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Abstract In this paper, we propose a dynamic task scheduling technique based
on fuzzy logic. The main objective of the work is to implement load balancing
in scheduling tasks on a network of processing elements. The fuzzy engine we
propose is capable of processing inputs from incomplete and ambiguous data that
arises from the current state of the processors. In the model, an arriving task is
placed in a central queue based on the first-come-first-serve rule. When the task
is ready to be assigned, its information is passed to the processors for bidding.
One processor acts as the global scheduler to monitor the overall activities, while
all others have local schedulers for managing their own activities. The latter
supplies information on its current state and follows whatever decision given
by the former. The two components work together and the global scheduler
uses the fuzzy logic mechanism in making decision on the task assignment. Our
experimental work shows promising results in achieving the objective.

Keywords Load balancing, fuzzy logic, task scheduling, multiprocessor and
transputer.
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Abstrak Dalam artikel ini, satu teknik penjadualan kerja secara dinamik meng-
gunakan logik fuzi dicadangkan. Objektif utamanya ialah untuk mendapatkan
pengseimbangan beban dalam proses penjadualan kerja di dalam satu rangka-
ian yang terdiri daripada beberapa pemproses. Enjin fuzi ini berupaya mem-
proses input daripada data-data yang tidak jelas atau tidak tentu yang terbit
daripada keadaan semasa pemproses-pemproses. Dalam model ini, kerja yang
baru tiba beratur menunggu giliran dalam satu barisan pusat berasaskan per-
aturan sampai-dahulu-didahulukan. Apabila kerja ini sampai gilirannya, mak-
lumat semasanya dihantar ke pemproses-pemproses untuk dinilai. Sebuah pem-
proses berfungsi sebagai penjadual hakiki untuk mengawal aktiviti-aktiviti ke-
seluruhan, sementara yang lain-lain sebagai penjadual tempatan untuk mengu-
rus aktiviti pada pemprosesnya. Penjadual tempatan sentiasa memberi mak-
lumat semasanya dan menurut perintah daripada penjadual hakiki. Kedua-dua
komponen ini berkerjasama dalam menjayakan aktiviti-aktiviti penjadualan be-
rasaskan mekanisma logik fuzi. Beberapa keputusan menggalakkan untuk men-
capai objektif berjaya dihasilkan melalui model ini.

Katakunci Pengseimbangan kerja, logik fuzi, penjadualan kerja, multi-
pemproses dan transputer.

1 Fuzzy Logic Background

Fuzzy logic, as described by Zadeh [9,10] and Kosko [4], is one of the most powerful tools for
designing autonomous intelligent systems. It has been found to be useful in solving problems
that are difficult to model mathematically. Much of the power of fuzzy logic is derived
from its ability to draw conclusion and generate responses based on vague, ambiguous,
incomplete, and imprecise qualitative data. The mechanism is based on logical inference
of rules in processing non-numeric information to generate crisp or numeric output. Fuzzy
logic has a wide range of applications, for example, in the design of control systems and in
various decision making processes.

Fuzzy logic contributions in the area of information technology could be in the form of
approximate reasoning, where it provides decision-support and expert systems with powerful
reasoning capabilities bound by a minimum number of rules. Theoretically, fuzzy logic is a
method for representing analog processes, or natural phenomena that are difficult to model
mathematically on a digital computer. The processes are continuous in nature, and are not
easily broken down into discrete segments. With a reliable set of inference rules, inputs are
converted into their fuzzy representations during the fuzzification process, and the output
generated is then converted back into the ”crisp”, or numerically precise solutions during
the defuzzification process. The rules that determine the fuzzy and crisp predicates for
both the fuzzification and the defuzzification processes are constructed from sources like
past history, neural network/neuro-fuzzy training and numerical approximation.

This paper presents a dynamic scheduling model based on fuzzy logic for parallel pro-
cessing systems. Fuzzy logic provides a powerful tool for representing the solution space of
the problem that arises from the imprecise information of its input derived from the current
states of both the processing elements (PEs) and the arriving tasks. This information can
be interpreted by the fuzzy engine which performs the analysis and then makes decision
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on the assignment of the tasks to the PEs. Section 2 describes the nature of the dynamic
scheduling problem in general. Section 3 describes our model which includes the precedence
relationship of the tasks as the constraint to the problem. The performance of the model is
evaluated through the experimental work in Section 4. Section 5 describes the implementa-
tion of fuzzy scheduling models on several transputer network models and, finally, Section
6 gives the summary and conclusion.

2 The Dynamic Task Scheduling Problem

Task scheduling, as described in El-Rewini et al. [3], is defined as the scheduling of tasks
or modules of a program onto a set of autonomous processing elements (PEs) in a parallel
network, so as to meet some performance objectives. Dynamic scheduling is a form of
task scheduling caused by the nondeterminism factor in the states of the tasks and the
PEs prior to their execution. Nondeterminism in a program originates from factors such
as uncertainties in the number of cycles (such as loops), the and/or branches, and the
variable task and arc sizes. The scheduler has very little a priori knowledge about these
task characteristics and the system state estimation is obtained on the fly as the execution
is in progress. This is an important step before a decision is made on how the tasks are
to be distributed. Dynamic scheduling is often associated with real-time scheduling that
involves periodic tasks and tasks with critical deadlines.

The main objective in dynamic scheduling is usually to meet the timing constraints, and
perform load balancing, or a fair distribution of tasks on the PEs. Load balancing improves
the system performance by reducing the average job response time of the tasks. In Lin
and Raghavendra [5], load balancing involves three components. First, is the information
rule which describes the collection and storing processes of the information used in making
the decisions. Second, is the transfer rule which determines when to initiate an attempt
to transfer a job and whether or not to transfer a job. Third, is the location rule which
chooses the PEs to and from which jobs will be transferred. It has been shown by several
researchers that with the right policy to govern these rules, a good load balancing may be
achieved.

Tasks that arrive for scheduling are not immediately served by the PEs. Instead they will
have to wait in one or more queues, depending on the scheduling technique adopted. In the
first-come-first-serve (FCFS) technique, one PE runs a scheduler that dispatches tasks on a
first-in-first-out basis to all other PEs. Each dispatched PE maintains its own waiting queue
of tasks and makes request for these tasks to be executed to the scheduler. The requests
are placed on the scheduled queue maintained by the scheduler. This technique aims at
balancing the load among the PEs and it does not consider contraints such as communication
overhead. Chow and Kohler [2] proposed a queueing model where an arriving job is routed
by a job dispatcher to one of the PEs. An approximate numerical method is introduced for
analyzing two-PE heterogeneous models based on an adaptive policy. This method reduces
the job turnaround time by balancing the total load among the PEs. In [2], a central job
dispatcher based on the single-queue multiserver queueing system is used to make decisions
on load balancing. The approach is efficient enough to reduce the overhead in trying to
redistribute the load based on the global state information.

Several balance-constrained heuristics, such as in Saletore [6], consider communication
issues in balancing the load on all PEs. The approach adds balance constraint to the FCFS
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technique by periodically shifting waiting tasks from one waiting queue to another. This
technique performs local optimization by applying the steepest-descent algorithm to find
the minimum execution time. The cost-constraint heuristic in [6] further improves the load
balancing performance by checking the uneven communication cost and quantify them as
the time needed to perform communication.

3 Fuzzy Model for Dynamic Task Scheduling

Task scheduling involves a difficult factor as the main constraint: the precedence relation-
ships between the tasks. Task scheduling applications can be found in many areas, for
example, in real-time control of robot manipulators, flexible manufacturing systems, and
traffic control [4]. In this section, a fuzzy logic model for dynamic task scheduling that
performs load balancing is proposed. This section describes the computing system and the
proposed approach to deal with task precedence constraints in dynamic scheduling.

Our earlier model (Salleh and Zomaya [8]) is a static model based on fuzzy logic that
takes imprecise information for its input derived from the current states of both the PEs
and the arriving tasks. This information is passed to the fuzzy engine which performs the
analysis and then makes decisions on the assignment of tasks to the PEs. The present
approach modifies this model to handle the more challenging dynamic environment.

3.1 Model and Relevant Terminology

The computing platform for simulating dynamic task scheduling assumes a multiproces-
sor system with K fully-connected PEs [7,8]. A suitable realization for this model is the
message-passing transputer-based system where each transputer represents a processing el-
ement with a processor and a memory module each, and has communication links with
other transputers.

We provide some terminology to be used throughout this paper. The task scheduling
problem evolves from the need to map J tasks TSj for j = 1, 2, . . . J from a parallel
program optimally onto a target machine, which consists of K processing elements PEk

for k = 1, 2, . . . K, connected in a network. Each task TSj , represented in the set TS =
{TSj | j = 1, 2, . . . , J}, is a sequential unit of work in a program whose size can be as small
as one line of code and up to the size of a single function or procedure.

The processing elements (or processors) are represented as the set PE = {PEk | k =
1, 2, . . . , K}, which are connected in a network with an arbitrary interconnection config-
uration represented by the matrix p̃. The length (size) of TSj , denoted as ljk, is defined
as the elapsed time for the execution of the task sequentially on PEk. This length is
also referred to as the task execution time or the task worst-case computation time. The
value of ljk for TSj depends on the processing speed of the processor PEk in use, and
may vary on different processors. The task TSj initiated at time t = TSj .at is said to
have arrived at that time. This task is not immediately executed as it has to wait in
a queue. The actual start time for the execution of TSj is denoted TSj .ast, while its
completion time is TSj .ct. For the execution in PEk, we obtain ljk = TSj .ct − TSj .ast.
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Figure 1. The Fully-Connected Computing System Model with 9 PE’s

Figure 1 shows a network of fully-connected computing system Π = {PE, p̃} with 9
processing elements labeled as PEk for k = 1, 2, . . . , 9. The interconnection matrix p̃ has
entries pij = 1 if PEl and PEj are adjacent, and 0 otherwise. Each processing element in
the network has its own memory to process instructions and data. All PEs in the computing
model are also assumed to be homogeneous with the same execution speed. This assumption
implies that lj is used instead of ljk for the task length.

In this work, we assume the incoming tasks are randomly generated, independent, non-
preemptive and have some communication requirements with other tasks. Besides, the tasks
are characterized with random arrival times but have no execution deadlines. These task
characteristics can be summarized as Γ = {TS, c̃} where

TS = {lj , TSj .at, TSj .rt, TSj .ast, TSj .ct, TSj .st | j = 1, 2, . . . , J} (1)

Our scheduling model in [7] consists of a FCFS central queue for newly arrived tasks
and a host of PEs (servers) to receive these tasks, as shown in Figure 2. The queue is based
on Poisson distribution on the M/M/K Markovian model with K servers and a mean arrival
rate of λ. A newly arrived task enters the queue and waits for its turn to be assigned. This
task is dispatched by the scheduler to a PE with the probability pk based on the adopted
scheduling policy. Each PEk for k = 1, 2, . . . , K, processes tasks assigned to it at a mean
service rate of µk according to an exponential distribution.

As the name suggests, the assignment of a task is made based on competition among
the PEs. The model stipulates that one PE acts as the controller which stores the global
scheduler while all other PEs each have a local scheduler. Figure 1 illustrates this concept
where the controller is PE9. The controller PE receives and stores all information about the
incoming tasks, processes them and then makes decision on their assignments to other PEs
in the network. The local scheduler in each PE manages the processor resources, supplies
information on the state of the processor to the global scheduler, receives instructions from
the global scheduler on when to execute an assigned task and keeps information on all its
assigned tasks.
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Figure 2. The M/M/K Queueing Model

When a new task arrives, the controller PE obtains the task’s information and puts the
task in the central queue. This task is not immediately assigned unless the queue is empty.
The task at the front of the FCFS queue is selected for assignment. The controller PE
broadcasts its information to all other PEs in the network requesting the bidding of this
task. Every local scheduler then responds by supplying two pieces of information regarding
the state of its PE. First, is the processor execution length PEk.pel, which is the length of
all the completed tasks in PEk defined as follows:

PEk.pel =
J∑

j=l

ljk =
J∑

j=1

sjklj (2)

where k = 1, 2, . . . , K is the PE number and ljk = 0 if TSj /∈ PEk. In the above equation,
sjk is a parameter which determines whether the task TSj belongs to PEk or not, defined
as follows:

sjk =
{

1 if TSj ∈ PEk

0 if TSj /∈ PEk
(3)

Second, is the processor delay time, PEk.del, which is the waiting time before TSj can start
executing. This waiting time is the delay caused by

1. The dynamic nature of scheduling which adds overhead to the system by delaying
some processes.

2. The precedence relationship between the offered task TSj , and its predecessors TSi.
If both TSi and TSj ∈ PEk then PEk.del = TSj .lrt−TSLk.ct, otherwise the method
in the next section is used to determine this value.



Fuzzy Logic Model for Dynamic Multiprocessor Scheduling 101

3. The unsuccessful bidding by PEk on the task prior to TSj , which creates an unneces-
sary waiting time before another offer is received.

4. The state of PEk, whether it is busy executing another task or not, at the required
time.

For PEk.del ≥ 0, a value close to 0 means the task can start executing almost immediately
at the PE, while a larger value means a longer waiting time before it can actually start. We
now discuss the method to determine the value of PEk.del.

3.2 Task Precedence Relationship

Every partial order between any two tasks incurs a significant delay due to the precedence
rule, that a task cannot start executing until its predecessors have completed their execution,
and synchronization for data transfer. A scheduled task will not be able to start executing
until it has received all the required data from its predecessors. This means that the value
of PEk.del is expected to be significant depending on the network platform. Therefore, it is
expected that the simulation will generate a schedule with both high PEk.pct and PEk.pil
for all k = 1, 2, . . . , K.

Figure 3 shows the chronological movement of TSj ∈ PEk from the time it arrives at
time t = t0 to its completion at t = t3. The task is ready for assignment at t = t1 but it
still has to wait until t = t2 before starting its execution at an assigned processor.

t
.......................................................................................... ..............t0

TSj .at
t1

TSj .rt
t2

TSj .ast
t3

TSj arrives
place in central
queue

TSj in the front
of queue, ready
to br assigned

TSj leaves queue,
assigned to PEk
starts execution

TSj completes
execution


ljPEk.del

TSj queue
waiting time

PEk delay time,
waiting to be
assigned

TSj execution
length


TSj .rl

TSj response length

Figure 3. Movement of Task TSj ∈ PE

In the FCFS queue of our model, it is assumed that a task arrives at the time no earlier
than the arrival time of all its predecessors. This is necessary to guarantee the successful
completion of all tasks and also to avoid any waiting period at the PE. The execution status
of a task at time t is denoted as TSj .st. A task TSj is said to be ready to be assigned to
a processor if it has received all the required data from the predecessor tasks. The ready
time TSj .rt for TSj is defined as the earliest time TSj can be assigned to any available
processor. We further define the ready time for TSj as either high ready time or low ready
time. The high ready time TSj .hrt of a ready task TSj is the highest value of the sum of the
predecessor task energy and its communication to TSj . The low ready time TSj .lrt is the
next highest value. The processor with TSj .hrt may skip some or all of the communication
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cost from its latest predecessor to the incoming task to enable it to start executing the
incoming task at the time t = TSj .lrt. For other processors, the earliest time they can
execute the task TSj is at t = TSj .hrt. The following relationships can be made

TSj high ready time = TSj .hrt =
J

max
i=1

{δijTSi.ct + cij}
(4)

TSj low ready time = TSj .lrt =
J

max
i 6=1

{δijTSi.ct + cij}

for i, k = 1, 2, . . . , J . In the above equation, c̃ = {cij} is the communication matrix with
positive values if TSi < TSj , and cij = 0 otherwise. The parameter δij represents the
partial order TSi < TSj defined as follows

δij =
{

1 if TSi < TSj

0 otherwise (5)

In addition, we define the processor ready time PEk.prt as the earliest time PEk becomes
available and is ready to accept TSj . The value of PEk.prt is determined as follows

PEk.prt =
{

max{TSLk.ct, TSj .hrt} if k 6= s
max{TSLk.ct, TSj .hrt} if k = s

(6)

where TSLk denotes the latest task executed or is still executing in PEk and s is the subscript
of the assigned PE. It follows that TSj .rt = PEs.prt and TSj .ast ≥ PEs.prt for PEs.

The above method can be used to determine PEk.del in a static manner, that is, if the
values of Tj .lrt, TSj .hrt and PEk.prt are all known beforehand. In dynamic scheduling,
this information is not always available at the time TSj is ready to be assigned. In dynamic
scheduling, PEk.del has to be evaluated first before the start time for TSj is determined.
We now discuss a method to evaluate PEk.del.

3.3 The Fuzzy Scheduler

Scheduling of tasks using fuzzy logic involves three orderly steps [4,9,10], as illustrated in
Figure 4, namely, the fuzzification of the input variables, the application of fuzzy inference
rules and the defuzzification of the results. During the fuzzification process, the numeric
input values are read and transformed into their corresponding fuzzy variables (or linguis-
tics) based on a predefined set of rules. These fuzzy inputs, called antecedents, form their
corresponding membership function graphs, which are commonly represented as triangles.

................................................................................ .............. ................................................................................................ .............. ................................................................................................ .............. ....................................................... ..............Fuzzification
Fuzzy
Inference
Rules

Defuzzification

Numeric
Input

Numeric
Output

Figure 4. Structure of the Fuzzy Scheduler

The fuzzy variables for the first input PEk.pel are denoted as E1, E2, E3, E4 and
E5. The real values that correspond to this antecedent are user defined and can be changed
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interactively at runtime during the simulation. The mean of the processor execution length,
denoted as PEk.pel or µpel, is defined as follows

µpel =
1
K

K∑

k=1

PEk.pel (7)

This mean value is updated every time a new task arrives to represent changes in PEk.pel
for k = 1, 2, . . . ,K. Therefore, the variables in the first antecedent change values at every
update of µpel. The second antecedent from the input PEk.del is made up of four fuzzy
variables: I1, I2, I3 and I4.

The second stage involves the application of the fuzzy inference rules to both antecedents
to generate a consequent. Each rule is expressed as follows

(antecedent1, antecedent2; consequent)

which means IF antecedent1 AND antecedent2 THEN consequent. The consequent, or
fuzzy output, is made up of four fuzzy variables: AH, AL, RL and RH, which represent
acceptance or rejection low/high, classified based on numeric values from 0 to 1. A value
close to 1 means the bidding PE has a strong chance of being accepted while a decreasing
value represents a weaker chance. The process involves the mapping of ante1 and ante2
to their respective membership degree values on their graphs. These degree values are
compared and the minimum of the two is then projected onto the membership function of
their consequent graph. The area between this value, the graph and the horizontal axis,
usually in the shape of a trapezium, then represents the output of one inference rule.

The final stage is the defuzzification of the fuzzy output into a crisp or numeric value.
There are several defuzzification schemes and this model uses the most popular method
called the centroid method [4,9,10]. The defuzzification process generates a centroid value
for every bidding PE whose range is from 0 to 1. These centroid values are compared and
the PE with the maximum value is declared the winner. In the event that the maximum
centroid values are the same in some PEs, the award goes to the PE with the most minimum
PEk.pel. The task is then dispatched to the winning PE and its execution starts immediately
once that PE is ready. The task next in line in the queue is now put for grab and the bidding
process repeats.

Our fuzzy model for the task allocation problem is summarized as Algorithm TS FL, as
follows

/* Algorithm TS FL */

For j=1 to J

If TSj .st is ‘waiting’ or ‘ready’ or ‘executing’

1. If TSj is initiated (arrives at t ≥ TSj .at)

1.1 Place TSj in the FCFS queue to generate its priority list.

1.2 Set TSj .st to ‘waiting’.

2. If TSj in the front of the queue is ready (t ≥ TSj .rt)

2.1 Remove TSj from the queue. Set TSj .st to ‘ready’.

2.2 (Fuzzification)
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Evaluate PEk.pel and µpel

Evaluate PEk.del using the method in Section 3.2.

Transform these crisp inputs into their fuzzy sets using Table 1.

Determine their degrees from the membership functions.

2.3 (Applying The Inference Rules)
Find the minimum degree value from Step 2.2.

Project this value onto their consequence graph.

2.4 (Defuzzification)
Find the centroid and area of the trapezium formed.

2.5 Repeat Steps 2.2, 2.3 and 2.4 for other relations using the same inputs.

2.6 Find the final centroid of all overlapping areas in Step 2.5.

2.7 Award the task to the PE with the maximum centroid value in Step 2.6.

3. If TSj is assigned to PEs // PEs is the assigned PE

3.1 Set TSj .st to ‘executing’.

3.2 Set PEs.st to ‘busy’.

3.3 Update the Gantt charts.

4. If TSj is executing (TSj .ast < t < TSj .ct)
4.1 Update the Gantt charts.

5. If TSj completes its execution (t = TSj .ct)

5.1 Set TSj.st to ‘completed’.

5.2 Reset PEs.st to ‘available’.

5.3 Update the Gantt charts.

4 Simulation Results

The simulation program called TS FL.EXE, written in C, implements the fuzzy scheduling
model using Algorithm TS FL. The program runs the simulation and generates results
for successive cases of 36, 100 and 200 tasks. The start time is t = 0.0 and the end is
at t = TSL.ct, for the last scheduled task TSL. For the purpose of this simulation, the
precedence relationship of the tasks are predetermined in [7]. Other inputs are obtained in
[7], as follows

1. lj : random number between 1 and 8, generated by the program.

2. TSj .at : random number, generated by the program.

3. Communication cost cij from a predecessor TSi to TSj : random number between 1
and 3, generated by the program.

Figures 5(a)-(c) show the performance results on cases of 2, 3, 4, 5, 6, 7 and 8 processors.
The graphs in Figure 5(a) show evenly distributed µpel with standard deviation 0.707 ≤
σpel ≤ 3.347. There is a fairly good distribution of load on all PEs as reflected on their
low σpur values and relatively equal values of PEk.pur in the models. The trend of the
distribution favors large number of tasks and the use of more PEs, where their σpel and
σpur values are lower.
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Figure 5(a) shows the comparison graphs for µpel and PE completion time, respectively,
on the PE models. The results show that there is a drastic improvement of both the load
distribution and completion time when the number of PEs are increased. The speedup
graphs in Figure 5(b) tend to support this argument. Finally, the graphs for µpur in Figure
5(c) show better stability in the distribution of work load when the number of tasks is large,
although its value decreases when there are more processors in the network.
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5 Implementation on the Transputer Network

In this section, TS FS.EXE is implemented using four network models. In the Computer
Systems Architects, CSA [1] transputer system, we limit the experiment to five processing
elements from which the network models F4, R4, S4 and L4 are made possible. These
multi-hop models are the fully-connected, ring, star and linear networks respectively using
4 processing elements, as shown in Figure 6.
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Figure 6. Our Transputer Network

In the above figure, PE1 is the root transputer or PC/Link, which provides the interface
between a front-end computer and the transputer network. Each transputer PEk is a 32-bit,
RISC-based INMOS T805 processor. It has 4 bidirectional serial links labeled as 0, 1, 2
and 3 in the figure. The transputer allows multitasking, concurrent processing of jobs and
high-speed communication through message-passing in its network.

For the fuzzy scheduler model, PE1 is the global scheduler while PE2, PE3, PE4 and
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PE5 are the local schedulers. As the global scheduler, PE1 runs Algorithm TS FL, controls
all the scheduling activities in the network and makes decision on task assignments. PE1

will constantly communicate with other PEs in making request for task bidding and gets
the feedback before making any decision. Due to the hardware limitation, any message
between PE1 and other PEs must hop through PE2. This has the impact of slowing down
some movement although the difference is not very significant. Communications between
the transputers are provided through the channel functions ChanIn() and ChanOut().

The application from Mandelbrot set graphics program [1] is used in the experiment.
This program draws fractals from the Mandelbrot set recursively. The sequential code of
the program is partitioned into 36 dependent tasks TSj for j = 1, 2, . . . , 36. Other inputs
for the 36 tasks are obtained as follows:

1. lj is the amount of time required to execute TSj . The value of lj is only known on
the fly, that is, as the task is executing.

2. TSj .at: random number, generated by the program. Its value determines the position
of TSj in the central queue.

3. Communication cost cij is based on the amount of time required to transfer data from
TSi to TSj . As in (1), its value is only known at the time of execution.

A task TSj is randomly initiated at t = TSj .at and is immediately placed in the central
queue. The global scheduler in PE1 obtains the information on its arrival time and stores
it in its database. When the task TSj in the front of the queue needs to be scheduled, the
global scheduler transmits the information to the relevant PEs. The local scheduler in each
PE then responds by providing information on their PEk.pel. This information is the total
execution length already performed in the PE which is in the local scheduler database.

The other information, however, is not immediately available. The global scheduler
knows who the predecessors TSi of TSj are, but how much data is to be transferred is not
known. The method discussed in Section 3.2 is applied. The global scheduler evaluates the
value of each PEk.del by assuming TSj is in PE1. The available time for PEk depends on
factors such as the completion of data transfer from its predecessors TSi and the current
processing status of PEk.

Upon receipt of this information, the global scheduler decides which PE will be awarded
with TSj based on Algorithm TS FL. The global scheduler then notifies the selected PEs of
the decision and the actual start time for its execution TSj .ast. Algorithm TS FL-T below
summarizes the implementation of TS FL on the transputer network.

/* Algorithm TS FL-T */

Generate a central queue of tasks from input (2) above.

From t=tb to t=te
For j=1 to J

Apply Step 1 of TS FL.

If t≥TSj .at

PE1 broadcasts request for bids to PEk, for k=2,3,...,K.

TSj transfers cij to PE1 by assuming TSj ∈PE1 and TSi <TSj .

Determine PEk.del.

PEk, for k=2,3,...,K supplies their PEk.pel and PEk.del.
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Apply Steps 2 of TS FL.

Apply Steps 3, 4 and 5 of TS FL.

The results obtained from Algorithm TS FL-T on the F4 network are shown in Table 1.
The schedule generates the schedule length SL = 114.35 on PE2, and a reasonably good
load balancing with µpel = 51.48 and σpel = 3.88. The table shows the overall performances
of the network models. In terms of speedup, the mean of PE utilization rate and the graph
completion time, the F4 model performs the best while the L4 model is the worst. The
graphs of Figure 7 further illustrate these results.

Table 1: Comparison in Performance

Network Model Speedup σpct SL µpur

F4 1.801 7.467 114.4 0.48

R4 1.726 9.016 119.3 0.47

S4 1.740 8.847 118.3 0.47

L4 1.638 9.602 125.7 0.45
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Figure 7. Comparison of µpur and Speedup on the Network Models

6 Summary and Conclusion

This paper described a study on the dynamic task scheduling problem using fuzzy logic.
Fuzzy logic has been applied in processing the incomplete and uncertain inputs in the state
of the processors and the task, and then generate some decision on the task assignment. It
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has been shown in both the simulation and real-time implementation that the fuzzy-based
scheduler performs well in achieving load balancing.

The nondeterministic nature in dynamic scheduling makes the problem very difficult to
solve. The scheduler needs to make fast decision on task assignment based on arbitrary and
incomplete information on the current state of the task and the processor. This difficulty
arises during runtime and it increases overhead to the system as the scheduler will have to
keep a log of all assignment activities in order to progress further.

Our approach in using fuzzy logic produces some useful results that meets the load
balancing performance objective. In the model, one processor is assigned to be the global
scheduler and all others handle their own local schedulers. At any time t the fuzzy scheduler
takes inputs from each processor the current execution load PEk.pel and its delay length
PEk.del. The first input balances the load on all processors by placing higher chance of task
assignment to the processor with small load. The second input tries to minimize the delay
by giving the processor with small delay a higher chance. Through the fuzzification and
defuzzification processes, these two variables are moderated and this generates the decision
for the task assignment.
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