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ABSTRACT 
 
 
      Poly(styrene-divinyl benzene) (PS-DVB) resin is an attractive adsorbent for 
extraction and separation of various types of compounds due to its stability over the pH 
range of 1-14. However, PS-DVB resin is known to have hydrophobic surfaces that 
highly retain non-polar compounds while poorly retain polar compounds. To improve its 
use in the separation or extraction of polar compounds, PS-DVB resin must be chemically 
or physically bonded to hydrophilic groups to reduce its hydrophobic surface. The 
objectives of this project were to modify PS-DVB phases by introducing moieties that can 
increase the dispersive forces and lower the hydrophobicity of the PS-DVB phases and to 
examine the characteristics and applications of the modified PS-DVB adsorbents.  
 The PS-DVB adsorbents were prepared by suspension polymerization method with 
polyvinyl alcohol as the suspension stabilizer at a stirring speed of 1000 rpm for 20 h. In 
the first approach (Volume 1), the synthesized PS-DVB adsorbents were subjected to 
modifications that consisted of (i) Friedel-Crafts acylation reaction using stearoyl chloride 
as an acylation agent to produce PS-DVB heptadecyl ketone, (ii) Chloromethylation 
reaction to produce chloromethyl PS-DVB in the presence of chloromethyl styrene, and 
(iii) Williamson ether reaction using sodium metal and octadecanol as reaction agents to 
produce octadecoxy methyl PS-DVB. The synthesized adsorbents were characterized by 
FTIR spectroscopy, SEM, nitrogen adsorption analysis and thermogravimetric analysis. 
Solid phase extraction (SPE) studies of test compounds, namely nitrobenzene, 2-
chlorophenol, benzaldehyde, butyrophenone, and p-cresol were carried out using SPE 
tubes packed with the synthesized adsorbents. The recoveries obtained for the home-made 
PS-DVB were in the range of 7% to 72% with relative standard deviations of 1% to 10%. 
Increased percentages of recovery (35%-83%) with the relative standard deviations of 
2%-7% were obtained using PS-DVB heptadecyl ketone. Highest recovery percentages 
(67%-100%) were obtained using commercial C18-silica adsorbent. Highest breakthrough 
volume was achieved for PS-DVB heptadecyl ketone adsorbent, i.e. 30.60 mL of 20 ppm 
nitrobenzene and 20.47 mL of 20 ppm 2-chlorophenol. Lowest breakthrough volume was 
obtained for octadecoxy methyl PS-DVB adsorbent (1.03 mL of 20 ppm nitrobenzene and 
1.00 mL of 20 ppm 2-chlorophenol). PS-DVB heptadecyl ketone has been proven suitable 
to be used as SPE adsorbent in the future. 
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ABSTRAK 

 
 
 Resin poli(stirena-divinil benzena) (PS-DVB) merupakan penjerap yang menarik 
untuk pengekstrakan dan pemisahan pelbagai jenis sebatian disebabkan kestabilannya 
pada julat pH 1-14. Walau bagaimanapun, resin PS-DVB diketahui mempunyai 
permukaan yang hidrofobik yang sangat menahan sebatian tak berkutub manakala tidak 
menahan sebatian berkutub. Untuk memperbaiki penggunaan bahannya dalam pemisahan 
atau pengekstrakan sebatian berkutub, resin PS-DVB mesti diikat secara kimia atau fizik 
kepada kumpulan hidrofilik untuk mengurangkan kehidrofobikan permukaannya. 
Objektif projek ini ialah untuk mengubahsuai fasa PS-DVB dengan memasukkan moieti 
yang boleh meningkatkan daya serakan dan mengurangkan kehidrofobikan fasa tersebut 
dan untuk menkaji ciri-ciri dan penggunaan PS-DVB terubahsuai itu. 
 Penjerap PS-DVB telah disediakan dengan kaedah pembolimeran ampaian dengan 
alkohol polyvinil sebagai penstabil ampaian pada kelajuan putaran 1000 rpm selama 20 j. 
Dalam pendekatan yang pertama (Jilid 1), penjerap PS-DVB yang telah disentesis telah 
dimodifikasi melalui kaedah (i) Tindak balas pengasilan Friedel-Crafts menggunakan 
stearoil klorida sebagai agen pengasilan untuk menghasilkan PS-DVB heptadekil keton, 
(ii) Tindak balas pengklorometilan  untuk menghasilkan klorometil PS-DVB dengan 
kehadiran klorometil stirena, dan (iii) Tindak balas eter Williamson menggunakan logam 
natrium dan oktadekanol sebagai agen tindak balas eter untuk menghasilkan oktadekoksi 
metil PS-DVB. Penjerap yang telah disintesis itu dilakukan pencirian menggunakan 
spektroskopi FTIR, SEM, analisis penjerap nitrogen and analisis termogravimetri.  Kajian 
pengekstrakan fasa pepejal (SPE) bagi beberapa sebatian organik terpilih seperti 
nitrobenzena, 2-klorofenol, benzaldehid, butirofenon dan p-kresol dijalankan dengan 
menggunakan tiub SPE yang dipadatkan dengan penjerap yang disintesis. Pertambahan 
peratus perolehan semula (35%-83%) dengan sisihan piawai relatif 2%-7% dihasilkan 
dengan menggunakan PS-DVB heptadekil keton. Peratus perolehan semula yang tertinggi 
(67%-100%) dihasilkan oleh bahan penjerap C18-silika komersial. Penentuan kemunculan 
isipadu untuk beberapa bahan penjerap menunjukkan bahawa kemunculan isipadu yang 
tertinggi dihasilkan oleh PS-DVB heptadekil keton, iaitu  30.60 mL untuk nitrobenzena 
20 ppm dan 20.47 mL untuk 2-klorofenol 20 ppm. Kemunculan isipadu yang terendah 
dihasilkan oleh bahan penjerap oktadekoksi metil PS-DVB (1.03 mL untuk nitrobenzena 
20 ppm dan 1.00 mL untuk 2-klorofenol 20 ppm. PS-DVB heptadekil keton terbukti 
sesuai digunakan sebagai bahan penjerap SPE di masa hadapan.  
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CHAPTER 1 
 

 

 

 

INTRODUCTION 
 

 

 

 

 

1.1 General Background 

 

Thousands of polymers have been synthesized and more are likely to be 

produced in the future.  Functionalized polymers have found various applications as 

supports in solid phase synthesis, such as chromatographic packing, polymer 

supported catalysts and starting materials for the synthesis of ion exchange resins. 

The suspension copolymerization of styrene with divinylbenzene has been developed 

by Kun and Kunin [1] to produce poly(styrene-divinyl benzene) (PS-DVB).  This 

material has been widely used as a stationary phase for high performance liquid 

chromatography (HPLC) and matrices of a great number of ion exchangers. 

 

Previous workers [2] have found that macro-porous PS-DVB is prepared as a 

result of phase separation during the copolymerization in the presence of inert 

diluents.  The inert diluents are extracted after copolymerization and porous structure 

is obtained.  Polymers, solvents or non-solvents of polystyrene or mixture of them 

may be used as diluents giving various types of pore size distribution.  
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PS-DVB copolymers have a hydrophobic surface and overcome many of the 

limitations of bonded silicas, especially those related to the limited pH stability in the 

presence of the silanol group [3]. PS-DVB is often used as sorbents in reversed-

phase (RP) liquid chromatography [4].  Usually, porous PS-DVB packing materials 

are employed because they provide a large surface area. Commercially available 

porous PS-DVB packing includes Amberlite XAD-2, PLRP-S, and PRP-1.  While 

PS-DVB packing has many advantages, such as chemical stability at high and low 

pH and the absence of residual silanol groups, they suffer from the disadvantage of 

yielding lower chromatographic efficiencies than silica-based octadecylsilyl bonded 

phase packing of the same particle size.  

 

Since 1990s, chemically modified resins have been developed and applied to 

the trace enrichment of polar substances. These sorbents have excellent 

hydrophobicity and yield higher recoveries than unmodified ones and have found 

great applications in solid phase extraction (SPE) for sample preparation in 

environmental analysis [5].  One of the possible chemical modifications of resin is by 

using Williamson ether reaction.  The Williamson ether reaction was named after 

Alexander William Williamson (1824-1904).  The Williamson ether synthesis is an 

example of a nucleophilic substitution reaction.  The nucleophile is an alkoxide 

anion, which displaces a halide ion, typically chloride or bromide, from a primary 

haloalkane.  The alkoxide can be generated by addition of metallic sodium to the 

corresponding alcohol.  Although the Williamson ether synthesis is a general method 

for the laboratory production of ethers, there are some limitations to its use. Since the 

alkoxide ion is a strong base, their use is limited to primary unhindered alkylating 

agents.  Otherwise, elimination competes strongly with the nucleophilic substitution 

for the reactant molecules.  Sometimes, the reaction is run in a solvent, which fosters 

the SN2 process [6-7]. 

 

Solid-phase extraction has recently come into the focus of interest and offers 

a viable alternative to the conventional sample preparation methods [5, 8, 9].  SPE 

has evolved to be a powerful tool for isolation and concentration of trace analytes in 

a variety of sample matrices.  Nowadays, the most frequently used design in off-line 

SPE is the cartridge or the syringe barrel.  They are usually made of polypropylene 

or polyethylene and filled with packing material having different functional groups. 
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The solid sorbent is contained between two 20-μm polypropylene frits. Cartridges 

vary from as little as 100 mg to 1 g or more.  Syringe barrels range in size from 1 to 

25 mL and packing weights from 50 mg to 10 g.  Solvent reservoirs may be used at 

the top of the syringe barrels to increase the total volume (50-1000 mL) [8].  

 

The breakthrough volumes can describe the characteristics of adsorbents.  To 

record a breakthrough curve, after proper equilibration of the SPE cartridge, a 

solution of analyte is pumped directly to the detector (cartridge in the bypass 

position) to determine its absorbance signal.  The cartridge is switched in-line 

causing the UV signal to drop to baseline level because the analyte is retained on the 

cartridge.  Upon breakthrough, the UV signal will rise back to its initial level. The 

volume of analyte solution that can flow through the cartridge before breakthrough 

occurs is the “breakthrough volume” and is used as the measure of the extraction 

capacity [10]. 

  

This sesearch was set to explore the methods of preparing of PS-DVB 

stationary phases, their modification, characterization, as well as application in 

analytical separation.  PS-DVB beads were synthesized based on suspension 

polymerization from its monomers, styrene, and divinyl-benzene.  A new PS-DVB 

modification method was carried out by introducing octadecoxy group (C18H37-0-) 

onto the PS-DVB back bone.  

 

 

 

1.2 Problem Background  

 

The beginning of the era of synthetic polymers for ion exchange is generally 

attributed to the work of B. A. Adams and E. L. Holmes at the Chemical Research 

Laboratory, Teddington, England [11].  Although the phenomenon of water softening 

by ion-exchange was known at the time of their collaboration, the deionization of 

water required stable materials capable of performing both cation and anion 

exchange.  
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A polymer is a chemical species of high molecular weight.  It is made up of 

repeating low-molecular weight units.  These repeating units are termed monomers 

and the compounds are reacted to form a polymer.  There are two types of polymers 

namely, natural and synthetic polymers [12].  The PS-DVB polymers are 

manufactured as general sorbents and they are often chosen for SPE works because 

the loading properties of organic carbon are superior to those of silica-based 

adsorbent [13].  Leon-Gonzalez and co-workers [3] have found that the chemically 

modified PS-DVB resin can adsorbed wide variety of organic analytes efficiently.  

They have a higher sorption capacity for the more polar compounds than their 

unmodified analogues do. 

  

Balakhrisnan and Ford [14] have found that the suspension polymerization is 

widely used in polymerization of styrene.  The major factors controlling the particle 

size are surface tension, densities of aqueous and monomer phases, viscosities of 

aqueous and monomer phases, diameters of stirrer and kettle, and stirring speed.  

Their research on particle size effects in polymer supported organic synthesis and 

polymer supported phase transfer catalysis requires cross linked polystyrenes of a 

wide range of sizes with chloromethyl group that can be converted easily to polymer 

bound.  

 

Masque et al. [5] described the application of unmodified and modified PS-

DVB to the analysis of group of polar phenolic compounds. They have used on-line 

and the off-line SPE to determine pollutants in environmental waters. The 

advantages of on-line SPE are the higher sensitivity, absence of organic solvents and 

less manipulation of the samples, which leads to greater precision, and makes it 

easier for it to be automated.  The functional polymer networks have gained great 

importance in many fields of scientific research as well as for industrial applications. 

The interest stems from the variety of possible modifications of their chemical and 

physical properties. Claudio et al. [15] said that increasing environmental concerns in 

waste water treatment has lead to the use of organic ligands anchored to solid 

supports in order to remove and recover important metal ions from aqueous solution. 
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The use of polymeric resins in reversed-phase high performance liquid 

chromatography (RP-HPLC) has grown dramatically, since an increasing number of 

polymeric columns are commercially available.  The application of silica-based 

supports is limited by the low stability of silica at alkaline pH values and by the 

unwanted interactions between polar solutes and remaining free silanol groups not 

covered by the hydrophobic ligands. In particular, PS-DVB-based resins show a high 

stability over the pH range 1-14 and provide excellent separations.  Additionally, PS-

DVB particles permit the introduction of numerous functional groups that change 

their surface chemistry and hence the chromatographic selectivity [16].  

 

Porous PS-DVB based resins have proven to be very effective for SPE of a 

wide variety of organic compounds from predominantly aqueous samples. Their 

effectiveness is enhanced by chemical introduction of polar groups, such as acetyl, 

and sulfonic acid [17].  However, these modified PS-DVB resins were poorly 

extracted small toward polar organic compounds such as alcohols, aldehydes, 

ketones and carboxilyc acids.  Consequently, when SPE is carried out in extremely 

acidic or basic media, reversed-phase polymeric sorbents (generally based on PS-

DVB) are used.  The PS-DVB has much lower backgrounds due to improvements in 

manufacturing processes.  The PS-DVB was used as an adsorbent material has 

demonstrated to provide improved recoveries for phenolic compounds as compared 

to the traditional and more commonly applied C18 material [17]. 

 

Silica based packing materials are widely used in high performance liquid 

chromatography (HPLC) because of their mechanical stability and wide variety of 

derivatizations, as well as their relatively higher column efficiency.  Unfortunately, 

silica based supports also possess a series of drawbacks.  One is their inherent low 

chemical stability at pH above 8 and below 2.  This drawback can cause dissolution 

of the silica support and loss of the bonded phase.  In general, ideal ion-exchange 

packing materials for HPLC are mechanically stable, chemically inert, hydrophilic 

with no irreversible adsorption, and highly efficient.  To overcome the stability 

problem of silica, researchers have turned their attention to polymeric supports.  PS-

DVB-based supports have been studied and utilized the most, due to their chemical 

stability in both strong base and acid.  Recently, HPLC ion exchange stationary 

phase have been developed from the PS-DVB matrix by applying a hydrophilic 
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coating on the surface.  However, the column efficiency could not match that of most 

silica-based column [18].  It is of interest, therefore, to explore new techniques to 

treat the surface of PS-DVB beads in order to obtain more variable absorbent.     

 

 

 

1.3 Aim and Objectives  

 

1.3.1 Aim of Sesearch 

  

The aim of this sesearch is to develop a new chemically modified PS-DVB 

resin by introducing octadecoxy group (C18H37-O-) onto the PS-DVB backbone.  The 

new modified PS-DVB is compared with unmodified PS-DVB and other modified 

PS-DVB and these phases are applied as adsorbents in solid phase extraction.  

 

 

1.3.2 Objectives of Project 

 

The objectives of this research are:  

a) To synthesize PS-DVB adsorbent using suspension polymerization technique. 

b) To produce modified PS-DVB adsorbents by Friedel-Crafts acylation reaction,  

chloromethylation, and Williamson ether reaction. 

c) To characterize and study the performance of the adsorbents. 

d) To apply the developed modified PS-DVB resins to SPE analysis. 

 

 

 

1.4 Scope of Sesearch 

 

The following are the scopes of sesearch: 

a. Preparation PS-DVB and modification of PS-DVB via 

i. Friedel-Crafts acylation 

ii. Chloromethylation 

iii. Williamson ether reaction 
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b. Study of the physical characteristics of PS-DVB and modified PS-DVB by using:  

i.  Fourier transform infrared spectrophotometry (FTIR) 

ii. Scanning electron microscopy (SEM) 

iii. Thermogravimetric analysis (TGA) 

iv. Nitrogen adsorption analysis (NA) 

 

c. Study of the chemical characteristics of PS-DVB and modified PS-DVB by using:  

i. Solid phase extraction (SPE)  

ii. Gas chromatography (GC) 

 

 

 

1.5 Outline of the Project Report  

 

This project report consists of six chapters. Chapter 1 presents general 

background of this sesearch, research aim, research objectives and scope.  Chapter 2 

compiles the literature reviews and theoretical background on PS-DVB, modification 

of PS-DVB and its application as an adsorbent for chemical analysis.  The 

procedures for characterization and application of the synthesized materials are 

presented in Chapter 3. Chapter 4 reports the results and discusses the preparation of 

PS-DVB, and modified PS-DVB.  Chapter 5 describes the characterization and 

application of unmodified and modified PS-DVB as an adsorbent in the 

chromatographic analysis. The concluding Chapter 6 summarizes this project report 

by presenting the overall conclusions and suggestions for future sesearch. 

 



 
 
 
 
 

CHAPTER 2 
 

 

 

 

LITERATURE REVIEW 

 

 

 

 

 
2.1       Free Radical Polymerization 

 

One of the most common and useful reactions for making polymers is the free 

radical polymerization.  It is used to make polymers from vinyl monomers, that is, 

from small molecules containing carbon-carbon double bonds. Free radical 

polymerization reactions are of enormous importance in technology.  The monomers 

of these reactions are available in large quantities from the photochemical industry, 

and the polymers obtained from these monomers form the foundation of much of the 

polymer industry as explained by Allcock et al [19]. 

 

The polymerization reactions used in this project are based on free radical 

polymerization. It consists of three basic steps: initiation, propagation, and 

termination. In the initiation step, radicals are needed to begin the development of the 

polymer chain.  In the propagation step, free radicals are added to monomer units. 

The polymer chain will then begin to form with the addition of one monomer unit at 

a time. The reaction is a very rapid process, and it has been calculated that 

approximately 1500 monomer units will attach to form a polymer chain in one 

second.  The termination step of free radical polymerization stops a free radical in 

one of three ways. First, coupling termination; this can be found between free radical 
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styrene molecules. Second, disproportionation; it is the conjunction of two polymer 

chains.  One of the polymer chains is saturated and the other is unsaturated; both fuse 

by transfer of hydrogen radical to form a single polymer unit.  The third step, 

termination sequence that consists of a combination of both coupling and 

disproportionation reactions [12]. 

 

 

2.1.1 Initiation  

 

The initiation of a free radical chain takes place by addition of a free radical 

(R·) to a vinyl molecule. Free radical initiation can occur through application of heat 

(thermal), photochemical, and ionization. Peroxides such as benzoyl peroxide (BPO), 

require temperatures in the range of 40-60oC for decomposition and free radical 

formation [20].  The decomposition of BPO to form radicals is given in Figure 2.1. 

 

COOC CO 2CO2

OO O

Benzyl Peroxide Benzoyloxy radical Phenyl radical

 

 

 

 

 

Figure 2.1 Scheme of the Decomposition of BPO to Form Radicals [20] 

 

 

The free benzoyl peroxide radical can react with a styrene unit to initiate the 

polymerization reaction (Figure 2.2).  It is important to note that the free radical (R·) 

is a companion of all polymerizing species and hence should not be called a catalyst, 

even though it is often referred to as such. 
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Figure 2.2 (a) Dissociation of Initiator, and (b) Initiation of Free Radical Styrene 

Polymerization [19, 20] 

 

 

2.1.2 Propagation 

 

Propagation is a bimolecular reaction, which takes place by addition of the 

new free radical to another styrene molecule, and by many repetitions of this step,     

(See Figure 2.3). 
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Figure 2.3 Propagation of Free Radical Styrene Polymerization [19, 20] 
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2.1.3 Termination 

 

The termination of the growing free radical chains usually takes place by 

coupling of two macroradicals.  Termination of free radical chain polymerization 

may also take place by disproportionation.  This termination process involves chain 

transfer of a hydrogen atom from one chain end to the free radical chain end of 

another growing chain, resulting in one of the ‘dead’ polymers having an unsaturated 

chain end [19, 20].  The mechanism of termination is illustrated in Figure 2.4.  
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Figure 2.4 Terminations of Free Radical Styrene Polymerization; by (a) Coupling / 

Combination, (b) Disproportionation, (c) Chain Transfer [19, 21]. 
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2.2 Suspension Polymerization 

  

 Hoffman and Delbruch were the first to develop suspension polymerization in 

1909 [21]. In suspension polymerization the initiator is soluble in the monomer 

phase, which is dispersed by comminuting into the dispersion medium (usually 

water) to form droplets.  The solubility of the dispersed monomer (droplet) phase and 

also the resultant polymer in the dispersion medium are usually low.  The volume 

fraction of the monomer phase is usually within the range 0.1-0.5 mL.  

Polymerization reactions may be performed at lower monomer volume fractions, but 

are not usually economically viable.  At higher volume fractions, the concentration 

of continuous phase may be insufficient to fill the space between droplets.  

Polymerization proceeds in the droplet phase and in most cases occur by a free 

radical mechanism. Suspension polymerization usually requires the addition of small 

amounts of a stabilizer to hinder coalescence and break-up of droplets during 

polymerization. Suspension polymerization is a polymerization process in which the 

monomer, or mixture of monomers, is dispersed by mechanical agitation in a liquid 

phase, usually water, in which the monomer droplets are polymerized while they are 

dispersed by continuous agitation. This process is used for polymerization of PS-

DVB where styrene is dispersed in fine droplets into water [22-23].  

 

 The free radical initiators are exclusively organic peroxides that need to be 

soluble in styrene and insoluble in water.  The size of the droplets can be adjusted by 

numerous parameters such as addition of colloids, stirring conditions, reactor 

geometry, etc. Only organic peroxides initiate suspension polymerization. If the 

monomer is insoluble in water, bulk polymerization can be carried out in suspended 

droplets, i.e. monomer is mechanically dispersed.  The water phase becomes the heat 

transfer medium. Since it is a continuous phase, viscosity changes are very little as 

the monomer converts to polymer, so the heat transfer is very good. In this system, 

the monomer must be either insoluble in water or only slightly soluble in water, so 

that when it polymerizes it becomes insoluble in water.  The two differences between 

emulsion and suspension polymerization are [23-24]: (a) the suspension 

polymerization is a mechanical process, and must have a stabilizing agent until the 

droplets are far apart, and (b) the emulsion polymerization is a chemical process 

which requires a surfactant to make the monomer “emulsify”. 
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 The size of the spherical beads formed by the suspension polymerization of 

styrene ranges from 250 to 450 µm and the average size of milled PS beads was 

approximately 100 µm. The shape of particles obtained by milling beads under 

decreased temperature was highly irregular and thermoplastic change was observed 

on the surface. The size of the PS particles formed by crushing of foamed PS 

(Fig.2.5a) is also about 100 µm; the deformed sheet-like shape of crushed foamed PS 

particles is observed. The particles of PS powder (Fig.2.5b) prepared by 

precipitation, occur as strongly deformed beads with broad distribution of sizes, 

which range from approximately 5 to 30 µm [25].  

 

 

 

 

 

 

 

         (a) PS particle; magnification 1000 ×        (b) PS powder; magnification 500 × 

 

Figure 2.5 (a) Polystyrene Particle, and (b) Polystyrene Powder [25] 

 

 

Arshady [26] clarified that beaded copolymers of styrene and divinylbenzene 

are widely used for the manufacture of strongly acidic and strongly basic ion-

exchange resins.  Commercially important polystyrene ion exchangers are produced 

in one or two steps.  A variety of related chelating agents can also be produced from 

the chloromethylated polystyrene by processes basically similar to that of ammonium 

resins. In suspension copolymerization of activated acrylates with styrene, the 

monomer solution is dispersed in an aqueous medium to form a microdroplet 

suspension.  Polymerization is then effected at the desired temperature (ca. 60-80oC), 

to convert the monomer microdroplets to the corresponding polymer microspheres 

(beads or pearls) [11].  

 

 Buchmeiser [27] described a set-up of suspension polymerization that 

consists of monomer cross-linker droplets that are suspended in a polymerization 
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medium.  For suspension polymerization, there are two phases, water and organic 

(oil), and the starting point may be 10 parts of the former and 1 part of the latter 

(v/v).  The initiator used can be water-soluble or organic-soluble (benzoyl peroxide, 

2,2’-azo-bis-isobutyryl nitrile (AIBN) ) but organic-soluble initiators are more often 

used.  

 

Suspension polymerization probably remains the most widely practiced 

method of producing polystyrene.  The advantage of suspension process over mass 

processes is the excellent temperature control that can be obtained through the 

suspending medium, water.  This allows for rapid heat removal and shorter 

polymerization times.  The separation is much easier than in solution polymerization. 

[21, 23].  

 

Suspension polymerization is extensively employed. Styrene, methyl 

methacrylate, vinyl chloride, and vinyl acetate are polymerized by suspension 

process.  The process is also referred to as bead, pearl, or granular polymerization 

because of the forms in which the final products may be obtained.  The monomer is 

dispersed as droplets in water.  The monomer droplet size is maintained by 

mechanical agitation and the addition of stabilizers.  Various types of stabilizers are 

used to prevent agglomeration of the monomer droplets.  A protective colloidal 

agent, often poly (vinyl alcohol) (PVA), is added to prevent coalescence of the 

droplets.  The initiators used are soluble in the monomer droplets.  Each monomer 

droplet is considered to be a small bulk polymerization system.  Heat control in 

suspension polymerization is relatively easy. However, near the end, the particles 

become hard and are recovered by filtration. Because the liquid is water-based, 

solvent recovery and treatment problems are minimal.  The product usually must be 

washed, dried, and freed of additives [22, 24]. 

 

Arshady [26] explained that the most important feature of organic (oil)/water 

suspension polymerization is the formation of a droplet suspension of the monomer 

in water (the suspension medium) and the maintenance of the individual droplets 

throughout the polymerization process.  Droplet formation in an organic (oil)-water 

mixture is most appropriately accomplished by mechanical stirring, although other 

forms of mixing can also be employed. By suspension polymerization, the 
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copolymers produced are in beaded form. It was found that different diluents 

generated formation of uniform polymer networks with an in-homogeneity mostly 

related to the kind and amount of inert diluents used 

 

 

2.2.1 Types of Pores 

 

Porosity and surface area in both inorganic and organic supports can be 

controlled easily during production.  For organic resins, gelation and/or precipitation 

processes that take place during the conversion of liquid micro droplets to solid 

micro beads determine porosity.  For example, polystyrene beads produced in the 

presence of 1-2% divinylbenzene (DVB) without a monomer diluent have a very low 

surface area (<1 m2/g) with no real porosity or very small pores.  However, by using 

higher DVB concentrations and a monomer diluent, polymer beads with wide range 

of porosities can be produced, depending on the proportions of DVB and monomer 

diluent.  

 

Solid material commonly contains one or more groups of pores, whose size 

and volume depend on preparation method.  The pores are classified into different 

classes depending on their size [28]: 

 

• Micropores (size < 2 nm) 

• Mesopores (2 nm < size <50 nm) 

• Macropores (size > 50 nm) 

 

 Matrix porosity is the basis of support characteristics in chromatography, and 

determines the fraction range of the support.  Resin porosity may also affect the 

support performance in other applications such as affinity chromatography, and 

solid-phase synthesis.  The specific pore volume and pore size distribution in the 

swollen state may be substantially different from those measured in the dry state 

[29].  Figure 2.6 illustrates the formation of porous structure of PS-DVB. 
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Figure 2.6 Mechanism of Porous Structure Formation during Suspension  

         Copolymerization of Styrene-Divinylbenzene [29] 

 

 

 

 

 

 

 

 

 

Figure 2.6 Mechanism of Porous Structure Formation during Suspension 

Copolymerization of Styrene-Divinylbenzene [29] 

 

 

 Based on Figure 2.6, the polymerization reaction takes place in a suspended 

droplet during oil/water suspension polymerization.  As the reaction progresses the 

copolymer precipitates within the droplet and form spherical shapes called nuclei. 

The nuclei grow into microspheres (also called microgel) and the microspheres 

agglomerate with each other resulting in the primary network.  Upon further 

polymerization and cross-linkage, the primary network becomes the cross-linked 

porous network [29].  

 

 

 

2.3     Poly (styrene-divinylbenzene) 

 

Poly (styrene-divinylbenzene) (PS-DVB) beads have been used for 

separations since 1964 when Moore synthesized porous crosslinked polystyrene. 

Although these rigid PS-DVB matrices can be operated under high pressures without 

collapsing, they cannot be used directly to purify proteins as the material is difficult 
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to derivatise with affinity ligands and hydrophobic interactions between the matrix 

and protein often result in irreversible adsorption or loss yield.  The recent trend 

towards modification of PS-DVB with hydrophilic groups to mask its hydrophobic 

surface aimed at improving its use in protein chromatography has produced both 

covalently bonded carboxylic groups and adsorbed hydrophilic groups [30]. 

    

In the course of polymerization, initially homogeneous mixture of reaction 

components separates into two phases, one of which is cross-linked polymer and the 

other pure diluents [18]. The densely cross-linked regions in copolymers do not 

collapse entirely, with the removal of the inert diluents after polymerization and part 

of the volume, which primarily contained the diluents, appears as pores.  Layadene et 

al. [2] have found that the use of precipitant diluents in the preparation of porous 

styrene-divinylbenzene copolymers give low specific surface area and high porous 

volume copolymer beads.  The porous structure formation has been attributed to 

phase separation of the copolymer formed during the polymerization process. The 

selection of diluents as a precipitant is important in determining the porous structure 

of the polymer beads.  For many applications, the presence of meso- and/or macro-

pores is a key requirement to minimize diffusional limitations.  

 

Coutinho et al. [1] put in plain words that when styrene-divinylbenzene are 

copolymerized by a suspension process in the presence of a good solvent for the 

polymer chains (good diluents), two kinds of porous structures can be obtained: gel 

or macroporous.  At low DVB content the final structure is an expanded gel. When 

the DVB content and dilution degree are high, a macroporous copolymer is obtained.  

On the other hand, when the diluents are a poor solvent for the polymer chains (bad 

diluents), phase separation during the polymerization process takes places and is 

responsible for the formation of macroporous structures. When mixtures of good and 

bad diluents are used the copolymers present a porous structure with intermediary 

characteristic in relation to the copolymers prepared with the pure diluents. 

 

 

 

 

 

 



 18

2.3.1. Chemical Modification of PS-DVB Resin  

 

Poly (styrene-divinylbenzene) has greater analyte retention, mainly for polar 

compounds, than bonded silica because their hydrophobic surface contains a 

relatively larger number of active aromatic sites that allow π-π interactions.  

Nevertheless, sorbents based on PS-DVB have some drawbacks, such as their lack of 

selectivity and low breakthrough volumes for highly polar compounds, which leads 

to their incomplete extraction from predominantly aqueous samples. These 

drawbacks can be largely overcome by using modified resins obtained by attaching 

polar groups to the aromatic ring on the PS-DVB.  These groups are listed in Table 

2.1.  

 

Table 2.1: Modifiers of the PS-DVB [3] 

 Group Structure 
 Acetyl 

C CH3

O
     

 Hydroxymethyl CH2OH  
     O

C  Benzoyl 
     

C
O

HOOC

  
2,4-Dicarboxylbenzoyl    

    
 

C
O

HOOC

COOH  o-Carboxybenzoyl 
            SO3                sulfonate 

   -CH2-N(CH3)3
+

Trimethylammonium             
 

 

The Figure 2.7 shows examples of PS-DVB modifications in order to achieve 

higher capacities or a broader and controllable functional variety. Modification of 

PS-DVB resin to acetyl (a), hydroxymethyl (b) or benzoyl derivatives can be carried 

out via electrophilic aromatic substitution reaction [3] 
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Figure 2.7 Examples of PS-DVB Modifications [3] 
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Poinescu et al. [31] have developed macroreticular network synthesis based 

on the styrene-divinylbenzene copolymers. There has been increasing interest in 

using such materials as chromatographic packing supports or porous starting 

structure for the ion exchangers.  Styrene copolymerized with a small amount of 

DVB results in gel-type copolymers, which are characterized by a swollen state 

porosity.  The modification of PS-DVB by two chemical groups, acetyl and benzoyl, 

and retained more polar compounds than the unmodified resin. 

 

Sulfonated PS-DVB polymers have been used for many years in ion-exchange 

chromatography of cations, as well as other analytes [32].  Chlorosulfonated porous 

PS-DVB copolymers are commonly used as intermediates for the preparation of 

functional polymers, supported reagents, generally in the form of spherical particles 

with a size distribution between 0.3 and 0.9 mm [33].  These materials are prepared 

by free radical suspension polymerization of styrene and divinylbenzene monomers 

mixture in the presence of a porogeneous agent.  A synthetic route for anion 

exchangers based on cross-linked polystyrene is shown in Figure 2.8. 
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Figure 2.8 A Synthetic Route for Anion Exchangers Cross-linked PS-DVB [34] 

 

 

 



 21

Masque et al. [5] have described the application of chemically modified resin 

obtained from porous cross-linked PS-DVB phase in the determination of phenolic 

compounds in water. The PS-DVB resin was chemically modified by two chemical 

groups (acetyl and benzoyl), retained more polar compounds than the unmodified 

resin. The unmodified PS-DVB matrix has a total pore volume of 0.69 cm3/g, and 

this volume drops to around 0.4 cm3/g for all the modified matrices. Bacquet et al. 

[35] described the chlorosulfonation of styrene-divinylbenzene copolymer 

characterized by a modification of the textural parameters.  The copolymer specific 

surface area was initially low, and on chlorosulfonation treatment, decrease to a 

value of 1 m2/g, characteristic of unswollen gel type resins.  However, no effect of 

the chlorosulfonation on the porous volume and particles mean diameter was 

observed with varying reaction parameters.  

 

Xu and Xizhang [34] described the application of Friedel-Crafts reaction on 

cross-linked polystyrene to prepare acetylated cross-linked polystyrene.  The general 

procedure is as follows: cross-linked polystyrene, swollen in suitable solvent is 

related with acetyl chloride or acetic anhydride in the presence of anhydrous 

aluminum, stannic or zinc chloride as catalyst to yield acetylated product. The 

solvents could be carbon disulfide, nitrobenzene, dichloromethane, and 

dichloroethane.  These solutions are not only good swelling agents for cross-linked 

polystyrene, but also good carriers of Friedel-Crafts catalysts.   

 

Aromatic rings undergo two types of Friedel-Crafts reactions, alkylations and 

acylations.  Of the two types, acylations are more selective and versatile because they 

do not give multiple acylation products nor products with rearranged acyl groups as 

alkylations are prone to do.  Friedel-Crafts acylations require the presence of a 

stoichiometric amount of a Lewis acid, whereas alkylations require the presence of 

only a catalytic amount of a Lewis acid.  This difference is the result of the formation 

of a complex between the Lewis acid and the carbonyl group of the ketone produced 

in the acylation.  The Friedel-Crafts acylation is the most important method of 

synthesis for aromatic-aliphatic ketones.  The acylation reaction is better than 

alkylation because once formed, the acylium ion does not rearrange, thus giving 

unrearranged substitution product [36].  Figure 2.9 shows the step mechanism of 

acylation reaction of benzene. 
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Step 1:  
The acyl halide reacts with the Lewis 
acid to form a more electrophilic C, an 
acylium ion 
 

  
  

 

 

 

Step 2:  
The π electrons of the aromatic C=C act 
as a nucleophile, attacking the 
electrophilic C+

 

. This step destroys the 
aromaticity giving the cyclohexadienyl 
cation intermediate. 
 
  

  

 
Step 3:  
Removal of the proton from the sp3

 

 

 C 
bearing the acyl- group reforms the C=C 
and the aromatic system, generating HCl 
and regenerating the active catalyst. 
  

 

 

Figure 2.9 The Mechanism for the Friedel-Cafts Acylation of Benzene [36] 

 

 

Chloromethylation is probably the most frequently used method to 

functionalize styrene-divinylbenzene resins.  During chloromethylation of cross-

linked macroporous resins, side reactions can occur.  These reactions take place with 

pendent vinyl groups that do not polymerize during the preparation.  Indeed, it has 

been observed that these double bonds will partly disappear during the 

chloromethylation procedure.  During the chloromethylation reaction, the vinyl 

groups were transformed into unreactive chlorine-containing groups.  Instead of the 

usual method of chloromethylation of cross-linked polystyrene, styrene, 

chloromethyl styrene, and divinyl benzene is copolymerize to avoid use of the cancer 

suspect agent chloromethyl methyl ether.  The main crosslinking reaction starts with 

grafting of the crosslinking agent to the polymer backbone. The remaining 
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chloromethyl group can react with a styrene unit of the polymer chain [37-38]. 

Figure 2.10 shows a mechanism of chloromethylation of PS-DVB. 
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Figure 2.10 The Reaction of Chloromethylation of PS-DVB  

 

 Dumont and Fritz [39] have shown that the modification of a XAD-4 and a 

spherical PS-DVB resin by incorporating different functional groups into the 

polymer has a major effect on the retention activities of various analytes.  More 

hydrophobic resins have been prepared by the Friedel-Crafts reaction of different 

alkylchlorides with the benzene ring of the polymer.  In a way, the type of functional 

group incorporated in the resin can control the hydrophobicity of the resin. In 

contrast to the resin described in the present work, most of the commercially 

available polymeric supports for HPLC are generally prepared by suspension 

polymerization followed by a size classification procedure. 
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Acylation allows a variety of functionalization to be achieved. These 

transformations are normally carried out easily from an acylating agent by means of 

the Friedel-Crafts reaction using nitrobenzene as the solvent and aluminum chloride 

as the catalyst.  In a previous work carried out in the laboratory [40], the stearoyl 

chloride as an acylating agent was prepared by conversion of stearic acids with 

thionyl chloride, SOCl2. The stearoyl chloride was further used in Friedel-Crafts 

acylation (Figure 2.11).  

 

CH2CH PS

+ C17H35

 

C Cl
AlCl3

CH2CH PS

C=O

C17H35

O 

 

 

 

 

 

Figure 2.11 Preparation of Modified PS-DVB by Using Stearoyl Chloride [40] 

 

 

The reaction progresses rapidly, usually requiring no more than 2 hours. It was 

experienced that for reaction times greater than 2 hours, decomposition or 

degradation occurred and the total yield markedly decreased.  Also it is notable that 

the reaction should be performed at ambient temperature to protect the resin from 

over swelling and correspondingly crushing [41].  

 

 

 

2.4. Application of Modified PS-DVB Resin 

 

Dominic and Howard [42] explained that the polystyrene-divinylbenzene 

matrices have been used in chromatography for many years and these matrices can 

be operated under high pressures without compression. Chemically modified PS-

DVB resins have also been developed and used in the SPE of polar compounds 

mainly from aqueous samples.  Masque and Galia [43] described the synthesis and 
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SPE application of a new chemically modified PS-DVB resin for the analysis of 

pesticides and phenolic compounds in environmental waters.  

 

  A wide range of organic compounds in drinking and surface water could be 

adsorbed on a hydroxylated PS-DVB cartridge and then eluted with acetone ethyl 

acetate.  If the hydroxylated PS-DVB cartridges were eluted with toluene; the polar 

interactions were strong enough to retain phythalic acid and monoesters while the 

diesters were smoothly desorbed [13].  

 

The use of PS-DVB polymers as an adsorbent material has been demonstrated 

to provide improved recoveries for phenolic compounds as compared to the 

traditional and more commonly applied C18 material [44]. Fritz and Schmidt shown 

that [45] modified porous polystyrene-divinylbenzene resins containing polar groups 

are superior for SPE of organic solutes from aqueous samples.  

 

Smigol and Svec [46] reported pore-size specific functionalizations for the 

separation of proteins and small hydrocarbons.  For that purpose, large polymer 

pores were provided with phenyl groups in the presence of hydrophilic groups.  In 

contrast, small pores were provided with much higher phenyl content.   

 

Since porous polystyrene resins have hydrophobic surface, Sun and Fritz [47] 

have proposed the insertion of an acetyl or hydroxymethyl group into porous PS-

DVB to provide a more hydrophilic surface, which can be easily wetted by water 

alone. Schmidt et al. [48] explored the result obtained when acetyl-PS-DVB resins 

are incorporated into SPE membranes, using them to extract phenols from water.  

Powell [44] has studied hydroxymethyl-or-acetyl-PS-DVB for preconcentration of 

pollutant compounds.  It was found that acetyl resin retained triazines such as 

attrazine better than the hydroxymethyl modified material, but recovery of phenol 

was very poor. 
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2.5.  Octadecyl Silane Bonded Silica (C18-silica) 

 

Silica based stationary phases remain, after several decades of development, 

the first choice for most separations.  Silica has several limitations.  It has low 

thermal and pH stability, and the silanol activity of the specific phase must be 

considered when a silica-based column is used for the separation of basic analytes. 

The silanol activity of a silica-based column originates in the accessible residual 

silanol groups present on the surface even after it is chemically modified.  The Figure 

2.12 shows the structure of the octadecyl silane-silica [49]. 

 

 

O Si

CH3

CH3

(CH2)17 CH3

 

 

 

 

Figure 2.12 The Structure of Octadecyl Silane-Silica 

 

C18-silica is a non-polar SPE sorbent that contains octadecyl (C18) functional 

groups bonded to the surface of silica that alter their retentive properties.  Modified 

silica with C18 reversed-phase sorbent is one of the most widely used packing 

materials for SPE because of its greater capacity compared to other bonded silica, 

such as the C8 and CN types [3]. The mechanisms of retention are based on 

hydrophobic interactions between the solutes and the stationary phase (Van der 

Waals forces) and on secondary interactions such as hydrogen bonding and dipole-

dipole forces (hydrophilic or polar interactions) [3, 51, 52]. C18-silica has a non-polar 

characteristic due to the octadecyl groups on the surface and the silanol groups 

present allows the polar and ionic secondary interactions between the adsorbent and 

the solutes [53].  

 

 Numerous applications report the use of C18-silica, as indicated by the studies 

reported for water.  In particular, organometallic compounds can be retained on this 

sorbent due to possible hydrophobic interactions.  Bare C18-silica can also retain a 

fraction of inorganic trace elements, probably due to the presence of silanol groups 

on its surface [50]. 
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2.6. Materials and Methods for Solid-Phase Extraction (SPE)  

 

Solid-phase extraction (SPE) with porous solid particles goes back to the early 

1970’s.  However, SPE has become more popular recently due the need to replace 

liquid extraction procedures, which use large quantities of organic solvents. 

Considerable attention is now being paid to solid-phase extraction (SPE) as a way to 

isolate and preconcentrate desired components from a sample matrix.  In addition to 

being fast, efficient and easily automated, SPE is a clean analytical procedure. In 

SPE the extractant is a porous, particulate solid which has a large surface area 

available for interaction with the liquid sample solution [54].  

 

Fritz and Masso [55] found that one problem with extraction materials is the 

inability of aqueous solutions to adequately wet their surface, which is usually 

hydrophobic. This is true for both C18-silica and underivatized polystyrene-

divinylbenzene resin.  Pretreatment of the resin column or cartridge with methanol is 

usually necessary to obtain better surface contact with the aqueous solution.  Fritz et 

al. [56] explained that SPE is fast and effective, and can provide concentration 

factors of 100-fold or more. Solid phase extraction has become the preferred 

technique for sample pre concentration. Being a multistage method, it is more 

efficient than simple liquid-liquid extraction, more easily automated and much less 

polluting than liquid extraction techniques that often use relatively larges volumes of 

organic solvent. Very little chemical waste is produced. In general, polymeric 

sorbents such as PS-DVB retain organic analytes more strongly than silica-based 

materials.  

 

SPE can be divided into two major categories: 

Type I: Single-equilibrium methods in which each analyte partitions between a 

liquid or gaseous sample and a solid extractant. The type I methods often 

give a lower but fixed percentage extraction. SPE type I methods are usually 

done on micro scale (solid phase micro extraction, SPME).  

 

Type II: Multi-equilibrium methods in which the sample flows through a bed of a 

solid extractant. Since a typical device may contain 20 or more theoretical 

plates, retention of analytes is generally more complete than with single-
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equilibrium methods. Type II methods usually give nearly complete 

extraction of the desired analytes. A current challenge is to do type II 

extractions quickly and efficiently on a smaller scale, the bed of solid 

extractant must also be made smaller [55]. 

 

The particle size also needs to be made smaller to speed up the rate of mass 

transfer of analytes from the liquid samples to the solid extractant.  Perhaps the best 

way to accomplish this is to use a resin-loaded membrane such as the 3M Empore 

series.  However, it is important to have intimate contact between the predominately 

aqueous samples and the surfaces of the solid extractant particles.  

 

When SPE has to be carried out in extremely acidic or basic media, reversed-

phase polymeric sorbents (generally based on PS-DVB) are used.  In addition to their 

broader pH-stability range that increases the flexibility of the methods, these kinds of 

sorbents have a greater surface area per gram and they show relatively selective for 

analytes with aromatic ring because of the specific π-π interactions.  In an attempt to 

improve the efficiency of SPE procedures, materials based on polymers other than 

PS-DVB have been tested.  One important parameter to be taken into account in SPE 

is the selectivity of the stationary phases, especially when compounds are to be 

extracted from complex matrices, since the man objective is to remove interferences 

prior to the analysis.  SPE materials based on silica and polystyrene-divinylbenzene 

stationary phases are generally non-selective and can lead to difficulties with 

interference co-extracted. [3].  

 

SPE method always consists of the three to four successive steps, as 

illustrated in Figure 2.13 [50].  First, the solid sorbent should be conditioned using an 

appropriate solvent, followed by the same solvent as the sample solvent.  This step is 

crucial, as it enables the wetting of the packing material and the solvation of the 

functional groups.  The second step is the percolation of the sample through the solid 

sorbent.  Depending on the system used, volumes can range from 1 mL to 1 L.  The 

third step (which is optional) may be the washing of the solid sorbent with an 

appropriate solvent, having low elution strength, eliminate matrix components that 

have been retained by the solid sorbent, without displacing the analytes.  The final 
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step is the elution of the analytes of interest by an appropriate solvent, without 

removing the retained matrix components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Loading 
Washing / 

Conditioning Washing Elution

 
 

Figure 2.13 SPE Operation Steps [50, 57] 
 

 

Polystyrene-based polymers may be an interesting alternative to common 

sorbents (namely Amberlites XAD-2 and XAD-8, C18-silica) when they have a hyper 

cross-link structure [50, 54].  The addition of a reagent to the sample is required to 

form complexes that are further retained on the hydrophobic sorbent.  Despite the 

numerous steps and parameters used to enable efficient extraction and recovery of 

the target analytes, the choice of the solid adsorbent is the most critical step.  

 

The breakthrough volume is the most important characteristic parameter to 

determine the suitability of a sampling device for isolating the analytes of interest. 

The procedures are different depending on the field of application.  In many cases, 

the handling of biological samples differs from those of environmental samples.  The 

most straightforward is direct method using either on-line or off-line detection. 

Measurement of breakthrough volume can be performed by monitoring continuously 

or discretely the UV signal at the outlet of a pre-column or a cartridge [9, 10]. 

 
 

 



 
 
 
 

CHAPTER 3 
 

 

 

METHODOLOGIES 
 

 

 

 

This chapter discusses about materials and procedures used in the preparation 

of PS-DVB, and modification of PS-DVB by Friedel-Crafts acylation, chloro-

methylation, and Williamson ether reaction.     

 

 

 
3.1  Materials and Reagents 

 
 The following materials were used in the preparation PS-DVB, and 

modification of PS-DVB.   

 

Styrene Monomer 

 

The styrene monomer used in this research was from Fluka Chemika 

(Switzerland) (99%, stabilized with 0.005% 4-tert-butylcatecol).  The styrene 

monomer was washed consecutively with 10% sodium hydroxide (50 mL × 3) and 

distilled water (50 mL × 3) prior to use. 
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Divinylbenzene 

 

Technical-grade divinylbenzene (DVB) used as the crosslinker in laboratory 

grade (70-85%) stabilized with 0.2% 4-tert-butylcatecol obtained from Merck 

(Schuchardt, Germany) and Fluka Chemika.  The DVB was purified with 10% 

sodium hydroxide (50 mL × 3) and distilled water (50 mL × 3) before use.  The 

procedure was carried out for each PS-DVB synthesis. 

 

Benzoyl Peroxide 

 

Benzoyl peroxide (BPO) used as initiator for the PS-DVB synthesis was from 

BDH.  The BPO was purified by washing with chloroform and poured into cold 

methanol and filtered with sintered funnel.  The product was stored in a refrigerator 

at 4οC. The average molecular weight of the BPO used was 130.19 g/mol; its density 

was 0.919 g/mL. 

 

Stabilizers 

 

Polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) were used as the 

stabilizer in this work.  Each stabilizer was dissolved in distilled water before use. 

The PVA, with an average molecular weight of 125,000 g/mol was obtained from 

Merck (Schuchardt, Germany) and Fluka Chemika (Switzerland). 

 

Stearoyl chloride  

 

Stearoyl chloride (CH3(CH2)16COCl) used in this research has an average 

molecular weight of 302.93 g/mol, and density of 0.908 g/mL. It was obtained from 

Merck (Schuchardt, Germany) and Fluka Chemika (Switzerland). 

 

Chloromethyl-styrene (4-vinylbenzyl chloride)  

 

Chloromethyl styrene (H2C=CHC6H4CH2Cl) used in this research has an 

average molecular weight of 152.62 g/mol, and density of 1.083 g/mL. It was 

obtained from Merck (Schuchardt, Germany) and Fluka Chemika (Switzerland). 
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1-Octadecanol (octadecyl alcohol)   

 

1-Octadecanol (CH3(CH2)17OH) used in this research has a molecular weight 

of 270.50 g/mol, and melting point of 56-58oC. It was obtained from Merck 

(Schuchardt, Germany) and Fluka Chemika (Switzerland). 

 

Nitrobenzene   

 

Nitrobenzene (C6H5NO2) used in this research has an average molecular 

weight of 123.11 g/mol, and boiling point of 83-84oC. It was obtained from Merck 

(Schuchardt, Germany). 

 

2-Chlorophenol   

 

2-Chlorophenol (C6H5ClO) used in this research has an average molecular 

weight of 128.56 g/mol, and boiling point of 62-63oC. It was obtained from Fluka 

Chemika (Switzerland). 

 

Methanol  

 

Methanol used in this research was obtained from Merck (Schuchardt, 

Germany). 

 

p-Cresol  

 

p-Cresol used was technical grade, obtained from Riedel-de-Haën 

(Switzerland). 

 

Benzaldehyde  

 

Benzaldehyde used was technical grade, obtained from Riedel-de-Haën 

(Switzerland). 
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Butyrophenone  

 

Butyrophenone used was technical grade, obtained from Fluka Chemika 

(Switzerland). 

 

 

 

3.2 Synthesis 

 
3.2.1 Preparation of PS-DVB and Its Derivatives 

 
The PS-DVB synthesis was carried out in a reactor equipped with a 

mechanical stirrer, thermometer, nitrogen purge inlet, oil bath and the temperature 

set at 70οC (Fig.3.1).  Poly vinyl alcohol (PVA) (1.0 g) and deionized distilled water 

(500 mL) were added to the reactor and stirred until dissolution was complete.  The 

above solution was diluted to 500 mL. After the solution temperature reached 70°C 

(isothermal conditions), the reactor was purged with nitrogen gas.  Divinyl benzene 

(9.6 g), styrene (120 g) (8% by weight) and benzoyl peroxide (1.2 g) were premixed 

and added to the reactor.  The reaction mixture was mechanically stirred for 15 h, 

and the speed of stirrer was at 900 rpm.  It was then filtered off, washed with distilled 

water and dried.  The beads obtained were sieved to separate the 200-400 mesh 

portions (75-38 μm).  This part was suspended in 10% aqueous solution of HCl (v/v) 

and stirred for 1 h at 50°C.  Then it was filtered, washed with distilled water and 

dried at 80°C for 12 h.  The yield was 129.70 g (99.16%) as white powder; IR υmax 

(KBr) cm-1: 1598.9 (m, C=C aromatic), 751.2 (s, monosubstituted benzene), 696.2 (s, 

monosubstituted benzene). 
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Figure 3.1 Reactor for Polymerization of PS-DVB 

 

 

3.2.2 Friedel-Crafts Acylation of PS-DVB by Using Stearoyl Chloride 

 

Stearoyl chloride (1.10 mL) was dissolved in 1,2-dichloroethane (24 mL) in a 

round-bottomed flask (250 mL) at room temperature.  The temperature of the 

solution was lowered to 0oC in an ice bath, and purged with nitrogen gas. PS-DVB 

powder (2.04 g) was gradually added to the above acid chloride solution while 

stirring magnetically at 0oC.  At the end of addition, it was allowed to stir for 30 min 

at this temperature and then AlCl3 (1.92 g) portion was added to this mixture. After 

60 min of stirring at 0oC, the temperature of the reaction was raised to room 

temperature. The reaction was carried out overnight.  The mixture was then filtered 

off and the solid was washed according to the following procedure: (i) 10% aqueous 

solution of HCl (v/v) (5 × 20 mL); (ii) 10% aqueous solution of NaOH (w/v) (5 × 20 

mL); and (iii) distilled water (5 × 20 mL).  The yield of brown powder was 12.56 g 

(44.10%); IR υmax (KBr) cm-1: 1677.90 (w, C=O stretching), and 1603.7 (w, C=O 

stretching). 
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3.2.3 Chloromethylation of PS-DVB  

 
The poly vinyl alcohol (PVA) (1.0 g) and deionized distilled water (500 mL) 

were added to the reactor equipped with a mechanical stirrer, thermometer, nitrogen 

purge inlet, and oil bath. The temperature of the mixture was set at 70°C and stirred 

until dissolution was completed. After the solution temperature reached 70°C 

(isothermal conditions), the reactor was purged with nitrogen gas. Divinyl benzene 

(12.16 mL), styrene (69.12 mL), chloromethyl styrene (24.20 mL) and benzoyl 

peroxide (1.2 g) were premixed and added to the reactor.  The reaction mixture was 

mechanically stirred for 15 h, and the speed of stirrer was 900 rpm. The mixture was 

filtered and the solid was washed with distilled water and dried at 80°C for 12 h to 

yield a white powder (74.73 g, 70.85%); IR υmax (KBr) cm-1: 758.0 (s, C-Cl 

stretching), and 698.2 (s, C-Cl stretching).  

 

 

3.2.4 Preparation of Benzyl Hexyl Ether as a Reaction Model  

  
Dried hexanol (25 mL) was placed in a round-bottomed flask (250 mL) fitted 

with a Liebig-type reflux condenser. Clean sodium (0.575 g) in small pieces was 

added to hexanol and warmed under reflux until all the sodium has reacted (2 h).  

The reaction was allowed to proceed overnight, by which time all the sodium will 

have reacted. Benzyl chloride (5 g) was added to the flask and the mixture brought to 

reflux gently for 2 h.  The crude ether was distilled off and most of the hexanol still 

present in the crude ether was removed by heating under reflux for 2 h with a large 

excess of sodium and distilled until no more liquid passes over. The residue was 

benzyl hexyl ether (3.54 g, 13.32%) in the form of a yellow powder; IR υmax (KBr) 

cm-1:  1614.3 (m, C=C stretching phenyl), 1562.2 (s, C=C aromatic), 1452.3 (s, C=C 

aromatic), and 1107.1 (w, C-O ether). 
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3.2.5 Preparation of Octadecoxy Methyl PS-DVB (PS-DVB-CH2-O-C18H37) 

 

1-Octadecanol (204 g) in dried toluene (250 mL) was placed in a round-

bottomed flask (500 mL) fitted with a Liebig-type reflux condenser and clean sodium 

(5.75 g) in small pieces was warmed under reflux until all the sodium has reacted (2 

h).  The reaction was allowed to proceed overnight, by which time all the sodium had 

reacted.  The p-chloromethyl PS-DVB (39 g) (20 mL) was distilled to get the crude 

ether (product). The crude ether was again distilled to remove most of toluene and 

benzene a large excess of sodium until no more liquid passes over.  The PS-DVB-

CH2-O-C18H37 was collected and excess of CH3 (CH2)17ONa was removed by 

dissolving and heating in toluene.  Then the crude ether was filtered, and dried under 

vacuum.  The residue was octadecoxy methyl PS-DVB (2.46 g, 1.23%) g; IR υmax 

(KBr) cm-1:  1562.2 (m, C=C aromatic), 1467.7 (m, C=C aromatic), and 1058.8 (w, 

C-O ether). 

 

 

 

3.3 Characterizations  

 
The products obtained in this research were characterized as follows: 

 

A. The Fourier transform infrared (FTIR) spectra of the polymer were recorded 

with a Shimadzu-8300 spectrometer (Kyoto, Japan) in the range of 4000-400 cm-1.  

Small amounts of potassium bromide (KBr) and polymer samples were mixed with a 

ground mortar and pestle.  The mixture was placed in the mini press, and the screws 

were tightened to squeeze the KBr and polymer mixture into a thin, semi-transparent 

disk.  The mini-press containing the disks was then placed into FTIR instrument and 

an infrared laser was passed through the disk at a different wavelengths.  

 

B. The shape and surface texture of the particles have been monitored by 

observation with a scanning electron microscope (SEM) (Philips XL-40). The sample 

was done by grinding into fine powder before adhering them onto a flat surfaced of 

an aluminum sample stub that was stuck with a double-sided carbon tape. The 

doubled-sided carbon tape was used to eliminate any possible discharged of powder 
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sample from the surface of the sample stub while scanning was done. The sample 

studied comprise of commercial sample, thus may need to be coated with gold before 

SEM investigation. The sprinkled sample was placed in a Bio Rad SEM coating 

system apparatus to be coated with gold using a gold spulter at 10-1 Mbar. The 

purpose of the coating is to ensure that the sample is able to withstand electron 

bombardment without causing any charging effect. In order to see the morphology of 

the sample, a Philip XL40 microscope was used with the energy 15.0 kV couple with 

EDX analyzer. The sample was bombarded using an electron gun with a tungsten 

filament under 25kV resolution to get the required magnification image.  

 

C. The pore size and surface area of copolymers samples (specific surface area, 

in m2/g ) were determined by BJH (Barrer, Joiyner and Halenda) and BET 

(Brunauer, Emmet and Teller) methods from low temperature nitrogen adsorption 

isotherms after degassing at 60oC / l. m. Pa  for 3 hours on a micromeritic  apparatus 

(ASAP 2010, USA). Micrometrics ASAP 2010 instrument was used for the nitrogen 

adsorption analysis at temperature -196 oC (boiling temperature of liquid nitrogen) in 

order to determine the catalyst surface area and porosity. The sample, weighed at 0.5 

g was out gassed at 120ºC for 5 hours and left under vacuum to cool to room 

temperature before measurement. The adsorption-desorption process was done 

automatically under nitrogen and took a few hours for the whole process to complete 

depending on the types of sample. 

 

D. The thermal gravimetric analyzer (TGA) was conducted using a Mettler 

Toledo Thermal analyzer (TC-15). The TA controller in air was set at a rate of 

12οC/min within a temperature range of 100-800οC. Thermogravimetric analysis 

(TGA) suspends a sample on a highly sensitive balance over a precisely controlled 

furnace. Usually heating rates of 10-20°C/min are used to look for broad 

decomposition stages, while slower heating rates around 1°C/min are better for 

isolating individual events. Decomposition in air indicates the processes, which may 

occur before ignition, while their absence or delay under nitrogen is indicative of a 

condensed phase decomposition mechanism. Sample sizes are usually kept as small 

as possible; within the limits of the apparatus this is usually around 5 mg per run.  
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3.4 Solution Preparations 

 

3.4.1 Stock Solution Preparation 

 

Stock solutions of test compounds (100,000 ppm) were prepared by weighing 

benzaldehyde (2.5 g), butyrophenone (2.5 g), 2-chlorophenol (2.5 g), p-cresol (2.5 g) 

and nitrobenzene (2.5 g) separately in five 25-mL volumetric flasks and each 

compound was dissolved and diluted in methanol to 25 mL.  Butyrophenone was 

used as the internal standard.  

 

 

3.4.2 Sample Aqueous Solution Preparation 

 

The aqueous sample solution for SPE containing individual test compounds 

were prepared by adding stock solutions (each 100,000 ppm) of benzaldehyde (0.1 

mL), p-cresol (0.1 mL), 2-chlorophenol (0.1 mL) and nitrobenzene (0.1 mL) into 

four separate 10-mL volumetric flasks, respectively and each solution was then 

diluted to 10 mL with deionized water.  Thus, the aqueous sample solution prepared 

contained 1% (v/v) of methanol and the concentrate of each compounds in 1000 

ppm.  An aqueous solution containing a mixture of the four test compounds were 

prepared by adding benzaldehyde stock solution (0.1 mL), p-cresol stock solution 

(0.1 mL), 2-chlorophenol stock solution (0.1 mL) and nitrobenzene stock solution 

(0.1 mL) into a 10 mL volumetric flask and then diluted to the mark with deionized 

water.  Therefore, the solution contained 4% (v/v) of methanol. The concentration of 

each test compounds in 1000 ppm. 

 

 

3.4.3 Sample for GC Peak Identification 

 

 For the peak identification purpose, a mixture solution was prepared by 

adding 0.1 mL of each stock solution into a 5-mL volumetric flask and then diluted 

to 5 mL with methanol to give 2000 ppm of each compound. 1 μL of this mixture 

was injected into the gas chromatograph. 
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3.5 Solid Phase Extraction 

 

3.5.1 SPE Tube Packing 

 

Four SPE tubes used in this research were packed in the laboratory with four 

different synthesized adsorbents. They were (i) native PS-DVB, (ii) PS-DVB 

heptadecyl ketone, (iii) chloromethyl PS-DVB, and (iv) octadecoxy chloromethyl 

PS-DVB.  First, a frit was inserted into an empty 6 mL SPE tube (International 

Sorbent Technology Limited, UK) until it reached the bottom of the tube.  Then 0.5 g 

of the adsorbent was weighed and added into the tube.  Another frit was inserted into 

the SPE tube so that the adsorbent was placed between the frits.  A light pressure was 

applied on the second frit to obtain a uniform and compact packing of the adsorbent.  

The SPE tube packing process is illustrated in Figure 3.2. 
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Figure 3.2 SPE Tube Packing Process: (a) Inserting the First Frit. (b) Adding 0.5 g 

of Adsorbent into the Tube. (c) Inserting the Second Frit. (d) Applying Pressure on 

the Frits and Adsorbent.  

 

 

3.5.2 Conditioning and Elution of SPE Tube 

 

SPE tubes containing home-made adsorbents were tested together with 

commercial tubes. The commercial SPE tubes used for solid phase extraction were a 

6-mL SPE tube pre-packed with 500 mg of C18-silica adsorbent. In the SPE 

procedure, the SPE tubes were mounted onto a 10-port vacuum manifold obtained 
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from Vac-Master (International Sorbent Technology), connected to an EYELA A-3S 

Aspirator (Tokyo Rikakikai Co. Limited, Japan). Regulating the air pressure release 

valve controlled the flow rate of the sample solution.  

 

Five SPE tubes used in this research were (i) C18-silica adsorbent, (ii) PS-

DVB adsorbent, (iii) PS-DVB heptadecyl ketone adsorbent, (iv) chloromethyl PS-

DVB adsorbent, and (v) octadecoxy methyl PS-DVB. These tubes were connected on 

a 10-port vacuum manifold that was connected to a water aspirator.  Centrifuge tubes 

were placed beneath the SPE tubes inside the vacuum manifold to collect the eluate.  

  

Before use, the SPE tubes were rinsed with 12 mL of methanol to remove 

impurities, and then dried (by vacuum suction).  They were then conditioned with 2 

mL of methanol to serve as an “activating” solvent and left to soak for 2 minutes 

before methanol was drawn off.  The aqueous sample solution (10 mL) was sucked 

through the tube by vacuum manifold, connected by a water aspirator, with the 

vacuum adjusted to give a flow rate of 1 mL/min.  After passage of the aqueous 

sample, the tube was then rinsed with 2 mL of deionised water to remove impurities 

and was dried by vacuum suction for a few minutes.  Elution was performed with 

four 1 mL portions of methanol.  The eluate was collected into a centrifuge tube.  

The internal standard (0.05 mL) (butyrophenone) (100,000 ppm) was added into the 

centrifuge tube and the eluate was made up to 5 mL with methanol.  All the eluates 

were stored in the freezer before injection into the gas chromatography. This SPE 

process was repeated twice to obtain three replicates runs.  Figure 3.3 shows the solid 

phase extraction process. 

 

 

 

 

 

 

 

 

 

 



 41

 

 

 

 

 

 

 

 

Methanol 

Adsorbent 

Aqueous 
sample 

Frits 

Impurities Analytes 

Deionized 
water  

     (a)                       (b)                          (c)                           (c)                         (d) 

 

Figure 3.3 Solid Phase Extraction Process: (a) Conditioning with Methanol. (b). 

Aqueous Sample Filling. (c) Drying. (d) Cleanup with Deionised Water to Remove 

Impurities. (e) Elution of Analytes with Methanol. 

 

 

 

3.5.3 Determination of Percentage Recovery  

 

The recovery percentage was carried out by GC-FID; the analytes eluted from 

SPE tube were collected and then analyzed using a Hewlett Packard Model 6890GC 

gas chromatography (GC) equipped with a flame ionization detector (FID) and a data 

processor.  The gas chromatographic column used was Ultra-1 932530, a non-polar, 

fused-silica capillary column (30 m length × 250 μm inner diameter × 0.20 μm film 

thickness). Helium gas was used as the carrier gas with a flow rate of 1.1 mL/min at 

a pressure of 75 kPa.  The injector temperature was set at 250°C and the detector 

temperature was set at 310°C.  The gas chromatography oven was operated under 

programmed temperature with an initial temperature of 100°C, which was held for 2 

minutes and ramped up to 140°C with the rate of 5°C/min (Figure 3.4).  Each sample 

(1 μL) was injected into the gas chromatograph by using a 10 μL syringe obtained 

from Agilent; USA.  Triplicate injections were carried out for each sample to obtain 

a measure of accuracy.  
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Figure 3.4 The Programmed Temperature 

 

 

 

3.5.4 Determination of Response Factor  

 

The response factors, F, of internal standard (butyrophenone) and the test 

compounds (benzaldehyde, p-cresol, 2-chlorophenol, nitrobenzene) were determined 

by injecting 1 μL of each stock solution (with the concentration of 100 000 ppm) into 

the gas chromatograph.  Triplicate injections were carried out to obtain a more 

accurate and precise data. The equations used to calculate the response factor is 

shown below: 

 

 

 (3.1) 

 

                                  

(3.2)             

 

 

 

 

 

 

Temperature, (°C) 

5°C/min

2 min
100°C

140°C

Time, (Minutes) 
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3.5.5 Determination of Concentration and Recovery Values of Test 

Compounds 

 

The concentration of each test compound was calculated using the response 

factor obtained previously as shown below. 

 

S
S

X

X

S
X M ion,Concentrat    

A
A    

F
F    M ion,Concentrat ××=                    (3.3) 

                                      

MX = Test compound concentration (ppm) 

MS = Internal standard concentration (ppm) 

FS = Internal standard response factor 

FX = Test compound response factor 

AS = Internal standard peak area 

AX = Test compound peak area 

 

 

The equations for calculating the recovery values are as follows: 

                 

FactorDilution    % 100   
extraction  beforeion concentrat sSample'

M
  Recovery   % X ××= (3.4) 

 

       
50    % 100    

100,000
M  Recovery   % X ××=                                                                                                                     (3.5) 

 

extraction  before   volumescompound'Test 
extractionafter     volumescompound'Test   Factor  tion =

  

Dilu                                                                                                                      (3.6) 

 

50    
mL0.1
mL 5.0  Factor  Dilution ==

                                                                                           

         (3.7) 

 

Dilution factor for internal standard is: 

100   
mL0.05

mL 5.0  Factor  Dilution ==                                                                                                                     (3.8) 
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3.5.6 Hypothesis Test 

 

Hypothesis test was carried out to prove whether there is a significant 

difference among the data obtained.  Here, t-test was carried out as the hypothesis 

test where the population variance, σ1
2 and σ2

2 was unknown and assumed 

difference, σ1
2 ≠ σ2

2 and the size of sample, n1 and n2 is small (n1 < 30, n2 < 30). 

 

Null hypothesis, H0 = μ1 - μ2 = μο = 0 

Alternative hypothesis, H1 = μ1 - μ2 > 0 

Level of significance, α = 0.05 
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μ1 - μ2 = Difference between two population’s mean 

 X1  = Mean for Sample 1 

 X2 = Mean for Sample 2 

 s1 = Standard deviation for Sample 1 

 s2  = Standard deviation for Sample 2 

 n1 = Numbers of data in Sample 1 

 n2 = Numbers of data in Sample 2 

ν = Degree of freedom 
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If t test > tα,ν, H0 is rejected, which means that there is significance difference between 

the two values and if t test < tα,ν, H0 will be accepted which means that there is no 

significance difference between the two values. 

 
 
 
 
3.5.7 Determination of Breakthrough Volume  

 

Breakthrough volume curves were acquired with a JASCO Waters-515 HPLC 

(Japan) Pump and a JUSCO Intelligent UV 2075 plus UV/Vis detector (Japan). All 

measurements were performed at 254 nm for nitrobenzene solution, and 280 nm for 

2-chlorophenol solutions. Data acquisitions were made using a Hewlett-Packard 

NP3396A integrator. 

 

Frontal analysis was used to measure the breakthrough of the solid phase 

extraction tubes [10].  Frontal analysis performed by pumping a dilute solution of the 

analyte (20 ppm 2-chlorophenol, and 20 ppm nitrobenzene) through the bed and 

examining the resulting detector response as a function of a time.  The principles of 

operation of the frontal analysis are as follows: A solution is pumped through the 

cartridge bypass and directly to detector, as shown in Figure 3.5, position A.  This 

provides a high detector signal, showing the absorbance corresponding to 100% 

breakthrough. The valve is then switched, causing the analyte solution to pass 

through the SPE (Fig.3.5, position B), resulting in 0% detector signal because the 

analyte is retained on the SPE cartridge. Eventually, after the cartridge becomes 

saturated with the analyte and it starts to breakthrough.  This delay is called the 

breakthrough volume, which is a measure of the sorbent capacity.  The following is 

formula equation of the breakthrough volume:  

 

      

speedChart
distanceRetentiontimeRetention = (3.11) 

 

Breakthrough volume = Retention time × Flow rate           (3.12) 

 

 



 46

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

Position A: 100% signal equilibration 
                  Valve 1 Position 
 
Position B: Breakthrough monitoring 
                  Valve 1 Position  

SPE Cartridge 

    Detector 
Solvent Delivery Unit

Valve 1 

 

Figure 3.5 Plumbing Configurations for Measurement of Breakthrough Volume of 

Sorbents for SPE 

 

 

 

 
 



 
 
 
 
 

CHAPTER 4 
 

 

 

PREPARATION AND PHYSICAL CHARACTERIZATION OF 

PS-DVB AND MODIFIED PS-DVB ADSORBENTS 

 

 

 

 

4.1 Introduction 

 

In the past few decades, a functional polymer network has gained great 

importance in many fields of scientific research as well as for industrial applications. 

In this research, a series of porous poly (styrene-divinylbenzene) (PS-DVB) 

copolymers were prepared by aqueous suspension polymerization in the presence of 

diluents that act as precipitants.  Three different methods were utilized to modify the 

PS-DVB copolymer: (i) Friedel-Crafts acylation reaction by using stearoyl chloride 

as acylation agent, (ii) chloromethylation by using chloromethyl styrene and (iii) A 

novel modification method based on Williamson ether reaction that formed ether 

linkage on to PS-DVB. The chemically modified PS-DVB adsorbents were further 

examined using physical characterization methods.  

 

This chapter presents and discussion the experimental data obtained in the 

preparation and physical characterization of the adsorbents. The latter includes 

characterization and interpretation by infrared analysis, nitrogen adsorption analysis, 

scanning electron microscopy, and thermogravimetric analysis of the modified PS-

DVB as well as the unmodified PS-DVB adsorbents. Chemical characterization of 

the adsorbents was also performed on the absorbents through solid phase extraction 

(SPE) analysis and these are discussed in Chapter 5. 
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4.2 Preparation of PS-DVB 

 

Porous PS-DVB beads were prepared by using suspension copolymerization 

method. The copolymerization reaction was carried out using vinyl monomers and 

divinylbenzene as the cross-linking agent in presence of inert diluents. The reactor 

temperature was maintained at 70oC throughout the experiment in order to obtain 

droplets with good shape. Benzoyl peroxide (BPO) was used in the reaction and 

worked as an initiator. The final product was white powdery PS-DVB copolymer 

(Figure 4.1).   

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.1 Home-made PS-DVB Copolymer 

 

 

 The polymerization reaction is a batch process. Both styrene and 

divinylbenzene, which were in liquid form, were added into the reactor with an 

equivalent amount of water. The reaction was carried out by agitation of styrene and 

divinylbenzene with water and the mixture was dispersed into small globules. The 

chemical reactor was equipped with an agitator (see Figure 3.1), which mixed the 

water/organic chemical solution. BPO was added to initiate polymerization of the 

monomer’s double bonds.  
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In order to control the particle size and prevent globules from agglomerating 

into a big unmanageable mass, small amounts of poly (vinyl alcohol) were added as 

suspension stabilizers. The poly (vinyl alcohol) can form a protective layer on the 

surface of the globules, which avoid the agglomeration upon collision. When the 

speed of agitation increased, the styrene/DVB existed in large globules material will 

break up into smaller droplets until reaching the size of about one micrometer. In this 

process, the polymerization reaction initiated by the addition of BPO will caused the 

styrene/DVB molecules to transform into small plastic beads.  

 

 

 

4.3      Physical Characterization for Unmodified PS-DVB 

 

Characterizations were carried out on home-made PS-DVB and subsequently 

compared with the commercial PS-DVB in order to verify whether the home-made 

PS-DVB was successfully synthesized. The physical characterizations included:  

a. Fourier transform infrared spectroscopy (FTIR) 

b. Scanning electron microscopy (SEM) 

c. Nitrogen adsorption analysis 

d. Thermogravimetric analysis 

 

 

4.3.1 FTIR Spectroscopic Characterization 

 

In the physical characterization by FTIR spectroscopic method, the FTIR 

spectra obtained from the synthesized and commercial PS-DVB adsorbents can be 

evaluated and subsequently compared. Figure 4.2 shows the FT-IR spectra for the 

commercial and home-made PS-DVB adsorbents, respectively. The finger print 

region between 1400 cm-1 and 500 cm-1 was very important in identifying the 

compounds. Calibrated wave numbers were believed to be accurate within records by 

using KBr pellets with a concentration of 1:100 and scan time of 10 min at room 

temperature. The position and characteristic of bands observed (Table 4.1) were in 

good agreement with those reported in the literatures [41].  
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Home-made PS-DVB 

Commercial PS-DVB 

 
Figure 4.2 FTIR Spectra of (a) Commercial PS-DVB and (b) Home-made PS-DVB 
 

 

The IR spectrum of home-made PS-DVB (b) exhibited an absorption band at 

3034.9 cm-1 attributed to C-H (sp2) of aromatic asymmetric. In addition, bands at   

1589.9 cm-1, 1491.8 cm-1, and 1445.5 cm-1 supported the presence of C=C phenyl 

stretching. The bands at 751.2 cm-1 and 696.2 cm-1 were attributed to presence of out-

of-plane bending of monosubstituted benzenes. 
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Table 4.1: Infrared Frequency (cm−1) for Home-made and Commercial PSDVB 

Wave number, cm−1 
Characteristic Vibration Home-made PS-DVB  Commercial PSDVB 

Aromatic CH  

C=C phenyl 

 

-CH saturated  

 

Monosubstituted benzene 

3034.9 sharp 

1589.9, 1491.8, and 

1445.5 

2922.0  

751.2 and 696.2 

3023.2 sharp 

1599.8, and 1449.4 

 

2921.0 and 2848.7 

755.1 and 696.3 

It can be seen that the FTIR spectrum for home-made PS-DVB (b) is similar 

to the FTIR spectrum of the commercial PS-DVB (a). This indicates that the home-

made PS-DVB had the same structural properties as the commercial PS-DVB, hence, 

suggesting that PS-DVB was successfully synthesized in the laboratory. 

 

 

4.3.2 Characterizations of Particle Size, Surface Morphology and Pore Width / 

Volume by Scanning Electron Microscopy and Nitrogen Adsorption 

Analysis 

 

Scanning electron microscopy (SEM) was carried out to identify the particle 

size and surface morphology for the PS-DVB beads. Figure 4.3 shows the surface 

morphology of the home-made PS-DVB. It was observed that the PS-DVB shows a 

heterogeneous surface morphology and its average particle size was approximately 

115 μm. Hence, the PS-DVB fulfilled the major criteria needed for support material.   

 

 

 

 

 

 

 
a). Magnification was at 125 ×                  b). Magnification was at 5000 × 
 

Figure 4.3 Surface Morphology of Home-made PS-DVB 
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A set of experiments was carried out to determine the effect of stirrer design 

on the average particle size and pore width. It was intended to investigate which 

stirrer design could produce PS-DVB beads with suitable particle size. There were 

three types of stirrer designs investigated, namely single cross-blade impeller, half 

moon impeller, and double cross-blade impeller. 

 

Table 4.2 shows the effect of stirrer design to the PS-DVB particle size and 

porosity. By using single cross-blade impeller stirrer, an average particle size of 74 

μm was obtained. The particle size was slightly smaller relative to those obtained 

using other stirrer designs. When the polymerization was carried out using half-moon 

impeller stirrer, an average particle size of approximately 116 μm was obtained. The 

half moon impeller, which only had two blades, did not have agitation problem 

unlike the single blade impeller stirrer. Double cross blade impeller that has eight 

blades generally resulted in strong agitation problem. This might be due to the 

position of the stirrer in the reactor. The double cross blade impeller was not placed 

in the center of the reactor and this lead to inconsistent shaking in the reactor. 

 

Table 4.2: Effect of Stirrer Design to PS-DVB Particle Size and Porosity 

 

 

 
Type of Stirrer 

Average 
particle size 

(μm) 

Average pore 
width (Å) 

Total pore 
volume 
(cm3/g) 

 
 
 
 

 
 

 
   

 
 

0.000523 38 74 μm 
 

Cross blade impeller 
 
 

 
 
 
 

 
 
       184 

 
 

0.003151 116 μm 
  

Half-moon impeller  
 
 
 
     

 
 

 
    

76 

 
 

0.001840 120 μm 

Double cross blade 
impeller 
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Among the various factors that influence the particle size of the product, 

stirring speed is the most important factor that provides a relatively convenient 

means of particle size control for most practical purposes. The particle size can be 

controlled by the adjustment of the stirring speed. These limits depend on the size 

and the configuration of the polymerization reactor (including its stirring 

arrangement). For the laboratory preparation involving a total volume of about      

500 mL, the stirring speed can be varied in the range of 200 to 1000 rpm. The stirring 

speed of 900 rpm was chosen in our study.  

 

The home-made PS-DVB was further characterized by using nitrogen 

adsorption analysis. The nitrogen adsorption analysis was carried out to identify the 

types of pore of the home-made PS-DVB. Pore width and pore volume are the results 

usually obtained from this analysis. Pore width is an important parameter that 

describes the pore structure of a porous copolymer. The pore volume and the average 

pore width of copolymer particles usually depend on the reaction time and stirrer 

design. The reaction times used in our study were 1 h, 5 h, 10 h, 15 h, and 20 h. The 

reaction time optimization was aimed to find out the optimal reaction time required 

to produce PS-DVB adsorbents with high average pore width with acceptable pore 

volume. A good adsorbent usually give wide average pore width and pore volume. 

This can lead to high adsorption capacity for the adsorbent.   

 

Table 4.3 shows physical characteristics of the home-made PS-DVB 

compared to commercial PS-DVB. In can be observed that the average pore width 

for the home-made PS-DVB was 184 Å, which can be classified as mesopores. 

Mesopores usually exist with the pore width in the range of 20 Å-500 Å. The pores 

are irregular, voids between clusters of globules (mesopores) or voids inside a 

globule (micropores). The hydrodynamic volume of the dissolved molecules controls 

access to the pores. Molecules will only enter into those pores that are able to 

accommodate their size while smaller pores remain inaccessible for stearic reasons 

[48]. 
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Table 4.3: Physical Characteristics of the Home-made PS-DVB Compared to 

Commercial PS-DVB 

 
Sample Average pore 

width (Å))) 
Total pore 

volume(cm3/g) 
Home-made PS-DVB 
 
Commercial PS-DVB 
 

184 
 
               60 

0.003151 
 

0.001009 

 

The home-made PS-DVB was found to have low BET surface area, similar to 

commercial PS-DVB. Due to the small BET surface area (<10 m2/g), the instrument 

was unable to analyze the sample accurately. From the result obtained (Figure 4.4), it 

can be seen that the isotherm adsorption for home-made PS-DVB was generally not 

well formed.  

 

 

 
+ Adsorption 
ο Desorption  

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Nitrogen Adsorption Isotherm Plot of Home-made PS-DVB 

 

 

Figure 4.5 shows the effect of reaction time to the porosity and particle size 

of PS-DVB. It can be observed that when reaction time was set at 1 h, the pore width 

of PS-DVB was approximately 35 Å. Highest average pore width value and pore 

volume were obtained when the reaction time was fixed at 15 h with a value of     
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300 Å. However, a significant decrease of pore width was noted when the reaction 

time was increased to 20 h, due to 65 Å compare to others. The average pore width 

was somewhat in linear ratio with pore volume. This represent that the pore width 

was directly proportional to the pore volume.  
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Figure 4.5 The Effect of Reaction Time on Pore Volume and Average Pore Width of 

Home-made PS-DVB  

 

The particle size was generally affected by the total reaction time. Figure 4.6 

shows the effect of reaction time on the average particle size and average pore width 

for PS-DVB. It can be seen that when the reaction time was 1 h, the particle size for 

PS-DVB was 117 μm. The highest average pore width value and pore volume were 

obtained when the reaction time was increased to 15 h. However, when the reaction 

time was further increased to 20 h, the particle size became smaller and fine with 

particle size was decreased to 93 μm. Hence, reaction time at 15 h was chosen as the 

optimum reaction time for our study.     
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 Legend 
       Average pore width 
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Figure 4.6 The Effect of Reaction Time to the Average Particle Size and Average 

Pore Width of Home-made PS-DVB 

 

The reaction time also affected the amount of PS-DVB obtained after reaction 

was completed. In our research, it was found that longer reaction times tend to 

increase the total amount of PS-DVB obtained. Figure 4.7 shows the effect of the 

reaction time to the yield of home-made PS-DVB. It can be seen that when the 

reaction time was 1 h, the yield was only 13.50 g. This was probably due to the 

reaction time that was not long enough for complete copolymerization reaction. 

When the reaction time was increased to 5 h, the yield increased dramatically to 

61.88 g. However, when the reaction time was further increased to 20 h, a maximum 

yield of 126.62 g was obtained. Hence, it can be concluded that the yield increases 

with increased reaction time until it reaches a maximum value after complete 

reaction.   

 

In general, the total amount of PS-DVB yield was low for short reaction time 

(<5 h) but the yield increased for longer reaction time (10-20 h). It was noted that 

when polymerization was stopped at 1-5 h, the product obtained contain strong odor 

of styrene. On the other hand, there was no styrene odor of the final products 

obtained with reaction time of 10 h or longer where the yield began to level off and 

reached a high value of 126.62 g for the reaction time of 20 h. Based on the mass 

balance theory, the yield of product was 129.60 g. It means that the yield of product 
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obtained by experimental was similar with the yield of product by mass balance 

theory. 
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Figure 4.7 Effect of Reaction Time to the Yield of Home-made PS-DVB 

 

 

4.3.3 Thermal Stability by Thermogravimetric Analysis 

  

In this research, a series of thermogravimetric analyses (TGA) were carried 

out to examine the thermal stability of the PS-DVB adsorbents. In addition, the limits 

of the operating temperature for the adsorbents can also be identified to increase the 

adsorbent lifetime. Thermogravimetric analysis of home-made PS-DVB adsorbent 

was compared with commercial PS-DVB.  

 

Based on the TGA thermograms illustrated (Figure 4.8), the thermograms for 

home-made PS-DVB and commercial PS-DVB were almost identical. It was 

observed that a sharp inflection occurred in the temperature range of 300-500oC. 

When the temperature was increased from 230oC to 520oC, the PS-DVB started to 

decompose until the decomposition was almost come to completion. A significant 

reduction of the rate of weight loss was noted after the temperature was further 

increased to 710oC.  

 

Typical derivative thermogravimetric (DTG) thermogram for PS-DVB is 

presented in Figure 4.8. The thermograms of home-made PS-DVB clearly indicates 

the occurrence of a very sharp peak at 400oC, followed by two smaller peaks at 
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320oC and 620oC respectively. The sharp peak observed at low temperatures range 

was probably due to the removal of water and C=C phenyl molecules from the 

sample. The smaller peaks that occurred at temperature range of 260oC to 340oC 

might be due to the evolution of physically entrapped more stable organic 

compounds in the sample. Another sharp peak noted at 420oC probably corresponded 

to the removal of C=C molecules derived from phenyl groups. 

 

The DTG thermograms (Figure 4.8) observed for home-made PS-DVB and 

commercial PS-DVB were almost identical. Both of them had two functional group 

peaks that differ in thermal stability. The peaks for home-made PS-DVB were 

observed at 320oC and 420oC. As for the commercial PS-DVB, the peak was located 

at 360oC, and 600 oC. When the temperatures were further increased to 710oC; both 

of home-made PS-DVB and of commercial PS-DVB lose their weight completely. 

This phenomenon was due to the decomposition of the chemical bonding of PS-DVB 

at these temperatures.  

 

 

 

 

 

 

 

 

 

 

 

TG

DTG

(a). TG and DTG thermogram for commercial PS-DVB 
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TG

DTG

(b). TG and DTG for home-made PS-DVB 

 

Figure 4.8 Thermogravimetric (TG) and Derivative Thermogravimetric (DTG), 

thermograms of (a). Commercial PS-DVB and (b).Home-made PS-DVB  

 

 

Table 4.4 shows the thermal degradation results obtained from 

thermogravimetric analysis of the home-made PS-DVB and commercial PS-DVB 

adsorbents. The thermal degradation of PS-DVB occurred in three stages. The 

commercial PS-DVB started to decompose at temperature range from 40oC to 230oC 

and the percentage weight loss of PS-DVB was 4.63%. This result was similar to the 

home-made PS-DVB with weight loss percentage of 4.54%. When reaching the stage 

II, both the home-made PS-DVB and commercial PS-DVB adsorbents were almost 

completely decomposed. The percentage weight loss for home-made PS-DVB and 

commercial PS-DVB were 85.33%and 72.68%, respectively. The total percentage 

weight lost calculated for both adsorbents examined were approximately 100% 

suggesting that both of the adsorbent were completely decomposed at temperatures 

around in the 800 oC. 
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Table 4.4: Physical Characteristics for Homemade PS-DVB and Commercial PS- 

DVB Obtained from Thermogravimetric Analysis   

 

Weight loss (wt%) and temperature range ( oC ) for 
three stages of degradation 

 
Sample 

Stage I 
40-230 oC 

Stage II 
230-520 oC 

Stage III 
520-900 oC 

Home-made PS-DVB  

Commercial PS-DVB 

4.54%  

4.63% 

85.33%  

72.68% 

10.13%  

22.69% 

 

 

 

4.4  Physical Characterization of Modified PS-DVB 

  

 The PS-DVB adsorbents such as PS-DVB heptadecyl ketone, chloromethyl 

PS-DVB, and octadecoxy methyl PS-DVB have often been used in SPE extraction 

process, replacing other conventional adsorbents. PS-DVB adsorbents can either be 

unmodified PS-DVB or modified PS-DVB. 

 

 

4.4.1 Preparation of Modified PS-DVB and Characterization by FTIR 

 

4.4.1.1 Introducing Heptadecyl Ketone (C17H35CO-) onto PS-DVB 

 

The cross-linked polymer was functionalized via Friedel-Crafts acylation 

reaction by using stearoyl chloride in the presence of anhydrous AlCl3 as the Lewis 

acid catalyst and 1,2-dichloroethane as the solvent. The reactions were operated at 

room temperature in order to avoid the resin from over swelling and crushing 

correspondingly. The reaction occurred rapidly and required overnight reaction.  

 

Formation of PS-DVB heptadecyl ketone adsorbent is illustrated in Figure 

4.9. Friedel-Crafts reactions will not occur with aromatic rings that have strong 

deactivating substituents such as nitro, carbonyl, and sulfonyl groups. 

 



 61

 

 

 

+ C17H35CCl
AlCl3

Stearoyl chloride

 PS-DVB heptadecyl ketone

P P

C=O

C17H35

PS-DVB

O 

 

  

 

 

 

 

 

 

 

Figure 4.9 Formation of PS-DVB Heptadecyl Ketone. “P” Represents Bulk PS-DVB 

Polymer 

 

 

The modification reaction was carried out as described in section 3.2.2. The 

colour of the modified PS-DVB beads was yellowish brown after drying at 80oC for 

12 hours. The color of the modified PS-DVB was due to the bonding of a carbonyl 

group to the phenyl ring of polystyrene that varies the absorption band of the newly 

formed product.  

  

 FTIR spectra of native PS-DVB and PS-DVB-heptadecyl ketone adsorbents 

are illustrated in Figure 4.10. The band at1677.9 cm-1 was related to asymmetrical 

C=O stretching that indicated the incorporation of these functional groups to the PS-

DVB. The absorption band at 2957.6 cm-1 was related to =C-H aromatics stretching. 

Bands at 2909.4cm-1 and 2862.2 cm-1 were related to the stretching of C-H alkenes 

respectively. The presence of benzene ring in this polymer was confirmed by the 

existence of absorption bands at 1603.7 cm-1 and 1453.3 cm-1 corresponding to the 

C=C aromatic stretching. The absorption band corresponding to the carbonyl group 

was shifted to the right and lower frequency because of the conjugation effect 

between the carbonyl group with the benzene ring. Meanwhile, the similarities 
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between the spectra of the native PS-DVB and PS-DVB heptadecyl ketone 

adsorbents indicated that the basic structural units were preserved in the polymer.  

 The FTIR spectrum of the home-made PS-DVB did not show peaks at 1683.7 

cm-1, and 1603.7 cm-1, which means that the modified stearoyl chloride-modified PS-

DVB was successfully obtained. 
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PS-DVB heptadecyl 
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Figure 4.10 Infrared Spectra of Native PS-DVB and PS-DVB-Heptadecyl Ketone 

 

 

4.4.1.2 Introducing Chloromethyl Group (-CH2Cl) onto PS-DVB 

 

This reaction involves the replacement of a hydrogen atom on the aromatic 

ring by a CH2Cl group in single operation. This reaction occurs through the 

interactions between chloromethyl-styrene, styrene, and divinyl benzene, in the 

presence of initiator such as benzoyl peroxide [37, 38]. The overall reaction 

mechanism is shown in Figure 4.11.  
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Figure 4.11  Preparation of Chloromethyl PS-DVB. BPO = Benzoyl Peroxide, “P” 

Represents Bulk PS-DVB Polymer 

 

 

Bacquet, and Caze [37] have reported the decrease of vinyl group is due to 

the addition of the chloromethylating agent to the double bond. The aliphatic 

chlorine groups were identified by infrared spectroscopy (band at 698.2/cm) 

represented the benzyl chloride group in the PS-DVB spectrum. 

 

The most versatile reaction on PS-DVB resins is probably chloromethylation. 

It is because the chloromethylated resins could be easily modified due to the high 

reactivity of the chloromethyl groups. Varieties of chloromethylating agents were 

required to chloromethylate the polymer in the presence of benzoyl peroxide.  

 

Variations of reaction conditions such as excess usage of chloromethylating 

agents, higher temperature, different halogenated solvents, and reaction time have 

been proven to lead to incomplete reaction. Isolated polymer was found unchanged 

when the reaction temperature was maintained below 0oC, suggesting that the 

chloromethylation took place only at temperature higher than (>0oC). In all cases, the 

chloromethylation undoubtedly occurred under the reaction conditions, but the cross-

linking took place rapidly as the active aromatic ring attacks the chloromethyl group 

in a Friedel-Crafts alkylation reaction. The chloromethylation depended dominantly 

on the reaction temperature and the substituents [36, 38].  
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Figure 4.12 shows an infrared spectrum of chloromethyl PS-DVB. It can be 

noted that the C=C stretching of the phenyl were located at 1600.8 - 1583.4 cm-1, and 

1508.2–1492.8 cm-1. As for the monosubstituted benzene, the five adjacent hydrogen 

atoms resulted in two absorption bands close to 758.0 cm-1and 698.2 cm-1. The para-

substituted compounds was represented by doublet centered at 825.5 cm-1. The bands 

at 758.0 cm-1 and 698.2 cm-1 are attributed to the presence of C-Cl stretching that 

overlapped with the monosubstituted benzene. The peaks at 2920.0 cm-1(s) and 

2848.7 cm-1(s), represent the aliphatic C-H stretching.  
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Figure 4.12 The Infrared Spectrum of Chloromethyl PS-DVB 

 

 

Table 4.5 summarizes dominant infrared frequencies for chloromethyl PS-

DVB. The wide varieties of fingerprints are useful in structure functional group 

identification. The preparation of sample for infrared analysis by using KBr pellet 

can assist in eliminating the problem of bands due to the mulling agent. Hence, this 

techniques gave overall better spectrum except for band at 3450 cm-1 which 

represented the OH group caused by trace of water.   
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    Table 4.5: Infrared Frequency for the Chloromethyl PSDVB 

Characteristic Vibration Wave number, cm−1

=CH aromatic  

C=C aromatic  

-CH saturated  

Monosubstituted benzene  

C-Cl stretching 

3024.2 – 3082.0 (s) 

1600.8 – 1452.3 (s) 

2920.0 (s), and 2848.7 (s) 

825.5 - 698.2 (s) 

758.0 and 698.2 (s) 

 

 

 

4.4.1.3 Williamson Ether Reaction 

 

A reaction model based on preparation of benzyl hexyl ether was carried out 

in order to ascertain the feasibility of PS-DVB modification by Williamson ether 

reaction. A suggested mechanism of the Williamson ether reaction is shown in 

Figure 4.13. The first step of the Williamson ether synthesis consists of the reaction 

between metal (sodium) with an alcohol (hexanol) to form an alkoxide ion and 

hydrogen gas. Sodium alkoxides are strong bases and nucleophiles. Alkoxides can 

react with benzyl chloride to produce ether (benzyl hexyl ether). This Williamson 

ether reaction involved SN2 displacement with backside attached by the alkoxide [6, 

58]. 

 
reflux

Hexanol

+

Benzyl chloride

CH2OC6H13 + NaCl

Benzyl hexyl ether

C6H13OH      +         Na C6H13O

C6H13O Na Cl-CH2

Na
Alkoxide

+ 1/2H2
 

 

 

 

 

 

 

Figure 4.13 Reaction for the Preparation of Benzyl Hexyl Ether as A Reaction 

Model [6] 
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4.4.1.3(a)  Preparation of Benzyl Hexyl Ether as Reaction Model  

 

A significant characteristic of aromatic compounds in infrared spectra is the 

presence of relatively large number of sharp bands, especially close to the region of 

3030 cm-1 due to =C-H stretching vibrations.  Other important bands are located in 

the region range of 1600-1450 cm-1 which resulted from the in-plane skeletal 

vibrations of the aromatic ring.  

 

From the spectrum illustrated in Figure 4.14, it can be seen that the bands for 

C=C stretching phenyl ring vibration are located at 1614.3 cm-1, 1562.2 cm-1, and 

1452.3  cm-1.  The intensities of the other bands are the band near 1562.2 cm-1 that is 

sharp and appear as shoulder on the side of 1614.3 cm-1 band, and 1452.3 cm-1.  The 

ethers display a weak C-O stretch absorption at 1107.1 cm-1, which varies only 

slightly from ether to absorption of primary ether. 
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Figure 4.14 Infrared Spectrum of Benzyl Hexyl Ether 
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Some general features illustrative of the philosophy relating to the 

interpretation of spectra and correlation of absorption bands in the presence of 

particular groups should be noted.  It will be immediately apparent that this spectrum 

may be divided into two parts, the first between 4000-1600 cm-1 and the second from 

1600-660 cm-1.  In plane bending of the unsaturated C-H bond gives rise to 

absorption in the 1420-1290 cm-1 region which is frequently of weak intensity.  This 

absorption occurs in the region of the spectrum associated with C-C stretching and 

saturated C-H bending.  The CH2 asymmetric and symmetric vibrations which occur 

near 2929.7 cm-1 and 2862.2 cm-1, respectively, are clearly visible.  The absorption 

maximum for the carbon-hydrogen stretching frequency lies in the general region 

around 3000 cm-1; for  sp2-hybridized carbon the position is just above 3000 cm-1, i.e. 

C-H aromatic. 

 

 

4.4.1.3(b)  Introducing Octadecoxy (C18H37-O- ) onto Chloromethyl PS-DVB  

 

Preparation of octadecoxy methyl PS-DVB was based on the model reaction 

(see 4.4.1.3 (a)). In this study, grafting octadecoxy onto polymeric resin was 

successfully prepared. The alkoxide (octadecoxy) was prepared by the reaction of 

the corresponding alcohol with an active metal such as sodium. The resulting 

octadecoxy (C18H37-O-) was then reacted with the chloromethyl PS-DVB to 

produce the octadecoxy methyl PS-DVB (see Figure 4.15). 

 
 

CH 
3(CH2)17OH    +   Na CH3(CH2)17O    Na +    1/2H2 

+CH
 

3(CH2)17O    Na P P CH2 OCH3(CH2)17CH2Cl
 

 

                                    

Figure 4.15  The Reaction for the Preparation of Otadecoxy Methyl PS-DVB 
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The reaction routes of preparation of octadecoxy methyl PS-DVB are 

illustrated in Figure 4.16. Excess CH3(CH2)17ONa was removed by dissolving and 

heating in toluene. Removal of NaCl from the yield was carried out by dissolving 

and heating in water.  

 
 
Step I 

CH3(CH
 

2)17OH    +   Na CH3(CH2)17O    Na +    1/2H2 
 
 
 
Step II 
 

+CH3(CH
 

2 )17O    Na P P CH2 OCH3(CH2)17CH2Cl
 
           
                                                                      

Figure 4.16 The Reaction Routes of Preparation of Octadecoxy Methyl PS-DVB 

 

 

The reaction involved an SN2 reaction where an alkoxide ion was replaced by 

halogen, sulfonyl, or sulfate group. In our research, alkyl halides were used. The 

alkoxide can be prepared by the reaction of the corresponding alcohol with an active 

metal such as metallic sodium or by using metal hydride such as NaH acting upon 

the alcohol. The resulting alkoxide salt was then reacted with the alkyl halide 

(sulfonate or sulfate) to produce ether in SN2 reaction [58]. Table 4.6 demonstrates 

the details of FT-IR data for modified octadecoxy methyl PSDVB and chloromethyl 

PS-DVB. 
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Table 4.6: The FT-IR Data of Modified Octadecoxy Methyl PSDVB Compare to 

Chloromethyl PS-DVB  

Wave number, cm−1 
Characteristic Vibration Chloromethyl PS-DVB 

(PSDVB-CH2Cl) 
Octadecoxy methyl PS-DVB

(PSDVB-CH2-O-C18H37) 
=CH aromatic  
 
C=C  stretching phenyl 
ring 
 
-CH2 asymmetric and 
symmetric vibrations  
 
Monosubstituted benzene  
 
C-Cl stretching 

 

 
C-O-C (ether) 

3024.2, 3058.9, (s) 
 
1600.8 -1452,3 (s) 
 
 
2920.0, and 2848.7 (s) 
 
 
758.0, and 698.2 (s) 
 
698.2 (s) 
 
None 

None 
 
1562.2 (s), 1467.7 (s) 
 
 
2918.1, 2850.6 (s) 
 
 
721.3 (w) 
 
None 
 
1058.8 (w) 

 

Figure 4.17 shows the infrared spectra of chloromethyl PS-DVB compared 

with octadecoxy methyl PS-DVB. Figure 4.17(b) shows an IR spectrum of 

octadecoxy methyl PS-DVB. It  exhibited bands for C-O at 1058.8 cm-1 and while 

stretching bands at 1562.2 cm-1 and 1467.7 cm-1 were atrributed for C=C of phenyl 

stretching. The presence of a band centered at 2918.1 cm-1 was atrributed to C-H 

strongly of the octyl chain. The absorption of CH2 asymmetric bands for 

chloromethyl PS-DVB and octadecoxy methyl PS-DVB were noted at region around 

2918.1 cm-1 and 2850.6 cm-1, respectively. The bands at 1562.2 cm-1 and 1467.7 cm-1 

were related to in-plane bond stretching for phenyl ring. Based on the spectra 

obtained, significant differences of intensity at 698.2 cm-1 (due to C-Cl stretching) 

and 1058 cm-1 (due to C-O-C stretching) regions were observed. 
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Chloromethyl PS-DVB 

Octadecoxy methyl PS-DVB 

(a) 

(b) 

Figure 4.17 The Infrared Spectra of Modified PS-DVB: (a) Chloromethyl PS-DVB, 

(b) Octadecoxy Methyl PS-DVB 

 

 

4.4.2 Characterization of modified PS-DVB by Scanning Electron Microscopy  

 

The scanning electron microscopy (SEM) is a technique that uses electrons 

rather than light to form an image. The SEM also produces images of high 

resolution, which means that closely spaced features can be examined at high 

magnification. The surface morphology and particle size of PS-DVB heptadecyl 

ketone prepared based on Friedel-Crafts, chloromethyl PS-DVB by using 

chloromethylation, and octadecoxy methyl PS-DVB prepared based on Williamson 

ether reaction are shown in Figure 4.18, Figure 4.19 and Figure 4.20, respectively.  
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Figure 4.18a illustrates that the particle morphology of PS-DVB heptadecyl 

ketone was spherical beads. It was found that the average particle size of PS-DVB 

heptadecyl ketone was 60 μm. The PS-DVB heptadecyl ketone displayed the 

presence of impurities that probably from the acylation agent during the acylation 

reaction process. The PS-DVB heptadecyl ketone is performing the image of yellow 

brownies powder, chemically stable, mechanically strong, and easily functionalized. 

From the Figure 4.18b illustrated that the surface morphology of PS-DVB heptadecyl 

ketone was heterogeneous, roughly, and the surface morphology looks like gravel.  

 

 

 

 

 

 

 

 

 
(a). Magnification was 450 ×   (b). Magnification was 5.0 K × 

 

Figure 4.18 SEM Micrographs of PS-DVB Heptadecyl Ketone Prepared Based on 

Friedel-Crafts Acylation 

 

 

The SEM micrograph of chloromethyl PS-DVB (Figure 4.19a) shows that the 

particles of Chloromethyl PS-DVB were globular beads. Apparently, there were 

some impurities on the surface particle. The surface morphology of chloromethyl PS-

DVB (Figure 4.19b) appeared heterogeneous and rough.   
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(a). Magnification was 450 ×   (b). Magnification was 5.0 K × 
 

Figure 4.19 SEM Micrographs of Chloromethyl PS-DVB by Using 

Chloromethylation 

 

The Figure 4.20a shows that the particle morphology of the octadecoxy 

methyl PS-DVB was different compare to other micrographs. The particle 

morphology of the octadecoxy methyl PS-DVB looks like rocky, whereas its surface 

is rough and irregular shape beads, not well formed. The average particle size of 

octadecoxy methyl PS-DVB is 32 μm. The synthetic octadecoxy methyl PS-DVB 

was pale yellow, like wax, unstable with the temperature, when the temperature is 

higher (>25oC), the octadecoxy methyl PS-DVB melted. The higher temperature had 

broken the linkage ether (C-O-C). It shows some irregular agglomerates.  

 

 

 

 

 

 

 

 
      
  (a). Magnification was 450 ×     (b) Magnification was 5.0 K × 
 

Figure 4.20 SEM Micrographs of Octadecoxy Methyl PS-DVB Prepared Based on 

Williamson Ether Reaction  
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4.4.3 Characterization by Thermogravimetry (TG) and Derivative  

Thermogravimetry (DTG)  

 

Thermogravimetric analysis was carried out in order to establish the stability 

of the adsorbents and the results can be used in environmental analysis. Figure 4.21 

shows TG and DTG thermograms for octadecoxy methyl PS-DVB. A sharp weight 

loss was observed over the temperature range 230-520oC in a similar manner to that 

observed in the thermograms for the chloromethyl PS-DVB. The total weight loss 

over this temperature range (520-900oC) is 12.33% of the initial sample weight and 

this can be attributed to the elimination of more stable organic compounds and from 

decomposition of the ether group.  

 

 

 

 

 

 

 

 

 

TG

DTG

 

Figure 4.21 TG and DTG Thermograms for Octadecoxy Methyl PS-DVB 

 

 

The total weight loss for the PS-DVB heptadecyl ketone is 97.26% of the 

initial sample weight and this was probably mainly due to the complete loss of 

adsorbed and coordinated water from sample together with the loss of some carbonyl 

functional groups. The PS-DVB heptadecyl ketone still left a residue as much as 

2.74%.  
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TG

DTG

Figure 4.22 TG and DTG Thermograms for PS-DVB Heptadecyl Ketone 

 

 

The thermal degradation of chloromethylated PS-DVB derivatives takes 

place in three stages with different weight losses depending on the nature of the 

substituents. The octadecoxy methyl is less thermal stability compare to 

chloromethyl PS-DVB PS-DVB, and PS-DVB heptadecyl ketone. Because the 

thermal stability both of them were same in the room temperature, but when the 

temperature was increased, the thermal degradation of constituents of octadecoxy 

methyl PS-DVB was first degraded at 230oC, and the weight loss percentage of 

compounds most highest. The Figure 4.23 illustrated that the thermogravimetric 

thermogram for chloromethyl PS-DVB nearly similar with that of home-made PS-

DVB. The derivative thermogravimetric thermogram of the chloromethyl PS-DVB 

indicates occurrence of two peaks. The two peaks have different stability. The first 

peak was observed at 400oC, and the second peak appeared at 620oC. The both of 

these peaks were different because the occurrence of two functional groups in the 

different thermal stability. 

 

 

 

 

 

 

 



 75

 

 

 

 

 

 

 

 

 

 

TG
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Figure 4.23 TG and DTG Thermograms for Chloromethyl PS-DVB 

 

 

The characteristics obtained from thermogravimetric analysis and derivative 

thermogravimetric analysis of PSDVB and the modified PS-DVB (PS-DVB 

heptadecyl ketone, chloromethyl PSDVB, and octadecoxy methyl PSDVB) are 

presented in Table 4.7. The complexity of the thermal decomposition for chemically 

modified polymers can be easily noted from the thermogravimetric thermograms. 

The substitution at the benzene ring of PS-DVB determines three degradation stages 

with different weight losses depending on the chemical structure of the substituents. 

From the Table 4.7 it is apparent that the most important weight loss was recorded in 

the last stage of thermal degradation of the PS-DVB and modified PS-DVB in the 

temperature range of 230-520oC.  

 

Table 4.7: The Thermogravimetric Data for Native PS-DVB and Modified PS-DVB 

Weight loss (Wt%) and temperature range(ToC) 
for the three stages degradation 

 
Sample 

Stage I 
40-230oC 

Stage II 
230-520oC 

Stage III 
520-900 oC 

PS-DVB (native) 
 
PS-DVB heptadecyl ketone 
 

 

Chloromethyl PS-DVB 
 
Octadecoxy methyl PS-DVB 

4.54% 
 

6.49% 
 

 3.95% 
 

 4.35% 

85.33% 
 

38.64% 

 
77.38% 

 
79.58% 

10.13% 
 

52.13% 
 

18.67% 
 

16.07% 
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From the results obtained, it can be concluded that the thermal stability 

decreases in the order: PS-DVB heptadecyl ketone > chloromethyl PS-DVB > 

octadecoxy methyl PS-DVB > PS-DVB. The results also showed that the PS-DVB 

heptadecyl ketone is the most stable whereas the PS-DVB has the highest 

degradation rate in the considered temperature range.  

 

 

 

 



 
 
 
 
 

CHAPTER 5 
 

 

 

 

APPLICATION OF PS-DVB AND MODIFIED PS-DVB IN  

SOLID PHASE EXTRACTION 
 

 

 

 

 

5.1 Introduction 

 

This chapter presents and discusses the experimental data obtained in 

chemical characterization of the adsorbents through solid phase extraction (SPE) 

analysis. 

 

Gas chromatography (GC) is one of the most widely employed analytical 

techniques today. The wide acceptance and success of this technique have been due 

to such features as simplicity, rapidity of analysis, high sensitivity of detector 

systems, efficiency of separations, varied applications, and the use of very small 

samples (microgram or smaller). Presently GC is finding use in the concentration of 

impurities in the parts per million (ppm) and parts per billion (ppb) ranges and in 

addition to the actual measurement of impurities at these levels. Without the use of 

GC, many analytical problems could not be solved or would involve more intricate 

and time-consuming techniques [59]. 
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SPE is selected due to its inherent advantages such as ease of maintenance 

and automation, time and cost saving, and prevention of emulsion formation [17]. 

The principle of SPE is similar to liquid - liquid extraction involving a partitioning of 

compounds between two phases. Objectives that can be possibly achieved on SPE 

are removal of interfering compounds, pre-concentration of sample, and fractionation 

of the sample into different compounds or group of compounds as in classical 

chromatography. It also promotes storage of analytes that are unstable in a liquid 

medium. Therefore, the SPE process can be carried out either on-line or off-line. The 

experimental procedure using the SPE cartridges is known as offline SPE.  

   

 The adsorbents used in the research were home-made PS-DVB, PS-DVB 

heptadecyl ketone, chloromethyl PS-DVB, and octadecoxy methyl PS-DVB. These 

adsorbents were compared with commercial adsorbents, namely commercial PS-

DVB, and octadecyl silane bonded silica. The efficiency of the adsorbents that 

utilized in SPE can be easily determined by examining the percentage recovery for 

various test compounds. The concentrations and the percentage recovery for each test 

compound were calculated using the equations given in 3.3 and 3.4 (Chapter 3).  

 

 

 

5.2 Identification of Peaks for Test Compounds and Internal Standard 

 

In this research, gas chromatography was chosen as the separation and 

quantitative techniques for the solid phase extraction recovery study of the 

adsorbents. The test compounds used in this research were benzaldehyde, 2-

chlorophenol, p-cresol and nitrobenzene. Butyrophenone was chosen as the internal 

standard. Identification of each analyte was carried out by comparison of retention 

times in chromatogram with standards. 
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 A mixture solution of all the test compounds and butyrophenone (2000 ppm) 

were prepared by diluting the stock solutions in methanol. The mixture (1 μL) was 

then injected into a gas chromatograp. A chromatogram obtained is shown in Figure 

5.1. The retention time for each individual test compound was determined by 

injecting 1 μL of each stock solution prepared into the gas chromatograp. All the test 

compounds and butyrophenone were separated by gas chromatography in less than 

ten minutes. The retention times for the test compounds as well as the internal 

standard are listed in Table 5.1. The gas chromatograms obtained for the test 

compounds and butyrophenone are shown in Appendices A1-A5.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Separations of Test Compounds and Butyrophenone (Internal Standard) 

Using Gas Chromatography. Chromatographic Condition: Ultra-1 Column (30 m × 

250 μm × 0.20 μm), Carrier Gas:  Helium; Flow Rate: 1.1 mL/min; Pressure: 75 kPa; 

Detector: FID; Injector Temperature: 250°C; Detector Temperature: 310°C; Initial 

Temperature: 100°C with a Hold Time of 2 min; Final Temperature: 140°C, Linear 

Temperature Programmed at 5°C/min rise. Peaks: 1 – Benzaldehyde; 2 – 2-

Chlorophenol, 3 – p-Cresol, 4 – Nitrobenzene, 5 – Butyrophenone 
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Table 5.1: Retention Time of the Test Compounds and Butyrophenone in GC     
Chromatogram 

 
Compound Retention time, (tR/minutes) 

Benzaldehyde 3.95 

2-Chlorophenol 4.27 

p-Cresol 5.05 

Nitrobenzene 5.20 

Butyrophenone (Internal Standard) 8.05 

 

 

 
 
5.3 Determination of Response Factor for Test Compounds and Internal  

Standard 

 

The response factor is usually utilized in GC quantification calculation. This 

is because the response factor can significantly eliminate several errors that are 

usually observed in GC analysis. In this study, 1 μL of each test compound and the 

internal standard stock solutions in concentration of 100,000 ppm was injected into 

the gas chromatograp to determine the response factor (Fx) for each compounds. 

Triplicate injections were carried out to obtain a more accurate data. The response 

factors for each compound were calculated using equations 3.2 given in Section 3.7. 

Table 5.2 shows the peak area, average peak area, and response factor for each of the 

analytes examined in this study.  

 

Table 5.2: Peak Area, Average Peak Area, and Response Factor of Test Compounds 

and Internal Standard 
 

Compound Peak Area 
(pA.s) 

Average Peak 
Area (pA.s) 

Response 
Factor 

Benzaldehyde 1204 1524 1639 1456 0.0146 

2-Chlorophenol 1026 853 1255 1045 0.0104 

p-Cresol 1883 1798 1366 1682 0.0168 

Nitrobenzene 1401 1160 1806 1456 0.0146 

Butyrophenone (IS) 1486 1695 1319 1500 0.0150 
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5.4  Efficiency of Home-made PS-DVB, PS-DVB Heptadecyl Ketone, and 

C18-Silica Adsorbents  

 

The efficiency of PS-DVB, and PS-DVB heptadecyl ketone, PS-DVB and 

C18-silica in SPE were investigated using various test compounds under individual 

and simultaneous extraction conditions. The performances of the home-made PS-

DVB, PS-DVB heptadecyl ketone, and C18-silica were determined by the means of 

percentage recovery of test compounds. In order to point out the statistical difference 

of these results, t-test was evaluated at a confidence level of 95%. The evaluation of 

the statistical test was determined by using the formula given in Section 3.5.6. Table 

5.3 shows the comparison of recovery percentages and relative standard deviation 

(R.S.D) values obtained using home-made PS-DVB, PS-DVB heptadecyl ketone, 

and C18-silica adsorbents. The calculation of concentrations and the percentages 

recovery of the test compounds are shown in Appendix B. 

 

 Based on the results obtained in Table 5.3, it was observed that the best 

recoveries were achieved for all the test compounds using C18-silica as adsorbent. 

Meanwhile, the recoveries obtained using home-made PS-DVB and PS-DVB 

heptadecyl ketone were slight lower in relative with C18-silica. However, the PS-

DVB heptadecyl ketone showed an overall increase of recovery for all the test 

compounds compared to the home-made PS-DVB. 

 

Table 5.3: Comparison of Percentages of Recovery and Relative Standard Deviation 

for the Extraction of Test Compounds Using Home-made PS-DVB, PS-

DVB Heptadecyl Ketone, and C18-silica as the Adsorbents 
 

 

home-made PS-DVB PS-DVB heptadecyl ketone C18-silica 
Individual 
extraction 

Mixture 
extraction 

Individual 
extraction 

Mixture 
extraction 

Individual 
extraction 

Mixture 
extraction Compound 

% R RSD 
(%) % R RSD 

(%) % R RSD 
(%) % R RSD 

(%) % R RSD 
(%) % R RSD 

(%) 
Benzaldehyde 55.74 1.58 41.85 9.25 63.63 3.71 67.09 4.04 69.86 4.07 85.77 3.71 
2-Chlorophenol 44.33 4.39 15.81 8.50 82.70 6.30 65.30 4.28 83.87 4.26 89.21 6.30 
p-Cresol 30.29 5.60 7.41 4.10 46.68 5.06 35.16 3.46 66.67 3.94 72.11 5.06 
Nitrobenzene 64.02 5.42 71.01 4..95 69.15 2.67 79.39 2.65 86.42 3.54 76.35 2.67 
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 According to the literature [40, 60], if the adsorbent packing process in SPE 

tube is less efficient, it will cause the formation of empty space among the adsorbent 

particles in the tube. The formation of this empty space will decrease the surface area 

of the adsorbent that interact with the analytes, subsequently reduce the efficiency of 

the adsorption, and desorption of the adsorbent. Adsorbent with large particle size 

will also significantly decrease its surface area and lead to poor recovery percentages 

of test compounds. In order to avoid this phenomenon, home-made PS-DVB was 

ground and sieved to 400 mesh (38 μm). A total of approximately 500 mg of the 

adsorbent was loaded into the SPE tube to form a bed of 1 cm × 1.5 cm I.D. A bed 

height of more than 1 cm should be used to ensure good retention of the desired 

sample compounds [48]. The resin was closely packed, because loose-packed resin 

bed will cause the channeling of the analytes that can lead to poor recoveries. 

 

Loosely packed adsorbent will also result in uncontrollable flow rate when 

the SPE was carried out. In SPE system, the flow rate of the sample solution is one of 

the most important parameters, which not only affects the recoveries of analytes, but 

also controls the time of analysis [61]. Ersöz, et al. [62] reported that the adsorption 

of analytes decreases with increasing flow rate. At higher flow rates, the contact time 

of analytes with the adsorbent is short. Thus, the mass transport of the analytes to the 

reactive sites of the adsorbent will reduce and decrease the retention of the analytes. 

The home-made PS-DVB sorbent was closely packed in the tube, a flow rate of 

approximately 1 mL/min was used to ensure the interaction between the analytes, 

and adsorbent was sufficient and achieved good recoveries of the test compounds.  

 

The low recoveries of PS-DVB might also be due to the hydrophobic surface 

of the polymer. The consequence is poor surface contact with predominantly aqueous 

solutions. Pretreatment of the PS-DVB with an activating solvent (methanol) must be 

carried out to obtain better surface contact with the aqueous solution being extracted. 

However, sometimes the activating solvent can gradually leach out of the resin, 

causing the extraction to become ineffective [47]. As for PS-DVB heptadecyl ketone, 

the hydrophilic character of the introduced functional groups increased its surface 

polarity and improved the adsorbent wetting property. It was due to the ability of 

polar surface to reduce the surface tension of the water that enabled the aqueous 

sample to interact with the resin surface and enhanced the mass transfer of the 
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analytes from the water solution to the sorbents and resulted in higher recovery [3, 

63, 43, 39]. 

 

For PS-DVB heptadecyl ketone, the recoveries were generally higher than 

PS-DVB because the presence of the carbonyl groups on its surface allowed better 

interaction with the methanol. On the other hand, ethyl acetate, acetonitrile, and 

tetrahydrofuran were highly recommended and reported to be the suitable elution 

solvent for PS-DVB and derivatized PS-DVB compared to methanol [8, 40, 47, 13]. 

Similar observations had also been reported by Schmidt et al. [48] in which the 

recoveries for p-cresol was the highest using acetyl-PS-DVB (94%), followed by 

underivatized PS-DVB (76%) and C18-silica (19%) when ethyl acetate was used as 

the elution solvent.  

 

 PS-DVB heptadecyl ketone appeared to show significantly higher recoveries 

with lower RSD values for all the test compounds tested compared to home-made 

PS-DVB. These results were well expected because chemical modifications of the 

PS-DVB with stearoyl groups had improved the efficiency of the SPE process by 

increasing polar interactions with the functional groups of the analytes and thus 

resulted in higher retention [3, 19, 29]. Similar observations had also been reported 

by Masqué, et al. [5] on solid phase extraction of pesticides and phenolic compounds 

from water.  

 

 The main reason why highest recoveries were achieved for all test 

compounds using C18-silica was attributed to the type of elution solvent used in our 

research. The elution sample should be allowed that the analytes always involves the 

primary and secondary retention mechanisms between the analytes and adsorbent 

and the elution solvent utilized should be compatible with the final analysis 

technique too. Hence, in this experiment, methanol was chosen as the elution solvent 

because it was less toxic compared to other solvent such as acetonitrile [13] and its 

volatile characteristic was compatible to the subsequent gas chromatography 

analysis. According to previous reports [40, 53, 64], methanol was found to be a 

good elution solvent for the extraction of polar compounds using octadecyl silica 

adsorbents. This was probably due to the hydroxyl group on methanol that 
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contributed to its polarity and enabled the solubility of analytes retained in the C18-

silica adsorbent.  

 

 The two dimensional illustration (Figure 5.2) shows the percentage recovery 

of test compounds under individual and simultaneous extraction using home-made 

PS-DVB, PS-DVB heptadecyl ketone, and C18-silica as adsorbent. The overall results 

demonstrated high recoveries in the range of 67% - 99% using the C18-silica as an 

adsorbent.  However, lower recoveries in the range of 30%-99% were obtained when 

the home-made PS-DVB used as the adsorbent. 
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Figure 5.2 Percentages of Recovery for Test Compounds Extracted Individually 

Using Home-made PS-DVB, PS-DVB Heptadecyl Ketone, and C18-silica as the 

Adsorbents 
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5.5 Hypothesis Test 

 

 The examples of the hypothesis test calculation for benzaldehyde under 

individual extraction using PS-DVB heptadecyl ketone and home-made PS-DVB as 

the adsorbents is shown below: 

 

Null hypothesis, H0 = μ1 - μ2 = μο = 0 

Alternative hypothesis, H1 = μ1 - μ2 > 0 

Level of significance, α = 0.05 

2

2
2

1

2
1

021
test 

n
s  

n
s

 -  -   
+

=
μXXt

 

 

 

 

9
0.9324  

9
2.5060

0-55.74-63.63   
22test 

+

=t 

 

8913.0
7.89  test =t

 

 

 

       = 8.8522 

 

1 - n
n
s

  
1 - n

 
n
s

n
s  

n
s

   freedom, of Degree

2

2

2

2
2

1

2

1

2
1

2

2

2
2

1

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
+

=v

 

 

 

 

 

 

 

 

1-9
9

0.9324

  
1-9

 
9

2.5060

9
0.9324  

9
2.5060

   freedom, of e Degre 2222

222

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
+

=v

 

 

 

 



 86

 

0620.0
6310.0   freedom, of Degree =v 10 ≈

 

 

 

  2.23  0.05,10 =t

 From the calculations, it was shown that ttest > t0.05,10. Therefore, H0 was 

rejected and H1 was accepted where μ1 > μ2.  This represented that PS-DVB 

heptadecyl ketone proved to give higher percentage recovery than home-made PS-

DVB. 

 

 

 

5.6 Measurement of Breakthrough Volume  

 

The efficiency of unmodified PS-DVB and modified PS-DVB can also be 

determined by measuring the breakthrough volume of the adsorbents. The 

breakthrough volume of the adsorbent was calculated by using the equation 3.11 and 

3.12 in section 3.5.7. In this research, frontal analysis was performed by pumping a 

dilute solution of the analyte (nitrobenzene and 2-chlorophenol) through the 

adsorbent bed and examined the detector response as a function of time. The 

concentration of the analyte was prepared in 20 ppm in all cases studied. Table 5.4 

showed the breakthrough volume of unmodified and modified PS-DVB sorbents 

using different types of test compounds. The calculation of breakthrough volume is 

shown in Appendix B3. 

 

Table 5.4: Breakthrough Volume of Unmodified and Modified PS-DVB Sorbents 

Using Different Types of Analytes 

 
Nitrobenzene 

20 ppm 
2-Chlorophenol 

20 ppm 
 
 

Code Sample 
 

Average 
breakthrough 
volume (mL) 

 
RSD
(%) 

Average 
breakthrough 
volume (mL) 

 
RSD 
(%) 

PS-DVB 
PS-DVB heptadecyl ketone 
Chloromethyl PSD-VB 
Octadecoxy methyl PS-DVB 

13.40 
30.60 
1.23 

         1.03 

7.46 
11.56 
18.72 
12.37 

13.60 
20.47 
2.07 

         1.00 

15.56 
7.59 

13.32 
 20.00 



 87

The breakthrough volumes for PS-DVB heptadecyl ketone was significantly 

higher compared to those observed using other modifiers and unmodified PS-DVB. 

The results (Table 5.4) indicate that the highest breakthrough volume for 

nitrobenzene was obtained using PS-DVB heptadecyl ketone (30.60 mL), followed 

by unmodified PS-DVB (13.40 mL), chloromethyl PS-DVB (1.23 mL), and 

octadecoxy methyl PS-DVB  (1.03 mL) as the adsorbent. In addition, higher 

breakthrough volume was observed for PS-DVB heptadecyl ketone when lower 

polarity analyte such as nitrobenzene (30.60mL) compared to the more polar 2-

chlorophenol (20.47 mL). These observations were similar to those described in the 

literature [39], which reported that the retention volume and breakthrough volume 

for the nitrobenzene was higher than the retention volume and breakthrough volume 

for the more polar 2-chlorophenol using PS-DVB heptadecyl ketone. The PS-DVB 

heptadecyl ketone is a resin that contains stearoyl chloride functional groups attached 

to the benzene rings that alter the PS-DVB heptadecyl ketone retentive properties for 

polar compounds. The incorporation of stearoyl groups on PS-DVB improved the 

efficiency of the adsorbent by increasing the ability of the adsorbent to undergo polar 

interactions with the polar analytes. Higher surface area on the stearoyl chloride-

modified PS-DVB adsorbent allocated higher interactions between solutes and 

adsorbent and yielded higher retention of analytes. In addition, the presence of the 

polar carbonyl groups on its surface that allowed better contact with solvent.  

 

 According to the acid-base Lewis theory, the benzene rings on PS-DVB and 

the carbonyl group on PS-DVB heptadecyl ketone can be considered as a Lewis base 

while the phenolic compounds (2-chlorophenol) can act as a Lewis acid. However, 

the oxygen on the carbonyl group on PS-DVB heptadecyl ketone exhibited larger 

dipole moment and resulted in better Lewis base property in relative with the 

benzene ring on PS-DVB. Consequently, the interaction of phenolic compounds was 

found to be much better by using PS-DVB heptadecyl ketone instead of PS-DVB 

adsorbent.  

 

Another possibility that lead to higher breakthrough volume when using PS-

DVB heptadecyl ketone compared to PS-DVB is the porosity and surface area of the 

modified adsorbent. PS-DVB heptadecyl ketone is expected to be more porous and 

has a relatively smaller pore size and higher surface area compared to the unmodified 
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PS-DVB. Higher or larger specific surface area had been reported to allow stronger 

retention of analytes than the conventional polymeric adsorbents. [65, 66]. Increase 

in the specific surface area of the adsorbent will allow additional π-π interactions 

between the solutes and the adsorbents [43]. Sun and Fritz [47] reported that the 

surface area and porosity of resins seem to have a major effect on their efficiency for 

SPE.  

 

 Breakthrough volume curves for nitrobenzene and 2-chlorophenol using PS-

DVB as the adsorbents are illustrated in Figure 5.3. Based on the results, it was 

found that the used of PS-DVB as adsorbent generally resulted in lower 

breakthrough volume when compared to PS-DVB heptadecyl ketone adsorbent. This 

might be due to the Van der Waals and/or hydrophobic interactions between the 

solutes and the adsorbent that affected the extraction of aromatic compounds [67].  

 

 

 

 

 

 

 

 

 

 
(a) 20 ppm nitrobenzene (b) 20 ppm 2-chlorophenol 

Figure 5.3 Breakthrough Volume Curves for (a) Nitrobenzene and (b) 2-

Chlorophenol Using PS-DVB as the Adsorbent  

 

 

Based on the previous report [68], the retention mechanisms on the PS-DVB 

will differ depending on the nature of analytes and the basic mechanisms were found 

to involve π-interactions and dispersive interactions. The analyte π-systems and the 

adsorbent π-electron donating-accepting fragments usually play an important role in 

determining the retention mechanism. PS-DVB possesses exceptionally strong π-

electron donating-accepting ability, which causes a predominant retention of 
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compounds that contain aromatic π-systems or functional groups with lone electron 

pairs such as carbonyl and nitro groups.  

 

Previous report [68] also demonstrated an interesting regularity in the 

retention of mono-, bi- and trisubstituted benzenes on polystyrene. The retention 

increased with an increase of π-electron density gradients in molecules, which are 

usually known as local dipoles. The electron resonance structures of the analyte 

molecules were found to be applicable for the estimation of their retention. Retention 

of bi- and trisubstituted benzenes on polystyrene was poorer than the 

monosubstituted benzenes because in bi- and tri-substitution, the magnitude of the 

resonance effect was poorer, thus resulted in minimum local π-electron density 

dipoles. Therefore, in our study, it can be seen that 2-chlorophenol (bisubstituted 

benzene) was less retained in relative with nitrobenzene (monosubstituted benzene) 

on the PS-DVB adsorbent. 

 

Breakthrough volume curve of nitrobenzene and 2-chlorophenol using PS-

DVB heptadecyl ketone as the adsorbent is illustrated in Figure 5.4. Based on the 

results in Table 5.4, the use of PS-DVB heptadecyl ketone as adsorbent generally 

resulted in higher breakthrough volume when compare to PS-DVB adsorbent. In 

addition, breakthrough volumes for more polar compounds were generally lower 

than the breakthrough volumes for less polar compounds using PS-DVB heptadecyl 

ketone as adsorbent. 2-Chlorophenol  predicted to be retained on the adsorbent via 

primary interaction that involved the hydrogen bonding between the hydrogen from 

hydroxyl groups of the analyte and the oxygen from the carbonyl groups on the 

adsorbent. 
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 (a) 20 ppm nitrobenzene (b) 20 ppm 2-chlorophenol 

 
Figure 5.4 Breakthrough Volume Curves of (a) Nitrobenzene and (b) 2-

Chlorophenol Using PS-DVB Heptadecyl Ketone as the Adsorbent  

 

 

 In general, the breakthrough volumes were much better for nitrobenzene 

compared to 2-chlorophenol on PS-DVB heptadecyl ketone adsorbent. Significant 

improvement was observed when non-polar compound, nitrobenzene achieved 

higher breakthrough volume on modified PS-DVB sorbent in relative with native PS-

DVB. The polymer can act as an electron donor for analytes having electron-

withdrawing or positive electron resonant capacity substituents. The degree of cross-

linking for the copolymer is also an important parameter that can explain the 

differences in breakthrough volume among the adsorbents. 
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 From Figure 5.5 and Figure 5.6, it was observed that the breakthrough 

volume for chloromethyl PS-DVB and octadecoxy methyl PS-DVB were almost 

identical. For chloromethyl PS-DVB adsorbent, the breakthrough volumes of 

nitrobenzene and 2-chlorophenol as analytes were 1.23 mL, and 2.07 mL, 

respectively, while for octadecoxy methyl PS-DVB the values were 1.03 mL and 

1.00 mL, respectively.   

 

(a) 20 ppm nitrobenzene (b) 20 ppm 2-chlorophenol 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Breakthrough Volume Curves of (a) Nitrobenzene and (b) 2-

Chlorophenol Using Chloromethyl PS-DVB as the Adsorbent.  

 

 

(a) 20 ppm nitrobenzene (b) 20 ppm 2-chlorophenol 

 

 

 

 

 

 

 

 

 
 
 
Figure 5.6 Breakthrough Volume Curves of (a) Nitrobenzene and (b) 2-
Chlorophenol Using Octadecoxy Methyl PS-DVB as the Adsorbent.  
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The unsatisfactory breakthrough volumes for chloromethyl PS-DVB and 

octadecoxy methyl PS-DVB adsorbents were mostly attributed to the elution solvent 

used in our study. The octadecoxy methyl PS-DVB has been shown to lack of 

selectivity on polar compounds such as 2-chlorophenol and less polar compound 

such as nitrobenzene.  

 

In this research, a new method based on Williamson ether reaction was used 

to modify PS-DVB. The applicability of octadecoxy methyl PS-DVB adsorbent was 

the major interest in our current study. Nevertheless, the adsorbent have shown 

unsatisfactory breakthrough volumes and poor percentage recovery compared to 

other modified adsorbent such as PS-DVB heptadecyl ketone and chloromethyl PS-

DVB. The main reason why octadecoxy methyl PS-DVB adsorbent did not give an 

expected high performance could be due to the incomplete preparation of octadecoxy 

methyl PS-DVB. Hence, in the future study, the preparation should be improved in 

order to avoid the presence of any impurities that will affect the efficiency of the 

modified material when utilized as an adsorbent. The poor performance of 

synthesized octadecoxy methyl PS-DVB could also probably due to the irregular 

shape of the adsorbent particles as shown in Figure 4.20, as compare to spherical 

shape particles of PS-DVB (Figure 4.3) and PS-DVB heptadecyl ketone (Figure 

4.18). Spherical shaped adsorbents can be packed tightly, less channeling, and give 

higher efficiency packing 



 
 
 
 
 

CHAPTER 6 
 

 

 

 

CONCLUSIONS AND SUGGESTIONS  

 

 
 

 

 

6.1 Conclusions       

 

In this study, PS-DVB adsorbents have been successfully synthesized and 

modified via three different methods.  The effects of reaction time and type of stirrer 

used for the polymerization were studied in order to obtain suitable set of conditions 

for PS-DVB adsorbents with excellent physical properties.  The optimum reaction 

time for polymerization was for 15 h at 80oC.  The results have showed that cross-

blade impeller stirrer gave a particle size of PS-DVB approximately 74 μm. 

According to the nitrogen adsorption characterization, the use of a cross-blade 

impeller stirrer gave a smaller average pore diameter (38.40 Å) compared to a half-

moon impeller (183.58 Å) and a double cross blade impeller (76.19 Å).  The reaction 

time indicated that 15 h gave a larger average pore diameter (300.42 Å) compared 

with those for 1 h (35.33 Å), 5 h (76.19 Å), 10 h (163.59 Å), and 20 h (65.08 Å).  
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The surface characteristics of unmodified PS-DVB and modified PS-DVB 

adsorbents, i.e. PS-DVB heptadecyl ketone, chloromethyl PS-DVB, and octadecoxy 

methyl PS-DVB were determined by using fourier transform infrared 

spectrofotometry, scanning electron microscopy, thermogravimatric analysis, 

nitrogen adsorption analysis.  In general, the modified PS-DVB adsorbents were 

mesoporous.  

 

The FTIR spectra for home-made PS-DVB (unmodified) were similar to the 

FTIR spectra of the commercial PS-DVB suggesting that the home-made PS-DVB 

has the same structural properties as the commercial PS-DVB.  As for PS-DVB 

heptadecyl ketone, the FTIR analysis showed a carbonyl band at 1684.7 cm-1 which 

was related to ketonic (C=O) stretching.  This indicated the incorporation of the 

stearoyl functional groups to the PS-DVB.  Meanwhile, the similarities between the 

spectra of commercial PS-DVB, home-made PS-DVB and PS-DVB heptadecyl 

ketone also suggested that the basic structural units of PS-DVB were preserved in the 

polymer. 

 

The SPE efficiencies of the home-made PS-DVB, PS-DVB heptadecyl 

ketone adsorbents and C18-silica, were determined by means of percentage recovery 

of test compounds.  Excellent recoveries of more than 70% and good reproducibility 

(R.S.D. between 2% and 7%) were obtained using C18-silica as the adsorbent. When 

all the test compounds were extracted simultaneously by C18-silica as the adsorbent, 

average recoveries were between 69% and 87% and low relative standard deviation 

(R.S.D. between 3% and 4%) were achieved. Overall, both individual and mixture 

extractions yield higher recoveries for the compounds of lower polarity, nitrobenzene 

and benzaldehyde compared to the more polar compound, p-cresol with the lowest 

percentage of recovery.  This was attributed to the non-polar nature of the C18-silica 

that favours the non-polar interaction between the less polar analytes and the 

adsorbent.  The only exception was for 2-chlorophenol.  It is a more polar compound 

but has the highest percentage of recovery due to the accessibility of the analyte to 

the polar silanol group of the adsorbents resulted in the hydrogen bonding (between 

the analyte and the adsorbents, the polarity of the elution solvent used). 2-

Chlorophenol was the first compound extracted by the newly packed C18-silica SPE 
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tube as there are no interferences present in the newly packed adsorbent, thus yield 

higher recovery.   

 

For the home-made PS-DVB, the recoveries for all the four phenolic and 

substituted aromatic compounds that have been individually extracted were between 

30% and 65% and good reproducibility with relative standard deviation between 1% 

and 6% were obtained.  All the test compounds were extracted simultaneously, the 

average recoveries were between 7% and 72% and low relative standard deviation 

with R.S.D. between 4% and 10% were achieved.  Overall, for both extractions, 

higher recoveries were obtained from the compounds of lower polarity which are 

nitrobenzene and benzaldehyde compared to the more polar compounds, 2-

chlorophenol and p-cresol.  This was attributed to the non-polar and hydrophobic 

nature of the PS-DVB that favours the non-polar interaction between the less polar 

analytes and the adsorbent.  

 

For the PS-DVB heptadecyl ketone adsorbent, high recoveries between 63% 

and 83% as well as good reproducibility with relative standard deviation between 2% 

and 7% were obtained (except for p-cresol that gave a recovery of 46.68%).  This 

was probably due to the channelling of analytes when the test compounds were 

individually extracted. When the entire test compounds were extracted 

simultaneously, the average recoveries obtained were between 35% and 80% and 

low relative standard deviation between 2% and 5% were achieved.  In the individual 

extraction, the less polar compounds exhibit lower recoveries compared to the more 

polar compounds while in the mixture extraction, highest recoveries were obtained 

for the compounds of lower polarity compared to the more polar compounds.  Thus, 

it can be concluded that for this adsorbent, the less polar analytes will be extracted 

through interactions with the hydrophobic part of the polymer, while more polar 

analytes will be retained by the carbonyl groups. Subsequently, PS-DVB heptadecyl 

ketone is a suitable adsorbent used in solid phase extraction for all types of organic 

compounds in a wide polarity range. 
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 The best recoveries were achieved with C18-silica while the recoveries 

obtained from synthesized PS-DVB and PS-DVB heptadecyl ketone were lower, 

which was attributed from the elution solvent that  was used.  Methanol is a better 

elution solvent for the extraction of polar compounds with C18-silica adsorbents due 

to its polarity and enables the dissolution of analytes retained in the C18-silica 

adsorbent, but is a weak elution solvent for PS-DVB adsorbent because the hydroxyl 

group gives poor surface contact with the polymer.  However, PS-DVB heptadecyl 

ketone has significantly higher recoveries compare to PS-DVB because the presence 

of the carbonyl groups on its surface allowed better contact with the methanol.  The 

incorporation of stearoyl groups on PS-DVB improved the efficiency of the 

adsorbent by increasing polar interactions with the polar analytes.  Higher surface 

area of the PS-DVB heptadecyl ketone allowed more interactions with the solutes 

and yielded higher retention of analytes.  The strearoyl group hydophilicity increased 

the PS-DVB heptadecyl ketone’s surface polarity and enabled the aqueous sample to 

have better contact with the resin surface and enhancing the mass transfer of analytes 

to the sorbents thus produce higher recoveries.  

 

Based on this study, modified PS-DVB obtained by using stearoyl chloride 

was better than using chloromethyl-styrene and linkage ether.  The result indicated 

that PS-DVB heptadecyl ketone adsorbent has higher breakthrough volume either 

using nitrobenzene or 2-chlorophenol as the analytes at 30.60 mL and 20.7 mL, 

respectively, with its % R.S.D. was 11.56% and 7.59% compared to other modified 

PS-DVB or unmodified PS-DVB.  Breakthrough volume for chloromethyl PS-DVB 

using nitrobenzene and 2-chlorophenol as the analytes were 1.23 mL and 2.07 mL, 

respectively.  The breakthrough volumes for octadecoxy methyl PS-DVB were 1.03 

mL (nitrobenzene) and 1.00 mL (2-chlorophenol). 

 

Based on the results, PS-DVB heptadecyl ketone was found to be a better 

adsorbent compared to other modified and unmodified PS-DVB.  But in this study, 

the chloromethyl PS-DVB and the octadecoxy methyl PS-DVB had not been 

successfully modified and consequently, their breakthrough volume and percentage 

recovery were lower compared to unmodified PS-DVB.   
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6.2 Suggestions  

  

Through this study, several important aspects are recommended for future 

study in order to gain better performance to modify PS-DVB resins. 

 

The characteristics of PS-DVB beads obtained were different compared to 

those of commercial PS-DVB. The average particle size of commercial PS-DVB 

beads was small and their shapes were spherical, whereas the average particle size of 

the home-made PS-DVB was larger. The home-made PS-DVB particles obtained 

were also spherical in shape. In order to get better results in the future, we are on the 

lookout for more regular particle size, and homogeneous surface morphology. We 

are looking forward to establish the effect of temperature, amount of DVB, and the 

design of stirrer.  In this study, the concentration of DVB was 8% by weight.   

Generally, the percentage of smaller pores increases with larger amounts of DVB, 

which 10-20% by weight will likely to give the better results than the previous work.   

Higher polymerization temperature results in smaller pores.  In this study, the 

polymerization temperature was at 70oC. It is expected that the use of higher 

temperatures will result in smaller pores and smaller particles. 

 

The steps of modified PS-DVB in this study involved three steps, namely:  

• Friedel Crafts acylation 

• Chloromethylation of PS-DVB 

• Williamson ether reaction 

 

The resulting modified PS-DVB showed a disadvantage where the breakthrough 

volumes for the chloromethyl PS-DVB (chloromethylation of PS-DVB) and 

octadecoxy methyl PS-DVB were lower compared to unmodified PS-DVB. To solve 

this problem, chloromethyl PS-DVB can be prepared by using chloromethyl methyl 

ether to produce better adsorbents, and also could be used for non-polar analytes. 

 

 In this work, using tubes or cartridges performed SPE.  Hence, a bed height 

of more than 1 cm is usually used to ensure good retention of the desired sample 

compounds.  However, this necessitates a relatively large volume of solvent to elute 

the adsorbed compounds.  Further studies could be conducted by packing a tube with 
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disks 5-7 mm in diameter, cut from resin-loaded membranes.  It would be possible to 

obtain efficient extraction with very short height of resin membrane.  The reason for 

this is that the resin particles are closely packed, and evenly dispersed throughout the 

membrane. Since the particles are immobilized, it should be possible to avoid the 

channelling that would be likely in a tube containing only short height of a loose 

resin bed [48].  

 

 SPE with chemically modified sorbents has been carried out in the off-line 

and on-line modes by León-González and Pérez-Arribas [3].  In this work, SPE was 

carried out in the off-line mode. So further studies could be conducted to carry out 

SPE with unmodified PS-DVB or modified PS-DVB sorbents in the on-line mode. 

On-line procedures use an extraction sorbent in a pre-column.  The methods, which 

combine SPE with HPLC, are the most frequently used, mainly to determine polar 

compounds in water.  In the on-line procedures, there is no sample manipulation 

between preconcentration and analysis, so loss and contamination risks are avoided. 

Further more, detection limits and reproducibility values can be better.  The off-line 

SPE can solve this problem too by looking for others method to fit in with our 

conditions. In this study, the analytes used were nitrobenzene and 2-chlorophenol in 

20 ppm, perhaps the concentration of the analytes can be reduced lower than 20 ppm, 

or by looking for other analytes, which are more polar to suit the adsorbents. 

  

 As discussed previously [8, 40, 47, 13], ethyl acetate, acetonitrile and 

tetrahydrofuran are highly recommended and reported to be the suitable elution 

solvents for PS-DVB and modified PS-DVB as compared to methanol.  Methanol is 

a weak elution solvent for PS-DVB adsorbent because present of the hydroxyl group 

on methanol makes it less solvate on the surface of the polymer.  In this experiment, 

methanol was used as the elution solvent that resulted in lower recoveries for both 

PS-DVB and modified PS-DVB adsorbents. So, using ethyl acetate or acetonitrile as 

the elution solvent for PS-DVB and modified PS-DVB sorbents can carry out further 

studies.  Higher breakthrough volume for modified PS-DVB or PS-DVB polymeric 

resins are well expected by using the recommended elution solvents. 
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APPENDIX A1 

 
Example of chromatogram for Benzaldehyde stock solution (100,000 ppm) for the 
determination of retention time and response factor with Ultra-1 column (30 m × 250 
μm × 0.20 μm) 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
APPENDIX A2 
 
Example of chromatogram for 2-Chlorophenol stock solution (100 000 ppm) for the 
determination of retention time and response factor with Ultra-1 column (30 m × 250 
μm × 0.20 μm) 

 
 
 
 
 
 
 

 
 
 
 
 
 
 



 109

 
APPENDIX A3 

 
Example of chromatogram for p-Cresol stock solution (100,000 ppm) for the 
determination of retention time and response factor with Ultra-1 column (30 m × 250 
μm × 0.20 μm) 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
APPENDIX A4 

 
Example of chromatogram for Nitrobenzene stock solution (100 000  
ppm) for the determination of retention time and response factor with Ultra-1 column 
(30 m × 250 μm × 0.20 μm) 
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APPENDIX A5 
 

Example of chromatogram for butyrophenone stock solution (100 000 ppm) for the 
determination of retention time and response factor with Ultra-1 column (30 m × 250 
μm × 0.20 μm) 
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APPENDIX B 1 
 
 
Calculation of Concentration of Analytes  
 
 
 

From the results of concentration obtained, the recovery values for each test 

compound can be determined by using equation 3.3, and equation 3.4  given in 

Section 3.8, and  Section 3.9. 

S
S

X

X

S
X M ion,concentrat sone'Butyrophen  

A Average
A Average

  
F
F

  M ion,concentrat sde'Benzaldehy ××=

 
 
 
 
 
 ppm  1715 = 
 
 
 
 
 
 
APPENDIX B2 
 
 
Calculation of Percentages of Recovery 
 
 
 

FactorDilution    % 100   
extraction beforeion concentrat sSample'

M  Average
  Recovery   % X ××=

 
 
 
 
 

50    % 100    
ppm 100,000

ppm  1715  Recovery   % ××=
 
 
 
                    

       = 85.77 % 
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APPENDIX B3 
 
 
Calculation of Breakthrough Volume 
 
 
Where the data:  

• The chart speed = 0.5 cm/min 

• Flow rate  = 1.0 mL/min 

• Retention distance =7.20 cm 

 

Based on the equation in 3.1 and 3.2, in Section 3.5.3.  

  Retention time = 7.20 cm / 0.50 cm/min 

            Retention time = 14.40 min 

            The breakthrough volume = 14.40 min x 1.0 mL/min 

            The breakthrough volume = 14.40 mL 
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APPENDIX C1 
 
The Effect of Reaction Time on Porosity and Particle Size of Home-made  
PS-DVB  
 
Reaction time 

(h) 
Particle size  

(μm) 
Average pore 

width (Å) 
Total pore volume 

cm3/g 
1 

5 

10 

15 

20 

117 

110 

108 

106 

93 

35 

76 

164 

300 

65 

0.001837 

0.001840 

0.002666 

0.008056 

0.001258 

 
 
 
 
 
APPENDIX C2 
 
 The Effect of Reaction Time on the Yield of Home-made PS-DVB 

 Reaction time (h) Yield (g) 

1 
5 
10 
15 
20 

13.50 
61.88 
123.76 
124.00 
126.62 
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ABSTRACT 
 
 
      Poly(styrene-divinyl benzene) (PS-DVB) resin is an attractive adsorbent for 
extraction and separation of various types of compounds due to its stability over the pH 
range of 1-14. However, PS-DVB resin is known to have hydrophobic surfaces that 
highly retain non-polar compounds while poorly retain polar compounds. To improve its 
use in the separation or extraction of polar compounds, PS-DVB resin must be chemically 
or physically bonded to hydrophilic groups to reduce its hydrophobic surface. The 
objectives of this project were to modify PS-DVB phases by introducing moieties that can 
increase the dispersive forces and lower the hydrophobicity of the PS-DVB phases and to 
examine the characteristics and applications of the modified PS-DVB adsorbents.  
 The PS-DVB adsorbents were prepared by suspension polymerization method with 
polyvinyl alcohol as the suspension stabilizer at a stirring speed of 1000 rpm for 20 h. 
The second approach (Volume 2) explores the development of PS-DVB resins modified 
with acetyl chloride, chloroacetone and zirconyl chloride. Modifications of the PS-DVB 
adsorbents were carried out via Friedel-Crafts acylation reaction with acetyl chloride and 
chloroacetone using Lewis acid catalyst, Grignard reaction of the product with methyl 
magnesium chloride and reaction of the product with zirconium(IV) oxide chloride 
octahydrate. The products obtained were characterized using infrared spectroscopy, 
scanning electron microscopy, nitrogen adsorption analysis and thermal gravimetric 
analysis. The performance of the PS-DVB-based phases was evaluated by investigating 
its adsorption-desorption efficiency in solid phase extraction. Comparative recovery 
studies showed that the p-ethanoyl-PS-DVB and p-2-propanoyl-PS-DVB resins were 
superior compared to unmodified PS-DVB and ziconia-modified PS-DVB for solid phase 
extraction of the test compounds 2-chlorophenol, nitrobenzene and propiophenone. 
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ABSTRAK 

 
 
 Resin poli(stirena-divinil benzena) (PS-DVB) merupakan penjerap yang menarik 
untuk pengekstrakan dan pemisahan pelbagai jenis sebatian disebabkan kestabilannya 
pada julat pH 1-14. Walau bagaimanapun, resin PS-DVB diketahui mempunyai 
permukaan yang hidrofobik yang sangat menahan sebatian tak berkutub manakala tidak 
menahan sebatian berkutub. Untuk memperbaiki penggunaan bahannya dalam pemisahan 
atau pengekstrakan sebatian berkutub, resin PS-DVB mesti diikat secara kimia atau fizik 
kepada kumpulan hidrofilik untuk mengurangkan kehidrofobikan permukaannya. 
Objektif projek ini ialah untuk mengubahsuai fasa PS-DVB dengan memasukkan moieti 
yang boleh meningkatkan daya serakan dan mengurangkan kehidrofobikan fasa tersebut 
dan untuk menkaji ciri-ciri dan penggunaan PS-DVB terubahsuai itu. 
 Penjerap PS-DVB telah disediakan dengan kaedah pembolimeran ampaian dengan 
alkohol polyvinil sebagai penstabil ampaian pada kelajuan putaran 1000 rpm selama 20 
jam. Pendekatan yang kedua (Jilid 2) mengkaji pembangunan PS-DVB terubahsuai 
dengan asetil klorida, kloroaseton dan zirkonil klorida telah dibangunkan. 
Pengubahsuaian terhadap penjerap PS-DVB telah dijalankan melalui tindak balas 
pengakilan Friedel Crafts dengan asetil klorida dan kloroaseton menggunakan mangkin 
asid Lewis, tindak balas Grignard hasilnya dengan metil magnesium klorida dan tindak 
balas hasilnya dengan zirkonia(IV) oksida oktahidrat. Bahan penjerap yang dihasilkan 
dicirikan dengan menggunakan spektroskopi infra merah, mikroskopi imbasan elektron, 
analisis penjerapan nitrogen dan analisis gravimetri terma. Prestasi bagi fasa pegun 
berasaskan PS-DVB itu telah dinilai dalam kajian penjerapan-penyahjerapan melalui 
teknik pengekstrakan fasa pepejal. Perbandingan nilai perolehan semula analit 
menggunakan metanol sebagai pengelusi menunjukkan bahawa etanoil-PS-DVB dan 2-
pentanoil-PS-DVB memberikan nilai perolehan semula yang tinggi berbanding fasa 
pegun PS-DVB tulen dan PS-DVB terubahsuai zirkonia.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Adsorbents and Chromatography Stationary Phases 

 

 

The material on the surface of which adsorption takes place is called the 

adsorbent and the substance adsorbed is called the adsorbate (Gurdeep, 1974). The 

common surface separating the two phases, where the adsorbed molecules 

concentrate is referred to as the interface. The larger the surface area of the 

adsorbent, the more is the adsorption. Some examples of the adsorbents are charcoal, 

silica gel, metals, polymers and etc. The term adsorption appears to have been 

introduced by Kayser in 1881 to connote the condensation of gases on free surfaces, 

in contradistinction to gaseous absorption where the molecules of gas penetrate into 

the mass of the absorbing solid. Adsorption (strictly, physical adsorption) has now 

been internationally defined as the enrichment (i.e. positive adsorption or simply 

adsorption) or depletion (i.e. negative adsorption) of one or more components in an 

interfacial layer (Gregg and Sing, 1982).  

 

The various forms of chromatography are classified according to the nature of 

the mobile and stationary phases. The mobile phase may be gaseous or liquid, while 

the stationary phase may be solid or liquid. For example, in gas liquid 

chromatography (GLC), the liquid stationary phase is dispersed on an inert solid 
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support. The liquid phase is held on the surface and in the pores of the support, while 

the mobile gas phase flows through the spaces between particles (Conder and Young, 

1979). 

 

The choice of adsorbents as the proper stationary phase is one of the most 

important decisions in column chromatography. The use of adsorbents of porous 

polymers and inorganic salt, either porous or non-porous and modified oxides, as 

well as surfaces of dense monomolecular polymer layers absorbed on the sufficiently 

developed and homogenous surface of non-porous and wide-porous adsorbent, opens 

extensive possibilities for selecting and controlling the nature of the adsorbent 

surfaces and, therefore, for controlling the selectivity of gas adsorption columns 

(Baiulescu and Ilie, 1975). In the last two decades, separation sciences have faced 

important developments. Starting with solid-phase extraction (SPE) in the 1980s, 

other new techniques, e.g., supercritical fluid extraction (SFE), supercritical fluid 

chromatography (SFC) and capillary electrochromatography (CEC) have been 

introduced (Liu and Pietrzyk, 2001). Besides these new analytical tools, “classical” 

separation techniques such as high performance liquid chromatography (HPLC) have 

been further developed and optimized. New inputs from synthetic chemistry and 

more efficient analytical tools for their characterization significantly enhanced the 

quality of liquid chromatography (LC) supports in terms of stability, reproducibility, 

selectivity and efficiency (Buchmeiser, 2001). 

 

 

 

 

1.2 Research Background  

 

 

The preparation of alternative stationary phase supports in chromatographic 

science is an important area that aims to develop new support materials that offer 

novel selectivities or overcome the shortcomings of silica supports (Shalliker et al., 

1997). The ideal chromatography support particle should have a high surface area on 

which a wide variety of chemical moieties can be irreversibly and inalterably 

deposited to provide useful selectivity for a number of separation problems. It should 
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be physically and chemically stable over a wide range of pressure, pH, temperature 

and solvent conditions. It should be available in a variety of particle diameters as 

well as pore sizes and volumes (Nawrocki et al., 1993). 

 

Microparticulate, macroporous, poly(styrene-divinyl benzene) (PS-DVB) 

copolymeric reversed-phase adsorbent have been used very successfully as stationary 

phases in HPLC (Liu and Pietrzyk, 2001). Organic beaded polymer supports based 

on polystyrene are almost exclusively prepared by emulsion, suspension, dispersion 

and precipitation polymerization techniques (Buchmeiser, 2001). However, PS-DVB 

resins are known to have hydrophobic surfaces that highly retain non-polar 

compounds while poorly retain polar compounds. 

 

Although silica and modified silicas are the most widely used and most useful 

chromatographic supports, it is well known that silica and bonded silicas are not 

stable outside the range of pH 2 to approximately 8 (Wehrli et al., 1978) . Above pH 

8, silica is subjected to attack by alkali and it dissolves. Below approximately pH 2, 

the siloxane linkages which hold bonded phases to silica are subjected to hydrolytic 

attack and are slowly removed from the surface (Glajeh et al., 1987). The dissolution 

of silica and removal of bonded phase is accelerated at high temperature and leads to 

changes in retention, selectivity and peak shape, loss of column bed integrity, and 

contamination of product in preparative chromatography. The typical commercial 

alkyl silane bonded silica phase is seldom used at more than 20-30°C higher than 

room temperature because of its instability at high temperature (McNeff et al., 2000). 

 

Another interesting development is in the synthesis and application of 

zirconia stationary phases. The surface area of zirconia is low when compared to the 

silica supports typically used as chromatographic supports. However, it is important 

to recognize when considering the surface area data that true density of monoclinic 

zirconia is approximately 5.8 gmL-1 whereas the density of commercial silica is 2.3 

gmL-1. Cubic zirconia is reported to have the highest density 6.27 gmL-1 (Nawrocki 

et al., 1993). Due to its higher density, the surface area of zirconia is comparable to 

that of silica in terms of surface area per unit volume.  
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1.3 Statement of Hypothesis 

 

 

PS-DVB resins have a hydrophobic surface. To extend its applicability in 

extraction or chromatographic performance, the PS-DVB resins should have a 

chemical bonding or hydrophilic groups to decrease and mask its hydrophobic 

surface. Chemical modification on the PS-DVB resins can be carried out by the 

Friedel Craft acylation reaction and Grignard reaction. Zirconia can be then 

introduced onto the PS-DVB resin. Zirconia-modified PS-DVB resin is expected to 

have lower hydrophobic surface and more stable compared with unmodified PS-

DVB resin.  

 

 

 

 

1.4 Research Aim 

 

 

The aim of this research is to synthesize new adsorbents based on PS-DVB 

resins and study the performance of the adsorbents by physiochemical methods. 

 

 

 

 

1.5 Research Objectives 

 

 

i. To synthesize PS-DVB adsorbent using the suspension polymerization 

method.  

ii. To modified PS-DVB adsorbents using three steps or reactions:  

(a) Friedel Crafts acylation reaction of PS-DVB with acetyl chloride and 

chloroacetone using Lewis acid catalyst;  

(b) Grignard reaction of the product (a) with methyl magnesium chloride; 

and  
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(c) reaction of the product (b) with zirconium(IV) oxide chloride 

octahydrate. 

iii. To characterize and study the performance of the new adsorbents by 

physiochemical methods. 

 

 

 

 

1.6 Scope of Research 

 

 

A complete reaction scheme is given in Figure 1.1. In this research, PS-DVB 

resins were synthesized using the suspension polymerization method. Optimization 

of the suspension polymerization method was carried out by studying the effect of 

reaction time, effect of stabilizer and effect of seeding polymerization. The physical 

properties of the PS-DVB resins were studied by fourier transform infrared 

spectroscopy, scanning electron microscopy, thermogravimetry analysis, and 

nitrogen adsorption analysis. Batch of PS-DVB resins which exhibit the most 

suitable adsorbent properties such as high surface area, minimum pore size was 

chosen to be modified. Comparison of the physical properties of both native and 

modified PS-DVB phases was carried out and the performance of the modified PS-

DVB phases was evaluated by investigating its adsorption-desorption efficiency in 

solid phase extraction. 
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a) Preparation of PS-DVB resin 

 

 

 

 

 

 

CH2 CH

CHCH2

CHCH2

+ 
P

P P

P

n n

initiator

Styrene  Divinyl benzene   PS-DVB (1) 

 

b) Preparation of p-2-zirconyl-2-methylethyl-PS-DVB chloride (2C) 
 

 

 
p-ethanoyl-PS-DVB (2A)  PS-DVB (1) 

CCH3

O

C OH

CH3

CH3

CH3

CH3

C OZrOCl
CH2CN/NaOH

ZrOCl2.8H2O

CH3MgCl

(C2H3)2OCH3CCl

O

CS2/AlCl3

 

 

 

 

 

 
p-2-hydroxyl-2-methylethyl-PS-
DVB (2B) 

p-2-zirconyl-2-methylethyl-PS-DVB 
chloride (2C) 

 

 

c) Preparation of p-2-zirconyl-2-methylpropyl-PS-DVB chloride 

 O

CH2 OH

CH

 

 

 

 

 

 

 

 

 

Figure 1.1 A complete reaction scheme  
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1.7 Outline of the Research Report  

 

 

This research report consists of six chapters. Chapter 1 presents general 

background of this research, research aim, research objectives and scope. Chapter 2 

compiles the literature reviews and theoretical background on PS-DVB and Zirconia, 

modification of PS-DVB and its application as an adsorbent for solid phase 

extraction (SPE). The procedures for characterization and application of the 

synthesized materials are presented in Chapter 3. Chapter 4 reports the results and 

discusses the preparation of PS-DVB, and modification of PS-DVB. It also describes 

the characterization and application of unmodified and modified PS-DVB as 

adsorbents in the solid phase extraction analysis. The concluding Chapter 5 

summarizes this research report by presenting the overall conclusions and 

suggestions for future study. 



 
 
 
 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Poly(styrene-divinyl benzene) 

 

 

PS-DVB resins are widely used as ion-exchangers (Coutinho et al., 2004; 

Chambers and Fritz, 1998; Nash and Chase, 1998; Ohta et al., 2004) polymeric 

absorbents (León-González and Pérez-Arribas, 2000), chromatographic separation 

media (Li et al., 1997) and as solid supports for organic synthesis (Gauthier et al., 

2004). The PS-DVB resins with fixed pores can be obtained by suspension 

polymerization (Coutinho et al., 2004; Maria et al., 2003a and 2003b; Martin et al., 

2003), which is particularly suited to the production of large spherical beads typically 

in the range 5-1000 μm. Porous copolymers from a number of related monomers 

have also been synthesized by the same technique, e.g., methacrylamide styrene-

divinyl benzene, acylonitrile-divinyl benzene, glycidyl methacrylate-ethyleneglycol 

dimethacrylate, methacrylic acid-triethyleneglycol dimethacrylate, acrylic acid-

trietyleneglycol dimethacrylate, acrylamide-ethylene glycol dimethacrylate, 4-

vinylpyridine-divinyl benzene, etc. (Malik et al., 2004). 

 

The PS-DVB resin is prepared by free radical cross-linking copolymerization 

of styrene and divinyl benzene monomers in the presence of diluent, which can be a 

solvent, a non-solvent or a linear polymer, and is the pore forming agent. In a 
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solvating diluent, macroporous polymers are only produced when the divinyl 

benzene concentration is high, and the monomer concentration is diluted. However, 

when non-solvating diluents are used, the macroporosity appears at lower 

concentrations of divinyl benzene and with less diluted monomers (Legido-Quigley 

and Smith, 2004a). 

 

Two groups of PS-DVB resins are commonly described (Howdle et al., 

2000). The first, referred to as gel-type species, are lightly crosslinked, typically 

employing 0.5-2 mol % DVB, and rely upon solvation of individual polymer chains 

by a thermodynamically good solvent to swell the polymeric network and allow 

access to the support. In the swollen state, such resins are soft, compressible, and 

relatively fragile in shear. The second, referred to as macroporous species, are 

usually more highly crosslinked, and posses a complex system of permanent pores 

created by employing a porogen (usually inorganic solvent) in the polymerization. 

The pore system can be accessed by thermodynamically poor solvents as well as 

good ones, and these resins are more rigid even when in contact with solvent. They 

can therefore be employed in packed columns. 

 

 

 

 

2.1.1 Advantages and Drawbacks of PS-DVB 

 

 

PS-DVB copolymers overcome many of the limitations of bonded silicas, 

especially those related to the limited pH stability or the presence of the silanol 

groups (Li et al., 1996). The application of silica-based support is limited by the low 

stability of silica at alkaline pH values and by the unwanted interactions between 

polar solutes and remaining free silanol groups not covered by the hydrophobic 

ligand (Hosoya et al., 1995). Porosity and mechanical stability can be altered by 

varying the cross-linking through the variation of the DVB content. PS-DVB is not 

soluble in water, inert and very hydrophobic. It is white in color and non-toxic, thus 

it does not biodegrade easily and does not have toxicity effect on marine life. 

 



 10

In the last decade, there has been a growing interest in polymeric materials 

for use in reversed-phase high-performance liquid chromatography (HPLC). In 

particular, resins based on PS-DVB are stable with eluents from pH 1-14 and give 

excellent separations. Some difficulties have been associated with polymeric resins, 

such as swelling in the presence of organic solvents. However, rapid improvements 

are being made in stability and performance so that polymeric resins can be 

considered to be very attractive for HPLC (Sun and Fritz, 1990).  

 

Due to its hydrophobic nature, the synthetic polymer in certain cases can be 

used directly as a reversed-phase stationary phase, without the need for further 

derivatization. However, there are two commonly derivatization methods of 

introducing alkyl groups onto the surface of the synthetic polymer. Firstly, a 

monomer such as an alkyl styrene can be included in the polymerization mixture. 

However, it must be soluble in the porogen and precipitate when the polymer is 

formed. Secondly, the surface of the polymer can be alkylated after formation by 

using for example, a strong Friedel Crafts catalyst (alkyl halide in organic solvent) 

(Legido-Quigley et al., 2004b). 

 

In general, PS-DVB resins have greater analyte retention, mainly for polar 

compounds, than bonded silicas, because their hydrophobic surface contains a 

relatively large number of active aromatic sites that allow π-π interactions (León-

González and Pérez-Arribas, 2000). In comparison with silica sorbents, PS-DVB 

resin is more stable at acid-base pH concentration and according to Rodriguez et al. 

(2000) PS-DVB resin has higher capacity for polar analytes. This can be attributed to 

a much larger carbon content (nearly 90% as compared to the maximum 18% of C18-

silica sorbents) but specially to the higher surface-area exhibited by polymers (many 

of commercial available ones have areas of >1000 m2g-1 as compared to 200-600 

m2g-1 for C18-silica sorbents).  

 

PS-DVB copolymers with partially substituted quaternary ammonium groups 

or slightly sulfonated have also been used for SPE of organic solutes, because they 

have excellent hydrophilicity, thus extracting polar organic compounds more 

efficiently than underivatized resins do (León-González and Pérez-Arribas 2000). In 

general, all these derivatized PS-DVB resins are not commercially available, axcept 
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those with sulfonic or quaternary ammonium groups, which are also ion exchangers. 

Therefore, when they are needed, they have to be prepared in the laboratory by 

modifying a commercially available resin. 

 

Retention of polar phenols on PS-DVB sorbents can be improved by the 

introduction of polar groups into the polymer. Resulting materials still retain the high 

capacities to trap less polar phenols, but in addition, the hydrophilic character of the 

introduced functional group, improves their wetting characteristics and, consequently 

aids mass transfer of most polar phenols from the water solution to the sorbent. Most 

common groups used to modify polymeric sorbents are acetyl, hydroxymethyl, 

benzoyl, o-carboxybenzoyl, carboxylic and sulphonic acid. C18-silica sorbents have 

also been modified with quaternary ammonium salts (Rodriguez et al., 2000).  

 

 

 

 

2.1.2 Chemical Modification of PS-DVB Resin 

 

 

In last 20 years, the performance and suitability for solid phase extraction 

(SPE) of several polar functional groups modifying PS-DVB have been studied. 

These groups are listed in Table 2.1. They are mainly acyl derivatives which 

sometimes have one or more carboxylic acid groups (León-González and Pérez-

Arribas, 2000).  

 

Sun and Fritz (1990 and 1992), modified PS-DVB with alcohol and acetyl 

functional groups. These modified resins exhibited excellent hydrophilicity and a 

lesser dependence on wetting prior to extraction. The synthesis of the o-

carboxybenzoyl derivative of PS-DVB can by carried out by using phthalic 

anhydride as acylating agent. Masqué et al. (1998) modified PS-DVB with an o-

carboxybenzoyl moiety to be used in the on-line SPE of some pesticides and 

phenolic compounds from aqueous samples to obtain better breakthrough volumes 

and higher recoveries than other commercial sorbents. Yang et al. (1996) developed 

a HPLC ion-exchange stationary phases from the PS-DVB matrix by applying a 
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hydrophilic coating on the surface. The columns packed with this new packing 

material exhibit both high chemical stability and high column efficiency that is 

equivalent to that of silica-based packing materials. 

 

 

 

Table 2.1: Modifier of the PS-DVB*  

Group  Structure 

Acetyl 
C CH3

O

 
 

Hydroxymethyl 

 

CH2OH 

Benzoyl 
O

C
 

2,4-dicarboxylbenzoyl C

O

COOH  

o-carboxybenzoyl 

COOH

O

C COOH

 
 

Sulfonate  

 

SO3
-
 

 

Trimethylammonium 

 

CH2 N(CH3)3
+
 

* (León-González and Pérez-Arribas, 2000) 
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Klingenberg and Seubert (2002) showed that introduction of permanently 

bonded sulfonic acid groups onto PS-DVB resins produce strong cation-exchanger 

which are stable over a wide range of solvent composition and pH. The resins are 

stable over a pH range of 0-14, inert against oxidizing reagents such as nitric acid 

and stable against fluoride and hydrofluoric acid. Since sulfonate and 

trimethylammonium derivatives are frequently used as ion exchangers in 

chromatography and preparative analysis, they are easily commercially available 

under different names and characteristics. Typical commercial phases are Hamilton 

PRP-X200, Amberlite IRA200, Dowex DR-2030, Sep IC-H (Lida) or NovoClean IC-

H (Alltech) for sulfonate cation-exchange resins, and Hamilton PRP-X100, 

Amberlite IRA-900, Dowex 11 or Sep IC-OH (Lida) for trimethyl-ammonium anion-

exchange resins.  

 

Another modified polymer also used for SPE of highly polar compounds is an 

anion exchanger based on the commercial MFE-Polymer, which is a polymer of the 

hydroxyethylmethacrylate (HEMA) containing quaternary ammonium functional 

groups. This sorbent, with particle size of 50 μm, has been packed in a 150 × 4.5 mm 

conventional LC chromatographic column, and its efficiency to preconcentrate 

phenoxy acid herbicide residues has been studied. Bacquet et al. (1992) has 

described the chlorosulfonation of styrene-divinyl benzene copolymer characterized 

by a modification of the textural parameters. The copolymer specific surface area 

was initially low, and on chlorosulfonation treatment, decrease to a value of 1 m2g-1, 

characteristic of unswollen gel type resins.  

 

 

 

2.2 Suspension Polymerization  

 

 

A suspension polymerization is a heterogeneous process, in which slurry of 

polymer beads is formed by polymerization of a dispersed phase in a continuous 

medium. The range of particle size covered by each technique is shown in Figure 2.1. 

The dispersed phase consists of monomer, initiator, chain-transfer agent, and 

possibly solvent or blowing agent (porogen), the latter to control the porosity of the 
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beads (Matyjaszewski and Davis, 1998). In general the continuous phase is water, 

which guarantees on reactor-scale basis proper heat and mass transfer due to its high 

heat capacity and thermal conductivity, and a low overall viscosity. This overcomes 

problems that are generally encountered in homogenous polymerization processes at 

higher monomer conversions, specifically, a runaway of the reaction as a result of the 

gel effect. 

 

In suspension polymerization a catalyst is dissolved in the monomer, which is 

then dispersed in water. A dispersing agent is added separately to stabilize the 

resulting suspension (Allcock et al., 2003; Dyson, 1987). The rate of polymerization 

and other characteristics are similar to those found in bulk polymerization. Some 

common dispersing agents are polyvinyl alcohol, polyacrylic acid, gelatin, cellulose, 

and pectins. Inorganic dispersing agents are phosphates, aluminum hydroxide, zinc 

oxide, magnesium silicates, and kaolin (Sandler and Karo, 1974). 

 

Benefits of suspension polymerization over emulsion polymerization are that 

in general fewer additives are used and that the final product (average particle sizes 

∼10 μm – 5 mm) is easily recovered, after stripping of monomer, solvent/blowing 

agent, via centrifugation (Matyjaszewski and Davis, 1998). Important commercial 

suspension polymerization processes include the preparation of poly(vinyl chloride), 

crosslinked polystyrene resins, and expandable polystyrene.  

 

 100 101 102 103 104 105 106 (nm) 

 
Emulsion polymerization Suspension polymerization 

Nonaqueous dispersion 

Microgels 
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Figure 2.1 Typical particle sizes obtained in heterogeneous polymerization 
techniques (Matyjaszewski and Davis, 1998) 
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2.2.1 Modification Using the Friedel Crafts Acylation Reaction 

 

 

Anhydrous aluminum chloride (AlCl3) is a powerful electrophilic catalyst 

(Lewis acid) and associates with the halogen atom of either an acyl halide or an alkyl 

halide. In so doing it generates a cation. Depending on its origin, the cation is called 

a carbonium ion (from an alkyl halide) or an acylium ion (from an acyl halide). The 

formation of these species is illustrated in Figure 2.2. Both species is particularly 

stable and reaction with the aromatic hydrocarbon is rapid.  

 

 

(a) R-Cl  +  AlCl3        R+  +  AlCl-
4

 

(b) R-CO-Cl  +  AlCl3        R-C+=O  +  AlCl-
4

 

Figure 2.2 Formation of cation species (a) a carbonium ion (from an alkyl halide), 
(b) an acylium ion (from an acyl halide) (Durst and Gokel, 1980; Olah, 1973) 
 
 

One of the modifications of PS-DVB resins in this project is based on Friedel 

Crafts acylation reaction. The driving force for the reaction is the initial formation of 

the strong bond between aluminum chloride and the chlorine of benzoyl chloride or 

between aluminum chloride and the oxygen of acetic anhydride. Aluminum is an 

electropositive element and chlorine (or oxygen, if the anhydride is used) is an 

electronegative element, and the bond strength allows the acylium ion to form, but it 

is itself very unstable and initiates the reaction with the electron-rich aromatic 

species.  

 

A very wide variety of aromatic ketones can be prepared by the Friedel Crafts 

acylation. The acylating agent may likewise be any of a wide variety of acid 

derivatives. Aliphatic as well as aromatic acid chlorides are excellent reaction 

partners for aromatic hydrocarbons in the Friedel Crafts reaction, which allows much 

structural variation in the ketones synthesized. 
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2.2.2 Modification Using the Grignard Reagent  

 

 

The carbonyl group is particularly versatile because it may have carbon 

substituents on both sides (ketones) or a carbon substituent on one side and hydrogen 

on the other (aldehydes). In addition, the carbonyl group may be adjacent to 

heteroatoms (as in esters and amides) or it may be attached to a halogen, such as 

chlorine, in acyl halides (Durst and Gokel, 1980; Olah, 1973). Olah, (1973), Durst 

and Gokel (1980) discovered that reagent behaved as if there were a negative charge 

on carbon and a positive charge on magnesium, i.e., almost as if the compound were 

a carbanion salt (R-M+). The addition of the Grignard reagent to an aldehyde or 

ketone is, in a sense, limited by the fact that carbon and hydrogen are poor leaving 

groups. As a consequence, only one equivalent of Grignard reagent adds to each 

carbonyl. When an aldehyde reacts with a Grignard reagent, a secondary alcohol 

results; ketones yield tertiary alcohols (Figure 2.3). 
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Figure 2.3 The addition of the Grignard reagent to (a) an aldehyde, (b) ketone (Durst 
and Gokel, 1980; Olah, 1973) 
 

 

Addition of a Grignard reagent to either an ester or ketone carbonyl begins in 

the same way. The intermediate species in the ester reaction loses alkoxide, forming 

a ketone during the reaction. This ketone rapidly adds a second mole of Grignard 

reagent, producing a tertiary alcohol. Two of the substituents in the product are 

identical, because both are derived from the Grignard reagent. This process is 
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illustrated in Figure 2.4 for the reaction of a methyl Grignard reagent with ethyl 

benzoate. 
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Figure 2.4 Formation of Grignard reaction (Durst and Gokel, 1980; Olah, 1973) 

 

This destruction of a Grignard by an acid is called the Zerewittenoff reaction 

and has been used historically to analyze for the presence of acidic hydrogens. Ethers 

are usually the favored solvents for Grignard reactions. Ethers like diethyl ether or 

tetrahydrofuran (THF) are good solvents for Grignard reagents and fairly easy to dry. 

They are also nonacidic. If a Grignard reaction is to be successful, moisture must be 

rigorously excluded from both the solvent and starting materials. The presence of 

either water or acid may significantly reduce the yield in the Grignard reaction (Durst 

and Gokel, 1980; Olah, 1973).  

 

 

 

 

2.3  Physical and Chemical Properties of Zirconia 

 

 

Zirconium occurs widely in the lithosphere (about 0.02%) in the form of 

zircon (ZrSiO4), baddelyite (ZrO2) and complex oxides and silicates. The principal 

producers of zirconium minerals are the United States, Australia and Brazil, although 
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significant deposits are found in India, Malaysia and the USSR. Small concentrations 

of oxygen, nitrogen, carbon or hydrogen cause embrittlement of metallic zirconium 

(Clark et al., 1975).  

 

Zirconia (ZrO2) can be obtained by thermolysis of  zirconium salts. Thermal 

decomposition of zirconium sulphate at 1000°C leads to a mesoporous material with 

high surface area (90 m2g-1). Decomposition of Zr(NO3)4 at 500°C in the presence of 

H3PO4 leads to amorphous, highly acidic zirconia with specific surface area of 290 

m2g-1 (Nawrocki et al., 1993; Blumenthal, 1958). Zirconia is available in four forms: 

amorphous, tetragonal, cubic and monoclinic. The optical, thermal and electrical 

properties of the zirconia depend on its structure, therefore there is no doubt that 

zirconia’s chromatographic properties will depend on its crystallinity (Aiken, 1990).  

 

All surface zirconium atoms are Lewis acids and all oxygen atoms are Lewis 

bases. The basic and acids sites are contiguous. The surface layer is usually formed 

in the presence of other substances like water and oxygen. When molecules are 

available, the surface will be covered by hydroxyls as each surface Lewis acid-base 

pair will likely interact with a water molecule as shown in Figure 2.5 (Nawrocki et 

al., 1993). 
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Figure 2.5 Reaction of water molecule with zirconia surface (Nawrocki et al., 1993) 

 

 

 

 The surface hydroxyl groups on zirconia control the surface chemistry 

(Vendula and Spencer, 1991). The presence of acidic and basic groups on the surface 

of zirconia is reflected in its cation and anion-exchange properties. Zirconia has 

anion exchange properties in neutral and acid solution and cation exchange 
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properties in alkali solutions (Rigney et al., 1990). Figure 2.6 shows the bridging 

hydroxyl, being strongly polarized by two zirconium (IV) ions will be more acidic 

while terminal hydroxyls more basic. 
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terminal hydroxyl groups                          bridging hydroxyl groups 

 

Figure 2.6 The bridging hydroxyl, being strongly polarized by two zirconium (IV) 
ions (Rigney et al., 1990) 
 

 

 

Nawrocki et al. (1993) reported that zirconia shows no detectable dissolution 

across the entire pH range during 15 days of exposure, whereas a significant amount 

of alumina is dissolved under the same conditions. The chemical stability contrast 

between zirconia and silica would be even greater, because silica is more soluble 

than alumina at pH levels higher than neutral. 

 

 

 

 

2.3.1 Zirconia as a Stationary Phase 

 

 

The zirconia surface has to be modified because it contains many adsorption 

sites and is able to ion and ligand exchange. We can take advantage of the chemical 

reactivity of the surface to ‘tailor’ it according to our needs. Generally there are three 

classes of surface modification of zirconia: (a) dynamic chemical modification- when 

a mobile phase containing a strongly interacting Lewis base is used, (b) permanent, 

chemical modification- e.g. silylation of the surface and (c) physical screening e.g. 

coating the zirconia surface with a polymer or carbon layer. 
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 Since the surface of zirconia is highly heterogeneous, modification of 

zirconia on the surface to create ion-exchangable, hydrophobic and hydrophilic type 

phases has been investigated (Hu et al., 2001; Rigney et al., 1990). Mixed oxides 

have been used widely as catalysts, but very little attention has been paid to their 

application in chromatographic stationary phases. Considerable attention has been 

focused on modifying zirconia with inorganic oxides by using sol-gel technique for 

improvement of its physicochemical properties. 

 

Ceria, as a common rare earth oxide, has comparable chromatographic 

advantages to zirconia, such as high mechanical strength, thermal and chemical 

stability. Moreover, both ceria and zirconia are quadrivalent metal oxides, which 

affords the possibility for them to stoichometrically match better, leading to 

homogeneity of the mixed oxides. Hu et al. (2001) successfully synthesized ceria-

zirconia by the sol-gel process as a new packing material. In comparison with 

zirconia, ceria-zirconia composite has a higher specific surface area and appropriate 

pore structure. Results showed the stationary phase was promising for the separation 

of basic compounds. The new packing material of reversed-phase performance can 

be prepared by modification of ceria-zirconia with stearic acid, which is available for 

separation of neutral and basic compounds (Hu et al., 2001). 

 

When coated with a thin layer of polybutadiene, zirconia becomes a reversed 

phase that is able to withstand extended exposure to mobile phases at pH 14 at a flow 

rate of 1 mL min-1 and column temperatures as high as 200°C (McNeff et al., 2000). 

The extraordinary thermal stability of this type of column enables rapid analysis of a 

series of chlorophenols at 200°C in a purely aqueous mobile phase. The separation 

on the polybutadiene-coated zirconia phase column was achieved in less than half the 

time required by one of the silica columns and at pH 12, which is inaccessible on 

conventional C18 silica phases. 
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2.3.2 Polybutadiene-coated Zirconia 

 

 

Chemically stable modification of chromatographic of zirconia was 

accomplished by deposition and cross-linking of polybutadiene (PBD) as in the 

manner for the modification of silica and alumina (Vogelsang et al., 1984). The 

result is a remarkably stable reversed-phase support. Analysis of the column effluent 

for zirconium by ICP-AES showed no measurable level of zirconium. Under these 

same conditions, a commercial polybutadiene-modified alumina column failed due to 

bed collapse after 8,000 column volumes (Rigney et al., 1989). 

 

The stability of polybutadiene-modified zirconia and alumina was evaluated 

by exposing columns packed with these supports to a mobile phase of 1 M sodium 

hydroxide at 100°C. No zirconium was found in the column effuent. In contrast, 

alumina dissolves to a significant extent during the first hour of exposure to these 

conditions. In fact, after 3.25 hours of exposure, the amount of aluminium dissolved 

corresponded to more than 10% of the alumina originally present in the column. 

 

There was evidence of strong, irreversible interactions between certain 

solutes and the zirconia support. In fact these interactions were expected based on 

considerations of zirconia’s unique surface chemistry. For example, carboxylic acids 

and organophosphate solute irreversibly adsorbed. These interactions are analogous 

to the well known interactions of amines with an acidic silica surface. Such 

interactions lead to problems with peak tailing, poor efficiency, low recoveries and 

hysteresis effects. These data leads us to believe that some of the surface sites are 

still available for interactions.  

 

By taking advantage of the strong interaction of phosphates with zirconia, the 

number of sites could be measured in static adsorption experiments. Even the 

thickest layer of PBD allowed about 2.3 μmolm-2 of phosphate to bind to zirconia. 

Also chromatographic results confirm that a part of ZrO2-PBD surface is not covered 

by the polymer. This leads to a mixed-mode retention mechanism. One possible 

strategy for inhibiting interactions with zirconia’s surface is the use of phosphate-

containing mobile phases. Chromatography on ZrO2-PBD can be improved by the 
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addition of phosphate to the mobile phase. This is in contrast with the observed 

“substantial deactivation” of silicas coated with PBD . 

 

 

 

2.3.3 Polystyrene-coated zirconia 

 

 
Particles of zirconia coated with polystyrene were used to separate several 

mixtures of basic compounds with mobile phase containing HNO3 or NaOH. The 

separations of acidic compounds showed lower efficiency even in the presence of an 

acidic mobile phase. 

 

 

 

2.3.4 Carbon-coated zirconia 

 

 

Carbon packings differ substantially from other reversed-phase supports. 

They are commonly more retentive towards polar compounds and are often more 

selective for the separation of isomers and homologues (Knox et al., 1983). They 

also have a much greater chemical stability over a wider pH and temperature range 

than bonded phases. The drawbacks of carbon packings are often one or more of the 

following: poor mechanical stability, low surface area, a heterogenous surface (and 

therefore low loading capacity) and non uniform pore structure. 

 

Zirconia particles coated with a carbon layer developed by Rigney et al. 

(1990) seem to be substantially different from other carbon supports. The process of 

carbon coating is carried out by passing organic vapors over the zirconia particles at 

an elevated temperature and reduced pressure. The most common conditions are 

700°C and 5-10 Torr. This procedure creates a uniform carbon coating on porous 

particles. It is possible to cover more than 97% of the available zirconia surface 

(Weber and Carr, 1990).  
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2.3.5 Polymer-coated carbon-clad zirconia 

 

 

When the carbon clad zirconia is covered by a polymer, some of the unique 

properties of the carbon-clad material are lost. This is due to the mechanism of 

retention changing from an “adsorption-like” process on the carbon surface to more 

“partition-like” process in the polymer film. The resulting phase can be considered as 

composite material with high chemical and mechanical stability. Polymer coating 

greatly alters the characteristics of carbon-clad zirconia. The solute-adsorbent 

interactions are significantly weakened. However, polymer coating improves the 

efficiency of the packing and the mass transfer characteristics. The chemical stability 

has proven to be remarkable. It withstands 2,000 column volumes of methanol-water 

(50:50) pH 12 mobile phase at 80°C with no measurable loss of carbon (Weber and 

Carr, 1990). Generally, polybutadiene coating improves the performance of the 

carbon-clad zirconia columns, decreases retentivity and increases loading capacity. 

However, some selectivity is lost. 

 

 

 

 

2.4 Solid Phase Extraction 

 

 

The principal objectives of sample preparation for chromatographic analysis 

are dissolution of the analytes in a suitable solvent and removal from the solution of 

as many interfering compounds as possible (Settle, 1997). SPE is widely used for the 

preconcentration and clean-up of analytical samples, for the purification of various 

chemicals and for applications such as the removal of toxic or valuable substances 

from a variety of predominantly aqueous solutions. Typical applications include 

methods for the determination of trace amounts of pesticides (Pico et al., 2000), 

determination of trace organic contaminants in water (Marce and Borrull, 2000), 

analysis of industrial waste waters (Green and Abraham, 2000), determination of 

azaarenes (Sabik et al., 2000), evaluation of porous polymers (Ensing et al., 2002), 

isolation of organic compounds from ground water (Yu et al.,  2003), sampling of 
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priority pollutants in waste water (Liska, 2000), collection and concentration of 

environmental samples in general (Camel, 2003) and, pretreatment of biological 

samples, such as urine (Safarikova and Safarik, 2002).  

 

For analytical purposes, SPE is usually performed using a small column or 

cartridge containing an appropriate packing. Also, membranes loaded with 

appropriate resins and solid phase microextraction (SPME), e.g., for gas 

chromatographic analysis has been used. In common practice, the adsorbed materials 

are eluted from the resin with a small amount of organic solvent. The most 

commonly used material for SPE is chemically bonded silica, usually with a C8 or 

C18 organic group (Fritz et al., 1995).  

 

In the last few years, a series of different polymer-based materials for the 

SPE of either acidic, neutral or basic compounds out of different sample matrices 

have been developed. In general, polymer adsorbents have the advantage over 

bonded silica that they can be used over the entire pH range and the disadvantage 

that the conditioning of the cartridge is more time consuming. The adsorbent based 

on PS-DVB phases used in SPE are shown in Table 2.2. 

 

Table 2.2: Description of SPE systems with columns (León-González and Pérez-
Abbas, 2000) 
 

Adsorbent 

Column 
(height 

(mm)× ID. 
(mm) 

Conditioning/ 
washing solvent 

Activating 
solvent 

Elution 
solvent 

PS-DVB-
acetyl, 
PS-DVB-
hydroxymethyl 

8-10 × 6 
Methanol, ethyl 

acetate, 
acetonitrile 

Methanol Ethyl acetate

PRP X-100 125 × 4 
60 mM Nitric 
acid in 99% 

methanol 

Water at acidic 
pH Acetonitrile 

PRP X-100 20 × 2 Acetonitrile-
NaOH, pH 10 

Aqueous 
NaOH solution Water 

PS-DVB- 
Benzoyl 10 × 3 Methanol Water at pH 

2.5 Methanol 

PS-DVB-
Acetyl 10 × 3 Methanol Water at pH 

2.5 Methanol 
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Chemically bonded silica and porous polystyrene have several shortcomings 

for their use in SPE. First, while silica itself is hydrophilic and alkaline instable, the 

hydrocarbon chains make the surface hydrophobic. The consequence is poor surface 

contact with predominantly aqueous solutions. Second, porous polystyrene resins 

also have a hydrophobic surface. Third, pretreatment of the SPE materials with an 

activating solvent such as methanol, acetone or acetonitrile must be used to obtain 

better surface contact with the aqueous solution being extracted. The activating 

solvent can be leached out of the resin, thereby causing the extraction to become 

ineffective. This is especially true if the SPE column becomes dry because air is 

sucked into the column. The results are reduced capacity and reproducibility. Fourth, 

many types of organic compounds are incompletely extracted from predominantly 

aqueous solutions. This problem especially occurs with bonded silica packings. The 

target of creating new types of chemically bonded resins is to overcome these 

drawbacks.  

 

For an improvement it has been shown that introduction of polar groups into 

a PS-DVB resin greatly increases the retention of polar organic compounds. As one 

of the first, Sun and Fritz (1990 and 1992) modified PS-DVB with alcohol and acetyl 

functional groups. The modified resins exhibited excellent hydrophilicity and a 

reduced dependence on wetting prior to solid phase extraction. They also yielded 

higher recoveries compared to their unmodified homologues. Furthermore, Schmidt 

et al. (1993) shown that also derivatization with other functionalities can be carried 

out. They used a sulfonated PS-DVB resin for the simultaneous extraction of bases 

and neutrals. 

 

 

 

 

2.4.1 Basic Principles of SPE 

 

 

The SPE method always consists of three to four successive steps (Camel, 

2003; Fontanals et al., 2004; Fritz et al., 1995; Hennion, 1999). First, the solid 

sorbent should be conditioned using an appropriate solvent, followed by the same 
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solvent as the sample solvent. This step is crucial as it enables the wetting of the 

packing material and the solvation of the functional groups. In addition, it removes 

possible impurities initially contained in the sorbent or the packaging. Also, this step 

removes the air present in the column and fills the void volume with solvent. The 

nature of the conditioning solvent depends on the nature of the solid sorbent. 

Typically, for reversed phase sorbent (such as octadecyl-bonded silica), methanol is 

frequently used, followed with water or aqueous buffer whose pH and ionic strength 

are similar to that of the sample.  

 

Care must be taken not to allow the solid sorbent to dry between the 

conditioning and the sample treatment steps, otherwise the analytes will not be 

efficiently retained and poor recoveries will be obtained. If the sorbent dries for more 

than several minutes, it must be reconditioned. The second step is the percolation of 

the sample through the solid sorbent. Depending on the system used, volumes can 

range from 1 mL to 1 L. The sample may be applied to the column by gravity, 

pumping, aspirated by vacuum or by an automated system. The sample flow-rate 

through the sorbent should be low enough to enable efficient retention of the 

analytes, and high enough to avoid excessive duration. During this step, the analytes 

are concentrated on the sorbent. Even though matrix components may also be 

retained by the solid sorbents, some of them pass through, thus enabling some 

purification (matrix separation) of the sample. 

 

The third step (which is optional) may be the washing of the solid sorbent 

with an appropriate solvent, having low elution strength, to eliminate matrix 

components that have been retained by the solid sorbent, without displacing the 

analytes. A drying step may also be advisable, especially for aqueous matrices, to 

remove traces of water from the solid sorbent. This will eliminate the presence of 

water in the final extract, which, in some cases, may hinder the subsequent 

concentration of the extract and/or the analysis.  

 

The final step consists of the elution of the analytes of interest by an 

appropriate solvent, without removing retained matrix components. The solvent 

volume should be adjusted so that quantitative recovery of the analytes is achieved 
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with subsequent low dilution. In addition, the flow-rate should be correctly adjusted 

to ensure efficient elution.  

 

 

 

 

2.4.2 Advantages of SPE  

 

 

Classical liquid-liquid extractions (LLE) of trace elements are usually time-

consuming and labor-intensive. In addition, they require strict control of extraction 

conditions, such as temperature, pH and ionic strength. For all these reasons, several 

LLE procedures tend to be replaced by SPE methods. SPE technique is attractive as 

it reduces consumption of and exposure to solvents, their disposal costs and 

extraction time. In addition, SPE can be interfaced on-line with analytical techniques, 

such as liquid chromatography (LC) or atomic absorption spectrometry (AAS) 

(Edward, 1970, Hennion, 1999 and 2000). SPE can be easily automated, and several 

commercially available systems have been recently reviewed. Home-made systems 

have also been reported. Its application for preconcentration of trace metals from 

different samples is also very convenient due to sorption of target species on the 

solid surface in a more stable chemical form than in solution (Camel, 2003; Liska, 

2000; Melo et al., 2004). Upon elution of the retained compounds by a volume 

smaller than the sample volume, concentration of the extract can be easily achieved. 

Hence, concentration factors of up to 1000 may be attained (Nilsson, 2000; Coutinho 

et al., 2004).  

 

SPE allows on-site pretreatment, followed by simple storage and 

transportation of the pre-treated samples with stability of the retained metallic 

species for several days. This point is crucial for the determination of trace elements, 

as the transport of the sample to the laboratory and its storage until analysis may 

induce problems, especially changes in the speciation (Ensing et al., 2002; León-

González and Pérez-Arribas, 2000).  
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SPE offers the opportunity of selectively extracting and preconcentrating only 

the trace elements of interest, thereby avoiding the presence of major ions. It may 

also be possible to selectively retain some particular species of a metal, thereby 

enabling speciation. This high selectivity may also be used to remove substances 

present in the sample that may hinder metal determination, such as lipid substances 

in the case of biological samples (Green and Abraham, 2000; Huck and Bonn, 2000).  

 



 
 
 
 

CHAPTER 3 

 

 

 

 

EXPERIMENTAL 

 

 

 

 

3.1 Material and Test Compounds 

 

Materials used in this research for the preparation and modification of PS-

DVB resins are shown in Table 3.1. Table 3.2 describes the test compounds used for 

SPE. 

Table 3.1: Description of materials  
Materials Formula molecular Grade/Purify Brand 

Poly(styrene-divinyl 
benzene) 

[-C2H3(C6H5)]x  
[-C10H10-]y

2% cross-linked,  
200-400 mesh 

Fluka Chemika  
(Buchs, Switzerland) 

Styrene (monomer) C6H5CH=CH2
99% (inhibited with 10-15 
ppm 4-tert-butylcatechol) 

Fluka Chemika  
(Buchs, Switzerland) 

Divinyl benzene 
(DVB) C6H4(CH=CH2)2

80% (inhibited with 1000 
ppm p-tert-butylcatechol) 

Fluka Chemika  
(Buchs, Switzerland) 

Benzoyl peroxide 
(BPO) (C6H5CO)2O2 97% Fluka Chemika  

(Buchs, Switzerland) 
Poly(vinyl alcohol) 

(PVA) [-CH2CH(OH)-]n 87-89% hydrolyzed BDH Chemicals  
(Poole, England) 

Polyvinylpyrrolidone 
(PVP) [-CH(C4H6ON)CH2-]n 97% Fluka Chemika  

(Buchs, Switzerland) 

Sodium hydroxide NaOH Pellets, 99% Fluka Chemika  
(Buchs, Switzerland) 

Methanol CH3OH 99% Merck (Schuchardt, Germany) 

Acetyl chloride CH3COCl 99% Kanto Chemical  
(Tokyo, Japan) 

Chloroacetone 
(chloro-2-propanone) ClCH2COCH3

95% (stabilized with 0.5% 
CaCO3) 

Fluka Chemika  
(Buchs, Switzerland) 

Aluminum chloride 
anhydrous AlCl3

99%, 
H2O <100 ppm 

Fluka Chemika  
(Buchs, Switzerland) 

2-phenyl-2-propanol C6H5C(CH3)2OH 97% Aldrich Chemical 
(Milwaukee, USA) 

Zirconyl chloride 
octahydrate ZrOCl2.8H2O 99% Fluka Chemika  

(Buchs, Switzerland) 

Carbon disulphite CS2 99% Fluka Chemika  
(Buchs, Switzerland) 
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Dichloromethane CH2Cl2 99% Analytical Sciences 
(Thailand) 

Table 3.2: Description of test compounds and solvents 
 
Test 
Compounds/ 
Solvents 

Formula Structures Molecular 
Weight Brand 

2-Chloro-
phenol, 98% C6H5ClO 

OH

Cl

 

128.6 

 
Fluka Chemika 
(Buchs SG, 
Switzerland) 
 
 

Nitro-
benzene, 
99% 

C6H5NO2

NO2

 

123.1 

 
Merck 
(Schwchardt, 
Germany)  
 
 

Propio-
phenone, 
99% 

C9H10O 

O

 

134.2 

 
Merck 
(Schwchardt, 
Germany) 
 
 

Butyro-
phenone, 
99% 
(Internal 
standard) 

C10H12O 

O

 

148.2 

 
Fluka Chemika 
(Buchs SG, 
Switzerland) 
 
 

 

 

 

 

3.2 Instrumentation 

 

 

A number of instruments were used in this research for the characterization of 

the synthesized and modified PS-DVB resins. The FTIR spectra were recorded with 

a Shimadzu-8300 spectrometer (Kyoto, Japan) in the range of 4000-400 cm-1. The 

shape and surface texture of the particles were obtained by a Philips XL-40 scanning 

electron microscope (California, USA). The samples were coated with gold and 

observed at 20 KV electron acceleration voltages. The pore size and surface area of 
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copolymer samples were determined by BJH and BET methods from low 

temperature nitrogen adsorption isotherms after degassing at 60oC/l.m.Pa for 3 h on a 

micromeritic apparatus ASAP 2010 (Wellesley, USA).  

 

The thermal gravimetric analyzer (TGA) was conducted using a Mettler 

Toledo Thermal analyzer (TC-15) (Stockholm, Sweden). The TA controller in air 

was set at a rate of 12οC min-1 within a temperature range of 100-800οC. SPE tubes 

containing home-made adsorbents were tested together with commercial tubes. The 

commercial SPE tubes used for solid phase extraction were a 6-mL SPE tube pre-

packed with 500 mg of C18 silica adsorbent. In the SPE procedure, the SPE tubes 

were mounted onto a 10-port VacMaster vacuum manifold (International Sorbent 

Technology) (Redwood City, USA) connected to an EYELA A-3S Aspirator (Tokyo 

Rikakikai Co. Limited, Japan) (Figure 3.1).The flow rate of the sample solution was 

controlled by regulating the air pressure release valve  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 A SPE vacuum manifold 

 

 

In percentage recovery study, the analytes eluted from SPE tube were 

collected and then analyzed using a Hewlett Packard Model 6890GC gas 

chromatography equipped with a flame ionization detector (FID) and a data 
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processor (Palo Alto, California, USA). The gas chromatographic column used was 

Ultra-1 932530, a non-polar, fused-silica capillary column (30 m length × 250 μm 

inner diameter × 0.20 μm film thickness) (Oklahoma, USA). Helium gas was used as 

the carrier gas with a flow rate of 1.1 mL/min at a pressure of 75 kpa.  The injector 

temperature was set at 250°C and the detector temperature was set at 310°C. The gas 

chromatography oven was operated under programmed temperature with an initial 

temperature of 100°C, which was held for 2 minutes and ramped up to 140°C at a the 

rate of 5°C min-1. Each sample (1 μL) was injected into the gas chromatograph by 

using a 10 μL syringe obtained from Agilent (Little Fall, USA). Triplicate extractions 

were carried out for each sample and three injections were carried out for each 

extract to obtain a measure of repeatability.  

 

The efficiencies of adsorbents were determined by determining the 

percentage of recovery of test compounds by using butyrophenone as internal 

standard.  

 

 

 

 

3.3 Preparation of Adsorbents 

 

 

This section discusses about procedures used in the preparation of PS-DVB, 

and modification of PS-DVB by Friedel Crafts acylation, Grignard reaction and 

reaction PS-DVB with zirconyl chloride (Figure 3.2). 
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Application  

 

 

 

Figure 3.2 Research framework 

 

 

 
 

3.3.1 Preparation of PS-DVB resin 

 
 

PS-DVB resin was prepared using the method of Mahdavian and Khoee 

(2002) using a reaction vessel equipped with thermometer and nitrogen gas inlet 

(Figure 3.3). The reaction vessel was placed in an oil bath set at 70°C. 1.0 g poly 

vinyl alcohol (PVA) (as stabilizer) dissolved in 500 mL of distilled water were added 
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to the reactor and stirred until dissolution was complete. The solution was diluted to 

1 L using distilled water and after the solution temperature reached 70°C (isothermal 

conditions), the reactor was purged with nitrogen gas and 9.6 g divinyl benzene 

(DVB), 120 g styrene and 1.2 g benzoyl peroxide (BPO) were premixed and added to 

the reactor. The reaction mixture was mechanically stirred for 15 h and then it was 

filtered off, washed with distilled water and dried. The beads obtained were sieved to 

separate the 200-400 mesh portion. This part was suspended in 10% aqueous solution 

of HCl (v/v) and stirred for 1 h at 50°C. It was then filtered, washed with distilled 

water and dried at 80°C for 12 h. 

 

 

 
A

 

 

 

 B
 

 D
 

 

 

 

 

Legend:  
A: Mechanical stirrer 
B: Nitrogen gas inlet 
C: Reaction vessel 
D: Oil bath system 

C

Figure 3.3 Reactor for polymerization of PS-DVB resin 

 

 

 

 

3.3.2 Friedel Crafts acylation of PS-DVB Using Acetyl Chloride and 

Chloroacetone 

 

 

The reaction was prepared following the method of Sun and Fritz (1990, 

1992). The reaction was carried out using an oil bath system and nitrogen flow 
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(Figure 3.4). The PS-DVB resin (5.1 g) was poured into the round bottom flask, 

while the oil bath temperature was set at 50°C. Carbon disulphide (30 mL), 

anhydrous aluminium chloride (9.5 g) and acetyl chloride (10 mL) was added drop-

wise into the mixture. The mixture was kept at 50°C for 24 h and then poured into 

ice water. The resin was washed with acetone (50 mL), methanol (50 mL) and water 

(50 mL), consecutively. The yield was dried in an oven and coded as product 2A (p-

ethanoyl-PS-DVB). Modification of PS-DVB by chloroacetone was carried 

similarity but use chloroacetone as starting reagent. The resulting produces p-2-

propanoyl-PS-DVB and was coded product 3A. 

 

 

Oil bath 

Nitrogen gas 

Thermometer 

Flask

Separatory 
funnel 

Hot plate 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 System for Friedel Crafts acylation of PS-DVB 

 

 

 

 

3.3.3 Modification of p-ethanoyl-PS-DVB and p-2-propanoyl-PS-DVB by 

Grignard Reaction 
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The reaction was carried out using a 250 mL round bottom flask fitted with a 

stiring bar and Claisen adapter (Figure 3.5). A condenser was fitted into the straight 

arm of the Claisen adapter, while a separatory funnel was fitted into the bent arm. 

The round bottom flask was warmed in an oil bath (50°C) and then allowed to 

proceed by its own heat for 20 minutes. p-ethanoyl-PS-DVB (2.0 g) and p-2-

propanoyl-PS-DVB (2.0 g) were introduced into the flask, respectively. The flask 

that contained the p-ethanoyl-PS-DVB was rinsed with 100 mL of anhydrous diethyl 

ether and methyl magnesium chloride (10.0 mL) (Grignard reagent) was added. After 

the addition was complete, the reaction mixture was stirred for an additional 30 min 

as it slowly reaches room temperature. Distilled water (25 mL) was added to the 

reaction mixture was added with and the resulting mixture was stirred for 5 min. The 

reaction mixture was added with 4-5 drops of 3 M sulfuric acid (HCl) to completely 

dissolve the magnesium salts. At this point there should be two phases (liquid and 

solid) in the flask. The reaction mixture was transferred to a beaker. The yield was 

washed with sodium carbonate solution (25 mL) and sodium chloride solution (25 

mL), respectively. The reaction produced p-2-hydroxyl-2-methylethyl-PS-DVB and 

p-2-hydroxyl-2-methylpropyl-PS-DVB and the yields were dried in an oven and 

coded as product 2B and 3B, respectively. 
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Oil bath 

Condenser 

Claisen 
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Figure 3.5 System for modification of PS-DVB using Grignard reaction 

 

3.3.4 Modification of p-2-hydroxyl-2-methylethyl-PS-DVB and p-2-hydroxyl-

2-methylpropyl-PS-DVB by Zirconyl Chloride 

 

 

Modification of PS-DVB with zirconyl chloride was carried out using the 

method of Hussain (1984). For each set of experiment, zirconyl chloride octahydrate 

(ZrOCl2.8H2O) (10.0 g) was dissolved in 200 mL of freshly prepared distilled water 

in a 250 mL round bottom flask. The flask was warmed in an oil bath to start the 

reaction and the reaction was allowed to proceed by its own heat for 20 minutes. p-2-

hydroxyl-2-methylethane-PS-DVB (5.0 g) was added to the first flask and p-2-

hydroxyl-2-methylpentane-PS-DVB (5.0 g) added into the second flask. Each 

mixtures was slowly titrated with 1M solution of sodium hydroxide, addition of the 

latter being continued until the pH of the resulting solution attained a value of 7.0. 

The pH of this solution was closely monitored using a pH meter over a period of 24 h 

to verify that a constant pH had been attained.  

 

The gel formed was separated by using a centrifuge and washed with distilled 

water (100 mL) until the wash solution was completely free from chloride ions. The 

gel was then thawed for 24 h at room temperature, filtered and dried under laboratory 

vacuum at 70°C. The yields were coded as p-2-zirconyl-2-methylethyl-PS-DVB 

chloride and p-2-zirconyl-2-methylpropyl-PS-DVB chloride, respectively. All 

modified PS-DVB resins were coded to reflect their preparation as shown in Table 

3.3. 
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Table 3.3: Description of PS-DVB modification 

Product Name Structure Reagent   
    

2A p-ethanoyl-PS-DVB  CCH3

O

 

Acetyl chloride 
(CH3COCl) 

2B 
p-2-hydroxyl-2-
methylethyl-PS-
DVB  

C OH

CH3

CH3

 

Methyl 
magnesium 
chloride 
(CH3MgCl) 
 

2C 
p-2-zirconyl-2-
methylethyl-PS-
DVB chloride  

C OZrOCl

CH3

CH3

 

Zirconyl 
chloride 
octahydrate 
(ZrOCl2.8H2O) 

3A p-2-propanoyl-PS-
DVB  CH2CCH3

O

 

Chloroacetone 
(CH3COCH2Cl)

3B 
p-2-hydroxyl-2-
methylpropyl-PS-
DVB  

CH3

CH3

OHCCH2

 

Methyl 
magnesium 
chloride 
(CH3MgCl) 

3C 
p-2-zirconyl-2-
methylpropyl-PS-
DVB chloride  

CH3

CH3

OZrClCCH2

 

Zirconyl 
chloride 
octahydrate 
(ZrOCl2.8H2O) 

 

 

 

 

3.4 Sample Preparation for SPE-GC Study 

 

 

Stock solutions of test compounds 100,000 ppm (10% w/v) were prepared by 

weighing butyrophenone (2.5 g), 2-chlorophenol (2.5 g), nitrobenzene (2.5 g) and 
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propiophenone (2.5 g) in separate 25 mL volumetric flasks and each compound was 

dissolved and diluted in methanol to the mark. The stock solutions prepared were 

stored in the refrigerator at 4°C. The sample aqueous solution containing individual 

test compounds for solid phase extraction were prepared by adding 2-chlorophenol 

100,000 ppm (10% w/v) stock solution (0.1 mL), nitrobenzene 100,000 ppm (10% 

w/v) stock solution (0.1 mL) and propiohenone 100,000 ppm (10% w/v) stock 

solution (0.1 mL) into three separate 10 mL volumetric flasks and each solution was 

diluted to the mark with deionized water. Each sample of aqueous solution prepared 

therefore contained 1% v/v of methanol. An aqueous solution of the four test 

compounds were prepared by adding 2-chlorophenol 100,000 ppm (10% w/v) stock 

solution (0.1 mL), nitrobenzene 100,000 ppm (10% w/v) stock solution (0.1 mL) and 

propiohenone 100,000 ppm (10% w/v) stock solution (0.1 mL) into a 10 mL 

volumetric flask and the solution were diluted to the mark with deionized water. The 

sample aqueous solution prepared therefore contained (4% v/v) of methanol. 

 

 

 

 

3.5 Preparation of Solid Phase Extraction Column 

 

 

A series of SPE columns were prepared using synthesized adsorbents, namely 

PS-DVB, p-ethanoyl-PS-DVB, p-2-hydroxyl-2-methylethyl-PS-DVB, p-2-zirconyl-

2-methylethyl-PS-DVB chloride, p-2-propanoyl-PS-DVB, p-2-hydroxyl-2-

methylpropyl-PS-DVB and p-2-zirconyl-2-methylpropyl-PS-DVB chloride (Table 

3.4). 

 

Unmodified and modified PS-DVB adsorbents were ground and sieved into 

the size range of 400 to 200 mesh by using mortar, pestle and siever. An empty SPE 

6 mL tube was prepared. The outlet frit was inserted until it reaches the bottom base 

of the SPE tube. Adsorbent (0.5 g) was poured into the SPE tube and the inlet frit 

was inserted onto the SPE tube so that the adsorbent was sandwiched between the 

two frits. The steps in the preparation of a laboratory-made SPE column are shown in 

Figure 3.6. 
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Figure 3.6 Steps in the preparation of a SPE column 

 

 

 

 

3.6 Solid Phase Extraction Procedure 

 

 

Steps in the SPE are illustrated in Figure 3.7. The SPE was carried out using 

SPE tube (6 mL) packed with adsorbent (0.5 g). The outlet tip of SPE cartridge was 

connected to a Vacmaster SPE vacuum manifold equipped with a 10 × 16 mm rack. 

The SPE cartridge was conditioned and activated by passing methanol (2 mL) 

followed by deionised water (2 mL) with the aid of a vacuum pump at a flow rate of 

1 mL min-1. The sorbent was never allowed to dry during the conditioning and 

sample loading steps. Sample solution (10 mL) containing test compound (1000 

ppm) (10% w/v) was passed through the column with the vacuum adjusted to give a 

flow rate of 1 mL min-1. After the sample solution was loaded, the SPE column was 

rinsed with deionised water (2 mL). Air was drawn through the cartridge for 5 min 

under increased vacuum to remove excess water. A centrifuge tube (15 mL) was 

placed below the SPE column and elution was performed using methanol (1 mL × 4 

times) at a flow rate of 1 mL min-1. Finally, the internal standard, butyrophenone 
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1000 ppm (10% w/v) was added into the solution and the eluate was made up to 5 

mL with methanol. The final solution was analyzed by gas chromatography (GC).  

 

 

Elution Conditioning Sample loading Cleanup 

 

 

 

 

 

 

 

Figure 3.7 Steps in solid phase extraction 

 

 

 

 

3.7 Temperature Programmed GC-FID 

 

 

The analytes eluted from SPE tube were collected and analyzed using a 

Hewlett Packard Model 6890GC gas chromatography (GC) equipped with a flame 

ionization detector (FID) and a data processor. The gas chromatographic column 

used was a non-polar, fused-silica capillary column, (30 m length × 250 μm inner 

diameter × 0.20 μm film thickness) Ultra-1 932530. Helium gas was used as the 

carrier at with a flow rate of 1.1 mL min-1 at a pressure of 75 kpa. The injector 

temperature was set at 250°C and the detector temperature was set at 310°C.  

 

The gas chromatography oven was operated under programmed temperature 

with an initial temperature of 100°C, which was held for 2 minutes and ramped up to 

140°C with the rate of 5°C min-1. Each sample was injected into the gas 

chromatograph by using a 10 μL syringe (Agilent; USA). The injection volume was 

1 μL and three injections were carried out for each sample extract to obtained a 

measure of repeatability.  
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3.8 Determination of Response Factor for the Internal Standard and Test 

Compounds  

 

 

The response factors, F, for internal standard (butyrophenone) and the test 

compounds (2-chlorophenol, nitrobenzene and propiophenone) were determined by 

injecting 1 μL of each stock solvent (with a concentration of 100 000 ppm) into the 

gas chromatograph. Injections were carried out in triplicate to obtain the precision of 

the analysis. The equations used to calculate the response factor, F. 

 

ionConcentrat
areaPeak     F factor, Response =                                                         (3.1) 

 

 

 

 

3.8.1 Determination of the Concentration of the Test Compounds 

 

 

The concentration of each test compound, Mx was calculated as shown below. 

 

S
S

X

X

S
X M ion,Concentrat    

A
A    

F
F    M ion,Concentrat ××=                              (3.2) 

 

MX = Test compound concentration (ppm) 

MS = Internal standard concentration (ppm) 

FS = Internal standard response factor 

FX = Test compound response factor 

AS = Internal standard peak area 

AX = Test compound peak area 
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3.8.2 Determination of Test Compound’s Recovery Values 

 

 

The recovery values were calculated as follows: 

 

FactorDilution    % 100   
extraction beforeion concentrat Sample

M  Recovery   % X ××=

 

         (3.3) 

50    % 100    
100,000

M  X ××=  

  

where, 

 
extraction before sample of Volume

extractionafter  sample of Volume  Factor  dilution =  

 

 50    
mL0.1
mL 5.0  Factor  Dilution ==  

 



 
 
 
 

CHAPTER 4 

 

 

 

 

RESULTS AND DISCUSSION 

 

 

 

 

4.1 Preparation of PS-DVB resins 

 

 

The final product obtained was white powder PS-DVB copolymer. It was 

coded as product 1 (see Figure 1.1a). The reaction was carried out by agitating 

styrene and divinyl benzene with water and the mixture was dispersed into small 

globules. The chemical reactor was equipped with an agitator which dispersed the 

water/organic suspension.  

 

 

 

4.2 Characterization of Synthesized PS-DVB resin 

 

 

Characterizations were carried out on synthesized PS-DVB and the results 

were subsequently compared with the commercial PS-DVB in order to verify 

whether the synthesized PS-DVB was successfully produced. The physical 

characterizations included Fourier transform infrared spectroscopy (FTIR), scanning 

electron microscopy (SEM), thermogravimetric analysis and nitrogen adsorption-

desorption analysis. 
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4.2.1 Fourier Transform Infrared (FTIR) Spectroscopy 

 

 

Figure 4.1 shows a FTIR spectrum of synthesized PS-DVB resins and that of 

commercial PS-DVB for comparison. It can be observed that the FTIR spectrum of 

the synthesized PS-DVB (Figure 4.1(a)) have similar absorption pattern compared 

with the FTIR spectrum of commercial PS-DVB resins (Figure 4.1(b)). The finger 

print region between 1400 cm-1 and 400 cm-1 is very important in identifying the 

compounds. The values and characteristic bands of the compound (Table 4.1) are in 

agreement with those reported in the literatures (Mahdavian and Khoee, 2002). The 

results suggests that the synthesized PS-DVB had the same structural properties as 

the commercial PS-DVB, hence, suggesting that PS-DVB had been successfully 

synthesized in the laboratory. 

 

The peak at 3023.2 cm-1 is related to the stretching of the aromatic CH bonds 

from the synthesized PS-DVB resins. Another important peak in the infrared spectra 

was at 1599.8 and 1490.9 cm-1 for the C=C phenyl stretching. The bands close to 

755.1 cm-1 and 696.3 cm-1 region are attributed to the presence of out-of-plane 

bending of mono-substituted benzenes.  

 

 

 

Table 4.1: Characteristic wave numbers for synthesized PS-DVB resin and 
commercial PS-DVB resins 
 

Wave number (cm−1) Functional Groups Synthesized PS-DVB Commercial PS-DVB 
=C-Haromatic 3046.4 3023.2 
-CHsaturated 2922.0, 2860.2 2920.0, 2848.7 
C=Caromatic 1598.9, 1491.8 1599.8, 1490.9 
Monosubstituted benzene 755.1, 697.2 755.1, 696.3 
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(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 FTIR spectra of the (a) synthesized PS-DVB resins and (b) commercial 
PS-DVB resins 
 

 

 

4.2.2 Scanning Electron Microscopy Analysis 

 

 

The surface morphology of the sample was determined by scanning electron 

microscope. Figures 4.2 shows the SEM micrographs of the synthesized PS-DVB 

and commercial PS-DVB resin have a heterogeous surface morphology. For the 

synthesized PS-DVB resin, the average particle size was 104.0 μm as shown in Table 

4.2. The particle size of the synthesized PS-DVB resin is relatively larger than 
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commercial PS-DVB resin. The micrograph (Figure 4.2a) showed that the 

synthesized PS-DVB resin exhibits non-uniform size and cores with a wide range of 

particle size from 84.0-162.2 μm. The micrograph of the synthesized PS-DVB resin 

particles (Figure 4.2b) shows that the surface morphology is smoother and good 

surface homogeneity. This is probably due to the influence of the controlled 

polymerization parameters such as the initiator concentration, the stabilizer 

concentration, the polarity of the polymerization medium, the technique of 

polymerization used (Tuncel et al., 1993), and the fraction of cross-linking monomer 

(Maria et al., 2003a).  

 

From the micrograph (Figure 4.2c), the commercial PS-DVB resin consists of 

sphere beads. The particle size was distributed in a narrow range of 39.1-52.8 μm. 

There are various factors that influence the particle size of the product; stirring speed 

is the most important factor that provides a relatively convenient means of particle 

size control for most practical purposes.  The particle size can be controlled by the 

adjustment of the stirring speed. These limits depend on the size and the 

configuration of the polymerization reactor (including its stirring arrangement). For 

the laboratory preparation involving a total volume of about 500 mL, the stirring 

speed can be varied in the range of 200 to 1000 rpm. The stirring speed of 900 rpm 

was chosen in this study.  

 

 

 

Table 4.2: Average particle size of synthesized and commercial PS-DVB resins 
 

Resin Particle size range, μm Average Particle size, μm 
Synthesized PS-DVB  84.0-162.2 104.0 
Commercial PS-DVB  39.1-52.8 44.9 
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Figure 4.2 SEM micrographs of (a) Synthesized PS-DVB resin, magnification 50 × 
and (b) magnification 5000 ×; (c) Commercial PS-DVB resin, magnification 50 × 
and (d) magnification 5000 × 

 

 

 

 

However, the synthesized PS-DVB resin particles shown in Figure 4.2a 

displayed the presence of extra particles probably from the suspension agent during 

the polymerization process. The case is similar to that reported by Martin et al. 

(2003) for the preparation of the sulfonated metal to PS-DVB resin. They indicated 

the presence of impurities of tricalsium phosphate (used as the suspension agent in 

polymerization process) in the polymeric material and the suspension agent was not 

eliminated by the polymerization process.  
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4.2.3 Thermogravimetry Analysis 

 

 

Thermogravimetry is a technique whereby a sample is continuously weighed 

as it heated at a constant and preferably linear rate. The resulting weight change 

versus temperature curve provides information concerning of the thermal stability 

and composition of the original sample, the composition and thermal stability of any 

intermediate compounds and the composition of the residue. In this analysis, five 

stages of temperature range were observed to study the thermal stability of PS-DVB 

resin. The temperature range followed from the temperature stage in thermogram 

(Appendix A). Temperature range less than 135.5°C and range of 135.5-326.6°C are 

related to low temperature range, while temperature range of 326.6-517.6°C is 

referred to the intermediate temperature range and temperature range of 517.6-

708.6°C and temperature range of 708.6-899.7°C are referred to high temperature 

stage. 

 

The thermogram for synthesized and commercial PS-DVB resins at various 

temperature ranges are listed in Table 4.3. At temperature range less than 135.5°C, 

the resins show weight loss percentages of 1.8% (synthesized) and 1.7% 

(commercial). Meanwhile, at temperature range of 135.5-326.6°C, the resins show 

weight loss percentages of 16.8% (synthesized) and 19.1% (commercial). These 

results reflect that the loss in weight observed over temperature range less than 

135.5°C is due to the removal of the loosely bound water from the resin while the 

loss in weight at temperature range of 135.5-326.6°C corresponds to the removal of 

more strongly bounded water derived from hydroxyl groups and the decomposition 

of low-volatility groups.  

 

Table 4.3 also indicates that the maximum weight loss for both samples 

occurs at temperature range of 326.6-517.6°C, 73.5% for synthesized PS-DVB and 

56.6% for commercial resin. The decomposition for both PS-DVB resin is completed 

after the temperature reaches 900°C. It occurs because all of the PS-DVB resins were 

more unstable during the analysis when the temperature reaches to 708.6°C. The 

weight loss occurred at the temperature range less than 135.5°C and range of 135.5-
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326.6°C, due to dehydration and decomposition of the very low volatile compounds, 

while the weight lost that occurs at temperature range 326.6-517.6°C, temperature 

range 517.6-708.6°C and temperature range of 708.6-899.7°C arise from further 

decomposition of the high volatile groups in the resin.  

 

Figure 4.3 shows the distribution of weight loss percentage of synthesized 

resin and commercial PS-DVB resin against temperature. The graph presents the 

percentage of weight loss for all resins that show a similar thermal stability 

distribution pattern where the percentage of weight loss at temperature range less 

than 135.5°C is lower than temperature range 135.5-326.6°C. The weight loss 

percentage has increased due to the decomposition of the most volatile organic 

compounds exist in the resins. This stage shows that the weight loss percentage of 

synthesized PS-DVB resin is the highest with 73.5% and the commercial PS-DVB 

resin present 56.6%. The results indicate that at temperature stage 326.6-517.6°C, the 

commercial PS-DVB resin is more stable than synthesized PS-DVB resin. The result 

is affected by the polymerization process.  

 

 

 

Table 4.3: Thermogravimetric analysis results for synthesized and commercial PS-
DVB resins at various temperature ranges 
 

% of weight loss PS-DVB 
resins < 135.5 135.5-

326.6 
326.6-
517.6 

517.6-
708.6 

708.6-
899.7 

Residue  
(%) 

Synthesized 1.8 16.8 73.5 7.9 0.0 0.0 
Commercial 1.7 19.1 56.6 22.7 0.0 0.0 
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Figure 4.3 Distribution of weight loss percentage against various temperature ranges 
for synthesized and commercial PS-DVB resins 
 

 

 

4.2.4 Nitrogen Adsorption and Desorption Analysis 

 

 

Nitrogen adsorption isotherms of synthesized and commercial PS-DVB resins 

are presented in Figure 4.4. The commercial PS-DVB resin was used as a reference. 

Both nitrogen sorption isotherms show that the PS-DVB resin was not particularly 

well-formed of isotherm shape (Figures 4.4a and 4.4c). However, the nitrogen 

adsorption and desorption isotherms for commercial and synthesized PS-DVB resin 

show a similar pattern, with the low BET surface area.  

 

The pore size distributions of the synthesized and commercial PS-DVB resins 

are shown in Figures 4.4b and 4.4d. In the present work, the distribution of pores for 

the synthesized PS-DVB resin was covered in the range of 20.0-40.0 Å (Figure 4.4b). 

From Figure 4.4d, it was found that the distribution of pores size for the commercial 

PS-DVB resin was covered in the range of 20.0-200.0 Å. This result suggests the 

presence of different sizes of mesopore in the commercial PS-DVB resin. It is also 

recognized that the commercial PS-DVB resin was distributed in a wide range of 

mesopore compared to synthesized PS-DVB resin.  
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(a) 
(b) 

(c) (d) 

Figure 4.4 (a) Nitrogen adsorption isotherm and (b) average pore size distribution of 
the synthesized PS-DVB resin; (c) Nitrogen adsorption isotherm and (d) average 
pore size distribution of the commercial PS-DVB resin  
 

 

 

From the Table 4.4, the synthesized and commercial PS-DVB resin show that 

the BET surface area are 1.2 and 0.7 m2g-1; average pore volume are 1.2 × 10-3 and 

6.5 × 10-4 cm3g-1; and average pore diameter are 41.3 and 38.0 Å, respectively. These 

results indicate that the synthesized PS-DVB resin has slightly higher BET surface 

area; average pore volume and average pore diameter compared to the commercial 

PS-DVB resin. 
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Table 4.4: Pore and surface characteristic of synthesized PS-DVB resin and 
commercial PS-DVB resin 
 

PS-DVB 
Resins 

BET surface 
area (m2g-1) 

Total pore 
volume (cm3g-1) 

Average pore 
width (Å) 

Type of 
pore 

Synthesized  1.2 1.2 × 10-3 41.3 Meso 
Commercial  0.7 6.5 × 10-4 38.0 Meso 

 

 

 

 

4.2.4.1 Effect of Reaction Time 

 

 

It was found that PS-DVB 5h, PS-DVB 15h and PS-DVB 20h exhibits 3.7, 

1.5 and 1.2 m2g-1 for BET surface area, respectively. The result (Table 4.5) suggests 

that the BET surface area increases with the decrease time of polymerization. The 

reaction time shows a significant effect to the BET surface area and physical 

characteristics. It can be observed that when reaction time was set at 5h, the pore 

width of PS-DVB was approximately 38.7 Å. Highest average pore width value and 

pore volume were obtained when the reaction time was fixed at 15 h with a value of     

137.7 Å. However, a significant decrease of pore width was noted when the reaction 

time was increased to 20 h.  

 

 

 

 

Table 4.5: Effect of reaction period on nitrogen adsorption analysis data for 
synthesized PS-DVB. 
 
Reaction 
time (h) 

BET surface 
area m2/g 

Total pore 
volume cm3/g 

Average pore 
width (Å) 

Physical  
characteristics 

5 3.7 3.5 × 10-3 38.7 White, harder 
bead. 

15 1.5 5.1 × 10-3 137.7 

20 1.2 1.2 × 10-3 41.3 

Small, white, 
powder, easy 
to grind. 
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4.2.4.2 Effect of Stabilizer 

 

 

Table 4.6 shows the poly(vinyl alcohol) has a BET surface area of 1.2 m2g-1 

and total pore volume of 1.2 × 10-3 cm3g-1 and polyvinyl pyrrolidone has a BET 

surface area of 0.7 m2g-1 and average pore volume of 1.0 × 10-3 cm3g-1. The results 

show that polyvinyl alcohol was a better stabilizer than polyvinyl pyrolidone. The 

particles obtained from poly(vinyl alcohol) polymerization has a  smaller size and the 

material was easy to grind, unlike the material obtained from polymerization that 

used polyvinyl pyyrolidone. The beads particle size was controlled using a sieve 

shaker (200-400 mesh portion). It was probably because poly(vinyl alcohol) is 

incorporated into the surface of the polystyrene beads and thus giving better 

protection against growing process (Gautheir et al., 2004). The particle size 

distribution of the PS-DVB resin prepared with poly(vinyl alcohol) as a suspension 

stabilizer can vary widely by changing the relative amounts of the monomer and 

aqueous phase. When using poly(vinyl alcohol) in the polymerization of the PS-DVB 

resin the value of  BET surface area, average pore diameter and total pore volume is 

higher compared to polyvinyl pyrolidone.  

 

 

 

Table 4.6: Nitrogen adsorption analysis data for synthesized PS-DVB resin using 
different stabilizers 
 

Stabilizer BET surface 
area m2g-1

Total pore 
volume cm3g-1

Average pore 
width (Å) 

Physical  
characteristics 

Poly(vinyl 
alcohol) 1.2 1.2 × 10-3 41.3 

Small, white, 
powder, easy to 
grind. 

Poly(vinyl 
pyrolidone) 0.7 1.0 × 10-3 60.3 

Bigger, white, 
difficult to 
grind. 
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4.2.4.3 Effect of Polymerization Method 

 

 

Table 4.7 shows a significant difference in the data of nitrogen adsorption for 

the synthesized PS-DVB resin. The surfactant polymerization technique showed that 

the pore volume and average pore diameter of this sample was lower compared to the 

seeding polymerization technique. The result obtained suggests that the surfactant 

polymerization technique was a better method than the seeding polymerization 

technique.  

 

 

 

Table 4.7: Nitrogen adsorption analysis data for synthesizing PS-DVB resin by 
different techniques 
 

Technique BET surface 
area m2g-1

Total pore 
volume cm3g-1

Average pore 
diameter (Å) 

Physical  
characteristics

Seeding   2.0 3.5 × 10-3 68.6 

Surfactant 1.2 1.2 × 10-3 41.3 

Small, white, 
powder, easy 
to grind. 

 

 

 

 

4.3 Preparation of p-2-zirconyl-2-methylethyl-PS-DVB Chloride  

 

 

Modification PS-DVB adsorbent was carried out via Friedel Crafts acylation 

reaction with acetyl chloride using Lewis acid catalyst (product 2A) followed by 

Grignard reaction of the product with methyl magnesium chloride (product 2B) and 

reaction with zirconium(IV) oxide chloride octahydrate (product 2C). The polymer 

adsorbent of product 2A (p-ethanoyl-PS-DVB) was prepared using Friedel Crafts 

acylation reaction with acetyl chloride in the presence of aluminium chloride 

anhydrous (AlCl3) as Lewis acid catalyst. The ketone functional group CH3-CO-(PS-

DVB) showed an intense carbonyl absorption band at 1678.9 cm-1 in the FTIR 
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spectrum. After that, the product 2A was then converted to product 2B (p-2-

hydroxyl-2-methylethyl-PS-DVB) using Grignard reaction with methyl magnesium 

chloride followed by hydrolysis. The product 2A resin was allowed to react with 

zirconyl chloride octahydrate (ZrOCl2.8H2O) in acetonitrile-water (1:1) mixture to 

afford the product 2C (p-2-zirconyl-2-methylethyl-PS-DVB chloride). The reaction 

sequence is depicted in Figure 1.1b. 

 

 

 

4.4 Characterization of p-2-zirconyl-2-methylethyl-PS-DVB Chloride  

 

4.4.1 Fourier Transform Infrared (FTIR) Spectroscopy 

 

The FTIR analysis of product 2A in Figure 4.5a shows its peaks at 2935.4 

cm-1 and 3023.2 cm-1. The peaks were assigned to C-Halkanes and C-Haromatic 

stretching, respectively. Polystyrene functional group shows the stretching bands at 

1872.8 cm-1, 1851.5 cm-1, 1802.3 cm-1 and 1775.3 cm-1. The C=Caromatic stretching is 

observed at 1598.9 cm-1 and 1416.6 cm-1. The presence of a C=O functional group in 

the modified phase is proven by a strong band at 1678.9 cm-1. The para- and mono-

substituted benzene rings are observed at 826.4 cm-1 and 691.4 cm-1, 593.1 cm-1 

respectively. The absorption pattern of product 2A FTIR spectrum (Figure 4.5a) is 

identical to product 1 resin FTIR spectrum (Figure 4.1a) and it shows strong 

absorption at 1678.9 cm-1, indicating the existence of C=Ostretching. It means that the 

modification of synthesized PS-DVB resin with acetyl chloride was successfully 

achieved. The FTIR spectrum showed that there was a similarity in the absorption 

frequencies between synthesized PS-DVB resin and product 2A. Infrared spectrum 

for product 1 resin was used as a reference for comparison with product 2A. 

 

The FTIR analysis of product 2B resin in Figure 4.5b shows peaks at 2931.6 

cm-1 and 2840.0 cm-1. The peaks were assigned to C-Halkanes stretching. The 

C=Caromatic stretching were adsorbed at 1566.1 cm-1 and 1410.8 cm-1. The presence of 

OH functional group in the modified phase was proven by a strong band at 3430.1 

cm-1. The para- and mono-substituted benzene rings were observed at 582.5 cm-1 and 

453.2 cm-1. FTIR spectrum obtained for product 2C is depicted in Figure 4.5c. The 
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result showed that the sample gave similar adsorption bands with product 2B except 

for the spectrum of product 2C which is exhibits an extra broad band. It may be due 

to the stretching vibration of the –OH group present in the sample. Table 4.8 

summarizes the FTIR absorption data incorporating functional groups from the FTIR 

spectra of PS-DVB-modified resin. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 

(c) 

Figure 4.5 FTIR spectra of the (a) product 2A, (b) product 2B, and (c) product 2C  
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Table 4.8: Absorbance signals for the functional groups of modification PS-DVB 
using acetyl chloride 
 

Resin 
Product 2A Product 2B Product 2C Functional  

Groups 
Wave number, cm−1

OH - 3430.1 (h) 3421.5 (h) 
=C-Haromatic 3023.2 - - 
-CHsaturated 2935.4, 2862.2 2931.6, 2860.0 - 
C=O 1678.9 - - 
C=Caromatic 1598.9, 1416.6 1605.6, 1410.8 1564.2, 1417.6 

 

 

 

4.4.2 Scanning Electron Microscopy Analysis 

 

 

From the SEM micrograph, it was found that the particle of PS-DVB-

modified resin scattered on the surface of the tape in a small size which is resembles 

spherical beads as shown in Figure 4.6. Figure 4.6a shows the surface morphology of 

the product 2A particle. The surface morphology of the particles showed that they 

are relatively irregular, mixture of the particle shapes and not fully spherical beads 

form. A spherical morphology was also observed, although in this case some debris 

appeared are mixed with the particles. The surface of these particles is rougher 

compared to the surface of the product 1 resin particles (Figure 4.2b) as observed in 

Figure 4.6b. These results seem to suggest that the changing of the surface 

morphology was due to the introduction of product 1 resin particles at an elevated 

temperature during the Friedel Crafts acylation. In addition, the use of excessive 

acetyl chloride agent was expected to contribute to the irregularity of beads shape.  
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(a) (b)

(c) (d)

(e) (f) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6 SEM micrographs of (a) product 2A; magnification 50× and (b) 
magnification 5000× (c) product 2B; magnification 50× and (d) magnification 5000× 
(e) product 2C; magnification 50× and (f) magnification 5000× 
  

 

 The arrangement of the product 2B particles is not compact and do not show 

any specific pattern as shown in Figure 4.6c. The morphology is similar to that 

observed in product 2A. However, the morphology of the surface of this material is 
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irregular surface. The surface properties were altered due to the presence of the agent 

methyl magnesium chloride or through the refluxing process in Grignard reaction. 

Figures 4.6e and 4.6f show the micrograph of the product 2C. The 

arrangement of the particles is not compact and does not show any specific pattern. 

The surface morphology does not show any specific pattern. This is probably due to 

the reaction condition in the reflux reaction. The zirconia particles fused into large 

units, known as aggregates flocculated to form agglomerates. Actually, some beads 

present a few clusters of inorganic material particles on preferential regions of their 

surfaces. Based on these initial experiments Maria et al. (2003b) proposed that it 

could be due to the difference in viscosity of the two kinds of composite during the 

polymerization process. Low energy sites are probably formed around all surfaces of 

the high viscosity beads, facilitating the sorption of the inorganic material particles. 

The polymeric layer on the metal particles was also clearly recognizable but, as in 

the previous cases, it was not possible to determine the thickness (Maria et al., 

2003a). 

 

 

 

 

4.4.3 Thermogravimetry Analysis 

 

 

The thermogravimetric analysis result for PS-DVB-modified resin at various 

temperature ranges are listed in Table 4.9. The temperature stage A and B show that 

the product 2C is the highest weight loss percentage compared to the other resins. 

These results reflect that the loss in weight at the temperature range less than 

135.5°C is due to the removal of the loosely bound water from the resin. Meanwhile, 

the loss in weight at temperature range 135.5-326.6°C corresponds to the removal of 

more strongly bounded water derived from hydroxyl groups. It is also due to the 

decomposition of low volatile groups. The result indicates that the product 2C has a 

high degree of water content in their structure compared to the other resin. Table 4.9 

also indicates that the maximum weight loss for most of the sample occurs at the 

temperature stage 517.6-708.6°C except for product 2C, which occurs at temperature 
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stage 326.6-517.6°C. The maximum weight loss percentage obtains for product 2A, 

product 2B and product 2C at temperature stage 517.6-708.6°C (51.3%), 517.6-

708.6°C (31.7%) and 326.6-517.6°C (20.1%), respectively. The result demonstrates 

that the maximum weight loss percentage of the resins in Table 4.9 is in accordance 

to product 2C < product 2B < product 2A. 

 

In general, the weight loss percentage for the product 2A at temperature stage 

517.6-708.6°C is higher (51.3%) than the other resins and the decomposition for 

product 2A is completed after the temperature reaches 900°C. It occurred because all 

of the product 2A is unstable compared to the modified resins during the analysis 

when the temperature reached 708.6°C. The weight loss occurred at temperature 

range less than 135.5°C and 135.5-326.6°C are due to dehydration and 

decomposition of the very low volatile compounds. The weight lost occurred at the 

temperature range 326.6-517.6°C, 517.6-708.6°C and 708.6-899.7°C arises from 

further decomposition of the high volatile groups in the resin.  

 

When the temperature reaches 900°C, the residue percentage for product 2A, 

product 2B and product 2C are 0.0%, 15.0%, and 36.9%, respectively. The 

percentage of residue of product 2C is higher (36.9%) than the other resins. The total 

value of the percentage of weight loss of product 2C is 63.1%. This result is affected 

by the presence of zirconia oxide in the resins during the modification process of PS-

DVB resin. The properties changed because of the effect of heat during the Friedel 

Crafts acylation and Grignard reactions. The result demonstrates that the 

arrangement of the thermal stability of the resins in Table 4.9 in accordance as 

product 2A < product 2B < product 2C. 

 

 

Table 4.9: Thermogravimetric analysis results of modified PS-DVB using acetyl 
chloride at various temperature ranges 
 

% weight loss 
Resin < 135.5 135.5-

326.6 
326.6-
517.6 

517.6-
708.6 

708.6-
899.7 

Residue (%) 

Product 2A 2.1 11.2 35.4 51.3 0.0 0.0 
Product 2B 9.8 7.7 29.6 31.7 6.2 15.0 
Product 2C 14.3 17.0 20.1 10.0 1.7 36.9 
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Figure 4.7 shows the graph of weight loss percentage of product 2A, product 

2B and product 2C against various temperature stages. The graph presents the 

percentage of weight loss for all resins that show a similar thermal stability 

distribution pattern where the percentage of weight loss at various temperature range 

less than 135.5°C, 135.5-326.6°C and 326.6-517.6°C are lower than temperature 

stage 517.6-708.6°C. Temperature stage 517.6-708.6°C is referred to intermediate 

temperature range and the weight loss percentage has increased due to the 

decomposition of the most volatile organic compounds exist in the resins. At this 

stage, the weight loss percentage of product 2A is the highest (51.3%). The results 

indicate that at temperature range 326.6-517.6°C, the modified resins are more stable 

than unmodified resins (Section 4.2.3). The results are affected by the acetyl chloride 

reagents in the Friedel Crafts acylation.  
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Figure 4.7 Distribution of weight loss percentage against temperature stage for 
modified-PS-DVB resins 
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4.4.4 Nitrogen Adsorption and Desorption Analysis 

 

 

The nitrogen adsorption isotherm for product 2A is shown in Figure 4.8a. The 

nitrogen adsorption data of the product 1 resin was used as a reference to compare 

the types of pore, surface area and pore volume with the product 2A. As mentioned 

before in Figure 4.4a, the synthesized PS-DVB resin is not well formed. Based on the 

result, the synthesized PS-DVB resin contains a mixture of a narrow and wide 

mesopore. Figure 4.8a shows the nitrogen isotherm obtained from product 2A is not 

well formed. Therefore, the type of pores in the product 2A was a mixture of 

mesopore and macropore. This result suggests that the product 2A did not affect 

much on the surface properties of the studied phase. 

 

The pore size distribution of the product 2A is shown in Figure 4.8b. It was 

found that the distribution of pore size for the product 2A was covered in the range 

of 20-700 Å. This result suggests the presence of different sizes of mesopore and 

macropore in the product 2A. In the present work, the distribution of pores for the 

synthesized PS-DVB resin was covered in the range of 20-40 Å (Figure 4.8d). The 

distribution of pores size for synthesized PS-DVB resin changed probably due to the 

effect of the Friedel Crafts acylation reaction.  

 

All of the obtained data from nitrogen adsorption for modified-PS-DVB resin 

are summarized in Table 4.10. The data show that the product 2A has BET surface 

area of 5.8 m2g-1 and average pore volume of 9.8 × 10-3 cm3 g-1. It was found that 

product 2A exhibits the higher BET surface area and average pore volume compared 

to the synthesized PS-DVB resin (Table 4.10). This result suggests that the product 

2A increases the BET surface area and average pore volume of native PS-DVB. This 

can be proven with the significance change in the BET surface area and average pore 

volume of the synthesized PS-DVB resin after modification with acetyl chloride 

during the Friedel Crafts acylation reaction.  
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(a) (b)

(c) (d)

(e) (f) 

 

Figure 4.8 (a) Nitrogen adsorption isotherm and (b) average pore size distribution of 
the product 2A; (c) Nitrogen adsorption isotherm and (d) average pore size 
distribution of the product 2B; (e) Nitrogen adsorption isotherm and (f) average pore 
size distribution of the product 2C  
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The adsorption/desorption isotherm of the product 2B (Figure 4.8c) was a 

type IV isotherm with a type H3 hysteresis loop indicating the presence of slit-shaped 

pores. The presence of the loop in the high relative pressure region shows that the 

material is essentially mesoporous, with a minimal macropore contribution. The pore 

shape of the product 2B was clearly different from that of the synthesized PS-DVB 

resin and the product 2A. 

 

The pore size distribution of the product 2B is shown in Figure 4.8d. It was 

found that the distribution of pores for the product 2B was covered in the range of 

30-1000 Å. This result suggests that the presence of different sizes of mesopore and 

small amount of macropore in the product 2B. It is also recognized that the product 

2B was distributed in wide range of mesopore compared to the product 2A. In the 

present work, the distribution of pores for the product 2A resin was covered in the 

range of 20.0-700.0 Å (Figure 4.8b). 
 
 
 

Table 4.10: Pore and surface characteristic of modified-PS-DVB resin 
 

Resin BET surface 
area (m2g-1) 

Total pore 
volume 
(cm3g-1) 

Average 
pore 

width (Å) 

Type  
of pore 

Product 2A 5.8 9.8 × 10-3 67.9 Meso & 
macro 

Product 2B 20.2 5.6 × 10-2 110.9 Meso & 
macro 

Product 2C 227.8 2.8 × 10-1 48.5 Meso 
 

 

The product 2C had type IV isotherm with an intermediate type H3-H2 

hysteresis loop. This isotherm is depicted in Figure 4.8e. The type IV isotherm is 

associated with a material containing mesopores. The type H2 hysteresis loop is a 

typical of inorganic oxides and usually indicates that the adsorbent contains a wide 

pore size distribution with pores containing wide bodies and narrow necks, the so-

called ‘ink bottle’ shape pores. A type H3 hysteresis loop is usually associated with 

the material that has been formed from the agglomeration of small spheres in a 
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regular array yielding a uniform and narrow pore size distribution.  

 

The resulting pores are usually consisting of slit shape pore. A hysteresis loop 

intermediate between H2 and H3 indicates a combination of the two types of pores, 

i.e. ‘ink bottle’ shaped pores and slit shaped pores. The change in shape of the 

hyteresis loop for the product 2B to the product 2C from a type H3 to a type H2 

indicates that the process of particle sintering and crystallization started to build the 

necks of the narrow pores.  

 

From Figure 4.8f, it was found that the distribution of the pores for product 

2C resin was covered in the range of 30.0-70.0 Å. These suggest that only mesopore 

present in the product 2C. The data obtained from nitrogen gas adsorption (Table 

4.10), the product 2C has the BET surface area of 227.8 m2 g-1, average pore volume 

of 2.8 × 10-1 cm3g-1 and average pore diameter of 48.5 Å. The results in Table 4.10 

illustrate that the BET surface areas increase as the modified steps started from the 

product 2A resin followed by the product 2C. As expected, the BET surface area of 

product 2A is greater than the synthesized PS-DVB resin probably due to the 

presence of product 2A during the modification process. It is also recognized that the 

BET surface area of the product 2B increased may be due to the Grignard agent 

(methyl magnesium chloride) during the Grignard reaction.  

 

In other words, it can be proven that the product 2A, product 2B and product 

2C show a significance change in the BET surface area, average pore volume and 

average pore diameter after modification with zirconia. The properties changed 

probably because of the effect of heat during the Friedel Crafts acylation and 

Grignard reactions. It also probably affected by the presence of zirconia oxide in the 

resins during the modification process of PS-DVB resin. Therefore, it could be 

concluded that the modification of synthesized PS-DVB resin with zirconyl chloride 

did significantly affect the surface properties of the sample. 
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4.5 Preparation of p-2-zirconyl-2-methylpropyl-PS-DVB chloride 

 

 

The polymer adsorbent of p-2-zirconyl-2-methylpropyl-PS-DVB chloride 

resin was prepared using three steps polymer analogous reaction. It was coded as 

product 3C. At first, a ketone group CH3-COCH2- was introduced into the 

synthesized PS-DVB using Friedel Crafts acylation reaction with chloroacetone with 

the presence of AlCl3 as Lewis acid catalyst. The ketone functional resin showed an 

intense carbonyl stretching at 1711.7 cm-1 in the FTIR spectrum. It produced p-2-

propanoyl-PS-DVB and coded as product 3A. p-2-propanoyl-PS-DVB was then 

converted to product 3B (p-2-hydroxyl-2-methylpropyl-PS-DVB) using Grignard 

reaction with methyl magnesium chloride, followed by hydrolysis. The p-2-

hydroxyl-2-methylpropyl-PS-DVB was allowed to react with zirconyl chloride 

octahydrate (ZrOCl2.8H2O) in acetonitrile-water (1:1) mixture to afford the polymer 

p-2-zirconyl-2-methylpropyl-PS-DVB chloride. The reaction sequence is depicted in 

Figure 1.1c. 

 

 

 

4.6 Characterization of p-2-zirconyl-2-methylpropyl-PS-DVB chloride 

 

4.6.1 Fourier Transform Infrared (FTIR) Spectroscopy 

 

 

FTIR analysis of product 3A in Figure 4.9a shows its peaks at 3000.2 cm-1 

and 3024.2 cm-1 which are assigned to C-Halkanes and C-Haromatic stretching, 

respectively. Polystyrene functional group shows its stretching absorbance at 1942.2 

cm-1, 1872.8 cm-1, 1799.5 cm-1 and 1775.3 cm-1. The C=Caromatic stretching were 

absorbed at 1599.8 cm-1 and 1490.9 cm-1. The presence of a C=O functional group in 

the modified phase is proven by a strong band at 1711.7 cm-1 on spectrum. The para- 

and mono-substituted benzene rings were observed at 750.3 cm-1 and 696.3 cm-1, 

536.2 cm-1 respectively. 
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Figure 4.9 FTIR spectra (a) product 3A, (b) product 3B and (c) product 3C 
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The absorption pattern of acetyl resin FTIR spectrum (Figure 4.9a) was 

identical to synthesized PS-DVB resin FTIR spectrum (Figure 4.1a) and it showed a 

strong absorption at 1711.7 cm-1, which indicate the existence of C=Ostretching. It 

means that the modification of synthesized PS-DVB resin with chloroacetone is 

successfully achieved. The FTIR spectrum showed that there was a similarity in the 

absorbed frequencies between synthesized PS-DVB resin and product 3A. 

 

The FTIR analysis of Product 3B in Figure 4.9b shows its peaks at 2931.6 

cm-1 and 2840.0 cm-1 which are assigned to C-Halkanes stretching. The C=Caromatic 

stretching is absorbed at 1563.2 cm-1 and 1416.6 cm-1. The presence of the –OH 

functional group in the modified phase is proven by a strong band at 3419.6 cm-1 on 

spectrum. The para- and mono-substituted benzene rings were observed at 575.7 cm-1 

and 430.1 cm-1. 

 

FTIR spectrum obtained from product 3C  showed that the sample gave 

similar adsorption bands with product 3B except for the spectrum at product 3C 

exhibits an extra broad band may be attributed to the stretching vibration of the –OH 

group present in the sample. Table 4.11 summarizes the FTIR absorption data 

incorporating functional groups from the FTIR spectra of PS-DVB-modified resin.  

 

 

 

Table 4.11: Absorbance signals for the functional groups modification PS-DVB 
using chloroacetone 
 

Resin 
Product 3A Product 3B Product 3C Functional  

Groups 
Wave number, cm−1

OH 3435.0 (l) 3419.6 (h) 3413.8 (h) 
=C-Haromatic 3024.2 - - 
-CHsaturated 3000.2, 2851.6 2931.6, 2840.0 2954.7 
C=O 1711.7 1680.8 - 
C=Caromatic 1599.8, 1490.9 1563.2, 1416.6 1575.5 
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4.6.2 Scanning Electron Microscopy Analysis 

 

 

The product 3A resin shows significant changes in their physical properties, 

compared to the synthesized PS-DVB resin (Figure 4.10a). The chemical or physical 

interaction may occur between chloroacetone and synthesized PS-DVB resin during 

the Friedel Crafts acylation reaction. It is probably due to the reaction condition in 

the reaction. The product 3A particles fused into large units, known as aggregates 

and eventually these aggregates flocculate to form agglomerates.  

 

 In addition, the morphology of the particles formed showed that they are 

relatively irregular, poli-disperse and split neatly into several groups. In the case of 

the surface of particles (Figure 4.10b), after 5000× of magnification the surface of 

the acetone resin particles looks like a sticky surface and similarly coated by a new 

layer. It is probably an effect from the heating process during the Friedel Crafts 

acylation reaction. From this figure, it can be expected that the change of surface 

morphology has occurred from homogeneous surface of the PS-DVB resin to 

heterogeneous surface of the product 3A and it clearly shows the formation of some 

cracks on the surface. 

 

 Product 3B was also characterized using SEM and it was noticed that 

substantial enlargement occurred while preparing the sample. A typical scanning 

electron micrograph for this solid is shown in Figure 4.10c and corresponds to the 

condition of the material after Grignard reaction process. This particular micrograph 

illustrates the irregular nature of the solid as initially prepared and supports the view 

that it is in different size mono-disperse. A spherical morphology was also observed, 

although in this case some debris appeared on the particle. The morphology similar 

to that shown in Product 3B (Figure 4.10c) was observed. The new layer on the 

particle was also clearly recognizable but, as in the previous explanation, it was not 

possible to determine the thickness.  

 

 The morphology of the surface of product 3B is irregular (Figure 4.10d). The 

surface properties were altered due to the presence of the agent of methyl magnesium 

chloride or thorough refluxing process in Grignard reaction. From Figure 4.10, it was 
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found that the particle size for product 3A, product 3B and product 3C were about 

85.2, 94.2 and 109.8 μm, respectively. This result reflects that the particle size of the 

modified-PS-DVB resin is dramatically increased by the modification process steps 

of the synthesized PS-DVB resin.  

 

In the micrograph of product 3C particles (Figure 4.10e), morphology similar 

to that shown in product 3C (Figure 4.6e). These observations indirectly imply that a 

reflux process change the morphology of Product 3B to Product 3C, which alter the 

mechanical properties. The arrangement of the particle is random and does not show 

any specific pattern. The morphology of the particles formed showed that they are 

irregular. However, the morphology of the surface of Product 3C does not show any 

specific pattern (Figure 4.10f). Thus, it is suggested that the mixing process 

interrupted the relatively ordered arrangement of multiplets, resulting in scattering 

centers of various scattering intensities at varying distances. This formation is 

supportive for the morphological changes upon blending in the present work 

(Coutinho et al., 2004). 

 

Based on these initial experiments we propose that it could be due to the 

difference in viscosity of the two kinds of composite during the polymerization 

process. Low energy sites are probably formed around all the surface of the high 

viscosity beads and facilitate the sorption of the iron particles. On the other hand, 

only few sites of low energy could be observed on the surface of the low viscosity 

ones. In this case, the particles seemingly prefer to form in clusters arrangement 

instead of nucleating (Coutinho et al., 2004; Maria et al., 2003a and 2003b; Huang 

and Tang, 2004). 
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(a) (b)

(c) (d)

(e) (f) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.10 SEM micrographs of modification PS-DVB using chloroacetone: (a) 
product 3A; magnification 50× and (b) magnification 5000× (c) product 3B; 
magnification 50× and (d) magnification 5000× (e) product 3C; magnification 50× 
and (f) magnification 5000× 
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4.6.3 Thermogravimetry Analysis 

 

 

he thermogravimetric analysis result for modified-PS-DVB resin at various 

temperature ranges are listed in Table 4.12. Temperature range less than 135.5°C and 

temperature range 135.5-326.6°C show that the Product 3B (19.0%) and Product 3A 

(24.8%) are the highest weight loss percentage compared to the other resins, 

respectively. These results reflect that the loss in weight observed at the temperature 

range less than 135.5°C is probably due to the removal of the loosely bound water 

from the resin while the loss in weight at temperature range 135.5-326.6°C 

corresponds to the removal of more strongly bounded water derived from hydroxyl 

groups and may also due to the decomposition of low volatile groups. The result 

indicates that the both resin may have a high degree of water contained in their 

structure compared to the other resins.  

 

Table 4.12 also indicates that the maximum weight loss for most of the 

sample occurred at temperature range 326.6-517.6°C except for Product 3A, which 

occurs at temperature range of 517.6-708.6°C. The maximum weight loss percentage 

for Product 3A, Product 3B, and Product 3C are observed at temperature range of 

517.6-708.6°C (32.98%), temperature range 326.6-517.6°C (22.5%), and 

temperature range 326.6-517.6°C (23.1%), respectively. Meanwhile, the weight lost 

occurred at temperature range 326.6-517.6°C, 517.6-708.6°C and 708.6-899.7°C 

arises from further decomposition of the high volatile groups in the resin. The result 

demonstrates that the maximum weight loss percentage of the resins in Table 4.12 in 

accordance as Product 3A < Product 3B < Product 3C. 

 

The residue percentage for Product 3A, Product 3B and Product 3C when the 

temperature reaches 900°C are 7.4%, 25.1%, and 57.7%, respectively. The 

percentage of residue of Product 3C is higher (57.7%) than the other resins. The total 

value of the percentage of weight loss of Product 3C is 42.4%. This result is probably 

affected by the presence of zirconia oxide in the resin during the modification 

process of PS-DVB resin. The properties changed probably because of the effect of 

heat during the Friedel Crafts acylation and Grignard reactions. The result 
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demonstrates that the arrangement of the thermal stability of the resins in Table 4.12 

in accordance as product 3A < product 3B < product 3C. 

 
 
Table 4.12: Thermogravimetric analysis results of modified PS-DVB using 
chloroacetone at various temperature ranges 
 

% weight loss Resin 
< 135.5 135.5-

326.6 
326.6-
517.6 

517.6-
708.6 

708.6-
899.7 

Residue (%) 

Product 3A 9.4 24.8 23.9 33.0 1.5 7.4 
Product 3B 19.0 21.1 22.5 11.2 1.2 25.1 
Product 3C 4.1 5.1 23.1 3.3 6.7 57.7 

 
 

Figure 4.11 shows the graph of weight loss percentage of modification PS-

DVB using chloroacetone (product 3A, product 3B and product 3C) against various 

temperature stages. The graph presents the percentage of weight loss for all resins 

that show a similar thermal stability distribution pattern. At the temperature stage 

517.6-708.6°C the weight loss percentage has increased probably due to the 

decomposition of the most volatile organic compounds exist in the resins. At this 

stage, it shows that the weight loss percentage of acetone resin is the highest 

(33.0%). The results indicate that at temperature range 326.6-517.6°C, the modified 

resins are more stable than unmodified resins (Section 4.2.3). The results are 

probably affected by the chloroacetone reagents in the Friedel Crafts acylation.  

 

 

 

 

 

 

 

 

 

 

 

0
10
20
30
40
50
60
70
80
90

100

< 135.5 135.5-326.6 326.6-517.6 517.6-708.6 708.6-899.7
Temperature (oC)

%
 w

ei
gh

t l
os

s

   -2-propanoyl- PS-DVB
   -2-hydroxyl-2-methylpropyl-PS-DVB
   -2-zirconyl-2-methylpropyl-PS-DVB chloride

p 
 

p 
 

p

Figure 4.11 Graph of weight loss percentage against temperature stage for modified-
PS-DVB resins 
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4.6.4 Nitrogen Adsorption and Desorption Analysis 

 

 

The nitrogen adsorption isotherm for product 3A is shown in Figure 4.12a. 

The nitrogen adsorption and desorption isotherms for product 3A and synthesized 

PS-DVB resin (Figure 4.4a) have a similar pattern, with low BET surface area. 

Figure 4.12a shows the nitrogen isotherm obtained from acetone resin was not well 

formed. Therefore, the type of pores in the acetone resin was a mixture of mesopore 

and macropore (Figure 4.12b). This result suggested that the acetone resin did not 

affect much on the surface properties of the studied phase. 

 

The pore size distribution of the product 3A is shown in Figure 4.12b. It was 

found that the distribution of pore size for the product 3A resin was covered in the 

range of 20.0-700.0 Å. This result suggests the presence of different sizes of 

mesopore and macropore in the product 3A. In the present work, the distribution of 

pores size for the synthesized PS-DVB resin was covered in the range of 20.0-40.0 Å 

(Figure 4.12d). From the results, it can be mentioned that the distribution of pores 

size for synthesized PS-DVB resin was changed probably due to the effect of the 

Friedel Crafts acylation reaction or the presence of chloroacetone reagent. The 

adsorption/desorption isotherm of the product 3B (Figure 4.12c) was a type IV 

isotherm with a type H3 hysteresis loop indicating the presence of slit-shaped pores. 

The presence of the loop in the high relative pressure region shows that the material 

is essentially mesoporous, with a minimal macropore contribution. Regarding the 

result, the pore shape of the product 3B was clearly different from the synthesized 

PS-DVB resin and the product 3C. The pore size distribution of the product 3B is 

shown in Figure 4.12d. It was found that the distribution of pores size for the product 

3B was covered in the range of 300-1000 Å. This result suggests the presence a 

mixture of mesopore and minimal macropore consists in the product 3B. It is also 

recognized that the product 3B was distributed in the wide range of mesopore 

compared to the acetone resin. In the present work, the distribution of pores size for 

the acetone resin was covered in the range of 20.0-700.0 Å (Figure 4.12b). 

 

The nitrogen isotherm of the product 3C was a type IV isotherm with a type 

H3 hysteresis loop indicating the presence of slit-shaped pores. The type IV isotherm 
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is associated with a material containing mesopores. This isotherm is depicted in 

Figure 4.12e. The presence of the loop in the high relative pressure region shows that 

the material is essentially narrow and wide mesoporous. Regarding the result, the 

pore shape of the product 3B was clearly different from that of the synthesized PS-

DVB resin and the product 3A. A type H3 hysteresis loop is usually associated with 

material that has been formed from the agglomeration of small spheres in a regular 

array yielding a uniform and narrow pore size distribution. From Figure 4.12f, the 

product 3C was found that the distribution of the pores size was covered in the range 

of 30-700 Å. These suggest the presence of mixture narrow and wider mesoporous in 

the product 3C. 

 

The nitrogen adsorption data of the synthesized PS-DVB resin (Table 4.4) 

was used as a reference to compare the types of pore, surface area and pore volume 

with the modified-PS-DVB resin (Table 4.13). The results in Table 4.16 illustrate 

that the BET surface areas increase as the modified steps started from the p-2-

propanoyl-PS-DVB resin followed by the product 3C. As expected, the BET surface 

area of acetone resin is greater than the synthesized PS-DVB resin probably due to 

the presence of chloroacetone during the modification process.  

 

It is also recognized that the BET surface area of the product 3B increased 

due to the Grignard agent (methyl magnesium chloride) during the Grignard reaction. 

In other words, it can proves that the product 3A, product 3B and product 3C show a 

significance change in the BET surface area, average pore volume and average pore 

diameter after modification with zirconia. The properties changed probably because 

of the effect of heat during the Friedel Crafts acylation and Grignard reactions. It also 

probably affected by the presence of zirconia oxide in the resin during the 

modification process of PS-DVB resin. Therefore, it could be concluded that the 

modification of synthesized PS-DVB resin with zirconyl chloride did significantly 

affect the surface properties of the sample. 
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(c) (d) 

(e) (f) 

 

 
Figure 4.12 (a) Nitrogen adsorption isotherm and (b) average pore size distribution 
of the product 3A; (c) Nitrogen adsorption isotherm and (d) average pore size 
distribution of the product 3B; (e) Nitrogen adsorption isotherm and (f) average pore 
size distribution of the product 3C 
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Table 4.13: Pore and surface characteristic of PS-DVB-modified resin 
 

Resin BET surface  
area (m2g-1) 

Total pore  
volume (cm3g-1) 

Average pore 
width (Å) 

Type of 
pore 

Product 3A 4.4 1.1 × 10-2 97.2 Meso 
Product 3B 10.5 4.0 × 10-2 151.5 Meso 
Product 3C 150.1 2.1 × 10-1 32.0 Meso 

 

 

 

 

4.7 Application of PS-DVB and Modified PS-DVB in Solid Phase Extraction 

 

 

In this research, solid phase extraction (SPE) has been carried out to observe 

the adsorption properties of the synthesized PS-DVB and modified PS-DVB 

adsorbents. The synthesized and modified PS-DVB adsorbents were compacted into 

separate SPE columns which were then tested for the separation of several test 

compounds. The efficiency of the resins in the SPE analysis is determined through 

comparison of the recovery percentage of the test compound from aqueous solution. 

The SPE analysis results for the different types of modified PS-DVB resins were 

compared. 

 

 

 

 

4.7.1 Retention Times and Response Factors of Analytes 

 

 

A solution containing the four test compounds: 2-chlorophenol, nitrobenzene 

and propiophenone, and internal standard butyrophenone were injected into the GC-

FID. The chromatogram obtained (Figure 4.13) show that the compounds were well 

separated. The peaks were identified based on the comparison of retention time with 

those obtained for individual injection of the compounds.  
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(a) (b) (c) (d) (e) 

Figure 4.13 Gas chromatogram of the separation of test compounds. Peaks:              
(a) methanol, (b) 2-chlorophenol, (c) nitrobenzene, (d) propiophenone, and             
(e) butyrophenone. Chromatographic condition : Ultra-1 column 932530 (30 m × 250 
μm × 0.20 μm), Carrier gas:  Helium; flow rate: 1.1 mL min-1; pressure: 75 kpa; 
detector: FID; injector temperature: 250°C; detector temperature: 310°C; initial 
temperature: 100°C with a hold time of 2 min; final temperature: 140°C, linear 
temperature programmed at 5°C min-1 rise.  

 

 

The elusion order under the chromatographia condition is methanol (2.7 min), 

2-chlorophenol (4.2 min), nitrobenzene (5.1 min), propiophenone (6.2 min) and 

butyrophenone (7.7 min). The peak area for the compounds was used to calculate the 

response factor (F). The GC-FID analysis for each compounds were carried out in 

triplicate to determine the reproducibility of the analysis. Table 4.14 shows the 

response factors for the test compounds and internal standard. 

 

 

Table 4.14: Retention times and response factors (F) of the solvent, test compounds 
and internal standard 
 

Analytes Retention Time (min) Response Factors (F) 
Methanol 2.7 - 
2-chlorophenol 4.2 3.5 × 10-2

Nitrobenzene 5.1 3.5 × 10-2

Propiophenone 6.2 4.9 × 10-2

Butyrophenone 7.7 5.2 × 10-2
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4.8 Effect of eluant  

 

 

In order to observe the influence of eluant towards the percentage recovery 

for each test compound. Three organic eluant were used, namely, methanol, 

acetonitrile and ethyl acetate. Percentage recovery for analytes is shown in Table 

4.15. The results indicate that PS-DVB resin, product 2A, and product 3A give 

higher percentage recovery for 2-chlorophenol, nitrobenzene and propiophenone 

when methanol was used as elution solvent. However, the result for product 2B, 

product 3B, product 2C and product 3C exhibited higher recovery percentages for all 

test compounds when ethyl acetate was used as eluant. It was found that the SPE 

column packed with PS-DVB resin was less efficient with recoveries between 9.1%-

63.4% with the ethyl acetate as eluant. The adsorption interaction between PS-DVB 

sorbent with test compounds is based on Van der-Waals interactions between the 

hydrophobic parts of the molecule with the non-polar matrix and π-π interactions 

between the benzene ring of sorbent with the test compounds. 

 

 

 

 

4.8.1 Methanol as eluant 

 

 

The results of the percentage recovery of the test compound with methanol as 

the solution solvent for the PS-DVB resin and modified PS-DVB are given in Figure 

4.14. This shows that a methanol is a better eluant for polar compounds which will 

retain in the PS-DVB resin, product 2A and product 3A such as nitrobenzene and 

propiophenone. This is due to the hydroxyl group in the methanol that can increase 

the dilution energy for analyte in PS-DVB resin, product 2A and product 3A.  
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Table 4.15: Percentage recovery of analytes way methanol, acetonitrile and ethyl 
acetate as eluant for different adsorbents: synthesized PS-DVB, product 2A, product 
3A, product 2B, product 3B, product 2C and product 3C 

 

Adsorbent 

PS-
DVB 

Product 
2A 

Product 
3A 

Product 
2B 

Product  
3B 

Product 
2C 

Product  
3C 

Eluant  

Recovery (%) 

2-Chlorophenol       

Methanol 
9.1 

(1.3) 
58.7 
(5.0) 

17.0 
(3.2) 

5.8 
(2.6) 

3.9 
(0.5) 

9.0 
(1.4) 

11.8 
(0.3) 

Acetonitrile 
16.2 

(13.5) 
29.9 
(2.9) 

16.1 
(1.2) 

5.9 
(1.4) 

4.1 
(1.9) 

13.1 
(1.9) 

10.9 
(4.4) 

Ethyl Acetate 
24.9 
(7.2) 

19.4 
(4.0) 

8.5 
(0.9) 

17.9 
(2.2) 

13.4 
(1.4) 

18.9 
(0.5) 

24.4 
(0.4) 

Nitrobenzene       

Methanol 
34.6 
(2.4) 

87.3 
(0.8) 

66.1 
(1.9) 

22.4 
(0.7) 

31.3 
(6.4) 

37.7 
(7.6) 

39.1 
(1.4) 

Acetonitrile 
63.4 
(5.6) 

37.6 
(3.6) 

35.7 
(1.2) 

21.0 
(1.5) 

31.2 
(1.2) 

38.4 
(1.0) 

36.9 
(1.8) 

Ethyl Acetate 
20.7 

(10.3) 
15.8 
(9.2) 

23.2 
(4.3) 

46.1 
(1.0) 

51.3 
(0.2) 

41.9 
(0.2) 

48.3 
(0.6) 

Propiophenone        

Methanol 
37.3 
(1.1) 

79.8 
(0.5) 

56.6 
(2.1) 

26.5 
(0.6) 

36.2 
(1.3) 

30.8 
(0.3) 

36.3 
(0.3) 

Acetonitrile 
36.6 
(5.5) 

34.0 
(4.1) 

33.05 
(1.45) 

16.0 
(0.5) 

27.6 
(1.5) 

32.3 
(0.5) 

35.2 
(1.9) 

Ethyl Acetate 
14.6 
(3.9) 

11.0 
(1.9) 

53.5 
(1.9) 

37.8 
(1.1) 

45.7 
(0.3) 

36.4 
(0.2) 

45.4 
(0.4) 

* ( ) RSD base on nine injections 

 

 

 

The results show that product 2A gives a high recovery percentage for 

nitrobenzene, 2-chlorophenol and propiophenone compared to other resins. This may 

be caused by the presence of carbonyl groups in the product 2A that can elevate the 

adsorption rate during the extraction process. However, the position of the carbonyl 

group in the resin structure also gives a slight influence to the adsorption rate. This 

can be proven by the ability of the p-2-propanoyl-PS-DVB to adsorb 30% less of test 
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compound compared to the product 2A. The position of the carbonyl groups which 

are directly bonded to the PS-DVB aromatic rings is expected have the ability to 

elevate the adsorption of the analytes. In contrast to the acetone resin, there are a 

number of –CH2 groups located in between the carbonyl groups and the aromatic 

rings. 
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Figure 4.14 Percentage recoveries of analytes extracted through different types of 
SPE adsorbent using methanol as the eluant 
 

 

The results in Figure 4.14 show that product 2A and product 3A give higher 

recovery percentages for each analyte compared to product 2B and product 3B, 

respectively. The recovery percentage of both of the resins share a similar pattern, 

where propiophenone has a higher percentage and 2-chlorophenol has a lower 

percentage compared to nitrobenzene. It is expected that the presence of the hydroxyl 

group in product 2B  and product 3B has lowered the ability of the resins to adsorb 

the analytes in the methanol condition. However, the percentage recovery of 

propiophenone in the product 3B is 36.19% which is higher than the 26.5% recovery 

percentage of the product 2B (Figure 4.15). This may be caused by the position of 

the hydroxyl groups in the product 3B which is farther apart from the aromatic PS-
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DVB rings. The result of this study also show an increase in the percentage recovery 

of nitrobenzene in product 2B and product 3B compared to product 2C and product 

3C, respectively. This may be caused by the adsorbent character those changes from 

the hydroxyl group –OH of the zirconia group that is bonded to the aromatic ring. 

 

 

 

4.8.2 Acetonitrile as eluant 

 

 

The results of the recovery percentage of the test compound with acetonitrile 

as the solvent for the PS-DVB resin and modified PS-DVB are shown in Figure 4.15. 

The results show that PS-DVB resin gives a high recovery percentage for 

nitrobenzene compared to other resins. However, the recovery percentages of 

propiophenone for all resins are similar. This may be caused by the effect of the 

some functional group in acetonitrile.  
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Figure 4.15 Percentage recoveries of analytes extracted through different types of 
SPE columns using acetonitrile as the eluant 
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4.8.3 Ethyl acetate as eluant 

 

 

Figure 4.16 shows the percentage recovery of the test compounds with ethyl 

acetate as the eluant for the PS-DVB resin and modified PS-DVB. The result shows 

an increase in the recovery percentage of nitrobenzene and propiophenone in 

modified PS-DVB compared to unmodified PS-DVB resin. It is expected due to the 

presence of some functional group in both resin and test compounds.  
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Figure 4.16 Percentage recoveries of analytes extracted through different types of 
SPE columns using ethyl acetate as the eluant 
 

 

 



 
 
 
 

CHAPTER 5 

 

 

 

 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY 

 

 

 

 

5.1 Conclusions 

 

 

In this research, PS-DVB adsorbents have been successfully synthesized and 

subsequently modified. The effects of reaction time, stabilizer and polymerization 

method were investigated to determine suitable set of conditions to obtain PS-DVB 

resins with excellent physical properties. The optimum reaction time for 

polymerization was for 20.0 h at 70.0°C. The results showed that synthesized PS-

DVB using poly(vinyl alcohol) as the stabilizer has the BET surface area of 1.2 m2/g 

and total pore volume of 1.2 × 10-3 cm3/g and it is a better stabilizer than poly(vinyl 

pyrrolidone). The surfactant polymerization technique showed that the pore diameter 

(68.6 Å) of this sample is lower compared to the seeding polymerization technique.  

 

Six different modified PS-DVB adsorbents namely, p-ethanoyl-PS-DVB, p-2-

hydroxyl-2-methylethyl-PS-DVB, p-2-zirconyl-2-methylethyl-PS-DVB chloride, p-

2-propanoyl-PS-DVB, p-2-hydroxyl-2-methylpropyl-PS-DVB, and p-2-zirconyl-2-

methylpropyl-PS-DVB chloride have been completely characterized by using FTIR, 

SEM, TGA and Nitrogen adsorption. 
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This is evidence from the FTIR spectrum of synthesized PS-DVB resin that 

has similar adsorption pattern compared to the FTIR spectrum of commercial PS-

DVB resin. For p-ethanoyl-PS-DVB and p-2-propanoyl-PS-DVB the presence of a 

C=O functional group in the modified phase was proven by strong band at 1678.9 

cm-1 and 1711.1 cm-1, respectively. This indicated the respective incorporation of the 

acetyl chloride and chloroacetone to the PS-DVB resin respectively.  

 

In addition, the similarities between the spectra of p-ethanoyl-PS-DVB and p-

2-propanoyl-PS-DVB indicate that the basic structural units of synthesized PS-DVB 

resin are preserved in the polymers. The FTIR analysis of p-2-hydroxyl-2-

methylethyl-PS-DVB and p-2-hydroxyl-2-methylpropyl-PS-DVB show strong 

absorbent bands at 3430.1 cm-1 and 3419.6 cm-1, respectively, which are assigned to 

the presence of -OH functional group in the modified phase. The scanning electron 

microscopy characterization, the micrograph showed that the synthesized PS-DVB 

resin exhibits somewhat uniform size and distributed in the wide range of particle 

size which is covered from 84.0-162.2 μm.  

 

In thermogravimetry analysis, the result represents the percentage weight loss 

for synthesized and commercial PS-DVB resins that show similar thermal stability 

distribution patterns where the percentage of weight loss at temperature stage less 

than 135.5°C and 135.5-326.6°C are lower than temperature stage of 326.6-517.6°C. 

The percentage weight loss has increased probably due to the decomposition of the 

most volatile organic compounds exist in the resins. This stage shows that the 

percentage weight loss of synthesized PS-DVB resin is slightly higher (73.5%) 

compared to the commercial PS-DVB resin (56.6%).  

 

The result indicate that the synthesized PS-DVB resin have slightly higher 

BET surface area; average pore volume and average pore diameter compared than 

the commercial PS-DVB resin. In general, the modified PS-DVB resins were 

mesoporous. Therefore, it could be concluded that the modification of synthesized 

PS-DVB resin with zirconyl chloride did significantly affect the surface properties of 

the sample. 
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The GC-FID chromatogram shows that the earliest retention time of 2.7 min 

was referred to methanol, followed by 2-chlorophenol, nitrobenzene, propiophenone 

and lastly, butyrophenone, with the retention time at 4.2 min, 5.1 min, 6.2 min and 

7.7 min, respectively. The GC-FID analysis was repeated three times for each sample 

to determine the average of peak area reproducibility of the analysis. The results 

show the peak areas and response factors for 2-chlorophenol, nitrobenzene, 

propiophenone and butyrophenone are 3.5 × 10-2, 3.5 × 10-2, 4.9 × 10-2and 5.2 × 10-2, 

respectively. 

 

Three types of organic elution solvent are used which are methanol, 

acetonitrile and ethyl acetate in order to observe the influence of elution towards the 

recovery percentage for each test compound. It was also found that methanol is a 

good eluting solvent to elute polar analytes retained in p-ethanoyl-PS-DVB sorbent. 

It is because methanol consists –OH groups, which can increase the solubility of 

analytes during the elution step, therefore giving higher recoveries compare to 

extraction using other adsorbents.  

 

The result shows that p-ethanoyl-PS-DVB gives a high recovery percentage 

for nitrobenzene, 2-chlorophenol and propiophenone compared to other resins. This 

may be caused by the presence of carbonyl groups in the acetyl resin and that can 

elevate the adsorption rate during the extraction process. However, the position of 

the carbonyl group in the resin structure also gives a slight influence to the 

adsorption rate. This can be proven by the ability of the p-2-propanoyl-PS-DVB to 

adsorb 30% less of test compound compared to the p-ethanoyl-PS-DVB. The 

position of the carbonyl groups which are directly bonded to the PS-DVB aromatic 

rings is expected to have the ability to elevate the adsorption of the analytes. 
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5.2  Suggestions for Further Study 

 

 

SPE with chemically modified sorbents has been carried out in the off-line 

and on-line modes by León-González and Pérez-Arribas (2000). In this research, 

SPE was carried out in the off-line mode. So, further studies could be conducted to 

carry out SPE with modified and unmodified PS-DVB sorbents in the on-line mode. 

On-line procedures use an extraction sorbent in a pre-column. The methods, which 

combine SPE with HPLC, are the most frequently used, mainly to determine polar 

compounds in water. In the on-line procedures, there is no sample manipulation 

between preconcentration and analysis, so loss and contamination risks are avoided, 

and detection limits and reproducibility values may be better.  

 

In this work, the performances of the modified and unmodified PS-DVB 

sorbents in home made SPE column were determined and compared. Further studies 

could be conducted for the analysis of breakthrough curves to determine the 

efficiency of these adsorbents. As described previously, the breakthrough volume or 

retention volume for a particular analyte is a good indication of the extraction ability 

of the adsorbents (Dumont and Fritz, 1995). It corresponds to the aqueous sample 

volume that can be percolated though the SPE column without any loss of the 

analyte. It also means that the whole amount of analyte percolated is trapped by the 

sorbent.  
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	CHAPTER 2 
	 
	 
	 
	 
	Particles of zirconia coated with polystyrene were used to separate several mixtures of basic compounds with mobile phase containing HNO3 or NaOH. The separations of acidic compounds showed lower efficiency even in the presence of an acidic mobile phase. 
	 
	 
	 
	2.4.2 Advantages of SPE  
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	3.3 Preparation of Adsorbents 
	3.3.1 Preparation of PS-DVB resin 
	 
	PS-DVB resin was prepared using the method of Mahdavian and Khoee (2002) using a reaction vessel equipped with thermometer and nitrogen gas inlet (Figure 3.3). The reaction vessel was placed in an oil bath set at 70°C. 1.0 g poly vinyl alcohol (PVA) (as stabilizer) dissolved in 500 mL of distilled water were added to the reactor and stirred until dissolution was complete. The solution was diluted to 1 L using distilled water and after the solution temperature reached 70°C (isothermal conditions), the reactor was purged with nitrogen gas and 9.6 g divinyl benzene (DVB), 120 g styrene and 1.2 g benzoyl peroxide (BPO) were premixed and added to the reactor. The reaction mixture was mechanically stirred for 15 h and then it was filtered off, washed with distilled water and dried. The beads obtained were sieved to separate the 200-400 mesh portion. This part was suspended in 10% aqueous solution of HCl (v/v) and stirred for 1 h at 50°C. It was then filtered, washed with distilled water and dried at 80°C for 12 h. 
	 
	Figure 3.4 System for Friedel Crafts acylation of PS-DVB 


	Vot74091 Vol2-Chp 4.pdf
	Resin
	Resin
	Analytes
	 


	Vot74091 Vol2-Chp 5.pdf
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