

begins when water slowly wears away rocks and dissolves the heavy-metals.  The 

heavy-metals are carried into streams, rivers, lakes and oceans and may be deposited 

in sediments at the bottom of the water body or they may evaporate and be carried 

elsewhere as rainwater.  The biological cycle includes accumulation in plants and 

animals and entry into the food web (Young, 2000).  Some heavy-metals are not 
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available to the living cell in the usual ecosystems.  They may be present in the 

earth’s crust only in very low amounts or the ion of the particular heavy-metal may 

not be soluble (Nies, 1999). 

 

 

 

 

1.2.3 Heavy-metal Contamination and Toxicity 

 

 

It has been realized that sometimes the natural cycles can pose a hazard to 

human health because the level of heavy-metals exceed the body’s ability to cope 

with them.  The situation becomes worst by the addition of heavy-metals to the 

environment as a result of both the rapidly expanding industrial and domestic 

activities.  The metals are introduced into the environment during mining, refining of 

ores, combustion of fossil fuels, industrial processes and the disposal of industrial 

and domestic wastes (Xie et al., 1996).  Human activities also create situations in 

which the heavy-metals are incorporated into new compounds and may be spread 

worldwide (Young, 2000). 

 

 

Many aquatic environments face metal concentrations that exceed water 

criteria designed to protect the environment, animals and humans.  Every essential 

element is toxic if taken in excess and there is a safe window for essential dose 

between deficiency and toxicity (Figure 1.2).  Some elements such as Ca and Mg 

have wide window whereas others such as Se and F have narrow window whereby 

an excess will rapidly lead to toxicity and death.  Metal toxicity can be divided into 

three categories i.e. blocking the essential biological functional groups of molecules, 

displacing the essential metal ion in biomolecules and modifying the active 

conformation of biomolecules (Florence, 1989).  The toxicity effects greatly depend 

on the bioavailability of the toxicant meaning the proportion of the contaminant 

present in the environment in the form(s) that can be assimilated by organism 

(Petänen, 2001). 
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Figure 1.2 : Dose response curve for an essential element. 

 

 

The health hazards presented by heavy-metals depend on the level of 

exposure and the length of exposure.  In general, exposures are divided into two 

classes: acute exposure and chronic exposure.  Acute exposure refers to contact with 

a large amount of the heavy-metal in a short period of time.  In some cases the health 

effects are immediately apparent; in others the effects are delayed.  Chronic exposure 

refers to contact with low levels of heavy-metal over a long period of time (Young, 

2000). 
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1.3 Chromium And Biosorption 

 

 

 

 

1.3.1 Chromium 

 

 

 

 

1.3.1.1 General description 

 

 

Chromium is a transition metal.  It is a hard, steel gray, shiny metal that 

breaks easily.  It has a melting point of 1 900oC, a boiling point of 2 642oC and a 

density of 7.1 gcm-3.  A physical property that greatly adds to chromium’s 

commercial importance is that it can be polished to a high shine.  Chromium is a 

relatively active metal that does not react with water but does react with most metals.  

It combines slowly with oxygen at room temperature to form chromium oxide 

(Cr2O3).  The chromium oxide formed acts as a protective layer, preventing the metal 

from reacting further with oxygen (Young, 2000). 

 

 

 

 

1.3.1.2 Discovery and naming 

 

 

Chromium was discovered in 1797 by French chemist, Louis-Nicolas 

Vaquelin (1763-1829) in a mineral known as Siberian red lead.  The element was 

named after the Greek word ‘chromium’ meaning ‘color’ because many chromium 

compounds have a distinctive color, ranging from purple to black to green to orange 

to yellow (Young, 2000). 
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1.3.1.3 Occurance 

 

 

Chromium ranks about 20th among the elements present in the earths crust 

with an abundance of about 100-300 ppm.  It never occurs as a free element, but is 

found primarily in the form of chromite, a chromium iron ore (FeCr2O4) (Young, 

2000). 

 

 

 

 

1.3.1.4 Industrial uses 

 

 

The most important application of chromium is in the production of steel.  

High-carbon and other grades of ferro-chromium alloys are added to steel to improve 

mechanical properties, increase hardening and enhance corrosion resistance.  

Chromium is also added to cobalt and nickel-base alloys for the same purpose.  

Chromium coatings are applied on the surface of other metals for decorative 

purposes, to enhance resistance and to lower the coefficient of friction.  Radioactive 

chromium-51 is used as a tracer in the diagnosis of blood volume (Patnaik, 2003). 

 

 

Chromium(II) chloride is used as reducing agent, as a catalyst in organic 

reactions and in chromium plating of metals.  As a reducing agent, it is used to 

reduce alpha-haloketones to parent ketones, epoxides to olefins and aromatic 

aldehydes to corresponding alcohols (Patnaik, 2003). 

 

 

Chromium(III) chloride is used for chromium plating, as textile mordant, in 

tanning, as a waterproofing agent and as catalyst for polymerization of olefins.  

Chromium(III) sulfate is used as the electrolyte for obtaining pure chromium metal.  

It is used for chromium plating of other metals for protective and decorative 

purposes.  Other important applications of this compound are as a mordant in the 
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textile industry, in leather tanning, to dissolve gelatin, to impart green color to paints, 

varnishes, inks and ceramic glazes and as a catalyst.  Chromium(III) oxide is used as 

pigment or coloring green on glass and fabrics.  It is also used in metallurgy, as a 

component of refractory bricks, abrasives and ceramics and to prepare other 

chromium salts.  Chromium(III) fluoride is used in printing and dyeing woolens, 

mothproofing woolen materials, metal polishing and coloring marbles.  

Chromium(III) hydroxide trihydrate is used as green pigment, as mordant, as a 

tanning agent and as a catalyst (Patnaik, 2003). 

 

 

Chromium(VI) oxide is used for chromium plating, copper stripping, as an 

oxidizing agent for conversion of secondary alcohols into ketones, as a corrosion 

inhibitor, in purification of oil and in chromic mixtures for cleaning laboratory 

glassware (Patnaik, 2003). 

 

 

 

 

1.3.1.5 The chemistry of chromium 

 

 

Chromium can exist in several chemical forms displaying oxidation numbers 

from 0 to VI.  Only two of them, Cr(III) and Cr(VI) are stable enough to occur in the 

environment.  Cr(IV) and Cr(V) form only unstable intermediates in reactions of 

trivalent and hexavalent oxidation states with oxidizing and reducing agents, 

respectively (Kota� and Stasicka, 2000). 

 

 

The Cr(III) oxidation state is the most stable and considerable energy would 

be required to convert it to lower or higher states.  Cr(III) presence, concentration 

and forms in a given compartment of the environment depend on different chemical 

and physical processes i.e. hydrolysis, complexation, redox reactions and adsorption.  

Cr(III) is a hard acid which exhibits a strong tendency to form hexacoordinate 

octahedral complexes with a variety of ligands such as water, ammonia, urea, 
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ethylenediamine and other organic ligands containing oxygen, nitrogen or sulphur 

donor atoms.  The complexation of Cr(III) by ligands other than OH- increases its 

solubility when the ligands are in discrete molecules or ions forms.  When, however, 

donor atoms are bound in a macromolecular system, as humic acids, then the Cr(III) 

complex is more or less immobile.  If the complexation from these ligands can be 

neglected, under redox and pH conditions normally found in natural systems, Cr is 

removed from the solution as Cr(OH)3 or in the presence of Fe(III), in the form off 

(Crx, Fe1-x)(OH)3 (where x is the mole fraction of Cr).  The redox potential of the 

Cr(VI)/Cr(III) couple is high enough, thus only a few oxidants are present in natural 

systems capable of oxidizing Cr(III) to Cr(VI).  Oxidation of Cr(III) by dissolved 

oxygen without any mediate species has been reported to be negligible, whereas 

mediation by manganese oxides was found to be the effective oxidation pathway in 

environmental systems (Kota� and Stasicka, 2000). 

 

 

Cr(VI) forms several species, the relative proportions of which depend on 

both pH and total Cr(VI) concentration.  H2CrO4 belongs to the strong acids and at 

pH > 1, its deprotonated forms are prevailing while above pH 7 only CrO4
2- ions 

exist in solution throughout the concentration range.  In the pH between 1 and 6, 

HCrO4
- is the predominant form up to the Cr(VI) concentration 10-2 M when it starts 

to condense yielding the orange-red Cr2O7
2-.  Within the normal pH range in natural 

waters, the CrO4
2-, HCrO4

- and Cr2O7
2- ions are the forms expected.  They constitute 

a lot of Cr(VI) compounds which are quite soluble and thus mobile in the 

environment.  However, Cr(VI) oxyanions are readily reduced to trivalent forms by 

electron donors such as organic matter or reduced inorganics species, which are 

ubiquitous in soil, water and atmospheric systems (Kota� and Stasicka, 2000). 
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1.3.1.6 Health issues 

 

 

Chromium is unique among regulated toxic elements in the environment in 

that different species of chromium, specifically Cr(III) and Cr(VI), are regulated in 

different ways based on their differing toxicities.  All other toxic elements such as 

lead, cadmium and arsenic are regulated based on their total concentrations, 

irrespective of their oxidation state (Kimbrough et al., 1999).  The 

reduction/oxidation reactions between Cr(VI) and Cr(III) are thermodynamically 

possible under physiological conditions, thus chromate and Cr(III) are both 

biologically important ions.  Chromate is more toxic than Cr(III), so beneficial 

functions of chromium can only be performed by Cr(III) (Nies, 1999). 

 

 

Cr(III) is relatively immobile in the aquatic system due to its low solubility in 

water.  The low solubility retains Cr(III) in the solid phase as colloids or precipitates 

(Lin, 2002).  It is known that Cr(III) is essential for the maintenance of an effective 

glucose, lipid and protein metabolism in mammals (Marqués et al., 2000).  Cr(III) 

salts such as chromium polynicotinate and chromium picolinate are used as 

micronutrients and dietary supplements (Bagchi et al., 2001).  Besides this, Cr(III) 

has been suggested as an element which can stabilize the tertiary structure of proteins 

and conformation of the cell RNA and DNA (Zetic et al., 2001). 

 

 

On the other hand, Cr(VI) compounds can be toxic for biological systems 

(Marqués et al., 2000).  These compounds have been considered to be a group ‘A’ 

human carcinogen (Bai and Abraham, 2001).  Cr toxicity is related to the process of 

reduction of Cr(VI) to lower oxidation states, not necessarily to Cr(III), in which free 

radicals are generated.  Reduction of Cr(VI) to Cr(III) has been reported in many 

biological systems; transient formation of Cr(V) is the most likely mechanism 

involved in Cr toxicity.  Cr(V) complexes are formed from Cr(VI) by physiological 

reducing agents such as NAD(P)H, FADH2, several pentoses and glutathione.  These 

complexes react with H2O2 to generate significant amounts of ·OH radicals with no 

associated generation of O2
-.  The ·OH radicals may trigger directly DNA alterations 
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as well as other toxic effects.  Additional intracellular chromate-reducing agents are 

vitamins C and B12, cytochrome P-450 and the mitochondrial respiratory chain.  

Intracellular Cr(III) may be sequestered by DNA phosphate groups affecting 

replication, transcription and causing mutagenesis.  Oxidative damage on DNA is 

considered the basis of the genotoxic effects produced by Cr.  Cr(III) may also react 

with carboxyl and sulfhydryl groups of enzymes causing alterations in their structure 

and activities.  Modification of the DNA polymerase and other enzyme activities 

may be caused by the displacement of magnesium ions by Cr(III) (Cervantes et al., 

2001). 

 

 

Meanwhile, chromium is a non-essential metal for plants and microorganisms 

(Viti and Giovannetti, 2001).  The guideline value of total chromium as an inorganic 

constituent of health significance is 0.05 mg/L.  This value was recommended 

internationally as metal concentration in drinking-water which would not adversely 

influence human health (Brady and Duncan, 1994). 

 

 

 

 

1.4 Removal of Heavy Metals from Aqueous Waste Streams 

 

 

 

 

1.4.1 Conventional Treatments and the Disadvantages 

 

 

Many procedures have been applied in order to remove heavy-metals from 

aqueous streams.  Among the most commonly used techniques are chemical 

precipitation, chemical oxidation and reduction, ion-exchange, filtration, 

electrochemical treatment, reverse osmosis (membrane technologies), evaporative 

recovery and solvent extraction (Xia and Liyuan, 2002). 
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These classical or conventional techniques give rise to several problems such 

as unpredictable metal ions removal and generation of toxic sludges which are often 

difficult to dewater and require extreme caution in their disposal (Xia and Liyuan, 

2002).  Besides that, most of these methods also present some limitations whereby 

they are only economically viable at high or moderate concentrations of metals but 

not at low concentrations (Addour et al., 1999), meaning diluted solutions containing 

from 1 to 100 mg/L of dissolved metal(s) (Cossich et al., 2002).  Another 

disadvantage of using these classical techniques for heavy-metal removal is the 

extremely expensive cost due to the high reagent or energy requirements (Xia and 

Liyuan, 2002). 

 

 

For these reasons, particular attention has been paid to the use of biological 

systems as a promising alternative method for heavy-metal removal from industrial 

wastewaters.  Many microorganisms are able to remove heavy-metals from 

wastewaters but there is no agreement on the action mechanism of this phenomenon, 

which appears to be microorganism-dependent.  Section 1.4.2 discusses the different 

interactions between microorganism with metal which enable metal removal. 

 

 

 

 

1.4.2 Metal-microorganism interactions 

 

 

Microorganisms cannot destroy metals but they can alter their chemical 

properties via a surprising array of mechanisms.  The microbiological processes or 

mechanisms for the removal of metals from solution have been observed in the 

laboratory and in natural environments where conditions are suitable for specific 

types of biological activity.  The mechanism can be divided into three categories: the 

adsorption of metal ions onto the surface of microorganism; the intracellular uptake 

of metals and the chemical transformation of metals by biological agents (Brierley, 

1982). 
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Most microorganisms have a negative charge owing to the presence of 

negatively charged groups of atoms on the cell membrane and cell wall.  The charged 

groups or ligands are responsible for the adsorption of positively charged metal ions 

in solution.  The adsorption is typically rapid, reversible and independent of 

temperature and energy metabolism.  The deposition of insoluble metals has been 

observed at the surface of some microorganisms (Brierley, 1982).  Recent 

comparisons have suggested that biosorbents may be cheaper to implement than 

other commercially available ion-exchange resins (Lloyd, 2002). 

 

 

Microorganisms ordinarily take up some ions that are necessary for cellular 

activity.  The transport systems for the ions are dependent on both temperature and 

energy.  Although the mechanism by which the cells assimilate the ions are highly 

selective, substitutions are possible.  The phenomenon sometimes cause intracellular 

accumulation of very high concentrations of toxic metals (Brierley, 1982). 

 

 

Microorganisms have evolved a wide range of biochemical tricks to protect 

themselves from potentially toxic metals and these natural activities can be used for 

bioremediation applications.  Some metal ions can be reduced to a less toxic 

oxidation state.  To be detoxified by reduction, the redox potential of a given metal 

should be between that of the hydrogen/proton couple and that of the 

oxygen/hydrogen couple, which is the physiological redox range or most aerobic 

cells.  A metal compound that can be reduced should be able to diffuse out off the 

cell or it might re-oxidize itself.  Thus, if the cell chooses to detoxify such a 

compound by reduction, an efflux system should be present to export the reduced 

products (Nies, 1999).  The efflux or exclusion of metal ions from the cell sometime 

can result in high local concentrations of metals at the cell surface where they may 

react with biogenic ligands and precipitate (Lloyd, 2002). 

 

 

Many microorganisms synthesize specific chelation compounds that 

immobilize heavy-metals by precipitating them in chelates (Brierley, 1982).  Bacteria 

can involve in metal precipitation reactions either directly as catalysts of aqueous 
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chemical reactions or indirectly as geochemically reactive solids.  In the first case, 

metabolic activity of the organism is important in developing supersaturated 

conditions that allow precipitation to occur, through the production of reactive 

ligands such as sulfide or carbonate.  The local concentrations of these products of 

metabolic processes alone is sufficient to lower the energy barrier for both 

homogenous and heterogenous nucleation reactions to occur.  In the latter case, 

adsorption of metal ions to reactive sites on bacterial cell surfaces encourages 

heterogenous nucleation and precipitation (Webb, 2001). 

 

 

 

 

1.4.3 Potential of Biosorption for the Removal of Chromium from Wastewater 

 

 

The attempts to remove Cr compounds from wastewater with biological 

methods have been performed especially using phytoremediation techniques, 

biosorption, bioaccumulation and bioprecipitation as well as bacterial activated 

sludge treatment (Ksheminska et al., 2003).  Biosorption which is one of the 

emerging biological methods poses several advantages over the conventional method 

among which are: the process does not produce chemical sludge, hence non-

polluting, it is easy to operate and very efficient for removal of pollutants from very 

dilute solutions.  A major advantage of biosorption is that it can be used in situ and 

with proper design, it may not need any industrial process operations and can be 

integrated with many systems (Tewari et al., 2005).  Besides that, the use of 

microorganisms, particularly bacteria as sorbents in wastewater treatment plants may 

be competitive compared to conventional technologies whereby the very small size 

of bacterial particles (0.2 to 0.5 �m), which permits close contact between the 

biosorbent and the solution (Vecchio et al., 1998).  Despite the advantages 

mentioned earlier, biosorption of heavy metals from aqueous solutions also poses 

several limitations which include the fact that large-scale production of effective 

biosorbent materials has not been established and that this new technology has only 

been tested for limited practical applications (Feng and Aldrich, 2004). 
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Biosorption refers to many modes of nonactive metal uptake by biomass 

which may even be dead.  Metal sequestration by different parts of the cell can occur 

via complexation, coordination, chelation, ion exchange, adsorption or inorganic 

microprecipitation.  Any one or a combination of the metal-binding mechanisms may 

be functional to various degrees in immobilizing one or more metallic species on the 

biosorbent (Volesky, 1990).  It is often reported that biosorptive metal uptake occurs 

rapidly, efficiently and sometimes as a complex phenomenon (Yong et al., 2002). 

 

 

Various studies have been carried out using different types of biological 

materials as biosorbent of heavy-metals (Table 1.3).  Though none of the biosorbent 

technologies have been reported to replace the conventional treatment methods, 

bioremediation could be considered as an eco-friendly complementary device to the 

existing high cost technologies (Bai and Abraham, 2002). 

 

 

Table 1.3 : Laboratory studies involving biosorption of several solutes using 

several biological materials. 

Biosorbent Solutes Reference 

Brown, green and red seaweeds Metal  Hashim and Chu (2004) 

Cyanobacterium (Microcystis 

aeruginosa) 

Uranium  Li et al. (2004) 

Marine algae Heavy-metals  Sheng et al. (2004) 

Seaweed  Metal  Volesky et al. (2003) 

Bacillus firmus Heavy-metals Salehizadeh and 

Shojaosadati (2003) 

Marine miroalga (Tetraselmis 

suecica) 

Heavy-metal  Rama et al. (2002) 

Fungi (Cladosporium 

cladosporioides) 

Metal  Pethkar et al. (2001)  

Brown seaweed Heavy-metal Yun et al. (2001) 

Pseudomanas aeruginosa and 

Bacillus thuringiensis 

Heavy-metals Hassen et al. (1998) 

 

 



 22 

Living cells have been used and pretreatment using physical or chemical 

means with the objective to increase the metal biosorption capacity has been 

suggested (Kapoor and Viraraghavan, 1998).  Although living microbial populations 

are effective sorbents for toxic heavy-metals, available processing systems are 

cumbersome.  Alternatively, non-living cells can also be used as biosorbent.  

Furthermore, it has been reported that the biosorptive capacity of non-living cells 

may be greater, equivalent to or less than that of living cells (Kapoor and 

Viraraghavan, 1995). 

 

 

Extensive studies have also been carried out on biosorption and its 

dependence on solution chemistry, ionic competition by other metals, influence of 

pH and ionic concentration (Bai and Abraham, 2002).  Different types of adsorption 

isotherms have been used to quantify and contrast the performance of different 

biosorbents (Davis et al., 2003).  Among the isotherms, the Langmuir and Freundlich 

models are the most frequently used to describe metal biosorption (Ledin, 2000).  

Table 1.4 shows agreement with Ledin (2000) for Cr(VI) biosorption studies using 

different types of biosorbents. 
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Table 1.4 : Cr(VI) sorption isotherm studies using different types of biosorbents. 

Biosorbent  Sorption isotherm 

used 

Reference  

C. reinhardtii Langmuir Arica et al. (2005) 

Lentinus sajor-caju 

mycelia 

Langmuir 

 

Bayramo�lu et al. (2005) 

Mucor hiemalis Langmuir Tewari et al. (2005) 

Pantoea sp. TEM 18 Langmuir Ozdemir et al. (2004) 

Aeromonas caviae Langmuir Loukidou et al. (2004) 

Cationic surfactant-

modified yeast 

Langmuir Bingol et al. (2004) 

Seeds of Ocimum 

basilicum 

Langmuir Melo and D’Souza (2004) 

Bacillus licheniformis, 

Bacillus laterosporus 

Langmuir Zouboulis et al. (2004) 

Low cost sorbents Langmuir. Fiol et al. (2003) 

Saccharomyces 

cerevisiae 

Langmuir  Ozer and Ozer (2003) 

Dunaliella sp 1 and 

Dunaliella sp 2 

Langmuir and 

Freundlich 

Donmez and Aksu (2002) 

Cone biomass Freundlich Ucun et al. (2002) 

Rhizopus nigricans Freundlich. Bai and Abraham (2001) 

Rhizopus arrhizus Freundlich Prakasham et al. (1999) 
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1.5 Objective of Thesis 

 

 

The aim of this research is to screen and characterize new biosorbents to be 

used for removal of toxic heavy-metal, i.e. Cr(VI) from chromium electroplating 

wastewater.  Many types of microorganisms have been studied for their adsorption 

capabilities of heavy-metal.  In this particular research, indigenous microorganisms 

in local textile wastewater will be isolated and investigated for their Cr(VI) uptake 

capacity in both simulated and real electroplating wastewater. 

 

 

 

 

1.6 Scope of Thesis 

 

 

In order to achieve the objective of this thesis, this research was designed 

with initial effort of isolation and characterization of microorganisms from local 

textile wastewater.  Both Cr(III) and Cr(VI) toxicity tests were carried out on the 

isolated microorganisms in defined and complex media using repli-plate technique.  

This was followed by metal uptake studies in simulated wastewater i.e. Cr(VI) 

solution.  Preliminary metal uptake studies were carried out to investigate the effect 

of operational parameters on metal uptake by the non-living biomass.  The effect of 

pH ranging from 2 to 12 on metal uptake was studied.  The experiments on effect of 

contact time, biomass dosage and acetic acid pretreatment were conducted at an 

initial pH of 8.  The biosorption isotherm for the native of the best biosorbent was 

studied at pH 8 using the optimum operational parameters.  Eventually, the best 

biosorbent was studied for Cr(VI) uptake from real chromium-bearing wastewater.  It 

is worth mentioning here that initially textile wastewater was chosen but as Cr(VI) 

concentration in the wastewater fluctuated with time, chromium electroplating 

wastewater was used in the study. The study was conducted at both original pH 

(acidic) and pH 8.  Last but not least, the mechanism of Cr(VI) biosorption by the 

best biosorbent was determined using FTIR analysis, SEM and TEM. 
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