DEVELOPMENT OF A PC INTERFACED BLOOD PRESSURE METER (e-BPMS)

IDA LAILA BINTI AHMAD

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical-Electronics & Telecommunications)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MAY 2006

To my beloved parents; Encik Ahmad Bin Shapii and Puan Aslinah Masran, thanks for encouragement and never ending support.

My dearest sisters; Ida Liyani and Ida Farhana Afiqah credits go to both of you for all the joyous moments.

And for my great hearted fiancé; Redzuan Shah Bin Yussoff, my deepest appreciation for your great advise, constant sacrifice and endless understanding.

May Allah (swt) shower his blessings upon all of you

ACKNOWLEDGEMENT

Alhamdulillah, in completion of this project report I would like to express my credit to all persons who involved either directly or indirectly in giving useful inputs to me.

Firstly, my highest gratitude to my supervisor Prof. Dr. Ruzairi Bin Abdul Rahim for his beneficial ideas, wonderful guidance and encouragement. Without him, this project would not be a success.

Secondly, I took this opportunity to thanks my sponsor Jabatan Perkhidmatan Awam (JPA) and Kolej Universiti Teknologi Tun Hussein Onn (KUiTTHO) for funding me to further my studies.

Lastly, to all my colleagues, course mates and other graduate students, thanks for all the moral support and encouragement throughout my entire study in UTM.

ABSTRACT

Blood pressure meter is an essential instrument to determine our blood pressure status. Nowadays, there are various types of blood pressure meter available manufactured from various companies. In order to meet the demand on telemedicine and technology advancement, a new form of blood pressure meter is desirable. This prototype of blood pressure meter is interfaced with a personal computer (PC) which able to simulate the measurement process in real time. The proposed system was named e-BPMS (Electronic Blood Pressure Measurement System) suggests the usage of both hardware and software in determining blood pressure reading. Hardware elements operate on oscillometric principle which gives the results in terms of systolic, diastolic and MAP (Mean Arterial Pressure). Furthermore, these results will be presented and simulated on the software end. e-BPMS graphical user interface (GUI) was developed by using Visual Basic 6.0 (VB6) language which highlights the user friendly attributes. Moreover, the simulated waveform will evaluate the blood pressure and gives beneficial advises in term of controlling blood pressure to be optimal. This application shows significant improvement on the overall performance and gives reliable results. The framework used to design e-BPMS is easy to understand and it can be extended further to endorse new application area.

ABSTRAK

Alat mengukur tekanan darah adalah penting untuk memberikan status kesihatan tekanan darah seseorang individu. Kini, terdapat pelbagai jenis alat mengukur tekanan darah yang beroperasi menggunakan teknik-teknik yang berlainan dikilangkan oleh pelbagai pengeluar. Kepesatan perkembangan teknologi pada masa ini untuk mencapai aplikasi Tele-Perubatan menyebabkan keperluan untuk mencipta satu alat mengukur tekanan darah yang baru meningkat. Projek ini bertujuan untuk mencadangkan satu alat mengukur tekanan darah yang baru menggunakan prinsip osilometrik di mana ianya dihubungkan dengan komputer peribadi dan boleh mamaparkan simulasi bagaimana tekanan darah seseorang ditentukan. Prototaip alat mengukur tekanan darah ini dinamakan e-BPMS iaitu singkatan untuk "Sistem mengukur tekanan darah elektronik". Sistem ini boleh dibahagikan kepada dua elemen iaitu "hardware" dan juga "software". "Hardware" akan memberikan keputusan analisis dalam bentuk bacaan sistolik, diastolik dan juga purata tekanan Seterusnya bacaan ini akan dipaparkan oleh "software" yang telah arteri. diprogramkan menggunakan bahasa pengaturcaraan "Visual Basic 6.0" (VB6) pada komputer. Hasil prototaip ini berjaya memberi keputusan yang tepat dan berjaya memenuhi objektif projek ini dan ianya boleh diperbaiki lagi di masa akan datang.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS / ABBREVIATIONS	XV
LIST OF APPENDICES	xvii

1

INTRODUCTION

1.1	Backg	round	1
1.2	Theor	у	2
	1.2.1	Blood Pressure	2
	1.2.2	Factors contributing to blood	3
		pressure diseases	
	1.2.3	Blood Pressure Instruments	5
1.3	Blood	Pressure Measurements Methods	6
	1.3.1	Auscultatory Techniuqe	6
	1.3.2	Automated Auscultatory technique	7
	1.3.3	Oscillometric technique	7

		1.3.4	Infrasound and ultrasound	8			
			technique				
		1.3.5	Tonometry technique	8			
		1.3.6	Ambulatory blood pressure	9			
			monitoring technique (ABPM)				
		1.3.7	Pulse dynamic technique	9			
		1.3.8	Plethysmography technique	10			
		1.3.9	Finger cuff technique	10			
	1.4	Stater	nent of the problem	11			
	1.5	Projec	ct Objectives	11			
	1.6	Signif	ficance of project	12			
2	LITH	ERATU	RE REVIEW				
	2.1	Revie	w of related literature	13			
3	МЕТ	THODO	LOGY				
	3.1	Metho	od chosen	25			
	3.2	Instru	ments	26			
		3.2.1	Hardware	27			
		3.2.2	Software	28			
		3.2.3	System Integration	30			
4	HAR	HARDWARE DEVELOPMENT					
	4.1	Hardy	vare Design	32			
	4.2	Hardy	vare Parts	32			
		4.2.1	Pressure sensor (MX5050GP)	33			
		4.2.2	Operational amplifier (LM324N)	34			
		4.2.3	Differential amplifier	35			
		4.2.4	Two poles high pass resistance-	37			
			capacitance (RC) filter				
		4.2.5	PIC 16F877	38			
		4.2.6	MAX232	40			
		4.2.7	RS 232 Serial interface	42			
	4.3	Hands	shaking in Serial Communication	45			

	4.3.1 Software Handshaking	46
	4.3.2 Hardware Handshaking	47
4.4	Full circuit operation	47
4.5	Hardware Testing	48
	4.5.1 Alpha Testing	48
	4.5.2 System Testing	48

5 SOFTWARE DEVELOPMENT

5.1	Softwa	are Design	49
5.2	Graph	ical User Interface Design	49
	5.2.1	Flash Screen	50
	5.2.2	Main Screen	50
	5.2.3	e-BPMS File Menu	52
	5.2.4	e-BPMS View Menu	54
	5.2.5	Measurement Interface	55
	5.2.6	Error Indication	57
5.3	PIC P	rogramming	57
5.4	Wavef	form Reconstruction Algorithm	62

6 **RESULTS AND DISCUSSIONS**

6.1	Hardw	vare Experiments	63
	6.1.1	Pressure sensor	63
	6.1.2	Differential Amplifier	65
	6.1.3	Two poles high pass RC filter	66
	6.1.4	PIC16F877 microcontroller	68
	6.1.5	MAX232-RS232 interface	69
	6.1.6	e-BPMs output (blood pressure	70
		reading determination)	
6.2	Softwa	are Simulation	72
	6.2.1	Waveform Reconstruction	72
	6.2.2	Comparison of Results	73
6.3	Perfor	mance Measures	74

7 CONCLUSIONS AND RECOMMENDATIONS

7.1	Conclusions	76
7.2	Limitations of e-BPMS	77
7.3	Future recommendation	78

REFERENCES	80
APPENDICES	84

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Blood pressure classification for adults given	3
	by AHA	
5.1	Baud Rates for Asynchronous Mode (BRGH = 1)	59

LIST OF FIGURES

FIGURE

TITLE

PAGE

1.1	Sphygmomanometer	5
1.2	Determination of blood pressure using	8
	oscillometric technique	
2.1	OMRON blood pressure meter	19
2.2	CITIZEN blood pressure meter	20
2.3	BIPITONE blood pressure meter	20
2.4	HEALTH-O-METER blood pressure meter	21
2.5	LUMISCOPE blood pressure meter	22
2.6	FORECARE blood pressure meter	23
3.1	Basic principle in oscillometric method	26
3.2	Block diagram for e-BPMS	27
3.3	Hardware flowchart	28
3.4	Software flowchart	30
4.1	MPX5050GP pressure sensor	33
4.2	Expected output of pressure sensor	34
4.3	Power supply decoupling and filtering circuit	34
4.4	LM324N operational amplifier	35
4.5	Differential amplifier circuit	36
4.6	Expected oscillation signal given by	37
	differential amplifier	
4.7	Expected filter frequency response	37
4.8	Basic microcontroller block diagram and	38
	PIC16F877 pin assignments	

4.9	Test set up for MAX232	41
4.10	Expected output from MAX232	42
4.11	MAX232 chip configuration and its	42
	internal outlook	
4.12	Bi-directional RS-232 interface	43
4.13	Handshaking timing diagram	46
5.1	Flash screen	50
5.2	e-BPMS main screen	51
5.3	Text document of "Info" button	51
5.4	e-BPMS waveform display screen	52
5.5	e-BPMS file menu	53
5.6	Example of result to be printed	53
5.7	e-BPMS "about" screenshot	54
5.8	e-BPMS database screenshot	55
5.9	e-BPMS patient blood pressure status display	56
5.10	Sample of waveform reconstructed by e-BPMS	56
5.11	e-BPMS error indication	57
5.12	Initialization of register ADCON1 and	58
	all ports used	
5.13	Setting of transmission mode and baud rate	59
5.14	PC detection of START/STOP data transfer	60
5.15	Starting the Analog-to-Digital Conversion	60
	Operation	
5.16	ADRESL and ADRESH setting for data transfer	61
5.17	Detect the end of Capture Duration	61
5.18	Routine for reconstruction of waveform	62
6.1	Differential pressure obtained from sensor	64
6.2	Differential amplifier circuit	66
6.3	Filter frequency response	67
6.4	Input / output of analog to digital converter (ADC)	68
6.5	Output of both pin T2IN and T2OUT	70
6.6	Example of blood pressure waveform obtained	71
6.7	Blood pressure oscillations envelope	72
6.8	Waveform reconstruction points	73

6.9	Comparison on waveforms obtained from e-BPMS	74
6.10	Performance measures of e-BPMS	75
7.1	Unwanted notch and jitters captured	77
7.2	Inconsistent reading when pressure > 150mmHg	78
	is applied	

LIST OF SYMBOLS/ ABBREVIATIONS

A/D	-	Analog-Digital	
AAMI	-	Association of Advancement Medical Instrumentation	
ABPM	-	Ambulatory Blood Pressure Monitoring	
ADC	-	Analog to digital Converter	
AHA	-	American Health Association	
A_p	-	Attenuation	
ASCII	-	American Standard Code for Information Interchange	
atm	-	Atmospheric unit (pressure measurement)	
CMOS	-	Complementary MOSFET	
СОМ	-	Component Object Model	
СР	-	Cuff Pressure signal	
CPU	-	Central Processing Unit	
CTS	-	Clear To Send	
DIY	-	Do It Yourself	
DSR	-	Data Set Ready	
DTR	-	Data Terminal Ready	
e-BPMS	-	Electronic Blood Pressure Measurement System	
EIA/TIA-232E		Serial Communication Standard	
EMI	-	Electromagnetic Induced Voltage	
FET	-	Field Effect Transistor	
GND	-	Ground	
GPIB	-	General Purpose Interface Bus	
GUI	-	Graphical User Interface	
Hz	-	Hertz (unit of frequency)	
LCD	-	Liquid Crystal Display	

MAP	-	Mean Arterial Pressure	
mmHg	-	Unit millimeter mercury	
MOSFET	-	Metal Oxide Semiconductor FET	
MS Chart	-	Microsoft Chart (ActiveX function)	
MS Comm.	-	Microsoft Communication (ActiveX function)	
MSC	-	Multimedia Super Corridor	
NIBP	-	Non Invasive Blood Pressure	
Pa	-	Pascal unit (pressure measurement)	
PC	-	Personal Computer	
PIC	-	Peripheral Interface Controller	
RC	-	Resistor-Capacitor	
RS-232	-	Serial Communication Protocol	
RTS	-	Request to Send	
R_{XD}	-	Received data	
SI	-	International System (unit of measurement)	
SPBRG	-	Baud rate generator	
TTL	-	Transistor-Transistor Logic	
T_{XD}	-	Transmit data	
UART	-	Universal Asynchronous Receiver/Transmitter	
V	-	Volt (unit of voltage)	
VB6	-	Visual Basic 6.0	
V_{DC}	-	Direct current Voltage	
Vout	-	Voltage output	
V_s	-	Voltage Supply	
WHO	-	World Health Organization	

LIST OF APPENDICES

TITLE

PAGE

А	PIC Programming	84
В	VB Programming	87
С	e-BPMS Circuit Diagram	91
D	Standard Blood Pressure Table	92
Е	Data Sheet	93

CHAPTER 1

INTRODUCTION

1.1 Background

Blood pressure is one of most important measurements which indicate person's health condition. Abnormal blood pressure reading may lead to various diseases which can be prevented by treatment. Blood pressure related diseases are usually being referred as "silent killer". The consequence promoted can be either cardiac disorder or the malfunctions of our body systems. Considering these huge effects may be too harmful for human body, thus preventive action needs to be taken. High blood pressure is an epidemic disease which always a major concerns in developed countries.

Statistic shows the great number of cases for the past decades, which triggers the insight to prevent and control this disease rather than cure it. Nowadays, the need for a reliable medical technologies and analysis is desirable, since the users prefer to experience their medical diagnosis themselves. Home monitoring provides an accurate record of measurements over time helps in planning an overall personal health regimen. Furthermore, blood pressure management is a step towards a healthier lifestyle.

1.2.1 Blood pressure

Blood pressure is defined as the pressure of the blood against the walls of the arteries. It is the resultant of two forces. One is created by the heart as it pumps blood into the arteries and through the circulatory system. The other is the force of the arteries as they resist the blood flow. Blood pressure is measured in millimeters of mercury (mmHg) and recorded as two numbers systolic pressure "over" diastolic pressure. For example, the doctor might say "130 over 80" 130/80 mmHg as a blood pressure reading. The measurement is taken when the doctor puts the cuff around patient's arm and pumps it up.

The pressure exerted by the cuff will block the blood flow in the vessel. As the pressure is released slowly, blood starts to flow again and the doctor can hear the flow using a stethoscope. The number at which blood starts flowing again is recorded as maximum output of pressure of the heart (systolic). Then, the doctor will continue releasing the pressure of the cuff and listens until there is no sound. The number (80) indicates the pressure in the system when the heart is relaxed (diastolic).

According to American Heart Association (AHA), optimal blood pressure with respect to cardiovascular risk is less than 120/80 mmHg. However, unusually low readings should be evaluated to rule out medical causes. If the patient exhibits low readings every measurements, there is a potential of having low blood pressure (hypotension). The systolic pressure of 120 to 139 mmHg or diastolic pressure of 80 to 89 mmHg is considered as at risk of having high blood pressure (pre hypertension). Furthermore, blood pressure reading of 140/90 mmHg is considered elevated high (hypertension). The range of blood pressure recommended by AHA is summarized in the Table 1.1 below.

Category	Systolic (mmHg)	Diastolic (mmHg)
Normal	< 130	<85
High Normal	130-139	85-89
Hypertension		
Stage 1 (mild)	140-159	90-99
Stage 2 (moderate)	160-179	100-109
Stage 3 (severe)	108-209	110-119
Stage 4 (very severe)	≥210	≥120

Table 1.1: Blood pressure classification for adults given by AHA

Blood pressure reading is known to be varied between one people to another. It is recommended by AHA that ideally, blood pressure must be checked at least twice a year and it should be more often if it is high. Some of the factors affecting blood pressure can be classified into several categories concerning physiological, gender, lifestyles and many others. The elaboration of these factors will be in following section.

1.2.2 Factors contributing to blood pressure diseases

Firstly is the elasticity of blood vessel determines the amount of blood flow at one time. The nature of blood vessel changes as we age, as the vessel gets thicker, the capability of blood vessel to absorb is diminishes with time. These causes the older people are more likely to experience hypertension. Some people also may suffer low blood pressure (hypotension) due to low blood volume in their body system.

Generally, high blood pressure is related to high salt intake in our food consumption. Since people nowadays are exposed to busy life routines made them consuming bad diet habit which eventually promotes obesity (overweight). Other than that, cigarette smoking and alcohol intake may also contribute to this problem. Lack of exercise of people nowadays also contributes to high blood pressure.

Female are proven has higher rate of hypertension cases compared to male. Research done proposed that, women who experience pregnancy, menopause and overweight are at high risk of hypertension. This is due to the fact that, instable blood pressure may be resulted from the above situations, since women will experience hormonal changes.

Some people who have the history of high blood pressure in their families also have been identified to be one of the hypertension reasons. Other than that, people who are on medication or under doctor's prescription may observe irregularities in their blood pressure. This may be resulted from the drugs (prescriptions) they are taking. Certain hormones, like adrenaline which is released when people under stress may also cause certain blood vessels to constrict, and this raises the blood pressure. If people are exposed to constant stress, it means that the heart has to work too hard and this increase the blood pressure reading.

1.2.3 Blood pressure instrument

Traditionally, a sphygmomanometer is used for measuring blood pressure in the arteries. The word is derived from the Greek "sphygmus" (pulse), plus the scientific term manometer was introduced by Scipione Riva Rocci, an Italian Physician during 1896. Usually it consists of an inflatable cuff, a measuring unit and also a tube whereby, the inflation bulb is used along with stethoscope. The image of sphygmomanometer is given in Figure 1.1.

Figure 1.1 Sphygmomanometer

Due to technologies advancement, blood pressure testing devices now are using electronic instruments or digital readouts. In these cases, the blood pressure reading appears on a small screen or is signaled in beeps, and no stethoscope is used. Most of digital instruments have an automatic inflation mechanism, which replace the manual inflation bulb for simplicity and comfort. A digital system is widely known for its convenience and robustness even in noisy environment is preferable. Therefore, blood pressure meter now available is still adapting the same measuring techniques with added features. Some of available blood pressure meter are tabletop, wristband and also finger. Considerations need to be made when designing a digital blood pressure meter since electronic devices are very susceptible to operating temperature and also humidity.

1.3 Blood pressure measurement methods

There are few available techniques employed for blood pressure measurements in which have their own strengths and weaknesses. Two popular approaches can be classified into two major groups known as invasive and noninvasive methods. As the name implies, invasive method involve catheterization (cut) where the patient need to undergone a minor surgical process. On the other hand, the non invasive technique offers simplicity, convenience, and comfort procedure to the patient is more preferable.

The invasive method is undoubtedly yields the most accurate measurements, but it is rarely used since it is more risky and patient may suffer excessive blood loss. Even today, invasive catheterization procedures are seldom used due to the risk of infection. Although, non invasive sacrifice a degree of accuracy in the measurement, the procedures which are considering for patient safety are widely applied. Two major methods for non invasive measurement are known as Auscultatory and Oscillometric. In fact, there are various methods used for measuring blood pressure which will be discussed next.

1.3.1 Auscultatory technique

This technique based on the ability of the human ear (expert practitioner) to detect and distinguished sounds. It was suggested by Korotkoff during 1905 has yet became the most common method of blood pressure measurement today. The clinician will use a stethoscope to listen for the Korotkoff sounds as the cuff deflates to determine the systolic, diastolic and estimate mean arterial pressure reading. The great advantage is clinician is allows to determine the quality of each measurement. However, the possible error may arise due to differences in hearing acuity from one clinician to another. Furthermore, the unqualified or inexperienced clinician may not be immune to outside noise and other interference, thus assessing inconsistent Korotkoff sounds during measurement.

1.3.2 Automated Auscultatory technique

This particular technique was developed to replace to function of human ear by using microphone. A sound based algorithm was applied to estimate the systolic and diastolic readings. The drawback of this technique is lack of validation ability. In addition to noise artifact sensitivity, the algorithm may not adequately compensate for patient suffer low blood pressure (hypotension). Hence, the oscillometric technique was proposed to make the automated measurement more reliable.

1.3.3 Oscillometric technique

The name implies the procedure is done by measuring the oscillations caused by the arterial pressure pulse. These oscillations are the results of the coupling of the occlusive cuff to the artery. Oscillometric devices measure the mean but estimate both systolic and diastolic as proposed in Figure 1.2. The point of maximum amplitude is considered mean arterial pressure (MAP). Device using this technique do not use microphone, hence it is not affected by cuff placement and external noise. On the other hand, since is does not allow measurement validation, it is sensitive to patient movement. Error due to this technique may be generated from inaccurate determination of MAP.

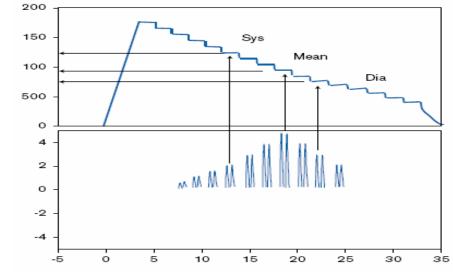


Figure 1.2 Determination of blood pressure using oscillometric technique

1.3.4 Infrasound and ultrasound technique

Infrasound technique attempts to improve on the auscultatory method by detecting the low frequency Korotkoff sound vibrations below 50 Hz, in which including sub audible vibrations. On the other hand, ultrasound technique is not commonly used for measuring blood pressure. Usually, it is use in combination with other methods. Major feature of this method is, the values recorded by using ultrasound can be very operator dependent.

1.3.5 Tonometry technique

This method uses a different approach where the arterial tonometry is realized by flattening the pressure non invasively to squeeze the artery against bone. The applied pressure required to maintain the flattened shape are recorded and accomplished by using array of pressure sensors. An algorithm must be used to calculate the blood pressure from the waveform obtained. Moreover, the waveform exhibits a similar pattern as catheter measurement (invasive). However, tonometry have several limitations which affecting its performance. Limitations like high sensitivity to sensor position and angle, measuring peripheral circulation, low inter-operator reproducibility, and is also requires regular calibration.

1.3.6 Ambulatory blood pressure monitoring technique (ABPM)

ABPM monitors patient blood pressure over a predefined length of time outside the clinic as the patients runs their daily life routines. Periodically, monitors will record the measurements and stores the results. When, monitoring period is over, clinician will have a set of data for analysis. The primary purpose of ABPM is to obtain a profile of patient's blood pressure under conditions outside clinical environment. It is believed that the blood pressure measured in clinic does not always representing the true value and may lead to identification of white coat hypertension and circadian rhythm of blood pressure. Clinical research for ABPM has led to the additional analysis techniques that allow clinician to obtain a clearer assessment of a patient's hypertensive condition. Some advantages offers by ABPM are reliable measurement, easier diagnosis and treatment development to help problematic patients.

1.3.7 Pulse dynamic technique

Pulse dynamic is a technology introduced by pulse metric proposed a variant of oscillometric method. The significant advantage of this method is, it

combines the reliability of oscillometric technique while retaining the validation capability of manual auscultatory method.

1.3.8 Plethysmography technique

This method is also known as "*Impedance plethysmography*" technique measures the volumetric change associated with arterial distension. Volumetric changes cause changes in the electrical conductivity (impedance) of the measurement. If the impedance graph is plotted against time, the generated waveform looks similar to pressure generated oscillometric waveform. Therefore, blood pressure is estimated in a manner similar to oscillometric technique

1.3.9 Finger cuff technique

The technique was developed by Penaz and works on the principle of unloaded arterial wall. This method may give an accurate estimate of changes in systolic and diastolic pressure, although both may be underestimated when compared to brachial artery pressure. It is found that, this method is not suitable for obtaining absolute level of blood pressure due to its inaccuracy. Secondly, it is also costly compared to the other available methods.

1.4 Statement of the problem

Nowadays most of the people are reluctant to get their blood pressure being checked regularly. Usually, when they experience the diseases then only they would seek for professional helps. As we know blood pressure diseases are harmful to human for instance high blood pressure (hypertension) and low blood pressure (hypotension). Driven by this consensus, human desires a simple and reliable blood pressure measurement instruments which can suits their lifestyle. Due to technology advancement, blood pressure instruments come in variety of sizes equipped with added functions. To meet these requirements, a simple low cost digital blood pressure meter which can do a real time analysis will be introduced. In the project, a computer is use because it has a large memory space to store abundant of data. Therefore, PC can work as a platform for interaction for blood pressure monitoring system.

1.5 Project Objectives

- To design a digital blood pressure meter to be interfaced with a personal computer (PC).
- To develop a screening system which can illustrate blood pressure measurements in real-time.
- To introduce an affordable, low cost and user friendly digital blood pressure monitor.

1.6 Significance of project

This new design blood pressure measuring system would help to do the basic screening process for blood pressure measurement. As a result, this will not only ease the blood pressure diagnosis but also may improve the overall medical system. The development of PC based digital blood pressure meter was designed purposely to introduce an alternative way to promote regular self monitoring for patient. User engage to the system may experience simple blood pressure screening procedures, which is done in real-time to check their health status. Therefore, a robust medical checking system is important to ensure the procedure can be done with a minimal supervision.

One significant advantage of this application is the system works using the "DIY" concept or "Do-It-Yourself". This is an innovation to help users execute the diagnosis all by themselves. By using this system, user will reduce their time to travel to hospital and they are able to monitor their health status regularly. When e-BPMS is set ready for use, this device not only will help people to get their blood pressure measured regularly, this indirectly may promote early prevention due to blood pressure diseases. In conjunction with the aims to realize one of our Malaysia's Multimedia Super Corridor (MSC) flagships known as telehealth, this device can be used at the front end to employ telemedicine.