

PENGHARGAAN

Segala puji bagi Allah pemilik seluruh alam. Tuhan yang menjadikan manusia dan mengangkat kedudukan umat sebagai khalifah di atas muka bumiNya setaaa dikurniakan akal fikiran untuk meneroka ilmu dan isi alam bagi membuktikan kekuasaanNya. Semoga ilmu ini dapat dimanfaatkan oleh seisi alam.

Ketua penyelidik dan rakan-rakan yang terlibat secara langsung dengan projek inigin merakamkan jutaan terima kasih kepada RMC atas pembiayaan untuk menjalankan projek ini.

Pencapaian objektif dan matlamat serta kejayaan yang telah diperolehi oleh projek ini adalah juga hasil dorongan dan sumbangan dari beberapa pihak termasuklah: P. M. Dr. Mohd. Ambar Yarmo (UKM), Puan Mariam Hassan, En. Mokhtar Abu Bakar, En. Mohd. Nazri Zainal, En. Kadir Abd. Rahman, En. Ibrahim, En. Jaafar Raji (Jabatam Fizik), Pn. Sariah Pin, En. Zainal Abidin Abbas dan En. Jefri (Fakulti Mekanikal).

Akhir sekali, kami ingin mengucapkan ribuan terima kasih kepada semua pihak yang terlibat secara langsung atau tidak langsung dengan projek ini.

ABSTRAK

Oksida timah (IV) (SnO₂) telah dikenal pasti sebagai mangkin yang berpotensi dalam rawatan emisi gas-gas toksik berpunca daripada kenderaan bermotor dan aktiviti industri. Kehadiran oksida logam daripada kumpulan peralihan baris pertama sebagai bahan pendop boleh meningkatkan keupayaan pemangkinannya. Dalam penyelidikan ini, mangkin berasaskan oksida timah (IV) dengan penambahan bahan pendop pertama dan kedua yang terdiri daripada oksida logam Co(II), Co(III), Ni(II), Mn(II), Mn(IV), Cu(II) dan Cr(VI) telah disediakan melalui kaedah modifikasi sol-gel. Bahan asas dan bahan pendop oksida logam disediakan pada pelbagai nisbah dan menjalani pelbagai suhu pengkalsinan. Keupayaan pemangkinan diuji terhadap kebolehan mangkin mengoksidakan gas karbon monoksida (CO). Tiga mangkin iaitu Co(II)-dop SnO₂ (30:70) yang dikalsinkan pada suhu 400 °C, Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) dan Mn(IV)/Co(II)-dop SnO₂ (0.30:29.91:69.79) masing-masing pada suhu pengkalsinan 600 °C telah menunjukkan aktiviti pemangkinan yang terbaik. Mangkin-mangkin ini telah melengkapkan pengoksidaan CO kepada CO₂ 175 °C, 150 °C dan 190 °C. Analisis penjerapan gas masing-masing pada suhu nitrogen menunjukkan bahawa mangkin terbaik adalah bercirikan campuran mesoliang dan mikroliang. Keliangan dikenal pasti berbentuk silinder terbuka dengan diameter sekitar 10 nm. Selain itu, mangkin juga menunjukkan saiz partikel yang kecil dengan luas permukaan yang besar. Analisis XRD menggambarkan kehadiran fasa SnO₂ tetragonal dan Co₃O₄ kubik yang bertindak sebagai tapak aktif dalam pengoksidaan pemangkinan. Kewujudan oksida kobalt (campuran keadaan pengoksidaan +2 dan +3) dan kehadiran campuran spesies Co^{3+} -O dan Co^{2+} -O menyumbang kepada pengoksidaan CO yang baik seperti disahkan daripada analisis XPS. Walaubagaimanapun, kedua-dua analisis XRD dan XPS tidak dapat mengesan kehadiran bahan pendop kedua mungkin disebabkan oleh kuantiti yang kecil di dalam mangkin. Kajian morfologi menggunakan SEM pula menggambarkan kehomogenan permukaan partikel mangkin dan memperlihatkan bentuk yang tidak sekata. Analisis TGA/DTG pula menunjukkan pengurangan jisim mangkin adalah maksimum pada suhu kurang daripada 400 °C akibat penyingkiran molekul-molekul pada permukaan mangkin. Ini disokong oleh analisis FTIR yang membuktikan bahawa peningkatan suhu pengkalsinan telah menggalakkan penyingkiran spesiesspesies permukaan seperti OH terminal, mod cacat OH dan OH titian. Oleh itu, regangan mod logam-oksigen (Sn-O) menjadi semakin tajam dan jelas.

ABSTRACT

Tin (IV) oxide (SnO_2) has been identified as a potential catalyst in the treatment of toxic gases generated from vehicular emission and industrial activities. The presence of the first row transition metal oxides as dopants can increase its catalytic ability. In this study, tin (IV) oxide based catalyst with the addition of first and second dopants which comprise of Co(II), Co(III), Ni(II), Mn(II), Mn(IV), Cu(II) and Cr(VI) metal oxides were prepared by the modification of sol-gel method. The catalyst precursors and metal oxides dopants were prepared at various ratios and underwent various calcination temperatures. The catalytic ability of these catalysts were tested towards the oxidation of carbon monoxide (CO). Three catalysts, Co(II)doped SnO₂ (30:70) calcined at 400 °C, Ni(II)/Co(II)-doped SnO₂ (0.10:29.97:69.93) and Mn(IV)/Co(II)-doped SnO₂ (0.30:29.91:69.79) both at 600 °C calcination temperatures showed excellent catalytic activity. They completed the CO oxidation to CO₂ at 175 °C, 150 °C and 190 °C respectively. The nitrogen adsorption analysis reveals that the best catalysts are in the form of pore mixture namely mesopore and micropore. The pores are identified as open cylindrical in shaped with pore diameter of 10 nm. Furthermore, the catalyst posses reasonably small particle size with high surface area. The XRD analysis illustrates the presence of SnO₂ with tetragonal and Co_3O_4 with cubic phases, presumably act as the active site in the catalytic oxidation. The existence of cobalt oxide (in a mixture of +2 and +3 oxidation states) and the presence of Co^{2+} -O and Co^{3+} -O species further contribute to the excellent oxidation of CO as confirmed from the XPS analysis. However, both XRD and XPS analysis cannot detect the presence of second dopant probably due to very small quantity in the catalysts. Morphology studies by SEM illustrated the homogeneity of catalysts particle and showed irregular in shape. The TGA/DTG analysis shows that the reduction in the catalysts mass are maximum at the temperature lower than 400 °C accounts to the removal of surface molecules. It is supported by the FTIR analysis which proved that increasing calcination temperatures has enhanced the elimination processes of surface functional groups like the terminal, deformed mode and bridging hydroxyl. Consequently, the metal-oxygen (Sn-O) vibration mode becomes sharper and more significant.

	mukasurat
TAJUK	i
PENGHARGAAN	ii
ABSTRAK	iii

PENGENALAN	1
Pengubah Pemangkinan	1
1.1.1 Sistem Penyokong	2
1.1.2 Washcoat	2
1.1.3 Mangkin	2
Pemilihan Oksida Timah (IV)	
Sebagai Mangkin	2
Kajian Terdahulu Terhadap Oksida	
Timah (IV) dan Sebatian-	
sebatiannya Dalam Tindak Balas	
Pemangkinan	3
Pemilihan Bahan Pendop Daripada	
Oksida Logam Peralihan Baris	
Pertama	4
Kajian Terdahulu Terhadap Oksida	
Logam Peralihan Baris Pertama dan	
Sebatian-sebatiannya Dalam Tindak	
Balas Pemangkinan	5
Objektif Kajian	7
	PENGENALAN Pengubah Pemangkinan 1.1.1 Sistem Penyokong <i>1.1.2 Washcoat</i> 1.1.3 Mangkin Pemilihan Oksida Timah (IV) Sebagai Mangkin Kajian Terdahulu Terhadap Oksida Timah (IV) dan Sebatian- sebatiannya Dalam Tindak Balas Pemangkinan Pemilihan Bahan Pendop Daripada Oksida Logam Peralihan Baris Pertama Kajian Terdahulu Terhadap Oksida Logam Peralihan Baris Pertama dan Sebatian-sebatiannya Dalam Tindak Balas Pemangkinan Objektif Kajian

BAB II		TEKNI	K-TEKNIK ANALISIS	8
	2.1	Penger	nalan	8
	2.2	Ujian A	Aktiviti Pemangkinan	8
		2.2.1	Relau Reaktor Mikro	
			Padatan Tetap	9
		2.2.2	Tiub Sampel Reaktor Mikro	
			Padatan Tetap	10
		2.2.3	Sel FTIR Reaktor Mikro	
			Padatan Tetap	10

BAB III		EKSPERIMEN	12
	3.1	Penyediaan Mangkin	12
		3.1.1 Penyediaan Oksida Timah	
		(IV)	12
		3.1.2 Penyediaan Sol Oksida	
		Timah (IV)	13
		3.1.3 Penyediaan Sampel	
		Mangkin	13
		3.1.3.1 Penyediaan	
		Mangkin Co(II)-	
		Dop SnO ₂ dan	
		Ni(II)/Co(II)-Dop	
		SnO ₂	13
	3.2	Ujian Aktiviti Pemangkinan	14

BAB IV		HASII	L DAN PERBINCANGAN	15
	4.1	Ujian 4.1.1	Aktiviti Pemangkinan Aktiviti Pemangkinan Terhadap Pengoksidaan CO Bagi Sampel M/Co(II)-dop SnO ₂ [M=Mn(IV), Ni(II), Mn(II), Cu(II), Cr(VI)] Pada Pelbagai Nisbah Atom dan	15
		4.1.2	Suhu Pengkalsinan Aktiviti Pemangkinan Terhadap Pengoksidaan CO Bagi Sampel M/Mn(IV)-dop SnO ₂ [M=Co(II), Ni(II), Co(III)] Pada Pelbagai Nisbah Atom dan Suhu	16
		4.1.3	Pengkalsinan Aktiviti Pemangkinan Terhadap Pengoksidaan CO Bagi Sampel M/Ni(II)-dop SnO ₂ [M=Co(III), Mn(IV), Co(II), Mn(II), Cu(II), Cr(VI)] Pada Pelbagai Nisbah Atom dan Suhu	18
		4.1.4	Pengkalsinan Aktiviti Pemangkinan Terhadap Pengoksidaan CO Bagi Sampel M/Co(III)-dop SnO ₂ [M=Mn(IV), Ni(II)] Pada Pelbagai Nisbah Atom dan Suhu Pengkalsinan	18
			σ	

	4.1.5	Aktiviti Pemangkinan	
		Terhadap Pengoksidaan CO	
		Bagi Sampel M/Mn(II)-dop	
		SnO ₂ [M=Ni(II), Co(II),	
		Cu(II), Cr(VI)] Pada	
		Pelbagai Nisbah Atom dan	
		Suhu Pengkalsinan	20
	4.1.6	Aktiviti Pemangkinan	
		Terhadap Pengoksidaan CO	
		Bagi Sampel M/Cu(II)-dop	
		SnO ₂ [M=Ni(II), Mn(II),	
		Co(II), Cr(VI)] Pada	
		Pelbagai Nisbah Atom dan	
		Suhu Pengkalsinan	21
	4.1.7	Aktiviti Pemangkinan Bagi	
		Sampel-sampel Terbaik	
		Dalam Kajian Ini	22
	4.1.8	Kesimpulan	27
4.2	Analisi	s Pembelauan Sinar-X	27
	(XRD))	
	4.2.1	Kesimpulan	35
4.3	Analis	is Spektroskopi Fotoelektron	
	Sinar-2	X (XPS)	35
	4.3.1	Kesimpulan	40

BAB V	KES	KESIMPULAN KESELURUHAN DAN CADANGAN	
	5.1	Kesimpulan Keseluruhan	41
	5.2	Cadangan	42

BAB V	RUJUKAN	44

SENARAI SIMBOL

θ	-	Sudut Setengah Daripada Sinar Terbelau
A_{α}	-	Luas Permukaan α _s
A _{BET}	-	Luas Permukaan BET
BET	-	Brunauer- Emmet- Teller
d	-	Jarak antara Satah dalam Hablur
d	-	Diameter Liang
DTG	-	Analisis Terbitan Termogravimetri
FTIR	-	Infra merah Fourier Transform
IUPAC	-	International Union of Pure and Applied
		Chemistry
P/P _o	-	Tekanan Relatif
PDF	-	Fail Pembelauan Serbuk
S.B	-	Suhu Bilik
SEM	-	Mikroskop Imbasan Elektron
T_{100}	-	Suhu Pengoksidaan 100 %
TGA	-	Analisis Termogravimetri
T _{LO}	-	Suhu Light-off
V_{m}	-	Isipadu Gas Terjerap Pada Lapisan Mono
V _P	-	Isipadu Liang
XPS	-	Spektroskopi Fotoelektron X-Ray
XRD	-	Pembelauan X-Ray

BAB I

PENGENALAN

1.0 Pengubah Pemangkinan

Pengubah pemangkinan (Rajah 1.1) merupakan system bagi merawat pencemaran udara dengan menukarkan gas-gas toksik kepada gas-gas tidak toksik. Terdapat tiga jenis pengubah pemangkinan iaitu pengubah pemangkinan pengoksidaan, pengubah pemangkinan penurunan dan pengubah pemangkinan tiga arah. Ia berfungsi dengan mengoksidakan gas CO dan HC dan menurunkan gas NOx mengikut persamaan berikut:

$CO + \frac{1}{2}O_2 \rightarrow CO_2$	(1.1)
$C_mH_n + (m + n/4) O_2 \rightarrow m CO_2 + n/2 H_2O$	(1.2)
$CO + NO \rightarrow N_2 + CO_2$	(1.3)

Rajah 1.1: Pengubah pemangkinan komersil

Sistem pengubah pemangkinan terdiri daripada beberapa komponen iaitu sistem penyokong mangkin, *washcoat* dan mangkin (yang bertindak sebagai bahan aktif) [1].

1.1 Sistem Penyokong

Sistem penyokong yang digunakan dalam pengubah pemangkinan adalah berbentuk pellet dan monolith [2]. Ia diperbuat daripada seramik atau logam aloi. Alumina adalah contoh bahan yang paling banyak digunakan disebabkan sifatnya yang boleh beroperasi pada suhu tinggi (> 1480 °C) dan murah. Penyokong komersil yang digunakan sekarang diperbuat daripada kordierit 2Mg.2Al₂O₃ dan 5SiO₂.

1.1.1 Washcoat

Ia diaplikasikan pada penyokong seperti saput tipis. Bahan yang biasa digunakan adalah alumina yang dilapisi oleh oksida serium (IV) dan mangkin (komersil: Pt/Pd atau Pt/Rh). Ia dapat menyediakan kawasan dengan luas permukaan yang besar dan meningkatkan kapasiti penyimpanan oksigen.

1.2 Mangkin

Mangkin bermaksud zat yang mengubah kecepatan suatu tindak balas kimia dan dapat diperoleh kembali setelah tindak balas itu selesai [3]. Terdapat dua jenis mangkin yang digunakan dalam pengubah pemangkinan. Pertama, mangkin adi seperti logam platinum, paladium dan rodium. Kedua, mangkin tak adi seperti oksida serium (IV), oksida timah (IV), oksida mangan (IV) dan oksida zirkonium (IV).

Penggunaan yang meluas mangkin berasaskan kumpulan adi disebabkan oleh aktiviti pemangkinannya yang baik. Mangkin Pt/Pd (nisbah atom; 70:30) bertindak sebagai mangkin pengoksidaan CO dan HC manakala mangkin Pt/Rh (nisbah atom; 70:30) pula digunakan dalam tindak balas penurunan NO_x [4]. Walaubagaimanapun, mangkin paladium dan rodium melibatkan kos pembuatan yang mahal, sumber bahan yang terhad dan mudah ternyahaktif pada suhu melebihi 700 °C [5]. Mangkin platinum secara amnya mudah didapati dan lebih murah namun ianya mudah diracuni oleh plumbum dan oksida sulfur .

Sebagai langkah alternatif, penyediaan dan penggunaan mangkin berasaskan kumpulan logam tak adi dipergiatkan. Oksida logam seperti kobalt, mangan, nikel, kuprum dan ferum telah mula mendapat perhatian daripada penyelidik sebagai bahan alternatif. Namun, mangkin oksida logam seperti oksida ferum (III) dan oksida kuprum (II) mempunyai beberapa kelemahan [6] iaitu jangka hayat yang pendek, tindak balas penurunan berkurang dengan kehadiran oksigen dan ternyahaktif apabila suhu melebihi 800 °C.

1.3 Pemilihan Oksida Timah (IV) Sebagai Mangkin

Timah ditemui secara semulajadi dalam bentuk oksida timah (IV) (SnO₂) atau lebih dikenali sebagai kasiterit. Rajah 1.2 menunjukkan struktur yang biasa ditemui iaitu bentuk tetragonal (struktur rutil SnO₂) [7]. Timah juga ditemui dalam bentuk rombik dan heksagonal. Oksida timah (IV) yang tulen berwarna putih dan memejalwap pada suhu > 1800 °C. Oksida timah (IV) tidak larut dalam air dan tidak bertindak balas dengan asid atau alkali [8].

Rajah 1.2: Unit sel untuk rutil oksida timah (IV)

SnO₂ dipilih dalam kajian ini disebabkan oleh faktor-faktor berikut:

- I. Harganya murah, ekonomi dan mudah didapati di Malaysia.
- II. Sifat kestabilan yang tinggi terhadap tindak balas asid seterusnya memberi kelebihan dalam mengoksidakan gas-gas toksik dalam ekzos kenderaan.
- III. Mempunyai kawasan permukaan yang sesuai untuk aktiviti pemangkinan dan pertukaran ion.
- IV. Sifat-sifat kimia SnO₂ juga sesuai bertindak sebagai mangkin pengoksidaan dan penurunan gas-gas toksik dan boleh memberikan aktiviti pemangkinan yang baik.

Oksida timah (IV) sendiri adalah kurang mengoksidakan tetapi ia adalah unik kerana sifat pemangkinannya boleh diubahsuai dengan menambah unsur lain terutamanya fosforus, antimoni, vanadium, kromium, mangan dan kuprum yang boleh memberikan aktiviti dan kepilihan yang besar [8].

Pengetahuan tentang sifat kimia dan kereaktifan permukaan oksida timah (IV) dan bahan campuran oksida adalah penting dalam memahami sifatnya sebagai mangkin. Permukaan oksida timah (IV) mengandungi pelbagai tapak untuk tindak balas seperti kumpulan hidroksil permukaan (-OH), spesies oksida permukaan sama ada pada terminal (-O) atau pada jambatan (-O-) dan tapak asid Lewis daripada permukaan timah yang terdedah. Kumpulan hidroksil permukaan dan spesies oksida memainkan peranan dalam memberikan sifat asas pada permukaan oksida timah (IV) [9].

1.4 Kajian Terdahulu Terhadap Oksida Timah (IV) dan Sebatiansebatiannya Dalam Tindak Balas Pemangkinan

Kajian ke atas kesan pengoksidaan CO bermangkinkan SnO₂-CuO telah dilakukan oleh Fuller, M. J. dan Warwick, M. E. dan didapati mangkin tersebut aktif pada suhu < 100 °C [10]. Seterusnya mereka telah mengkaji kesan pengoksidaan ke atas NO_x dan CO menggunakan mangkin yang sama dan didapati ia mengoksidakan NO_x dan CO pada suhu < 150 °C [11].

Kulshreshtha, S. K. dan Gadgil, M. M. (1997) pula telah mengkaji campuran mangkin oksida, Mn_2O_3 dan SnO_2 ke atas logam paladium untuk tindak balas pengoksidaan CO [12]. Mangkin Pd/($Mn_2O_3 + SnO_2$) didapati sangat efektif mengoksidakan CO iaitu sehingga 70 % pada suhu bilik seterusnya memberikan $T_{100} = 180 - 200$ °C. Kajian juga dilakukan terhadap mangkin Pd/Mn₂O₃ dan Pd/SnO₂ tetapi masing-masing hanya mengoksidakan 90 % CO sahaja pada suhu 400 °C.

Kajian oleh Harrison, P. G. *et. al* [13] ke atas mangkin berasaskan oksida timah (IV), SnO₂ terhadap siri lantanida [lantanum (III), praseodimium (III), neodimium (III), samarium (III) dan gadolinium (III)] menggunakan kaedah kopemendakan didapati meningkatkan sedikit aktiviti pemangkinan bagi pengoksidaan CO ($T_{100} = 287 - 302 \text{ °C}$) berbanding dengan SnO₂ tulen ($T_{100} = 342 \text{ °C}$). Walaubagaimanapun, pengoksidaan lengkap propana menggunakan mangkin ini adalah hampir sama dengan SnO₂ tulen iaitu di sekitar suhu 467 - 477 °C.

Seterusnya, Harrison, P. G. turut mengkaji kesan nisbah atom bagi mangkin Cr/SnO₂ terhadap pengoksidaan CO dan propana dengan kaedah penyediaan pengisitepuan dan sol-gel. Didapati Cr (VI)/SnO₂ dengan nisbah atom (Cr:Sn 0.15) adalah terbaik untuk kaedah pengisitepuan dengan T_{100} (CO) = 234 °C dan T_{100} (propana) = 290 °C. Kaedah sol-gel memberikan hasil terbaik pada nisbah atom (Cr:Sn 0.40) iaitu T_{100} (CO) = 240 °C dan T_{100} (propana) = 280 °C [13].

Penurunan NO oleh propena (C₃H₆) dengan kehadiran oksigen telah dikaji oleh Haneda, M. *et. al* (1999) terhadap mangkin SnO₂-dop Ga₂O₃-Al₂O₃ yang disediakan dengan kaedah sol-gel [14]. Penambahan SnO₂ kepada mangkin Ga₂O₃-Al₂O₃ tanpa kehadiran H₂O merencatkan aktiviti pemangkinan dan menghalang penurunan NO kepada N₂ berbanding dengan mangkin asal. Walaubagaimanapun, kehadiran H₂O didapati memberikan aktiviti yang lebih tinggi iaitu < 450 °C. Penambahan H₂O meningkatkan penukaran NO kepada N₂ tetapi pada masa yang sama mengurangkan penukaran propena kepada CO_x. Ini disebabkan oleh penyingkiran bahan berkarbon pada permukaan mangkin oleh H₂O. Kajian yang hampir sama juga telah dijalankan oleh Park, P. W. *et. al* [15] ke atas mangkin SnO₂/Al₂O₃ pada pengkalsinan 800 °C dan didapati aktif untuk penurunan NO_x.

1.5 Pemilihan Bahan Pendop Daripada Oksida Logam Peralihan Baris Pertama

Logam peralihan baris pertama terdiri daripada unsur skandium (Sc) hingga zink (Zn). Kekayaan elektron pada orbital d banyak mempengaruhi sifat-sifat logam tersebut. Ciri-ciri bahan pendop yang dipunyai logam kumpulan ini adalah kebolehan menyimpan O_2 , sifat tindak balas redoks dan keadaan pengoksidaan yang pelbagai.

Logam-logam ini telah digunakan dalam pelbagai bentuk daripada logam kepada oksida logam dan campuran sebatian oksida. Sifat-sifat ini menjadikan logam-logam tersebut sesuai digunakan sebagai mangkin rawatan emisi gas toksik. Dalam kajian ini bahan pendop yang dipilih adalah oksida kobalt, oksida nikel, oksida mangan, oksida kuprum dan oksida kromium.

1.6 Kajian Terdahulu Terhadap Oksida Logam Peralihan Baris Pertama dan Sebatian-sebatiannya Dalam Tindak Balas Pemangkinan

Gulari, E. *et. al* (1999) [16] telah melakukan kajian terhadap pengoksidaan CO bermangkinkan oksida komposit yang terdiri daripada argentum dan kobalt. Mangkin Ag/Co dan mangkin Co_3O_4 yang disediakan dengan kaedah pemendakan dan dikalsinkan pada suhu 200 °C memberikan T_{50} (CO) = 38 °C dan 40 °C seterusnya mengoksidakan CO kepada CO₂ sepenuhnya pada suhu kurang daripada 100 °C. Kajian juga mendapati mangkin yang disediakan memberikan oksida komposit yang stabil walaupun suhu ditingkatkan sehingga 800 °C.

Simonot, L. *et. al* (1997) [17] telah mengkaji tindak balas pengoksidaan CO/O₂ bermangkinkan *perovskite* LaCoO₃, Co₃O₄ dan campuran kedua-dua bahan ini yang disediakan melalui dua kaedah iaitu kaedah pemendakan dan sol-gel. Mangkin oksida kobalt (Co₃O₄) dengan kaedah penyediaan sol-gel memberikan suhu pengoksidaan CO terendah dengan T_{100} (CO) < 175 °C. Kajian juga dilakukan terhadap tindak balas CO/NO [18] dan didapati mangkin yang sama menunjukkan aktiviti pemangkinan paling optimum berbanding dengan mangkin yang lain iaitu T_{100} (CO) = 317 °C dan T_{100} (NO) = 296/535 °C. Ini kerana spesies O_{terjerap} dengan kehadiran fasa tidak stoikiometri dalam mangkin Co₃O₄ berperanan sebagai ruang penyimpanan oksigen seterusnya memberikan aktiviti pemangkinan yang baik. Manakala bagi kes LaCoO₃-Co₃O₄, kapasiti penyimpanan oksigen telah dihalang oleh kehadiran *perovskite* LaCoO₃.

Kajian tindak balas pengoksidaan CO dengan O_2 menggunakan mangkin platinum dan bahan pendop MnO_x dan CoO_x telah dilakukan oleh Mergler, Y. J. *et. al* [19]. Dua bentuk rawatan awal dijalankan ke atas mangkin Pt/SiO₂, Pt/CoO_x/SiO₂ dan Pt/MnO_x/SiO₂ iaitu rawatan awal pengoksidaan (dioksidakan di dalam udara selama 1 jam pada suhu 400 °C) dan rawatan awal penurunan (menjalani rawatan awal pengoksidaan dahulu sebelum diikuti oleh penurunan di dalam H₂ selama 1 jam pada suhu 400 °C).

Hasil kajian menunjukkan Pt/CoO_x/SiO₂ paling aktif melalui kaedah rawatan awal penurunan di mana mangkin ini mengoksidakan > 50 % CO pada suhu bilik seterusnya memberikan T_{100} (CO) pada suhu kurang daripada 100 °C. Analisis XRD menunjukkan penambahan CoO_x ke atas mangkin Pt/SiO₂ melalui rawatan awal penurunan menghasilkan puncak CoPt, CoPt₃ dan Pt yang memainkan peranan sebagai tapak aktif untuk penjerapan O₂ dan CO.

Kajian Imamura, S. (1996) [20] mendapati mangkin oksida mangan dan oksida komposit mangan serium (nisbah atom 95:5) yang disediakan dengan kaedah kopemendakan boleh mengoksidakan CO pada $T_{100} < 200$ °C.

Penyelidikan ke atas mangkin Au/MnOx juga memberikan pengoksidaan lengkap CO pada suhu yang rendah iaitu $T_{100} < 100$ °C pada campuran stoikiometri CO dan O₂ [21]. Selain itu, campuran oksida kuprum dan mangan dalam bentuk hopcallite (CuMn₂O₄) digunakan dengan meluas terhadap tindak balas pengoksidaan CO. Hutching, G. C. *et. al* [22] telah mengambil inisiatif dengan mengkaji kesan keadaan penyediaan mangkin terhadap keupayaan aktiviti pemangkinan bagi campuran mangkin kuprum dan mangan ini.

Kajian dilakukan ke atas kesan suhu pengkalsinan, nisbah bahan (Cu:Mn), pH, suhu pemendakan dan masa penuaan. Hasil kajian mendapati suhu pengkalsinan dan masa penuaan memberikan kesan yang paling besar ke atas keupayaan aktiviti pemangkinan.

Oksida kuprum juga adalah salah satu mangkin oksida logam peralihan yang paling aktif untuk tindak balas kawalan emisi terutamanya untuk pengoksidaan CO dan HC serta penurunan NO_x dan SO₂. Park, P. W. dan Ledford, J. S. telah mengkaji mangkin oksida kuprum berpenyokong alumina terhadap tindak balas pengoksidaan CO dan metana [23 Hasil kajian mendapati penambahan kandungan kuprum ke atas mangkin berupaya meningkatkan aktiviti pemangkinan disebabkan kewujudan fasa CuO dan keupayaannya mengalami tindak balas redoks.

Mangkin spinel oksida kuprum-kobalt (CuCo₂O₄) disokong pada aluminosilikat (Al₂O₃-SiO₂) telah disediakan dan diuji terhadap tindak balas CO/O₂ dan CO/NO [24]. Bagi tindak balas CO/O₂, mangkin ini menunjukkan aktiviti pemangkinan yang tinggi dan mengoksidakan > 95 % CO pada suhu ~ 215 °C. Walaubagaimanapun, untuk tindak balas CO/NO, mangkin ini hanya berupaya menurunkan < 80 % NO kepada N₂ pada suhu maksimum 500 °C. Ini kerana, pada suhu > 240 °C, tindak balas CO/NO dipengaruhi oleh persaingan CO-O_{permukaan} dan memberi kesan kepada penukaran NO kepada N₂.

Oksida nikel pada pelbagai penyokong merupakan bahan asas kepada fasa aktif bagi kebanyakan mangkin industri. Ahmed, M. *et. al* telah mengkaji kesan penambahan nikel dan suhu pengkalsinan menggunakan mangkin oksida nikel/silika [25]. Didapati, permukaan penyokong silika yang kaya dengan spesies nikel boleh meningkatkan aktiviti pemangkinan. Kis, E (1998) turut mengkaji ciri-ciri struktur dan tekstur bagi mangkin NiO-Al₂O₃ melalui penambahan kandungan oksida nikel dan suhu pengkalsinan [26]. Manakala, Twigg, M. V. dan Richardson, J. F. pula telah mengkaji kesan alumina terhadap mangkin NiO-Al₂O₃ yang disediakan secara ko-pemendakan [27].

Mangkin oksida kromium digunakan dengan meluas untuk tindak balas penghidrogenan dan penyahidrogenan hidrokarbon (CrO_3/Al_2O_3) dan juga untuk pempolimeran etilena (mangkin Phillips: CrO_3/SiO_2). Kajian terhadap kimia permukaan bagi mangkin oksida kromium ke atas pelbagai penyokong (Al_2O_3 , TiO_2 dan SiO₂) telah dilakukan oleh Kim, D. S. dan Wach, I. E. [28]. Manakala, kesan penambahan kromium ke atas mangkin Cu/Al₂O₃ didapati berupaya meningkatkan aktiviti pemangkinan pengoksidaan CO [29].

Secara ringkasnya, daripada kajian-kajian terdahulu didapati penyediaan mangkin menggunakan kaedah sol-gel dan pengisitepuan boleh memberikan aktiviti pemangkinan yang baik terhadap pengoksidaan dan penurunan gas-gas toksik [13, 14, 17]. Oksida timah (IV) dan oksida logam daripada kumpulan peralihan baris pertama (Co, Ni, Mn, Cu dan Cr) berpotensi bertindak sebagai mangkin bagi merawat emisi gas-gas toksik. Selain itu, parameter-parameter utama dalam penyediaan mangkin yang boleh mempengaruhi keupayaan aktiviti pemangkinan adalah nisbah bahan asas dan bahan pendop [13], suhu pengkalsinan dan masa penuaan [22].

Oleh itu, dalam kajian ini kaedah modifikasi sol-gel digunakan dalam penyediaan mangkin. Oksida timah (IV) telah dipilih sebagai bahan asas mangkin manakala bahan pendop pula terdiri daripada oksida logam kumpulan peralihan baris pertama. Parameter-parameter penyediaan mangkin juga dipelbagaikan seperti variasi nisbah bahan asas dan bahan pendop, variasi suhu pengkalsinan dan penggunaan dua bahan pendop yang berbeza. Kriteria-kriteria ini dijangka mampu menghasilkan satu mangkin yang mempunyai aktiviti pemangkinan paling optimum bagi rawatan gas toksik CO. Gas karbon monoksida dipilih dalam kajian ini kerana ia merupakan bahan pencemar terbesar daripada kenderaan bermotor dan boleh kekal di atmosfera sehingga tempoh 3 tahun.

1.6 Objektif Kajian

Kajian ini dilakukan untuk membangunkan sistem mangkin yang optimum bagi pengoksidaan gas toksik karbon monoksida. Skop kajian meliputi:

- I. Penyediaan mangkin berasaskan oksida timah (IV) menggunakan kaedah modifikasi sol-gel.
- II. Variasi bahan pendop terdiri daripada unsur oksida logam kumpulan peralihan baris pertama iaitu Co(II), Co(III), Ni(II), Mn(II), Mn(IV), Cu(II) dan Cr(VI).
- III. Variasi pembolehubah penyediaan mangkin seperti suhu pengkalsinan yang pelbagai, penggunaan dua bahan pendop yang berbeza serta nisbah bahan asas dan bahan pendop yang paling optimum.
- IV. Ujian aktiviti pemangkinan dilakukan untuk melihat pengoksidaan lengkap CO kepada CO₂ pada suhu paling minimum seterusnya dibandingkan dengan mangkin komersil, Pt/Al₂O₃.
- Mangkin terbaik dicirikan menggunakan teknik penjerapan gas nitrogen, pembelauan sinar-X (XRD), spektroskopi fotoelektron sinar-X (XPS), mikroskopi imbasan elektron (SEM), analisis termogravimetri/pembeza termogravimetri (TGA/DTG) dan spektroskopi inframerah transformasi Fourier (FTIR).

BAB II

TEKNIK-TEKNIK ANALISIS

2.2 Pengenalan

Pencirian dari segi fizikal dan kimia adalah penting dalam kajian ke atas mangkin. Walaubagaimanapun, untuk menjimatkan kos dan masa hanya sampel-sampel terbaik sahaja yang akan dilakukan pencirian. Oleh itu, setiap mangkin yang disediakan perlu menjalani peringkat penyaringan bagi mengetahui potensi mangkin tersebut berbanding dengan mangkin komersil, Pt/Al₂O₃. Proses pemilihan sampel terbaik ini dilakukan melalui ujian aktiviti pemangkinan menggunakan reaktor mikro padatan tetap.

Sampel-sampel terbaik seterusnya dicirikan menggunakan teknik-teknik yang telah digunakan secara meluas dalam kajian pemangkinan. Teknik-teknik tersebut adalah penjerapan gas nitrogen, pembelauan sinar-X (XRD), spektroskopi fotoelektron sinar-X (XPS), mikroskopi imbasan elektron (SEM), analisis termogravimetri/pembeza termogravimetri (TGA/DTG) dan spektroskopi inframerah transformasi Fourier (FTIR) [30, 31]. Setiap teknik ini mempunyai kelebihan tersendiri dalam mencirikan sampel mangkin yang disediakan.

2.2 Ujian Aktiviti Pemangkinan

Ujian aktiviti pemangkinan dilakukan dengan menggunakan reaktor mikro padatan tetap yang direka bentuk oleh Kumpulan Teknologi Pemangkinan (ECAT), Jabatan Kimia, Universiti Teknologi Malaysia. Sistem reaktor mikro ini dibina khas mengikut piawaian ujian aktiviti pemangkinan antarabangsa dan menghampiri keadaan sebenar sistem ekzos kenderaan. Rajah 2.1 menunjukkan sistem reaktor mikro padatan tetap.

Rajah 2.1: Rajah skema sistem reaktor mikro padatan tetap

Sistem ini mempunyai beberapa bahagian komponen dengan fungsifungsi tertentu seperti:

- 1. Alat pengawal aliran jisim Mengawal jumlah gas-gas sebelum melalui bahagian campuran gas.
- 2. Bahagian campuran gas Kawasan percampuran gas sebelum dimasukkan ke dalam relau reaktor.
- 3. Jangka penyukat tekanan Mengukur tekanan tindak balas pemangkinan.
- 4. Relau reaktor Tempat sampel diaktifkan.
- 5. Sel FTIR dan alat pengesan FTIR Komposisi campuran gas daripada relau reaktor dianalisis.
- 6. Pengukur kadar alir Menentukan kadar alir dan komposisi campuran gas.

2.2.1 Relau Reaktor Mikro Padatan Tetap

Rajah 2.2 menunjukkan relau reaktor mikro padatan tetap yang merupakan bahagian paling penting dalam sistem ini. Ia diperbuat daripada tiub besi tahan karat berongga berukuran 19.9 cm panjang, diameter rongga ~ 1.2 cm, dilingkari wayar nikrom dan disaluti dengan dua lapisan pita fabrik yang bertindak sebagai penebat (dikenali sebagai blok pemanasan). Bahagian ini seterusnya disambung kepada wayar termoganding berkedudukan tetap yang berfungsi untuk mengukur suhu sampel dengan andaian pemanasan pada keseragaman haba dan komposisi gas alir adalah homogen. Sistem pendingin air digunakan pada sistem ini supaya campuran gas yang masuk dan keluar daripada relau adalah sama seperti suhu persekitaran. Pada kedua-dua hujung relau reaktor ini diletakkan gegelung getah untuk mengelakkan kebocoran gas pada sistem ini.

Rajah 2.2: Rajah skema relau reaktor mikro padatan tetap

2.2.2 Tiub Sampel Reaktor Mikro Padatan Tetap

Rajah 2.3 menunjukkan tiub sampel reaktor mikro padatan tetap. Tiub ini diperbuat daripada kaca *pyrex* yang berukuran 36.5 cm panjang, berdiameter 1 cm dan terdapat kaca sinter berkedudukan tetap pada bahagian tengahnya. Sampel diletakkan pada bahagian sinter dan disokong dengan serbuk alumina kering (jenis alumina-S, pH = 7.5, saiz partikel 50 - 200 μ m dan luas permukaan 200 m²/g) serta ditetapkan dengan bulu kaca. Bahagian sebelahnya pula hanya dimasukkan serbuk alumina kering yang juga ditetapkan dengan bulu kaca. Di dalam sistem ini, serbuk alumina berperanan sebagai medium bagi pergerakan sekata gas yang masuk, menyerap kelembapan gas dan juga bertindak sebagai konduktor untuk mengalirkan haba. Selain itu, alumina dipilih kerana ianya tidak mengambil bahagian dalam tindak balas yang berlaku.

Seterusnya padatan sampel dengan ketebalan 1.5 - 2.0 cm diletakkan dalam julat blok pemanasan iaitu ditengah-tengah bahagian relau reaktor bagi memastikan sampel dan penyokong benar-benar kering selepas proses pengolahan. Kehadiran wap air yang berlebihan mungkin akan menjejaskan aktiviti pemangkinan sampel semasa ujian aktiviti pemangkinan dijalankan.

Rajah 2.3: Rajah skema tiub sampel reaktor mikro padatan tetap

2.2.4 Sel FTIR Reaktor Mikro Padatan Tetap

Rajah 2.4 menunjukkan sel FTIR reaktor mikro padatan tetap. Tiub salur masuk dan salur keluar diletakkan berhampiran dengan tetingkap sel bagi mengatasi kemungkinan wujudnya 'ruang-mati' yang boleh menyebabkan gas tidak bergerak. Keadaan ini boleh mengakibatkan pengukuran inframerah yang tidak tepat.

Rajah 2.4: Rajah skema sel FTIR reaktor mikro padatan tetap

Ujikaji yang dilakukan dalam penyelidikan ini terbahagi kepada tiga peringkat iaitu:

- I. Penyediaan mangkin
 - Penyediaan oksida timah (IV)
 - Penyediaan sol oksida timah (IV)
 - Penyediaan sampel mangkin
- II. Ujian aktiviti pemangkinan
- III. Analisis pencirian mangkin

BAB III

EKSPERIMEN

3.1 Penyediaan Mangkin

Tiga teknik umum yang digunakan untuk penyediaan mangkin berasaskan oksida logam adalah :

- I. Kaedah ko-pemendakan di mana satu atau lebih larutan akueus garam berasid dineutralkan dengan penambahan larutan akueus alkali (biasanya larutan akueus ammonia) menghasilkan pemendakan gel daripada oksida logam.
- II. Kaedah pengisitepuan di mana melibatkan percampuran oksida logam (bentuk serbuk atau gel) dengan larutan garam logam kedua.
- III. Kaedah sol-gel iaitu melibatkan proses percampuran di antara oksida logam berbentuk koloid sol yang stabil dengan sol oksida logam kedua. Umumnya kaedah sol-gel memberikan beberapa kebaikan seperti:
 - lebih stabil terhadap haba
 - lebih kawalan stoikiometri dan kehomogenan
 - lebih berkesan dan boleh memberikan maklumat campuran zarah pada paras nanometer.

Dalam kajian ini, mangkin disediakan menggunakan kaedah modifikasi solgel iaitu melibatkan percampuran bahan asas berbentuk sol oksida timah (IV) dengan bahan pendop berbentuk larutan garam oksida logam.

3.1.1 Penyediaan Oksida Timah(IV)

Oksida timah (IV) disediakan melalui pemendakan 33.69 cm³ larutan akueus SnCl₄ (0.1 M, $\rho = 2.226$ g cm⁻³) dengan 33 % larutan NH₃ pada suhu bilik, pH 4 [62] dan di bawah pengadukan yang sekata [28, 63]. Rajah 3.1 menunjukkan susunan radas penyediaan oksida timah (IV). Hasil mendakan kemudiannya dibasuh, diempar dan disiring dengan air tersuling tiga kali (t.d.w) sehingga seminimum ion klorida tertinggal (kehadiran ion klorida diuji menggunakan larutan AgNO₃).

Gel putih yang terbentuk kemudiannya dikeringkan pada suhu 120 °C selama 24 jam seterusnya memberikan hasil pepejal putih keperangan yang lutsinar. Hasil dititis dengan air tersuling tiga kali hingga membentuk serbuk dan dikeringkan semula pada 120 °C. Hasil akhir adalah serbuk putih SnO₂.

Rajah 3.1: Susunan radas bagi penyediaan oksida timah (IV)

3.1.2 Penyediaan Sol Oksida Timah (IV)

Sebanyak 2.0 g oksida timah (IV) dilarutkan dalam 2.0 mL kolina (nama IUPAC trimetil (2-hidroksietil) ammonium hidroksida, $C_5H_{15}NO_2$, 50 % dalam H₂O) pada suhu bilik seterusnya diaduk sehingga membentuk sol berwarna perang jernih [13].

3.1.3 Penyediaan Sampel Mangkin

Mangkin disediakan menggunakan kaedah modifikasi sol-gel. Mangkin adalah berasaskan satu bahan pendop iaitu Co(II)-dop SnO₂, Co(III)-dop SnO₂, Ni(II)-dop SnO₂, Mn(IV)-dop SnO₂ dan Cu(II)-dop SnO₂. Seterusnya, ditambahkan dengan bahan pendop kedua iaitu Co(II) daripada garam (CH₃COO)₂Co.4H₂O, Co(III) daripada Co₂O₃, Ni(II) daripada garam (CH₃COO)₂Ni.4H₂O, Mn(II) daripada garam (CH₃COO)₂Mn.4H₂O, Mn(IV) daripada MnO₂, Cu(II) daripada garam (CH₃COO)₂Cu.H₂O dan Cr(VI) daripada CrO₃ dengan pelbagai nisbah komposisi dan suhu pengkalsinan tertentu.

3.1.3.1 Penyediaan Mangkin Co(II)-Dop SnO₂ dan Ni(II)/Co(II)-Dop SnO₂

Contoh pengiraan dan cara kerja penyediaan mangkin Co(II)-dop SnO₂ dan Ni(II)/Co(II)-dop SnO₂ ditunjukkan dalam Lampiran A. Mangkin Co(II)-dop SnO₂ (nisbah atom; 30:70) disediakan dengan kaedah modifikasi sol gel. Sol SnO₂ disediakan dengan melarutkan 2.0 g SnO₂ ke dalam 2.0 mL kolina. Seterusnya, 2.8644 g garam (CH₃COO)₂Co.4H₂O pula dilarutkan ke dalam 50.0 mL air tersuling tiga kali bagi menyediakan larutan garam (CH₃COO)₂Co.4H₂O. Larutan garam ini kemudiannya dimasukkan ke dalam sol SnO₂ sedikit demi sedikit dan diaduk pada suhu bilik menghasilkan larutan homogen berwarna perang gelap.

Penyediaan mangkin Ni(II)/Co(II)-dop SnO₂ (nisbah atom; 0.10:29.97:69.93) juga menggunakan bahan asas SnO₂ dan bahan pendop pertama iaitu kobalt (II). Walaubagaimanapun, ia melibatkan penambahan bahan pendop kedua iaitu nikel (II). Penyediaan mangkin Ni(II)/Co(II)-dop SnO₂ adalah sama dengan penyediaan Co(II)-dop SnO₂. Bahan pendop kedua iaitu nikel (II) daripada garam (CH₃COO)₂Ni.4H₂O dengan kuantiti 0.0097 g dilarutkan di dalam 10.0 mL air tersuling tiga kali. Seterusnya, larutan ini dimasukkan ke dalam campuran (CH₃COO)₂Co.4H₂O dan sol SnO₂ dan diaduk pada suhu bilik sehingga menghasilkan larutan homogen berwarna perang gelap.

Larutan homogen mangkin Co(II)-dop SnO₂ dan Ni(II)/Co(II)-dop SnO₂ yang terhasil disejatkan sehingga kering pada suhu 120 °C selama 24 jam. Sampel kering seterusnya dikalsinkan pada suhu 400 °C, 600 °C, 800 °C dan 1000 °C menggunakan relau *muffler* selama 17 jam. Kemudian, dihancurkan menjadi serbuk halus dan dijalankan ujian aktiviti pemangkinan. Seterusnya, sampel terbaik dicirikan menggunakan teknik penjerapan gas nitrogen, pembelauan sinar-X (XRD), spektroskopi fotoelektron sinar-X (XPS), mikroskopi imbasan elektron (SEM), analisis termogravimetri/pembeza termogravimetri (TGA/DTG) dan spektroskopi inframerah transformasi Fourier (FTIR).

3.2 Ujian Aktiviti Pemangkinan

Ujian aktiviti pemangkinan dilakukan ke atas semua sampel yang disediakan untuk melihat potensi sampel tersebut dalam sistem yang menghampiri keadaan sebenar ekzos kenderaan menggunakan reaktor mikro jenis padatan tetap. Ia merupakan ujian terawal bagi melihat sifat aktiviti pemangkinan sebelum pencirian dilakukan. Sebanyak 0.3 - 0.5 g mangkin yang telah disediakan ditimbang dan dimasukkan ke dalam tiub kaca *pyrex* serta dipadatkan dengan menggunakan bulu kaca. Kemudian, serbuk alumina dimasukkan ke dalam kedua-dua belah tiub kaca tersebut dan ditutup dengan bulu kaca. Seterusnya, tiub kaca yang telah disediakan dimasukkan ke dalam reaktor mikro.

Mangkin diaktifkan pada suhu 300 °C selama satu jam di bawah aliran udara (21 % $O_2 + 79$ % N_2) pada kadar alir 9 mL/min. Kemudian, mangkin dibiarkan sejuk sehingga suhu bilik. Sebelum ujian aktiviti diteruskan, reaktor mikro dan spektrometer FTIR dikalibrasi dengan mengalirkan bahan suapan di bawah keadaan kaya oksigen. Bahan suapan terdiri daripada 4 % CO dengan kadar alir 4 mL/min dan 96 % udara (20.16 % O_2 dan 75.84 % N_2) dengan kadar alir 96 mL/min. Bahan suapan dialirkan ke sel FTIR tanpa melalui mangkin di mana imbasan dilakukan sehingga luas puncak CO stabil dan tiada puncak CO₂ kelihatan. Mod regangan CO dan CO₂ dikesan oleh FTIR pada kawasan 2230 - 2006 cm⁻¹ dan 2379 - 2259 cm⁻¹.

Seterusnya, bahan suapan dialirkan melalui mangkin bagi melihat pengoksidaan CO kepada CO₂. Mangkin diuji bermula daripada suhu bilik dan ditingkatkan secara seragam sehingga tiada lagi mod regangan CO kelihatan pada spektrum inframerah. Pengurangan puncak CO adalah berkadaran dengan penambahan puncak CO₂. Walaubagaimanapun, puncak CO₂ yang dikesan juga boleh hadir daripada CO₂ persekitaran selain daripada hasil pengoksidaan CO. Seterusnya, suhu pengoksidaan lengkap CO bagi semua sampel dibandingkan dengan mangkin komersil Pt/Al₂O₃ yang mengoksidakan CO sepenuhnya pada suhu 200 °C.

BAB IV

HASIL DAN PERBINCANGAN

Ujian aktiviti pemangkinan merujuk kepada semua sampel yang disediakan manakala pencirian sampel hanya dilakukan terhadap sampel yang mempunyai aktiviti pemangkinan yang terbaik dalam kajian ini.

Ujian aktiviti pemangkinan dijalankan bagi melihat pengoksidaan lengkap CO kepada CO₂ terhadap semua sampel menggunakan reaktor mikro padatan tetap. Mangkin (0.3 - 0.5 g) diaktifkan pada suhu 300 °C selama satu jam di bawah aliran udara (21 % O₂ + 79 % N₂) pada kadar alir 9 mL/min sebelum dibiarkan menyejuk pada suhu bilik. Seterusnya, aktiviti pemangkinan mangkin diuji dengan mengalirkan bahan suapan di bawah keadaan kaya oksigen bermula daripada suhu bilik dan ditingkatkan perlahan-lahan sehingga tiada lagi puncak CO kelihatan pada FTIR. Bahan suapan terdiri daripada 4 % CO dengan kadar alir 4 mL/min dan 96 % udara (20.16 % O₂ dan 75.84 % N₂) dengan kadar alir 96 mL/min. Aktiviti pengoksidaan CO dikesan berdasarkan penyusutan keamatan regangan CO pada kawasan mod regangan 2230 - 2006 cm⁻¹ selaras dengan pertambahan keamatan regangan CO₂ pada kawasan mod regangan 2379 - 2259 cm⁻¹ menggunakan alat spektrometer FTIR. Rajah 4.1 menunjukkan perwakilan spektrum FTIR bagi pengoksidaan CO kepada CO₂.

Rajah 4.1: Spektrum FTIR bagi pengoksidaan CO kepada CO₂ bagi sampel Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada suhu pengkalsinan 600 °C

Berdasarkan kajian terdahulu [33], mangkin berasaskan oksida timah (IV) telah disediakan menggunakan kaedah pengisitepuan dan ditambahkan dengan satu bahan pendop daripada oksida logam kumpulan peralihan baris pertama. Sampel-sampel terbaik daripada ujian aktiviti pemangkinan yang diperoleh daripada kajian terdahulu terhadap pengoksidaan lengkap CO kepada CO₂ dirumuskan dalam Jadual 4.1.

Dalam kajian ini, mangkin disediakan menggunakan kaedah modifikasi solgel. Sampel-sampel yang disediakan adalah berasaskan Co(II)-dop SnO₂, Mn(IV)-dop SnO₂, Ni(II)-dop SnO₂, Co(III)-dop SnO₂, Mn(II)-dop SnO₂ dan Cu(II)-dop SnO₂ seterusnya ditambahkan bahan pendop kedua ke atas mangkin tersebut. Mangkin yang disediakan dengan variasi nisbah bahan asas dan bahan pendop, dikeringkan pada 120 °C sebelum dikalsinkan pada pelbagai suhu.

Beberapa simbol penting yang digunakan dalam bab ini adalah T_{100} iaitu suhu pengoksidaan lengkap CO kepada CO₂, T_{LO} iaitu suhu pengoksidaan awal (suhu pengoksidaan CO = 5 %), T_K iaitu suhu pengkalsinan sampel dan SB iaitu suhu bilik (21 °C).

Sampel	Nisbah atom	$T_{K}(^{\circ}C)$	T ₁₀₀ (°C)
SnO ₂			342
Co(II)-dop SnO ₂	30:70	600	100
Co(III)-dop SnO ₂	40:60	600	110
Mn(II)-dop SnO ₂	30:70	400	120
Mn(IV)-dop SnO ₂	30:70	400	105

Jadual 4.1: Data aktiviti pemangkinan terhadap pengoksidaan CO kepada CO₂ bagi sampel-sampel terbaik daripada kajian terdahulu [33]

4.1.1 Aktiviti Pemangkinan Terhadap Pengoksidaan CO Bagi Sampel M/Co(II)-dop SnO₂ [M=Mn(IV), Ni(II), Mn(II), Cu(II), Cr(VI)] Pada Pelbagai Nisbah Atom dan Suhu Pengkalsinan

Ujian aktiviti pemangkinan terhadap pengoksidaan lengkap CO dilakukan ke atas mangkin M/Co(II)-dop SnO₂ [M=Mn(IV), Ni(II), Mn(II), Cu(II), Cr(VI)] pada pelbagai nisbah atom dan suhu pengkalsinan. Merujuk kepada Jadual 4.2 didapati lima sampel telah menunjukkan pengoksidaan lengkap CO (T_{100}) di bawah suhu 200 °C dengan suhu pengoksidaan awal (T_{LO}) pada suhu bilik.

Penambahan bahan pendop nikel (II) dan mangan (IV) ke atas sampel asas Co(II)-dop SnO₂ dilihat mampu memberikan hasil aktiviti pemangkinan yang baik. Ini kerana sampel Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) dan Mn(IV)/Co(II)-dop SnO₂ (0.30:29.91:69.79) masing-masing pada suhu pengkalsinan 600 °C memberikan pengoksidaan lengkap CO, $T_{100} = 150$ °C dan $T_{100} = 190$ °C. Hasil aktiviti pemangkinan ini adalah lebih baik berbanding dengan mangkin komersil, Pt/Al₂O₃ dengan T_{100} (CO) pada 200 °C.

Walaubagaimanapun, sampel Mn(IV)/Co(II)-dop SnO₂ (0.30:29.91:69.79) pada suhu pengkalsinan 1000 °C hanya mengoksidakan 21.46 % CO pada suhu pengolahan maksimum kajian iaitu 400 °C. Aktiviti pemangkinan jelas semakin merosot apabila dikalsinkan pada suhu yang tinggi. Ini kerana, pada suhu tinggi saiz partikel menjadi besar dan menyebabkan luas permukaan berkurang. Tapak aktif pada permukaan mangkin berkurangan seterusnya menghalang kecekapan tindak balas pengoksidaan CO.

Sampel	Nisbah atom	Тк	TLO	T ₁₀₀
•		(°C)	(°C)	(°C)
	10:90	400	240	355
		400	SB	175
Co(II)-dop SnO ₂	20.70	600	SB	180
	30:70	800	155	250
		1000	230	390
	0.05.20.09.60.07	400	100	200
	0.05:29.98:69.97	600	70	230
		400	SB	290
	0.10:29.97:69.93	600	70	230
Mn(IV)/Co(II)-dop SnO ₂		800	SB	200
		400	70	290
	0 20.20 01.60 70	600	SB	190
	0.50.29.91.09.79	800	180	230
		1000	255	400 [21.46%] ^a
	0.05:29.98:69.97	400	SB	200
		600	SB	190
	0.10:29.97:69.93	400	SB	220
Ni(II)/Co(II)-don SnO		600	SB	150
10(11)/C0(11)-d0p 5110 ₂		800	165	260
		1000	245	390
	0 30.20 01.60 70	400	SB	200
	0.30.29.91.09.79	600	SB	200
	0 10.20 07.60 03	400	SB	240
Mn(II)/Co(II)-don SnO	0.10.27.77.07.75	600	205	250
	0 30.29 91.69 79	400	195	315
	0.50.27.71.07.77	600	245	315
	0 10.29 97.69 93	400	200	240
$C_{\rm U}({\rm II})/C_{\rm O}({\rm II})$ -don SnO ₂	0.10.29.97.09.95	600	220	240
	0 30.29 91.69 79	400	150	367
	0.50.29.91.09.79	600	135	223
	0 10.20 07.60 03	400	188	255
Cr(VI)/Co(II)-don SnO2	0.10.29.91.09.95	600	100	280
	0.30:29.91:69.79	400	155	253
		600	210	263

Jadual 4.2:	Data aktiviti pemangkinan terhadap pengoksidaan CO bagi sampel
	M/Co(II)-dop SnO ₂ [M=Mn(IV), Ni(II), Mn(II), Cu(II), Cr(VI)]
	pada pelbagai nisbah atom dan suhu pengkalsinan

a = peratus pengoksidaan CO pada suhu maksimum kajian, 400 °C

4.1.2 Aktiviti Pemangkinan Terhadap Pengoksidaan CO Bagi Sampel M/Mn(IV)-dop SnO₂ [M=Co(II), Ni(II), Co(III)] Pada Pelbagai Nisbah Atom dan Suhu Pengkalsinan

Jadual 4.3 menunjukkan hanya satu sampel mengoksidakan CO dengan lengkap pada suhu kurang daripada 300 °C manakala lain-lain sampel > 300 °C. Sampel tersebut adalah Co(III)/Mn(IV)-dop SnO₂ (0.10:29.97:69.93) pada suhu pengkalsinan 600 °C dengan T₁₀₀ = 295 °C. Manakala, sampel Ni(II)/Mn(IV)-dop SnO₂ (0.10:29.97:69.93) yang dikalsinkan pada suhu 600 °C hanya mengoksidakan 79.09 % CO pada suhu pengolahan maksimum kajian.

Sampel	Nisbah atom	T_{K}	T _{LO}	T ₁₀₀
		(\mathbf{C})	(\mathbf{U})	(4)
Mn(W) don SnO	20.70	400	160	400
$\operatorname{NIII}(1 \vee)$ -dop SIIO_2	30.70	600	140	350
Co(II)/Mn(IV)-dop SnO ₂	0.10:29.97:69.93	400	205	300
Ni(II)/Mn(IV) don SnO	0 10:20 07:60 02	400	240	400
$NI(II)/NIII(IV)-dop SIIO_2$	0.10.29.97.09.95	600	150	400 [79.09%] ^a
Co(III)/Mp(IV) dop SpO	0 10.20 07.60 03	400	210	400
$Co(III)/IvIII(Iv)-dop SIIO_2$	0.10.29.97.09.95	600	160	295

Jadual 4.3: Data aktiviti pemangkinan terhadap pengoksidaan CO bagi sampel M/Mn(IV)-dop SnO₂ [M=Co(II), Ni(II), Co(III)] pada pelbagai nisbah atom dan suhu pengkalsinan

a = peratus pengoksidaan CO pada suhu maksimum kajian, 400 °C

4.1.3 Aktiviti Pemangkinan Terhadap Pengoksidaan CO Bagi Sampel M/Ni(II)-dop SnO₂ [M=Co(III), Mn(IV), Co(II), Mn(II), Cu(II), Cr(VI)] Pada Pelbagai Nisbah Atom dan Suhu Pengkalsinan

Ujian aktiviti pemangkinan ke atas sampel M/Ni(II)-dop SnO₂ [M=Co(III), Mn(IV), Co(II), Mn(II), Cu(II), Cr(VI)] pada pelbagai nisbah atom dan suhu pengkalsinan menunjukkan T_{100} (CO) bagi semua sampel adalah kurang baik iaitu lebih daripada 310 °C. Empat sampel didapati tidak mencapai T_{100} sehingga suhu pengolahan maksimum kajian iaitu Mn(IV)/Ni(II)-dop SnO₂ (0.10:29.97:69.93), Co(II)/Ni(II)-dop SnO₂ (0.30:29.91:69.79), Cu(II)/Ni(II)-dop SnO₂ (0.10:29.97:69.93) masing-masing dikalsinkan pada suhu 400 °C dan Mn(IV)/Ni(II)-dop SnO₂ (0.30:29.91:69.79) pada pengkalsinan 600 °C. Sampel-sampel ini hanya mengoksidakan CO masing-masing sebanyak 50.97 %, 84.55 %, 21.84 % dan 28.05 %.

Sampel	Nisbah atom	T _K	T _{LO}	T ₁₀₀
		(°C)	(°C)	(°C)
Ni(II) dan SnO	20.70	400	100	345
$Ni(II)$ -dop SiO_2	30:70	600	260	330
	0 10.20 07.60 02	400	270	367
Co(III)/Ni(II) dop SpO	0.10.29.97.09.95	600	120	384
Co(III)/Ivi(II)-dop SilO ₂	0 30.20 01.60 70	400	185	380
	0.30.29.91.09.79	600	210	395
	0 10.20 07.60 03	400	90	$400 [50.97\%]^{a}$
$Mn(W)/Ni(W)$ don SnO_{2}	0.10.29.97.09.95	600	260	380
	0 20.20 01.60 70	400	225	340
	0.30.29.91.09.79	600	180	$400 [84.55\%]^{a}$
	0 10.20 07.60 03	400	185	315
Co(II)/Ni(II)-don SnO	0.10.29.97.09.93	600	220	360
Co(ii)/10(ii)-dop 5iiO ₂	0.30:29.91:69.79	400	230	$400 [21.84\%]^{a}$
		600	250	365
	0 10.20 07.60 03	400	225	328
Mn(II)/Ni(II)-don SnO	0.10.29.97.09.95	600	270	385
$\operatorname{Win}(\mathbf{H})/\operatorname{Win}(\mathbf{H})$ -dop SitO_2	0 30.20 01.60 70	400	230	375
	0.30.29.91.09.79	600	270	400
	0 10.20 07.60 03	400	205	$400 [28.05\%]^{a}$
Cu(II)/Ni(II)-don SnO	0.10.29.97.09.95	600	270	380
	0 30.20 01.60 70	400	175	340
	0.30.29.91.09.79	600	275	360
	0 10.20 07.60 03	400	180	310
Cr(VI)/Ni(II)-don SnO-	0.10.29.97.09.95	600	210	330
$CI(VI)/IVI(II)-uop SIIO_2$	0 30.20 01.60 70	400	195	350
	0.30:29.91:09.79		200	400

Jadual 4.4: Data aktiviti pemangkinan terhadap pengoksidaan CO bagi sampel M/Ni(II)-dop SnO₂ [M=Co(III), Mn(IV), Co(II), Mn(II), Cu(II), Cr(VI)] pada pelbagai nisbah atom dan suhu pengkalsinan

a = peratus pengoksidaan CO pada suhu maksimum kajian, 400 °C

4.1.4 Aktiviti Pemangkinan Terhadap Pengoksidaan CO Bagi Sampel M/Co(III)-dop SnO₂ [M=Mn(IV), Ni(II)] Pada Pelbagai Nisbah Atom dan Suhu Pengkalsinan

Jadual 4.5 menunjukkan terdapat dua sampel memberikan pengoksidaan lengkap CO pada suhu 245 °C manakala lain-lain sampel mengoksidakan CO pada suhu > 300 °C. Penambahan bahan pendop kedua mangan (IV) dan nikel (II) ke atas sampel berasaskan Co(III)-dop SnO₂ dan dikalsinkan pada suhu 600 °C jelas berupaya meningkatkan aktiviti pemangkinan sampel tersebut.

Sampel	Nisbah atom	T _K	T _{LO}	T ₁₀₀
		(°C)	(°C)	(°C)
Co(III) don SnO	10.60	400	130	310
$Co(III)$ -dop $SilO_2$	40:00	600	160	320
		400	120	310
Mn(IV)/Co(III)-dop SnO ₂	0.10:39.96:59.94	600	120	245
		800	200	365
Ni(II)/Co(III) don SnO	0 10.20 06.50 04	400	130	380
$101(11)/CO(111)-uop SIIO_2$	0.10.39.90.39.94	600	SB	245

Jadual 4.5: Data aktiviti pemangkinan terhadap pengoksidaan CO bagi sampel M/Co(III)-dop SnO₂ [M= Mn(IV), Ni(II)] pada pelbagai nisbah atom dan suhu pengkalsinan

4.1.5 Aktiviti Pemangkinan Terhadap Pengoksidaan CO Bagi Sampel M/Mn(II)-dop SnO₂ [M=Ni(II), Co(II), Cu(II), Cr(VI)] Pada Pelbagai Nisbah Atom dan Suhu Pengkalsinan

Merujuk kepada Jadual 4.6, didapati hanya empat sampel mempunyai T_{100} kurang daripada 300 °C dengan sampel terbaik adalah Cr(VI)/Mn(II)-dop SnO₂ (0.30:29.91:69.79) pada suhu pengkalsinan 600 °C (T_{100} (CO) = 230 °C). Selain itu, terdapat empat sampel yang tidak memberikan pengoksidaan lengkap CO pada suhu maksimum kajian. Sampel-sampel tersebut adalah Ni(II)/Mn(II)-dop SnO₂ (0.30:29.91:69.79) pada pengkalsinan 400 °C dan 600 °C, Cu(II)/Mn(II)-dop SnO₂ (0.10:29.97:69.93) dan (0.30:29.91:69.79) masing-masing pada pengkalsinan 600 °C dan 400 °C. Peratus pengoksidaan CO bagi sampel-sampel ini adalah 18.35 %, 85.95 %, 85.83 % dan 85.24 %.

Sampel	Nisbah atom	T _K	T _{LO}	T ₁₀₀
		(°C)	(°C)	(°C)
	10.00	400	260	360
Mn(II) don SnO	10:90	600	150	354
$\operatorname{Win}(\Pi)$ -dop SilO_2	20.70	400	260	360
	50.70	600	132	322
	0 10.20 07.60 03	400	270	373
Ni(II)/Mn(II) don SnO	0.10.29.97.09.95	600	100	330
$\operatorname{NI}(\Pi)/\operatorname{NII}(\Pi)-\operatorname{dop}\operatorname{SHO}_2$	0.30:29.91:69.79	400	270	$400 [18.35\%]^{a}$
		600	208	$400 [85.95\%]^{a}$
	0 10.20 07.60 02	400	255	385
$C_{0}(\mathbf{H})/\mathbf{M}n(\mathbf{H})$ don SnO_{1}	0.10.29.97.09.95	600	SB	262
$CO(H)/WH(H)-dop SHO_2$	0 20.20 01.60 70	400	190	395
	0.50.29.91.09.79	600	225	348
	0 10.20 07.60 03	400	SB	335
$C_{\rm H}({\rm H})/{\rm M}n({\rm H})$ dop SnO.	0.10.29.97.09.93	600	230	$400 [85.83\%]^{a}$
$Cu(\Pi)/WII(\Pi)-dop SIIO_2$	0 20.20 01.60 70	400	180	400 [85.24%] ^a
	0.30.29.91.09.79	600	100	295
	0 10.20 07.60 03	400	260	385
Cr(VI)/Mn(II) don SnO	0.10.29.97.09.95	600	SB	270
$C_1(v_1)/w_1(11)-u_0p_0S_1O_2$	0 20.20 01.60 70	400	230	387
	0.50:29.91:09.79	600	110	230

Jadual 4.6: Data aktiviti pemangkinan terhadap pengoksidaan CO bagi sampel M/Mn(II)-dop SnO₂ [M=Ni(II), Co(II), Cu(II), Cr(VI)] pada pelbagai nisbah atom dan suhu pengkalsinan

a = peratus pengoksidaan CO pada suhu maksimum kajian, 400 °C

4.1.6 Aktiviti Pemangkinan Terhadap Pengoksidaan CO Bagi Sampel M/Cu(II)-dop SnO₂ [M=Ni(II), Mn(II), Co(II), Cr(VI)] Pada Pelbagai Nisbah Atom dan Suhu Pengkalsinan

Merujuk kepada Jadual 4.7, didapati hanya satu sampel sahaja lengkap mengoksidakan CO pada suhu kurang daripada 200 °C. Sampel tersebut adalah Cu(II)-dop SnO₂ (30:70) yang dikalsinkan pada suhu 400 °C dengan T₁₀₀ = 195 °C. Walaubagaimanapun, suhu pengoksidaan awal sampel ini yang tinggi iaitu pada 155 °C menunjukkan ia cekap mengoksidakan CO dengan lengkap pada julat suhu sekitar 35 °C sahaja. Secara keseluruhannya, sampel berasaskan Cu(II)-dop SnO₂ memberikan suhu pengoksidaan awal yang tinggi iaitu > 150°C tetapi mengoksidakan CO dengan cepat iaitu < 320 °C.

Jadual 4.7:	Data aktiviti pemangkinan terhadap pengoksidaan CO bagi
sampel M/Cu	(II)-dop SnO ₂ [M=Ni(II), Mn(II), Co(II), Cr(VI)] pada pelbagai
nisbah atom o	lan suhu pengkalsinan

Sampel	Nisbah atom	T _K	T _{LO}	T ₁₀₀
		(°C)	(°C)	(°C)
Cu(II) don SnO	20.70	400	155	190
	50.70	600	170	255
	0 10:20 07:60 03	400	180	256
Ni(II)/Cu(II) dop SpO	0.10.29.97.09.95	600	200	270
Ni(II)/Cu(II)-dop SilO ₂	0 20:20 01:60 70	400	165	216
	0.30.29.91.09.79	600	195	295
	0 10:20 07:60 02	400	150	215
Mn(II)/Cu(II) don SnO.	0.10.29.97.09.95	600	150	237
Win(ii)/Cu(ii)-dop SilO ₂	0.30:29.91:69.79	400	185	270
		600	180	252
	0 10:20 07:60 03	400	160	225
$C_{0}(\mathbf{H})/C_{u}(\mathbf{H})$ dop SpO	0.10.29.97.09.95	600	196	260
$CO(\Pi)/Cu(\Pi)$ -dop SHO_2	0 20.20 01.60 70	400	185	273
	0.30.29.91.09.79	600	200	285
	0 10:20 07:60 02	400	177	273
Cr(VI)/Cu(II) dop SpO	0.10:29.97:09.93	600	220	335
$CI(VI)/Cu(II)-uop SIIO_2$	0 20:20 01:60 70	400	185	257
	0.30.29.91.09.79	600	200	320

4.1.7 Aktiviti Pemangkinan Bagi Sampel-sampel Terbaik Dalam Kajian Ini

Daripada ujian aktiviti pemangkinan didapati sampel terbaik dalam kajian ini (iaitu suhu pengoksidaan lengkap CO kurang daripada 200 °C) adalah Co(II)-dop SnO₂ (30:70) yang dikalsinkan pada suhu 400 °C, Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) dan Mn(IV)/Co(II)-dop SnO₂ (0.30:29.91:69.79) masing-masing pada suhu pengkalsinan 600 °C. Jadual 4.8 menunjukkan aktiviti pemangkinan bagi ketiga-tiga sampel terbaik yang dikalsinkan pada pelbagai suhu berbanding dengan mangkin komersil, Pt/Al_2O_3 .

Jadual 4.8: Data aktiviti pemangkinan bagi sampel Co(II)-dop SnO₂ (30:70), Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) dan Mn(IV)/Co(II)-dop SnO₂ (0.30:29.91:69.79) pada pelbagai suhu pengkalsinan

Sampel	$T_{K}(^{\circ}C)$	T_{LO} (°C)	T ₁₀₀ (°C)
Mangkin komersil, Pt/Al ₂ O ₃	-	120	200
	400	SB	175
Co(II)-dop SnO ₂	600	SB	180
(30:70)	800	155	250
	1000	230	390
	400	SB	220
Ni(II)/Co(II)-dop SnO ₂	600	SB	150
(0.10:29.97:69.93)	800	165	260
	1000	245	390
	400	70	290
Mn(IV)/Co(II)-dop SnO ₂	600	SB	190
(0.30:29.91:69.79)	800	180	230
	1000	255	400 [21.46 %] ^a

a = peratus pengoksidaan CO pada suhu maksimum kajian, 400 °C

Seterusnya, Rajah 4.2 sehingga Rajah 4.4 menunjukkan graf peratus pengoksidaan CO melawan suhu bagi ketiga-tiga sampel terbaik, Co(II)-dop SnO₂ (30:70), Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) dan Mn(IV)/Co(II)-dop SnO₂ (0.30:29.91:69.79) pada pelbagai suhu pengkalsinan.

Rajah 4.2 menunjukkan sampel Co(II)-dop SnO₂ (30:70) pada suhu pengkalsinan 400 °C dan 600 °C mula mengoksidakan CO pada suhu pengolahan yang rendah seterusnya memberikan T₁₀₀ (CO) sekitar julat suhu 175 °C sehingga 180 °C. Manakala sampel yang dikalsinkan pada suhu yang lebih tinggi iaitu 800 °C dan 1000 °C memperlihatkan pengoksidaan awal pada suhu yang lebih tinggi seterusnya memberikan T₁₀₀ (CO) yang tinggi iaitu lebih daripada 200 °C.

Rajah 4.2: Graf peratus pengoksidaan CO melawan suhu bagi sampel Co(II)-dop SnO₂ pada pelbagai suhu pengkalsinan

Sampel Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) (rujuk Rajah 4.3) memperlihatkan tren yang sama dengan sampel Co(II)-dop SnO₂ (30:70). Walaubagaimanapun, penambahan bahan pendop nikel (II) meningkatkan lagi aktiviti pemangkinan sampel. Sampel pada pengkalsinan 600 °C mengoksidakan CO dengan lengkap pada suhu 150 °C dan merupakan sampel terbaik dalam kajian ini.

Rajah 4.4 pula menunjukkan hanya sampel Mn(IV)/Co(II)-dop SnO₂ (0.30:29.91:69.79) pada pengkalsinan 600 °C sahaja memperlihatkan pengoksidaan CO yang cekap dan memberikan T₁₀₀ pada 190 °C. Walaubagaimanapun, sampel ini mempunyai kecekapan mengoksidakan CO paling baik pada suhu pengkalsinan 800 °C iaitu di dalam julat 50 °C sahaja. Manakala pada pengkalsinan 1000 °C, sampel hanya mengoksidakan CO sebanyak 21.46 % pada suhu pengolahan maksimum kajian.

Rajah 4.3: Graf peratus pengoksidaan CO melawan suhu bagi sample Ni(II)/Co(II)-dop SnO₂ pada pelbagai suhu pengkalsinan

Rajah 4.4: Graf peratus pengoksidaan CO melawan suhu bagi sampel Mn(IV)/Co(II)-dop SnO₂ pada pelbagai suhu pengkalsinan

Dalam kajian ini, suhu pengolahan maksimum yang digunakan adalah 400 °C. Sampel terbaik dalam kajian ini dengan suhu pengoksidaan lengkap CO terendah seterusnya dibandingkan dengan mangkin komersil, Pt/Al_2O_3 yang memberikan T_{100} (CO) pada suhu 200 °C. Rajah 4.5 menunjukkan suhu pengoksidaan lengkap CO kepada CO₂ dan suhu pengoksidaan awal bagi ketiga-tiga sampel kajian adalah lebih baik berbanding dengan mangkin komersil, Pt/Al_2O_3 .

Rajah 4.5: Graf peratus pengoksidaan CO melawan suhu bagi ketigatiga sampel terbaik dalam kajian ini dibandingkan dengan mangkin komersil, Pt/Al₂O₃

4.1.8 Kesimpulan

Secara keseluruhannya, sampel-sampel terbaik dalam kajian ini yang dikalsinkan pada suhu 600 °C memberikan aktiviti pemangkinan yang lebih baik dengan suhu pengoksidaan lengkap CO (T_{100}) kurang daripada 200 °C berbanding dengan lain-lain suhu pengkalsinan kecuali sampel Co(II)-dop SnO2 yang memberikan aktiviti pemangkinan yang lebih baik pada suhu pengkalsinan 400 °C. Ini kerana, suhu pengkalsinan 400 °C dan 600 °C berupaya menyediakan luas permukaan mangkin yang besar berbanding lain-lain suhu pengkalsinan. Penambahan bahan pendop kedua, Ni(II) ke atas sampel Co(II)-dop SnO₂ dengan nisbah atom 0.10:29.97:69.93 dilihat mampu meningkatkan aktiviti pemangkinan. Ini kerana, nikel (II) berupaya mengurangkan jarak kawasan larangan dan memudahkan pergerakan elektron di antara jalur valens dan jalur penghantar seterusnya menggalakkan proses tindak balas redoks oksida kobalt. Suhu pengoksidaan lengkap CO kepada CO₂ untuk sampel ini adalah paling rendah berbanding dengan lain-lain sampel iaitu $T_{100} = 150$ °C. Walaubagaimanapun, sampel kajian terdahulu iaitu Co(II)-dop SnO₂ (30:70) menggunakan kaedah pengisitepuan memberikan T_{100} (CO) yang lebih baik iaitu pada suhu 100 °C [33].

4.3 Analisis Pembelauan Sinar-X (XRD)

Corak difraktogram XRD bagi sampel Co(II)-dop SnO₂, Ni(II)/Co(II)-dop SnO₂ dan Mn(IV)/Co(II)-dop SnO₂ pada pelbagai suhu pengkalsinan ditunjukkan dalam Rajah 4.13 sehingga Rajah 4.15 manakala data daripada analisis XRD disusun dalam Jadual 4.12 sehingga Jadual 4.14. Maklumat mengenai perubahan fasa ke atas

sampel yang dikalsinkan pada pelbagai suhu diinterpretasi berdasarkan nilai 2θ dan nilai d seterusnya dibandingkan dengan nilai daripada Fail Pembelauan Serbuk (PDF) [34].

Corak dan kedudukan puncak difraktogram bagi sampel Co(II)-dop SnO₂ ditunjukkan dalam Rajah 4.13 dan Jadual 4.12. Pada suhu sebelum pengkalsinan iaitu 120 °C menunjukkan puncak melebar dan tidak jelas memperlihatkan sampel masih bersifat amorfus. Puncak oksida timah (SnO₂) tetragonal dicerap pada nilai $2\theta =$ (26.76, 34.20, 51.98 dan 64.93) ° atau pada nilai d = (3.33, 2.62, 1.76 dan 1.44) Å [PDF nilai d = (3.35, 2.64, 1.76 dan 1.42) Å]. Puncak Co₃O₄ berstruktur kubik pula dijangka bertindihan dengan puncak SnO₂ pada nilai $2\theta = 64.93$ ° atau pada nilai d = 1.44 Å [PDF nilai d = 1.43 Å]. Pengkalsinan seterusnya pada 400 °C, dua puncak baru hadir mewakili fasa SnO₂ tetragonal dan fasa Co₃O₄ kubik pada nilai 20 = (37.06 dan 37.98) ° atau pada nilai d = (2.42 dan 2.37) Å [PDF nilai d = (2.44 dan 2.37) Å]. Pengkalsinan pada suhu 600 °C pula menunjukkan tiada perubahan fasa yang berlaku kecuali wujudnya satu puncak baru SnO₂ pada nilai 20 = 54.26 ° atau pada nilai d = 1.69 Å [PDF nilai d = 1.68 Å].

Peningkatan suhu pengkalsinan pada 800 °C menunjukkan kehadiran puncak baru SnO₂ dengan struktur tetragonal pada nilai 2 θ = (39.14, 57.98 dan 62.00) ° atau pada nilai d = (2.30, 1.59 dan 1.50) Å [PDF nilai d = (2.31, 1.59 dan 1.50) Å] dan struktur kubik Co₃O₄ pada nilai 2 θ = (19.02, 31.28, 44.99 dan 59.38) ° atau nilai d = (4.66, 2.86, 2.01 dan 1.56) Å [PDF nilai d = (4.67, 2.86, 2.02 dan 1.56) Å]. Manakala, puncak Co₃O₄ dan puncak SnO₂ pada nilai 2 θ = 64.75 ° tidak lagi bertindihan sebaliknya membentuk dua puncak baru dengan nilai 2 θ = (65.42 dan 66.03) ° atau pada nilai d = (1.43 dan 1.41) Å [PDF nilai d = (1.43 dan 1.42) Å]. Satu sebatian ternari Co₂SnO₄ berstruktur kubik dijangkakan bertindihan dengan puncak SnO₂ pada nilai 2 θ = 34.01 ° atau pada nilai d = 2.63 Å [PDF nilai d = 2.61 Å].

Pengkalsinan pada suhu 1000 °C pula menunjukkan kewujudan sebatian ternari, Co_2SnO_4 dengan struktur kubik pada nilai $2\theta = (17.93, 29.38, 34.55, 36.18, 41.94, 55.35$ dan 60.63) ° atau pada nilai d = (4.94, 3.04, 2.59, 2.48, 2.15, 1.66 dan 1.53) Å [PDF nilai d = (4.99, 3.06, 2.61, 2.49, 2.16, 1.66 dan 1.53) Å]. Satu puncak baru SnO₂ diperoleh pada nilai $2\theta = 64.99$ ° atau pada nilai d = 1.41 Å [PDF nilai d = 1.44 Å] manakala dua puncak SnO₂ pada nilai d = (2.31 dan 1.68) Å pada suhu pengkalsinan sebelumnya didapati hilang pada suhu pengkalsinan ini. Selain itu, puncak SnO₂ yang bertindihan dengan puncak Co_2SnO_4 pada pengkalsinan sebelumnya didapati terpisah dan membentuk puncak baru pada nilai $2\theta = 34.09$ ° atau pada nilai d = 2.63 Å [PDF nilai d = 2.64 Å]. Peningkatan suhu pengkalsinan menyebabkan pertambahan sifat hablur pada sampel ditunjukkan oleh kehadiran puncak yang tajam dan berkeamatan tinggi pada corak difraktogram.

Rajah 4.13: Corak difraktogram XRD bagi Co(II)-dop SnO₂ (30:70) pada pelbagai suhu pengkalsinan

Suhu (°C)	2θ (°)	d/Å	d/Å (PDF[64])	Deduksi
	26.76	3.33	3.35	SnO ₂ (t)
120	34.20	2.62	2.64	$SnO_2(t)$
120	51.98	1.76	1.76	$SnO_2(t)$
	64.93	1.44	1.43, 1.42	$Co_3O_4(k)$, $SnO_2(t)$
	26.48	3.36	3.35	SnO ₂ (t)
	34.01	2.63	2.64	$SnO_2(t)$
100	37.06	2.42	2.44	$Co_3O_4(k)$
400	37.98	2.37	2.37	$SnO_2(t)$
	52.33	1.75	1.76	$SnO_2(t)$
	64.70	1.44	1.43, 1.42	$Co_3O_4(k)$, $SnO_2(t)$
	26.63	3.34	3.35	SnO ₂ (t)
	33.79	2.65	2.64	$SnO_2(t)$
	36.70	2.45	2.44	$Co_3O_4(k)$
600	38.17	2.36	2.37	$SnO_2(t)$
	51.80	1.76	1.76	$SnO_2(t)$
	54.26	1.69	1.68	$SnO_2(t)$
	64.75	1.44	1.43, 1.42	$Co_3O_4(k)$. SnO ₂ (t)
	19.02	4.66	4.67	$C_{03}O_4(k)$
	26.75	3.33	3.35	$SnO_2(t)$
	31.28	2.86	2.86	$Co_3O_4(k)$
	34.01	2.63	2.64. 2.61	$SnO_2(t)$, $Co_2SnO_4(k)$
	36.93	2.43	2.44	$Co_3O_4(k)$
	38.04	2.36	2.37	$SnO_2(t)$
	39.14	2.30	2.31	$SnO_2(t)$
800	44 99	2.01	2.02	$C_{02}O_4(k)$
000	51.97	1.76	1.76	$SnO_2(t)$
	54.87	1.67	1.68	$SnO_2(t)$
	57.98	1 59	1 59	$SnO_2(t)$
	59.38	1.56	1.56	$C_{02}O_4(k)$
	62.00	1 50	1 50	$SnO_2(t)$
	65.42	1.30	1 43	$C_{02}O_4(\mathbf{k})$
	66.03	1 41	1.42	$SnO_2(t)$
	17.93	4 94	4 99	$Co_2 SnO_4(k)$
	26 77	3 33	3 35	$SnO_2(t)$
	29.38	3.04	3.06	$Co_2 SnO_4(k)$
	34.09	2.63	2.64	$SnO_2(t)$
	34 55	2.59	2.61	$Co_2 SnO_4(k)$
	36.18	2.48	2.49	$Co_2SnO_4(k)$
	38.10	2.36	2.37	$SnO_2(t)$
1000	41 94	2.15	2.16	$C_{02}SnO_4(k)$
1000	51.97	1.76	1.76	$SnO_2(t)$
	55 35	1.70	1.66	$Co_2 SnO_4(k)$
	58.16	1.58	1 59	$SnO_2(t)$
	60.63	1.50	1.57	$Co_2 SnO_4(k)$
	62 13	1.55	1.50	$SnO_{2}(t)$
	64 99	1.43	1 44	$snO_2(t)$
	66.27	1.41	1.42	$SnO_2(t)$

Jadual 4.12:Kedudukan puncak 2θ pada corak difraktogram XRD bagi Co(II)dop SnO₂ (30:70) pada pelbagai suhu pengkalsinan

t = tetragonal

k = kubik

Merujuk kepada Rajah 4.14 dan Jadual 4.13, sampel Ni(II)/Co(II)-dop SnO₂ yang dikeringkan pada 120 °C menunjukkan puncak cerapan SnO₂ pada nilai 2 θ = (25.67, 33.84 dan 52.55) ° atau pada nilai d = (3.34, 2.65 dan 1.74) Å [PDF nilai d = (3.35, 2.64 dan 1.76) Å]. Pengkalsinan pada suhu 400 °C jelas menunjukkan kehadiran fasa yang serupa dibandingkan dengan sampel Co(II)-dop SnO₂ pada suhu pengkalsinan yang sama. Walaubagaimanapun, pada suhu 600 °C, fasa baru yang terbentuk dikenal pasti sebagai Co₃O₄ dengan struktur kubik pada nilai 2 θ = 31.51 ° atau pada nilai d = 2.84 Å [PDF nilai d = 2.86 Å]. Peningkatan suhu pengkalsinan pada 800 °C dan 1000 °C juga menunjukkan perubahan fasa yang hampir serupa berbanding dengan sampel Co(II)-dop SnO₂ yang dikalsinkan pada suhu yang sama. Walaubagaimanapun, berlakunya kehilangan puncak bagi fasa SnO₂ pada nilai d = (2.30, 1.67, 1.49 dan 1.43) Å untuk pengkalsinan 1000 °C.

Mangkin Mn(IV)/Co(II)-dop SnO₂ (rujuk Rajah 4.15 dan Jadual 4.14) yang dikeringkan pada 120 °C mempunyai fasa yang sama dengan sampel Co(II)-dop SnO₂ kecuali satu puncak baru Co₃O₄ pada nilai $2\theta = 36.52$ ° atau pada nilai d = 2.46 Å [PDF nilai d = 2.44 Å]. Suhu pengkalsinan 400 °C hingga 1000 °C juga menunjukkan kehadiran fasa yang serupa dengan sampel Co(II)-dop SnO₂ kecuali satu puncak baru Co₃O₄ pada nilai $2\theta = 31.41$ ° atau pada nilai d = 2.86 Å] tanpa kehadiran puncak SnO₂ pada nilai d = 1.67 Å untuk sampel yang dikalsinkan pada 400 °C dan 600 °C. Manakala pada suhu pengkalsinan 800 °C dan 1000 °C pula, sampel ini menunjukkan ketidakhadiran tiga puncak yang mewakili fasa SnO₂ tetragonal pada PDF nilai d = (2.31, 1.59 dan 1.50) Å jika dibandingkan dengan sampel Co(II)-dop SnO₂.

Rajah 4.14: Corak difraktogram XRD bagi Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada pelbagai suhu pengkalsinan

Jadual 4.13: Kedudukan puncak 20 pada corak difraktogram XRD bagi Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada pelbagai suhu pengkalsinan

Suhu (°C)	2θ (°)	d/Å	d/Å (PDF[64])	Deduksi
	25.67	3.34	3.35	SnO ₂ (t)
120	33.84	2.65	2.64	$SnO_2(t)$
	52.55	1.74	1.76	$SnO_2(t)$
	27.06	3.29	3.35	SnO ₂ (t)
	33.40	2.68	2.64	$SnO_2(t)$
400	37.01	2.43	2.44	$Co_3O_4(k)$
400	38.44	2.34	2.37	$SnO_2(t)$
	51.27	1.78	1.76	$SnO_2(t)$
	64.31	1.45	1.43, 1.42	$Co_3O_4(k), SnO_2(t)$
	26.78	3.33	3.35	$SnO_2(t)$
	31.51	2.84	2.86	$Co_3O_4(k)$
	33.96	2.64	2.64	$SnO_2(t)$
600	36.93	2.43	2.44	$Co_3O_4(k)$
	38.25	2.35	2.37	$SnO_2(t)$
	52.01	1.76	1.76	$SnO_2(t)$
	65.50	1.42	1.43, 1.42	$Co_3O_4(k)$, $SnO_2(t)$
	26.77	3.33	3.35	$SnO_2(t)$
	31.40	2.85	2.86	Co ₃ O ₄ (k)
	34.01	2.63	2.64, 2.61	$SnO_2(t), Co_2SnO_4(k)$
	36.89	2.43	2.44	$Co_3O_4(k)$
	38.04	2.36	2.37	$SnO_2(t)$
	39.14	2.30	2.31	$SnO_2(t)$
800	44.93	2.02	2.02	Co ₃ O ₄ (k)
	51.94	1.76	1.76	$SnO_2(t)$
	54.93	1.67	1.68	$SnO_2(t)$
	59.32	1.56	1.56	Co ₃ O ₄ (k)
	62.13	1.49	1.50	$SnO_2(t)$
	65.05	1.43	1.43	Co ₃ O ₄ (k)
	66.09	1.41	1.42	$SnO_2(t)$
	17.87	4.96	4.99	$Co_2SnO_4(k)$
	26.72	3.33	3.35	$SnO_2(t)$
	29.31	3.05	3.06	$Co_2SnO_4(k)$
	34.04	2.63	2.64	$SnO_2(t)$
	34.51	2.60	2.61	$Co_2SnO_4(k)$
	36.09	2.49	2.49	$Co_2SnO_4(k)$
1000	38.04	2.36	2.37	$SnO_2(t)$
	41.91	2.15	2.16	$Co_2SnO_4(k)$
	51.95	1.76	1.76	$SnO_2(t)$
	55.24	1.66	1.66	$Co_2SnO_4(k)$
	60.63	1.53	1.53	$Co_2SnO_4(k)$
	64.87	1.44	1.44	$SnO_2(t)$
	66.03	1.41	1.42	SnO ₂ (t)

t = tetragonal k = kubik

Pe				
Suhu (°C)	2θ (°)	d/Å	d/Å (PDF[64])	Deduksi

	07.07	2.20	2.25	
	27.07	3.29	3.35	$SnO_2(t)$
	34.51	2.60	2.64	$SnO_2(t)$
120	36.52	2.46	2.44	$Co_3O_4(k)$
	51.64	1.77	1.76	$SnO_2(t)$
	66.21	1.41	1.43, 1.42	$Co_3O_4(k)$, $SnO_2(t)$
	26.91	3.31	3.35	$SnO_2(t)$
	31.41	2.85	2.86	$Co_3O_4(k)$
	33.94	2.64	2.64	$SnO_2(t)$
400	36.55	2.46	2.44	$Co_3O_4(k)$
	37.92	2.37	2.37	$SnO_2(t)$
	50.52	1.81	1.76	$SnO_2(t)$
	64.68	1.44	1.43, 1.42	$Co_3O_4(k)$, $SnO_2(t)$
	26.64	3.34	3.35	$SnO_2(t)$
	31.32	2.85	2.86	$Co_3O_4(k)$
	33.98	2.64	2.64	$SnO_2(t)$
600	36.92	2.43	2.44	$Co_3O_4(k)$
	38.46	2.34	2.37	$SnO_2(t)$
	51.94	1.76	1.76	$SnO_2(t)$
	65.35	1.43	1.43, 1.42	$Co_3O_4(k)$, $SnO_2(t)$
	19.02	4.66	4.67	$Co_3O_4(k)$
	26.63	3.34	3.35	$SnO_2(t)$
	31.28	2.86	2.86	$Co_3O_4(k)$
	33.98	2.64	2.64	$SnO_2(t)$
	36.88	2.44	2.44	$Co_3O_4(k)$
	38.04	2.36	2.37	$SnO_2(t)$
800	44.75	2.02	2.02	$C_{0_2}O_4(\mathbf{k})$
	51.89	1 76	1 76	$SnO_2(t)$
	54 93	1.70	1.68	$SnO_2(t)$
	59.38	1.67	1 56	$C_{02}O_4(\mathbf{k})$
	62.06	1.50	1.50	$SnO_2(t)$
	65.23	1.12	1.20	$C_{02}O_{1}(k)$
	66.03	1.43	1.43	$SnO_2(t)$
	17.90	4 95	4 99	C_{0} SnO ₂ (k)
	26.72	3 33	3 35	$SnO_2(t)$
	29.39	3.04	3.06	$C_{0}SnO_{4}(k)$
	34.04	2.63	2 64	$SnO_2(t)$
	34 52	2.05	2.64	$C_{0}SnO_{4}(k)$
	36.11	2.00	2.01	$C_0 SnO_4(k)$
1000	38.12	2.75 2.36	2.47	$SnO_{2}(t)$
1000	41.80	2.50	2.57	$\cos_2(t)$
	51.02	1 76	1 76	$SnO_{-}(t)$
	55 28	1.70	1.70	$C_0 S_0 O_1(k)$
	55.20	1.00	1.00	$C_{0} S_{n} O_{4}(k)$
	61.03	1.35	1.35	$CO_2SIIO_4(K)$
	04.8/	1.44	1.44	$SilO_2(t)$
	66.09	1.41	1.42	$SnO_2(t)$

t = tetragonalk = kubik

4.3.1 Kesimpulan

Secara amnya, analisis XRD memberikan maklumat mengenai perubahan fasa dan transformasi struktur ke atas mangkin. Selain itu, ia turut memperlihatkan sifat

kehabluran mangkin. Berdasarkan ketiga-tiga corak difraktogram XRD (Rajah 4.13 sehingga Rajah 4.15) didapati pada suhu pengkalsinan yang rendah iaitu 120 °C, 400 °C dan 600 °C jelas menunjukkan kehadiran puncak yang lebar dan menggambarkan sampel masih bersifat amorfus. Peningkatan suhu pengkalsinan kepada 800 °C dan 1000 °C memberikan puncak-puncak yang tajam dengan keamatan yang tinggi menunjukkan bertambahnya sifat kehabluran mangkin [35]. Keadaan ini juga dapat dijelaskan pada analisis SEM yang menunjukkan perubahan sifat amorfus kepada sifat hablur selaras dengan peningkatan suhu pengkalsinan.

Pada takat pencerapan oksida ternari, Co₂SnO₄ didapati aktiviti pemangkinan merosot kesan daripada berlakunya tindak balas keadaan pepejal dalam sistem sebatian ini. Ini akan menyebabkan keberkesanan penjerapan menurun dan seterusnya mengurangkan tapak aktif permukaan mangkin. Justeru itu, penjerapan gas pada permukaan mangkin turut berkurang dan menyebabkan berlakunya pendeaktifan aktiviti mangkin.

Ujian aktiviti pemangkinan menunjukkan mangkin Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada suhu pengkalsinan 600 °C adalah terbaik dengan T₁₀₀ (CO) = 150 °C. Aktiviti pemangkinan dijangka meningkat apabila mangkin mempunyai spesies Co₃O₄ terdiri daripada spesies kobalt dengan campuran keadaan pengoksidaan +2 dan +3 di mana Co³⁺ adalah dominan [36]. Percampuran ini menyebabkan lebih banyak tapak aktif wujud pada permukaan mangkin. Selain itu, kehadiran pendop kedua nikel pada sampel mangkin ini dikenal pasti meningkatkan kehadiran fasa Co₃O₄ dan seterusnya meningkatkan aktiviti pemangkinan. Ini kerana Ni²⁺ menggalakkan pengoksidaan Co²⁺ kepada Co³⁺. Seperti yang dijangkakan, puncak untuk bahan pendop kedua iaitu oksida nikel dan oksida mangan tidak dapat dicerap dalam analisis XRD disebabkan oleh jisim yang digunakan terlalu kecil.

4.4 Analisis Spektroskopi Fotoelektron Sinar-X (XPS)

Pencirian XPS berguna dalam mengenal pasti spesies pada permukaan bahan berdasarkan kepada nilai tenaga ikatan yang diperoleh. Perubahan nilai tenaga ikatan pula merujuk kepada perubahan nombor pengoksidaan unsur-unsur kajian. Analisis ini dilakukan terhadap sampel Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) masing-masing pada suhu pengkalsinan 400 °C dan 600 °C. Nilai-nilai tenaga ikatan dalam analisis ini dibetulkan dengan nilai kesan cas iaitu 0.999 eV dan 1.009 eV masing-masing bagi suhu pengkalsinan 400 °C dan 600 °C.

Spektrum dan parameter XPS bagi Sn-3d terhadap sampel Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada suhu pengkalsinan 400 °C dan 600 °C ditunjukkan dalam Rajah 4.16 dan Jadual 4.15. Dekonvolusi spektrum Sn-3d memperlihatkan dua puncak berpasangan pada nilai tenaga ikatan yang berbeza bagi setiap suhu pengkalsinan. Pada suhu pengkalsinan 400 °C, puncak-puncak bagi Sn-3d_{5/2} dan Sn-3d_{3/2} dicerap pada nilai tenaga ikatan 486.6 eV dan 495.2 eV mewakili Sn dengan nombor pengoksidaan +4 yang terikat dalam bentuk Sn-O-Sn. Manakala, dua puncak yang menunjukkan kehadiran Sn dengan nombor pengoksidaan +4 dalam bentuk Sn-OH (OH terminal/permukaan) diperoleh pada 489.9 eV (3d_{5/2}) dan 498.2 eV (3d_{3/2}).

Kehadiran spesies Sn-OH adalah selaras dengan analisis FTIR yang menunjukkan kewujudan spesies OH terminal/permukaan pada mangkin yang dikalsinkan pada suhu 400 °C dan 600 °C.

Pada suhu pengkalsinan 600 °C, puncak-puncak bagi Sn⁴⁺ (Sn-O-Sn) teranjak sedikit pada nilai tenaga ikatan yang lebih rendah iaitu 486.5 eV ($3d_{5/2}$) dan 495.0 eV ($3d_{3/2}$) manakala puncak-puncak Sn⁴⁺ (Sn-OH) pula dicerap pada 488.9 eV ($3d_{5/2}$) dan 497.4 eV ($3d_{3/2}$). Anjakan nilai tenaga ikatan kepada nilai yang lebih rendah menunjukkan pertambahan sifat kovalen pada bahan. Tenaga pemecahan molekul yang diperoleh pada kedua-dua suhu pengkalsinan adalah di antara 8.3 eV - 8.6 eV dan sesuai berbanding dengan nilai teori iaitu 8.4 eV [37].

Puncak-puncak pada kedua-dua suhu pengkalsinan mewakili Sn dengan nombor pengoksidaan +4 dan tidak mengalami perubahan nombor pengoksidaan [32, 37]. Keadaan ini disokong berasaskan analisis XRD yang menunjukkan kehadiran fasa SnO₂ tetragonal pada kedua-dua suhu pengkalsinan. Peningkatan suhu pengkalsinan memberikan luas kawasan yang lebih besar bagi taburan spesies Sn⁴⁺ (Sn-O-Sn) selaras dengan analisis FTIR yang menunjukkan pertambahan mod regangan molekul oksida logam (Sn-O). Taburan spesies Sn⁴⁺ (Sn-OH) pula berkurang sedikit pada keluasan optimum dan dijangka menyediakan tapak aktif seterusnya meningkatkan aktiviti pemangkinan. Ujian aktiviti pemangkinan jelas membuktikan sampel yang dikalsinkan pada suhu 600 °C mengoksidakan CO kepada CO₂ pada suhu yang lebih rendah iaitu T₁₀₀ (CO) = 150 °C berbanding dengan T₁₀₀ (CO) = 220 °C pada suhu pengkalsinan 400 °C.

Rajah 4.16: Spektrum dekonvolusi XPS bagi Sn-3d terhadap sampel Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada suhu pengkalsinan 400 °C dan 600 °C

Jadual 4.15: Parameter dekonvolusi spektrum XPS bagi Sn-3d terhadap sampel Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada suhu pengkalsinan 400 °C dan 600 °C

T_{K}	Tenaga ikatan (eV)		ΔE_{so}	Luas kawasan 3d _{5/2} *	Deduksi
(10)	3d _{5/2}	3d _{3/2}	$\frac{1}{2}$ (eV)		
400	486.6	495.2	8.6	97.3	$\operatorname{Sn}^{4+}(\operatorname{Sn-O-Sn})$
400	489.9	498.2	8.3	204.9	Sn ⁴⁺ (Sn-OH)
600	486.5	495.0	8.5	149.1	$\operatorname{Sn}^{4+}(\operatorname{Sn-O-Sn})$
000	488.9	497.4	8.5	201.0	Sn ⁴⁺ (Sn-OH)

 T_K = suhu pengkalsinan

= keamatan puncak x FWHM (Full Width at Half Maximum)

 ΔE_{so} = tenaga pemecahan molekul

Tenaga pemecahan molekul bagi Co-2p yang diperoleh adalah di dalam julat 14.2 eV - 15.9 eV bersesuaian dengan nilai teori iaitu 15.0 eV [54]. Merujuk kepada Rajah 4.17 dan Jadual 4.16, diperoleh nilai tenaga ikatan bagi puncak-puncak 2p_{3/2} pada 779.0 eV dan 781.6 eV manakala puncak-puncak Co-2p_{1/2} pada 793.2 eV dan 797.5 eV terhadap sampel yang dikalsinkan pada suhu 400 °C. Suhu pengkalsinan 600 °C pula memperlihatkan puncak-puncak Co- $2p_{3/2}$ pada 779.1 eV dan 781.7 eV manakala puncak-puncak Co- $2p_{1/2}$ dicerap pada 793.4 eV dan 797.1 eV. Puncak-puncak ini terhasil disebabkan kehadiran fasa Co₃O₄ dengan nombor pengoksidaan Co²⁺ dan Co³⁺ pada permukaan mangkin dan dibuktikan daripada analisis XRD.

Nilai tenaga ikatan bagi puncak-puncak $\text{Co-}2p_{3/2}$ pada kedua-dua suhu pengkalsinan didapati hampir sama dengan nilai tenaga ikatan logam kobalt. Ini menunjukkan oksida kobalt dalam sampel kajian bersifat kovalen di mana tenaga ikatannya adalah lebih rendah berbanding dengan tenaga ikatan oksida kobalt yang bersifat ionik [37].

Rajah 4.17: Spektrum dekonvolusi XPS bagi Co-2p terhadap sampel Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada suhu pengkalsinan 400 °C dan 600 °C

Jadual 4.16: Parameter dekonvolusi spektrum XPS bagi Co-2p terhadap sampel Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada suhu pengkalsinan 400 °C dan 600 °C

T _K (°C)	Tenaga ikatan (eV)		ΔE_{so}	Luas kawasan	Deduksi
	2p _{3/2}	$2p_{1/2}$	(ev)	2p _{3/2} .	
400	779.0	793.2	14.2	150.1	$Co^{2+}/Co^{3+}(Co_3O_4)$
	781.6	797.5	15.9	217.4	$Co^{2+}/Co^{3+}(Co_3O_4)$
600	779.1	793.4	14.3	180.2	$Co^{2+}/Co^{3+}(Co_3O_4)$
	781.7	797.1	15.4	277.4	$Co^{2+}/Co^{3+}(Co_3O_4)$

 T_K = suhu pengkalsinan

* = keamatan puncak x FWHM (*Full Width at Half Maximum*)

 ΔE_{so} = tenaga pemecahan molekul

Rajah 4.18 dan Jadual 4.17 menunjukkan nilai tenaga ikatan dan dekonvolusi spektrum XPS bagi O-1s terhadap sampel Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) masing-masing pada suhu pengkalsinan 400 °C dan 600 °C. Berdasarkan kajian Wan Azelee *et. al* [68] didapati puncak pada tenaga ikatan 529.9 eV pada kedua-dua suhu pengkalsinan merujuk kepada oksida Sn-O dalam fasa SnO₂ tetragonal. Manakala, tenaga ikatan pada 532.2 eV dan 531.9 eV pula sepadan dengan spesies hidroksil permukaan [13]. Puncak-puncak yang dicerap pada 533.8 eV dan 533.9 eV bersesuaian dengan oksigen pada spesies Co²⁺-O merujuk kepada fasa spinel oksida kobalt Co₃O₄. Puncak yang sepadan dengan spesies Co³⁺-O hanya diperoleh pada suhu pengkalsinan 600 °C sahaja iaitu pada nilai tenaga ikatan 535.9 eV. Puncak ini berpadanan dengan fasa Co₃O₄ kubik di mana kehadiran spesies Co³⁺-O bersama-sama spesies Co²⁺-O dilihat berupaya meningkatkan aktiviti pemangkinan sampel.

Rajah 4.18: Spektrum dekonvolusi XPS bagi O-1s terhadap sampel Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada suhu pengkalsinan 400 °C dan 600 °C

Jadual 4.17: Parameter dekonvolusi spektrum XPS bagi O-1s terhadap sampel Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada suhu pengkalsinan 400 °C dan 600 °C

к (°С)	Tenaga ikatan (eV)	Luas kawasan O-1s*	Deduksi			
400	529.9	135.7	Sn-O			
	532.2	188.8	Sn-OH			
	533.8	88.06	Co ²⁺ -O			
600	529.9	98.9	Sn-O			
	531.9	153.1	Sn-OH			
	533.9	183.7	Co ²⁺ -O			
	535.9	43.2	Co ³⁺ -O			
r	$T_{\rm K}$ = suhu pengkalsinan					

= keamatan puncak x FWHM (*Full Width at Half Maximum*)

4.4.1 Kesimpulan

Sampel kajian iaitu Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) masing-masing pada suhu pengkalsinan 400 °C dan 600 °C memperlihatkan kewujudan puncakpuncak oksida timah dengan nombor pengoksidaan +4. Unsur kobalt dalam sampel ini hadir dalam dua bentuk nombor pengoksidaan iaitu Co^{2+} dan Co^{3+} merujuk kepada kehadiran fasa spinel Co₃O₄ daripada analisis XRD. Spinel Co₃O₄ merupakan hasil gabungan dua spesies iaitu CoO dan Co₂O₃ yang memungkinkan wujudnya dua nombor pengoksidaan bagi oksida kobalt.

Dekonvolusi spektrum XPS bagi unsur oksigen menunjukkan kehadiran spesies-spesies seperti Sn-O, Sn-OH dan Co²⁺-O pada mangkin. Walaubagaimanapun, spesies Co³⁺-O hanya dicerap pada suhu pengkalsinan 600 °C sahaja di mana kehadiran spesies ini bersama-sama spesies Co^{2+} -O dilihat berupaya meningkatkan aktiviti pemangkinan sampel. Spesies bagi oksida nikel tidak dapat dicerap daripada analisis ini disebabkan oleh jisim yang digunakan adalah kecil.

KESIMPULAN KESELURUHAN DAN CADANGAN

Mangkin dalam kajian ini disediakan menggunakan kaedah modifikasi solgel. Penambahan bahan pendop daripada oksida logam kumpulan peralihan baris pertama ke atas bahan asas mangkin iaitu oksida timah (IV) berupaya meningkatkan aktiviti pemangkinan. Penambahan bahan pendop pertama iaitu oksida kobalt (II) memberikan aktiviti pemangkinan yang paling baik berbanding dengan oksida logam lain seperti kobalt (III), nikel (II), mangan (II), mangan (IV) dan kuprum (II). Manakala, bahan pendop kedua seperti nikel (II) dan mangan (IV) yang ditambahkan ke atas mangkin juga memberikan aktiviti pemangkinan yang baik.

Ujian aktiviti pemangkinan memperlihatkan tiga sampel iaitu Co(II)-dop SnO₂ (30:70) yang dikalsinkan pada suhu 400 °C, Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) dan Mn(IV)/Co(II)-dop SnO₂ (0.30:29.91:69.79) masing-masing pada suhu pengkalsinan 600 °C memberikan pengoksidaan lengkap CO kepada CO₂ (T₁₀₀) yang lebih baik berbanding dengan mangkin komersil (Pt/Al₂O₃). Ketiga-tiga sampel ini memberikan T₁₀₀ masing-masing pada suhu 175 °C, 150 °C dan 190 °C manakala Pt/Al₂O₃ hanya mengoksidakan CO kepada CO₂ dengan lengkap pada suhu 200 °C. Penambahan bahan pendop kedua iaitu nikel (II) ke atas sampel Co(II)-dop SnO₂ dengan nisbah (0.10:29.97:69.93) dan dikalsinkan pada suhu 600 °C didapati berjaya meningkatkan aktiviti pemangkinan. Ia adalah sampel terbaik dalam kajian ini dengan suhu pengoksidaan lengkap CO kepada CO₂ pada 150 °C. Dalam tindak balas pengoksidaan CO kepada CO₂, ia melibatkan proses pengambilan oksigen daripada udara.

Pencirian dilakukan ke atas ketiga-tiga mangkin yang dikalsinkan pada suhu 400 °C, 600 °C, 800 °C dan 1000 °C termasuk pada suhu pengeringan 120 °C. Analisis penjerapan gas nitrogen ke atas ketiga-tiga sampel terbaik dalam kajian ini memperlihatkan perubahan struktur keliangan mangkin selaras dengan peningkatan suhu pengkalsinan. Struktur keliangan ini berubah mengikut urutan daripada tidak berliang, campuran mesoliang dan mikroliang, mesoliang, campuran tidak berliang dan mesoliang dan akhirnya menjadi oksida tumpat tidak berliang. Peningkatan suhu pengkalsinan juga menyebabkan luas permukaan dan isipadu liang mangkin berkurang manakala diameter liang bertambah. Maklumat daripada analisis penjerapan gas nitrogen menjelaskan bahawa aktiviti pemangkinan yang baik tidak hanya bergantung kepada luas permukaan yang besar sebaliknya perlu disokong oleh jenis liang, bentuk liang dan diameter yang sesuai. Mangkin terbaik kajian iaitu Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada suhu pengkalsinan 600 °C mempunyai keliangan bercirikan mesoliang, berbentuk silinder terbuka seragam, berdiameter 10 nm dan luas permukaan sekitar 42.75 m²/g.

Kajian struktur mangkin menggunakan XRD menunjukkan perubahan fasa dan sifat kehabluran mangkin selaras dengan peningkatan suhu pengkalsinan. Mangkin adalah bersifat amorfus dan berubah secara beransur-ansur kepada sifat hablur apabila suhu pengkalsinan bertambah. Mangkin Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada suhu pengkalsinan 600 °C adalah bersifat campuran amorfus dan hablur. Corak difraktogram mangkin ini memperlihatkan kewujudan fasa SnO₂ tetragonal dan spinel Co₃O₄ kubik (campuran keadaan pengoksidaan +2 dan +3 di mana Co³⁺ adalah dominan). Keadaan ini dijangka menyediakan lebih banyak tapak aktif pada permukaan mangkin. Bahan pendop kedua iaitu nikel dikenal pasti sebagai penggalak pengoksidaan Co²⁺ kepada Co³⁺ dan meningkatkan kehadiran fasa Co₃O₄ seterusnya meningkatkan aktiviti pemangkinan. Nikel (II) juga berperanan mengurangkan jarak kawasan larangan (memudahkan pergerakan elektron di antara jalur penghantar dan jalur valens) seterusnya menggalakkan berlakunya tindak balas pengoksidaan dan penurunan bagi oksida kobalt (di antara Co²⁺ dan Co³⁺).

Analisis XPS dilakukan untuk mengesan kehadiran spesies-spesies pada permukaan mangkin. Sampel kajian iaitu Ni(II)/Co(II)-dop SnO₂ (0.10:29.97:69.93) pada suhu pengkalsinan 400 °C dan 600 °C memperlihatkan kewujudan puncakpuncak oksida timah dengan nombor pengoksidaan +4. Unsur kobalt dalam sampel ini hadir dalam dua bentuk nombor pengoksidaan iaitu Co²⁺ dan Co³⁺ merujuk kepada kehadiran fasa spinel Co₃O₄ daripada analisis XRD. Dekonvolusi spektrum XPS bagi unsur oksigen menunjukkan kehadiran spesies-spesies seperti Sn-O, Sn-OH dan Co²⁺-O pada mangkin. Spesies Co³⁺-O hanya dapat dicerap pada suhu pengkalsinan 600 °C sahaja di mana kehadiran spesies ini bersama-sama spesies Co²⁺-O dilihat berupaya meningkatkan aktiviti pemangkinan sampel.

Secara ringkasnya, kaedah modifikasi sol-gel boleh menghasilkan mangkin yang optimum untuk tindak balas pengoksidaan CO kepada CO₂. Beberapa kriteria mangkin yang boleh menyumbang kepada aktiviti pemangkinan yang baik adalah suhu pengkalsinan pada 400 °C dan 600 °C, keliangan bercirikan campuran mikroliang dan mesoliang (mesoliang lebih dominan), liang berbentuk silinder terbuka seragam dan kehadiran fasa oksida kobalt dengan campuran nombor pengoksidaan +2 dan +3 (Co³⁺ lebih dominan). Penambahan nikel (II) sebagai bahan pendop kedua juga memainkan peranan yang besar sebagai penggalak pengoksidaan Co²⁺ kepada Co³⁺.

5.2 Cadangan

Ujian aktiviti pemangkinan dan pencirian menggunakan mangkin berasaskan oksida timah (IV) telah dibincangkan secara meluas di dalam kajian ini. Penyediaan mangkin secara modifikasi sol-gel dilihat mampu menghasilkan mangkin dengan aktiviti pemangkinan yang baik. Terdapat 3 parameter penting dalam kaedah sol-gel yang mempengaruhi pertumbuhan saiz partikel mangkin iaitu pH, kepekatan dan suhu. Saiz partikel yang kecil dengan luas permukaan yang besar pada mangkin boleh memberikan aktiviti pemangkinan yang baik. Oleh itu, bagi mendapatkan julat saiz partikel yang optimum, kawalan parameter-parameter ini perlu iaitu dengan meningkatkan kepekatan dan pH serta menurunkan suhu semasa penyediaan mangkin dilakukan.

Selain itu, proses pengeringan mangkin perlu dilakukan secara perlahan-lahan pada suhu rendah iaitu di antara 50 °C sehingga 70 °C (penuaan mangkin) bagi memastikan mangkin mempunyai luas permukaan yang besar. Ini kerana, penyingkiran air secara mendadak pada suhu tinggi iaitu > 100 °C boleh

menyebabkan struktur mangkin menjadi runtuh (isipadu liang dan luas permukaan berkurang) seterusnya mempengaruhi aktiviti pemangkinan mangkin.

Ujian aktiviti pemangkinan juga menunjukkan nisbah atom bahan asas dan bahan pendop turut mempengaruhi aktiviti pemangkinan mangkin. Bahan pendop seperti oksida kobalt (II) dilihat berpotensi meningkatkan aktiviti pemangkinan mangkin. Oleh itu, dicadangkan supaya nisbah atom bahan pendop, Co(II) terhadap bahan asas, SnO_2 ditingkatkan kepada 40:60. Keadaan ini dijangka akan menyediakan lebih banyak tapak aktif (fasa Co_3O_4) yang optimum untuk penjerapan CO dan gas oksigen pada permukaan mangkin.

Ujian aktiviti pemangkinan juga perlu dijalankan ke atas gas-gas toksik seperti oksida nitrogen dan hidrokarbon yang merupakan di antara sumber utama bahan pencemar daripada kenderaan bermotor. Ujian ini juga boleh dilakukan dalam tiga keadaan iaitu keadaan kaya oksigen (bahan api rendah), stoikiometri dan kurang oksigen untuk menguji keupayaan mangkin bertindak dalam keadaan tersebut. Selain itu, campuran ketiga-tiga gas iaitu CO, NO_x dan HC perlu dikaji ke atas mangkin terbaik bagi melihat potensi mangkin tersebut bertindak sebagai mangkin tiga arah.

Mangkin yang diuji dalam ujian aktiviti pemangkinan boleh diaplikasikan dalam bentuk di salut pada penyokong dan bukannya dalam bentuk serbuk. Hal ini dijangka memberikan hasil yang lebih menyerupai keadaan sebenar kerana tindak balas penjerapan hanya berlaku di atas permukaan mangkin pada bahan penyokong seterusnya menjimatkan penggunaan mangkin.

Kajian yang lebih mendalam terhadap sifat-sifat fizikal dan kimia mangkin boleh dilakukan dengan mencirikan mangkin menggunakan alat-alat pencirian yang lain. Teknik pencirian seperti spektroskopi Raman boleh digunakan bagi menyokong deduksi daripada FTIR. Dalam kebanyakan kes, puncak serapan daripada kumpulan yang sama dapat di kesan melalui kedua-dua teknik ini. Ini kerana, puncak serapan lemah satu-satu kumpulan berfungsi daripada spektrum Raman adalah berpadanan dengan puncak serapan yang kuat dalam spektrum inframerah [45].

Teknik EXAFS (*Extended X-Ray Absorption Fine Structure*) pula boleh dilakukan bagi mengenal pasti purata nombor koordinasi elemen yang dikaji dan jarak antara atom bagi petala pertama. Selain itu, pencirian terhadap spesies permukaan juga boleh dilakukan menggunakan EPR (*Electron Paramagnetic Spin Resonance*). Ia memberikan maklumat tentang kehadiran spesies paramagnet (ion logam peralihan) dan atom oksigen dalam bentuk superoksida (O_2^-) atau radikal oksigen yang lain-lain pada permukaan mangkin.

Komposisi atom bagi mangkin yang disediakan boleh dibuktikan menggunakan teknik XRF (*X-Ray Fluorescence*). Teknik ini perlu bagi memastikan nisbah atom yang digunakan dalam penyediaan mangkin adalah tepat. Manakala, analisis morfologi sampel yang lebih mendalam boleh dicirikan melalui teknik TEM (*Transmission Electron Microscopy*). Pencirian ini adalah menyerupai analisis SEM tetapi ia mampu mengesan permukaan morfologi mangkin dengan lebih jelas melalui penghasilan imej tiga dimensi pada julat saiz partikel yang lebih kecil.

RUJUKAN

- 1. Nor Aziah Buang (2000). "Zirconia Based Catalysts for Environmental Emission Control: Synthesis, Characterisation and Catalytic Activity." Universiti Teknologi Malaysia: Tesis Doktor Falsafah.
- 2. Husselbee, W.L. (1984). "Automobile Emission Control." New York:Restin Publishing Company Inc. 1-13 dan 337-356
- 3. Amdun Husain dan Zubaidi Abas (1989). "Kamus Kimia Biokimia." 1st. ed. Kuala Lumpur: Dewan Bahasa dan Pustaka. 62.
- 4. Fergusson, J. E. (1985). "Inorganic Chemistry and the Earth: Chemical Resources, Their Extraction, Use and Environmental Impact." 2nd. ed. New York: Pergamon Press. 252.
- 5. Yap, Chui Peng (2000). "Kajian Struktur dan Aktiviti Pemangkinan Sebatian Berasaskan Oksida Timah (IV)." Universiti Teknologi Malaysia: Tesis Sarjana Muda.
- 6. Marshall, S. (1977). "Automotive Pollution Control Catalysts and Devices." New Jersey: Noyes Data Corporation.
- 7. Mackay, K. M. and Mackay, R. A. (1972). "Introduction to Modern Inorganic Chemistry." 2nd. ed. London: Intertext Books. 229-247.
- 8. Rochow, E. G. and Abel, E. W. (1973). "The Chemistry of Germanium, Tin and Lead." New York: Pergamon Press. 43 and 64.
- 9. Harrison, P. G. (1992). "Tin (IV) Oxide Based Materials: Surface Chemistry, Catalysis and Gas Sensing." dlm. Kumar, D. V. G. *et. al.* "Chemistry and Technology of Silicon and Tin." New York: Oxford Science Publication. 385-395.
- 10. Harrison, P. G. (1989). "Chemistry of Tin." Glasgow: Blackie. 397.
- 11. Fuller, M. J. and Warwick, M. E. (1976). "The Catalytic Reduction of Nitric Oxide by CO Over SnO₂-CuO Gells." *Journal of Catalysis*. **42**. 418-424.
- 12. Kulshreshtha, S. K. and Gadgil, M. M. (1997). "Physico-Chemical Characteristics and CO Oxidation Studies Over Pd/(Mn₂O₃ + SnO₂) Catalyst." *Applied Catalysis B: Environmental.* **11**. 291-305.
- Harrison, P. G., Bailey, C. and Wan Azelee (1999). "Modified Tin (IV) Oxide (M/SnO₂ = Cr, La, Pr, Nd, Sm, Gd) Catalysts for the Oxidation of Carbon Monoxide and Propene." *Journal of Catalysis*. 186. 147-159.
- Haneda, M., Kintaichi, Y. and Hamada, H. (1999). "Activity Enhancement of SnO₂-Doped Ga₂O₃-Al₂O₃ Catalysts by Co-Existing H₂O for the Selective Reduction of NO with Propene." *Applied Catalysis B: Environmental.* 20. 289-300.
- Park, P. W., Kung, H. H., Kim, D. W. and Kung, M. C. (1999).
 "Characterisation of SnO₂/Al₂O₃ Lean NO_x Catalysts." *Journal of Catalysis*. 184. 440-454.
- Gulari, E., Guldur, C., Srivannavit, S. and Osuwan, S. (1999). "CO Oxidation by Silver Cobalt Composite Oxide." *Applied Catalysis A: General.* 182. 147-163.
- Simonot, L., Garin, F. and Maire, G. (1997). "A Comparative Study of LaCoO₃, Co₃O₄ and LaCoO₃-Co₃O₄. I. Preparation, Characterisation and Catalytic Properties for the Oxidation of CO." *Applied Catalysis B: Environmental.* **11**. 167-179.

- 18. Simonot, L., Garin, F. and Maire, G. (1997). "A Comparative Study of LaCoO₃, Co₃O₄ and LaCoO₃-Co₃O₄. II. Catalytic Properties for the CO + NO Reaction." *Applied Catalysis B: Environmental.* **11**. 181-191.
- Mergler, Y. J., Aalst, A. V., Delft, J. V. and Nieuwenhuys, B. E. (1996). "CO Oxidation over Promoted Pt Catalysts." *Applied Catalysis B: Environmental*. 10. 245-261.
- 20. Imamura, S., Shono, M., Okamoto, A., Hamada, A. and Ishida, S. (1996). "Effects of Cerium on the Mobility of Oxygen on Manganese Oxides." *Applied Catalysis A: General.* **142**. 279-288.
- Hoflund, G. B., Gardner, S. D., Schryer, D. R., Upchurch, B. T. and Kielin, E. J. (1995). "Au/MnOx Catalytic Performance Characteristic for Low Temperature Carbon Monoxide Oxidation." *Applied Catalysis B: Environmental.* 6. 117-126.
- Hutchings, G. J., Mirzaei, A. A., Joyner, R. W., Siddiqui, M. R. H. and Taylor, S. H. (1998). "Effect of Preparation Conditions on the Catalytic Performance of Copper Manganese Oxide Catalysts for CO Oxidation." *Applied Catalysis* A: General. 166. 143-152.
- Park, P. W. and Ledford, J. S. (1998). "The Influence of Surface Structure on the Catalytic Activity of Alumina Supported Copper Oxide Catalysts: Oxidation of Carbon Monoxide and Methane." *Applied Catalysis B: Environmental.* 15. 221-231.
- 24. Stoyanova, D., Christova, M., Dimitrova, P., Marinova, J., Kasabova, N. and Panayotov, D. (1998). "Copper-Cobalt Oxide Spinel Supported on High Temperature Aluminosilicate Carriers as Catalyst for CO-O₂ and CO-NO Reactions." *Applied Catalysis B: Environmental.* **17**. 233-244.
- 25. Ahmed, M., Rahman, A., Nickel, J. and Garwan, M. A. (1995). "Micro-PIXE Measurement of Nickel Distribution in Supported Nickel Oxide Catalyst." *Nuclear Instruments and Methods in Physics Research B*. **103**. 233-235.
- 26. Kis, E., Neducin, R. M., Lomic, G., Boskovic, G., Obadovic, D. Z., Kiurski, J. and Putanov, P. (1998). "Structural and Textural Properties of the NiO-Al₂O₃ Catalyst." *Polyhedron.* **1**. 27-34.
- Twigg, M. V. and Richardson, J. T. (2000). "Effects of Alumina Incorporation in Coprecipitated NiO-Al₂O₃ Catalysts." *Applied Catalysis A: General.* 190. 61-7
- 28. Kim, D. S. and Wachs, I. E. (1993). "Surface Chemistry of Supported Chromium Oxide Catalysts." *Journal of Catalysis*. **142**. 166-171.
- 29. Huang, T. J., Lee, K. C., Yang, H. W. and Dow, W. P. (1998). "Effect of Chromium Addition on Supported Copper Catalysts for Carbon Monoxide Oxidation." *Applied Catalysis A: General.* **174**. 199-206.
- Leofanti, G., Tozzola, G., Padovan, M., Petrini, G., Bordiga, S. and Zecchina, A. (1997). "Catalyst Characterisation: Characterisation Techniques." *Catalysis Today*. 34. 307-327.
- Leofanti, G., Tozzola, G., Padovan, M., Petrini, G., Bordiga, S. and Zecchina, A. (1997). "Catalyst Characterisation: Applications." *Catalysis Today.* 34. 329-352.
- 32. Livage, J. (1998). "Sol-Gel Synthesis of Heterogeneous Catalysts From Aqueous Solutions." *Catalysis Today.* **41**. 3-19.
- 33. Mohd Tahir Ahmad (2001). "Mangkin Emisi Oksida Timah: Sintesis, Aktiviti Pemangkinan dan Pencirian." Universiti Teknologi Malaysia. Tesis Sarjana.

- 34. Powder Diffraction File (1995). "Inorganic Phases, International Centre for Diffraction Data. American Society of Testing Materials."
- Matar, K., Zhao, D., Wan Azelee, Daniel, W. and Harrison, P. G. (1995).
 "Characterisation of Cu(II) Sites in Cu/SnO₂ Catalysts by Electron Spin Echo Envelope Modulation Spectroscopy." *J. of Phys. Chem.* 99(24). 9966-9973.
- 36. Imran Syakir Mohamad, Wan Azelee Wan Abu Bakar, Abd. Rahim Yacob, Nor Aziah Buang and Yap, Chui Peng (2000). "Application of X-Ray Diffraction and Scanning Electron Microscopy Techniques for Structure and Morphology Elucidation of Tin (IV) Oxide Based Catalyst." *Nuclear Science Journal of Malaysia.* **18(2)**. 30-37.
- Wan Azelee Wan Abu Bakar, Nor Aziah Buang and Mohd Tahir Ahmad (2000). "Kajian Aktiviti Pemangkinan dan Analisis Struktur dan Spesies Permukaan bagi Sebatian Oksida Kobalt-Timah." *Buletin Kimia*. 15(1&2). 45-60.
- Stone, F. S. (1962). "Chemisorption and Catalysis on Metallic Oxides." dlm. Eley, D. D. *et. al* "Advances in Catalysis and Related Subjects." New York: Academic Press. 1-50.