NICKEL OXIDE DOPED NOBLE METALS SUPPORTED CATALYSTS FOR CARBON DIOXIDE METHANATION AND DESULFURIZATION REACTIONS

SUSILAWATI BT TOEMEN

UNIVERSITI TEKNOLOGI MALAYSIA

NICKEL OXIDE DOPED NOBLE METALS SUPPORTED CATALYSTS FOR CARBON DIOXIDE METHANATION AND DESULFURIZATION REACTIONS

SUSILAWATI BT TOEMEN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Chemistry)

> Faculty of Science Universiti Teknologi Malaysia

> > JANUARY 2011

BISMILLAHIRROHMANIRROHIM.....

A Special Dedication to my beloved family especially mum and dad for their everlasting support

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful,

All praise to Allah, for His Mercy has given me patience and strength to complete this work. All the praise to Allah again.

Special thanks go to my supervisor, Prof. Dr. Wan Azelee Wan Abu Bakar as my main supervisor, and Associate Professor Dr. Rusmidah Ali as my co-supervisor for their invaluable advice and encouragement during the course of this research. Without their time and patience much of this work could not have been accomplished.

A million thanks also go to all lecturers and laboratory staffs of Faculty Science, Faculty of Mechanical Engineering and Institute Ibnu Sina also to my entire fellow friends especially to Fatirah, Nooradilah, Mariami Alisa and Noor Safina Sulaiman for their technical cooperation, knowledge, encouragement and guidance throughout this research. I am grateful to Universiti Teknologi Malaysia and Ministry of Science, Technology and Innovation Malaysia for financial support.

Last but not least, I wish to express my sincere appreciation to my beloved family and Megat Mohd Hazwan Yahya for their continuous support, advices and motivation for me to complete my research. Thanks to the love pouring into my life.

Thank you so much.

ABSTRACT

Malaysia has one of the most extensive natural gas pipeline networks in Asia. Using pipeline system, the gas will be channelled to the onshore station where the natural gas will undergo separation of acidic gases. Nowadays, the removal of toxic gases such as H₂S and CO₂ via chemical conversion attracted many researchers due to the effectiveness of the technique. In this research, new catalysts of high industrial impact that can catalyze the reactions of CO₂ methanation and H₂S desulfurization were developed. A series of catalysts based on nickel oxide doped with ruthenium, rhodium, palladium and platinum were prepared. Then, the best two catalysts were subjected to undergo several optimizations such as different calcination temperature of catalysts, calcinations temperature of alumina, different support materials, preparation method, reproducibility testing and regeneration testing. Pd/Ru/Ni (2:8:90)/Al₂O₃ and Rh/Ni (30:70)/Al₂O₃ catalysts exhibited the most potential catalysts resulted from the activity testing monitored by FTIR and GC. These catalysts were prepared using wetness impregnation technique, aging at 85°C and followed by calcination at 400°C. Both catalysts achieved 100% H₂S desulfurization below 200°C. In the presence of H₂S gas, only 3.64% CH₄ was produced over Pd/Ru/Ni (2:8:90)/Al₂O₃ catalyst from 57.31% CO₂ conversion, while 0.5% CH₄ was obtained from 4.53% CO₂ conversion over Rh/Ni (30:70)/Al₂O₃ at temperature of 400°C, respectively. However, the methane percentage increased to 39.73% for Pd/Ru/Ni (2:8:90)/Al₂O₃ catalyst from 52.95% CO₂ conversion and 70.75% for Rh/Ni (30:70)/Al₂O₃ catalyst from 90.1% CO₂ conversion during testing without flowing of H₂S gas. Moreover, the XRD diffractogram showed that both catalysts are highly amorphous in structure with BET surface area in the range of 220-270 m^2g^{-1} . FESEM analysis indicated a rough surface morphology and non-homogeneous spherical shape with the smallest particles size in the range 40-115 nm for fresh Pd/Ru/Ni (2:8:90)/Al₂O₃ catalyst and formation of aggregates with rough surface morphology for fresh Rh/Ni (30:70)/Al₂O₃ catalyst. The elemental analysis performed by EDX confirmed the presence of Ni, Ru, Pd, Al and O in the Pd/Ru/Ni (2:8:90)/Al₂O₃ catalyst while, Ni, Rh, Al and O in the Rh/Ni (30:70)/Al₂O₃ catalyst. Characterization by FTIR and TGA-DTG revealed the existence of nitrate and hydroxyl ions on the catalysts surface.

ABSTRAK

Malaysia mempunyai rangkaian pempaipan gas asli yang luas di Asia. Dengan menggunakan sistem pempaipan, gas asli akan dibawa ke daratan bagi menjalankan proses pemisahan gas berasid. Pada masa kini, penyingkiran gas toksik seperti H₂S dan CO₂ menggunakan penukaran kimia telah menarik perhatian banyak penyelidik kerana keberkesanannya. Dalam penyelidikan ini, mangkin baru berimpak industri yang tinggi telah dibangunkan bagi memangkinkan tindak balas methanasi CO₂ dan penyahsulfuran H₂S. Siri mangkin berasaskan nikel didopkan dengan rutenium, rodium, paladium dan platinum telah disediakan. Kemudian, dua mangkin terbaik akan menjalani beberapa pengoptimisinan seperti suhu pengkalsinan mangkin yang berbeza, suhu pengkalsinan bahan penyokong, pelbagai bahan penyokong, pelbagai kaedah penyediaan, ujian pemboleh ulangan dan ujian penjanaan semula. Pd/Ru/Ni (2:8:90)/Al₂O₃ dan Rh/Ni (30:70)/Al₂O₃ merupakan mangkin yang berpotensi yang dikenal pasti daripada ujian aktiviti yang dipantau oleh FTIR dan GC. Mangkin-mangkin ini disediakan menggunakan kaedah pengisitepuan, dikeringkan pada 85°C diikuti pengkalsinan pada suhu 400°C. Mangkin-mangkin ini mencapai 100% penyahsulfuran pada suhu bawah 200°C. Dalam kehadiran gas H₂S ini, hanya 3.64% gas metana dihasilkan daripada 57.31% penukaran CO₂ bagi mangkin Pd/Ru/Ni (2:8:90)/Al₂O₃ manakala, 0.5% gas metana dihasilkan oleh Rh/Ni (30:70)/Al₂O₃ daripada 4.53% penukaran CO₂ pada suhu 400°C, masing-masing. Walau bagaimanapun, peratusan gas metana ini meningkat ke 39.73% bagi mangkin Pd/Ru/Ni (2:8:90)/Al₂O₃ daripada 52.95% penukaran CO₂ dan 70.75% bagi mangkin Rh/Ni (30:70)/Al₂O₃ daripada 90.10% penukaran CO₂ semasa ujian tanpa aliran gas H₂S. Selain itu, difraktogram XRD menunjukkan kedua-dua mangkin ini mempunyai struktur sangat amorfos dengan luas permukaan BET di dalam anggaran 220-270 m²g⁻¹. Analisis FESEM mempamerkan struktur permukaan yang kasar dan ketidaksekataan bentuk dengan saiz zarah yang kecil di dalam julat 40-115 nm bagi mangkin Pd/Ru/Ni (2:8:90)/ Al2O3 dan pembentukan agregat serta struktur permukaan yang kasar bagi mangkin Rh/Ni (30:70)/Al₂O₃. Analisis EDX telah mengenal pasti kewujudan element Ni, Ru, Pd, Al dan O dalam mangkin Pd/Ru/Ni (2:8:90)/Al₂O₃ manakala elemen Ni, Rh, Al dan O dalam mangkin Rh/Ni (30:70)/Al₂O₃. Pencirian oleh FTIR dan TGA menunjukkan kewujudan ion nitrat dan hidroksil di atas permukaan mangkin.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATIONS	xviii
	LIST OF APPENDICES	XX
1	INTRODUCTION	
	1.1 Natural Gas	1
	1.2 Acid Gas Treating Processes	4
	1.3 Problem Statement	7
	1.4 Significant of Study	9
	1.5 Objectives of the Research	9
	1.6 Scope of the Research	10
2	LITERATURE REVIEW	
	2.1 Introduction	11
	2.2 Nickel Based Methanation Catalysts	11
	2.3 Noble Metals Used in Methanation Reaction	18
	2.4 Supports for the Methanation Catalysts	24

EXPERIMENTAL

3.1	Introduction 29				
3.2	Chemicals and Reagents 2				
3.3	Cataly	Catalysts Preparation 30			
3.4	Cataly	tic Reaction Conditions	31		
3.5	Optim	ization Parameters	33		
	3.5.1	Amount of Nickel Loading	34		
	3.5.2	Calcination Temperature of Supported	34		
		Catalysts			
	3.5.3	Type of Support Materials	34		
		3.5.3.1 Preparation of Carbon Support from			
		Palm Kernel Shell (PKS)	34		
	3.5.4	Pre-Calcination Temperature of alumina			
		support	35		
	3.5.5	Different Preparation Techniques	36		
	3.5.6	H ₂ S Testing	36		
	3.5.7	Reproducibility Testing	37		
	3.5.8	Regeneration Activity	37		
3.6	Metha	ne Measurement via Gas Chromatography	37		
3.7	Chara	cterization	38		
	3.7.1	X-Ray Diffraction Spectroscopy (XRD)	39		
	3.7.2	Field Emission Scanning Electron Microscopy			
		- Energy Dispersive X-Ray (FESEM-EDX)	39		
	3.7.3	Nitrogen Absorption Analysis (NA)	40		
	3.7.4	Fourier Transform Infrared Spectroscopy			
		(FTIR)	40		
	3.7.5	Thermogravimetry Analysis-Differential			
		Thermal Analysis (TGA-DTA)	41		

RESULTS AND DISCUSSION

4.1	Cataly	tic Testin	ng Measurement	42
	4.1.1	Catalyti	c Performance of Supported NiO	
		Based C	atalyst with Ruthenium as a First	
		Dopant		42
	4.1.2	Catalyti	c Performance of Supported NiO	
		Based C	atalyst with Rhodium as a First	
		Dopant.		45
4.2	Optim	ization Pa	arameter of Catalytic Performance	49
	4.2.1	Effect o	f Nickel Loading	49
	4.2.2	Effect o	f Different Calcination Temperature	
		towards	Supported Catalyst	52
	4.2.3	Effect o	f Different Support Materials	56
	4.2.4	Effect o	f Different Calcination Temperature	
		towards	Alumina Support	59
	4.2.5	Effect o	f Different Methods of catalyst	
		Preparat	tion	61
	4.2.6	Effect o	f H ₂ S Gas on the Alumina Supported	
		Catalyst		64
	4.2.7	Reprodu	acibility Testing towards Potential	
		Catalyst		67
	4.2.8	Regener	ration Testing on the Potential Catalyst	69
4.3	Metha	ine Gas M	leasurement via Gas Chromatography	71
4.4	Cataly	vst Testing	g of CO ₂ Methanation Reaction using	
	Two H	Reactors o	over Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ Catalyst	74
4.5	Chara	cterization	n of the Potential Catalysts	76
	4.5.1	X-Ray I	Diffraction Analysis (XRD)	76
		4.5.1.1	X-Ray Diffraction (XRD) Analysis	
			over Pd/Ru/Ni (2:8:90)/Al ₂ O ₃	
			Catalyst	76
		4.5.1.2	X-Ray Diffraction (XRD) Analysis	
			over Rh/Ni (30:70)/Al ₂ O ₃ Catalyst	81

4.5.2	Field Emission Scanning Electron Microscopy	ý
	and Energy Dispersive X-Ray	84
	4.5.2.1 FESEM Analysis over Pd/Ru/Ni	
	(2:8:90)/Al ₂ O ₃ Catalyst	84
	4.5.2.2 FESEM Analysis over Rh/Ni	
	(30:70)/Al ₂ O ₃ Catalyst	88
4.5.3	Nitrogen Absorption Analysis (NA)	91
4.5.4	Fourier Transform Infra-Red (FTIR) Analysis	94
4.5.5	Thermogravimetry Analysis – Differential	
	Thermal Analysis (TGA-DTA)	97
CONCLUS	SIONS AND RECOMMENDATIONS	
5.1 Concl	usions	99
5.2 Recor	nmendations	100
REFEREN	ICES	102
APPENDI	CES (A-E)	115-119

LIST OF TABLES

TABLE N	IO. TITLE	PAGE
1.1	Chemical composition of crude natural gas from Telaga Bergading, Petronas Carigali Sdn. Bhd.	4
3.1	Wavenumber of CO_2 , H_2S , CO and CH_4 gasses in FTIR spectra	33
4.1	Percentage conversion of CO_2 from methanation reaction over various alumina supported nickel oxide based catalysts with ruthenium as a dopant and co-dopant	43
4.2	Percentage conversion of CO_2 from methanation reaction over various alumina supported nickel oxide based catalysts with rhodium as a dopant and co-dopant	46
4.3	Comparison of CO_2 conversion from methanation reaction over Pd/Ru/Ni/Al ₂ O ₃ catalyst with different loading of nickel calcined at 400°C for 5 hours	50
4.4	Comparison of CO_2 conversion from methanation reaction over Rh/Ni/Al ₂ O ₃ catalyst with different loading of nickel calcined at 400°C for 5 hours	52
4.5	Comparison of CO_2 conversion from methanation reaction over Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ catalyst calcined for 5 hours at four different calcination temperatures	54
4.6	Comparison of CO_2 conversion from methanation reaction over Rh/Ni (30:70)/Al ₂ O ₃ catalyst calcined for 5 hours at different calcination temperatures	54
4.7	Comparison of CO_2 conversion from methanation reaction over Pd/Ru/Ni catalyst with the ratio of 2:8:90 coated on various support materials then calcined at 400°C for 5 hours	56
4.8	Comparison of CO_2 conversion from methanation reaction over Rh/Ni catalyst with the ratio of 30:70 coated on various support materials then calcined at 400°C for 5 hours	58

4.9 Comparison of CO ₂ conversion from methanatio over Pd/Ru/Ni (2:8:90) catalyst coated on alumina been calcined for 5 hours at different temperature	n reaction which has 59
4.10 Comparison of CO ₂ conversion from methanatio over Rh/Ni (30:70) catalyst coated on alumina been calcined for 5 hours at different temperature	n reaction which has 60
4.11 Comparison of CO ₂ conversion from methanatio over Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ and Rh/Ni (30) catalysts prepared by different preparation met calcined at 400°C	n reaction :70)/Al ₂ O ₃ thods and 62
4.12 Percentage conversion of CO_2 from methanation and H_2S desulfurization over Pd/Ru/Ni (2:8) catalyst calcined at 400°C for 5 hours testing without the presence of H_2S gas	n reaction :90)/Al ₂ O ₃ with and 65
4.13 Percentage conversion of CO_2 from methanation and H_2S desulfurization over Rh/Ni (30:70)/Al ₂ C calcined at 400°C for 5 hours testing with and w presence of H_2S gas	n reaction D ₃ catalyst vithout the 66
4.14 The product and by-product of CO ₂ methanation over Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ catalyst detected via	n reaction GC 72
4.15 The product and by-product of CO ₂ methanation over Rh/Ni (30:70)/Al ₂ O ₃ catalyst detected via GC	n reaction 73
4.16 The product and by-product of CO ₂ methanation using two reactors over Pd/Ru/Ni (2:8:90)/Al ₂ C detected via GC	n reaction D ₃ catalyst 75
4.17 Peaks assignment in the X-ray diffraction per Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ catalyst calcined at 70 hours	atterns of 0°C for 5 79
4.18 Peaks assignment in the X-ray diffraction patterns (30:70)/Al ₂ O ₃ catalyst calcined at 1000°C for 5 hou	s of Rh/Ni urs 80
4.19 Peaks assignment in the X-ray diffraction patterns (30:70)/Al ₂ O ₃ catalyst calcined at 700°C for 5 hour	s of Rh/Ni rs 83
4.20 Peaks assignment in the X-ray diffraction patterns (30:70)/Al ₂ O ₃ catalyst calcined at 1000°C for 5 how	s of Rh/Ni urs 84
4.21 EDX analysis of fresh and spent Pd/Ru/Ni (2:8) catalysts, calcined at 400°C for 5 hours	:90)/Al ₂ O ₃ 87

4.22	EDX analysis of fresh and spent Rh/Ni $(30:70)/Al_2O_3$ catalysts, calcined at 400°C for 5 hours	90
4.23	BET surface area and average pore diameter of the fresh and spent Pd/Ru/Ni $(2:8:90)$ -Al ₂ O ₃ and Rh/Ni $(30:70)$ /Al ₂ O ₃ catalysts calcined at 400°C for 5 hours	91
4.24	FTIR analysis of Pd/Ru/Ni $(2:8:90)/Al_2O_3$ and Rh/Ni $(30:70)/Al_2O_3$ catalysts calcined at 400°C for 5 hours	96

LIST OF FIGURES

FIGURE	NO. TITLE	PAGE
1.1	World gas reserves (6102 tcf)	2
1.2	Domestic, commercial and industrial utilization of natural gas	3
3.1	Uncoated and coated of alumina support	30
3.2	Schematic diagram of home-built micro reactor	31
3.3	Schematic diagram of glass tube for home-built micro reactor	31
3.4	Diagram of FTIR sample cell	32
3.5	Carbon support from Palm Kernel Shell (PKS)	35
3.6	Calibration graph of standard 99.0% pure methane	38
4.1	FTIR spectra of gaseous products obtained from catalytic screening over i) Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ ii) Rh/Ni (10:90)/Al ₂ O ₃ catalysts during CO ₂ methanation reaction	48
4.2	Catalytic performance of CO_2 conversion from methanation reaction over Pd/Ru/Ni/Al ₂ O ₃ catalyst calcined at 400°C for 5 hours with various loading of nickel: i) 90 wt% (Pd/Ru/Ni (2:8:90)/Al ₂ O ₃), ii) 80 wt% (Pd/Ru/Ni (5:15:80)/Al ₂ O ₃) and iii) 70 wt% (Pd/Ru/Ni (5:25:70)/Al ₂ O ₃)	50
4.3	Catalytic performance of CO_2 conversion from methanation reaction over Rh/Ni/Al ₂ O ₃ catalyst calcined at 400°C for 5 hours with various loading of nickel: i) 90 wt% (Rh/Ni (10:90)/Al ₂ O ₃), ii) 80 wt% (Rh/Ni (20:80)/Al ₂ O ₃) and iii) 70 wt% (Rh/Ni (30:70)/Al ₂ O ₃)	51

xiv

4.4 Catalytic performance of CO₂ conversion from methanation reaction over Pd/Ru/Ni (2:8:90)/Al₂O₃ catalyst calcined for 5 hours at different calcination temperatures: i) 400°C, ii) 500°C, iii) 700°C and iv) 1000°C

- 4.5 Catalytic performance of CO₂ conversion from methanation reaction over Rh/Ni (30:70)/Al₂O₃ catalyst calcined for 5 hours at different calcination temperatures:
 i) 400°C, ii) 500°C and iii) 700°C
- 4.6 Catalytic performance of CO₂ conversion from methanation reaction over Pd/Ru/Ni (2:8:90) catalyst with various support materials: i) Al₂O₃ beads ii) TiO₂/SiO₂ beads and iii) Carbon chips from PKS calcined at 400°C for 5 hours
- 4.7 Catalytic performance of CO₂ conversion from methanation reaction over Rh/Ni (30:70) catalyst with various support materials: i) Al₂O₃ beads ii) TiO₂/SiO₂ beads and iii) Carbon chips from PKS and calcined at 400°C for 5 hours
- 4.8 Catalytic performance of CO₂ conversion from methanation reaction over Pd/Ru/Ni (2:8:90) catalyst coated on alumina calcined for 5 hours at different temperatures: i) 700°C and ii) 1000°C
- 4.9 Catalytic performance of CO₂ conversion from methanation reaction over Rh/Ni (30:70) catalyst coated on alumina calcined for 5 hours at different temperatures:
 i) 700°C and ii) 1000°C
- 4.10 Catalytic performance of CO₂ conversion from methanation reaction over Pd/Ru/Ni (2:8:90)/Al₂O₃ catalyst prepared by different preparation methods i) wetness impregnation method and, ii) wetness impregnation modification method iii) Sol-gel method
- 4.11 Catalytic performance of CO₂ conversion from methanation reaction over Rh/Ni (30:70)/Al₂O₃ catalyst prepared by different preparation methods i) wetness impregnation method and, ii) wetness impregnation modification method iii) sol-gel method
- 4.12 Catalytic performance of CO₂ conversion from methanation reaction over Pd/Ru/Ni (2:8:90)/Al₂O₃ catalyst calcined at 400°C for 5 hours testing with and without the presence of H₂S gas

53

55

57

58

60

61

63

64

4.1	13	Catalytic performance of CO_2 conversion from methanation reaction over Rh/Ni (30:70)/Al ₂ O ₃ catalyst calcined at 400°C for 5 hours testing with and without the presence of H ₂ S gas	66
4.1	14	The trend plot of reproducibility testing over Pd/Ru/Ni $(2:8:90)$ /Al ₂ O ₃ catalyst calcined at 400°C for 5 hours towards CO ₂ conversion from methanation reaction	67
4.1	15	The trend plot of reproducibility testing over Rh/Ni $(30:70)/Al_2O_3$ catalyst calcined at 400°C for 5 hours towards CO ₂ conversion from methanation reaction	68
4.1	16	Regeneration catalytic testing over $Pd/Ru/Ni$ (2:8:90)/Al ₂ O ₃ catalyst for 3 hours at various temperatures towards CO ₂ conversion from methanation reaction	70
4.1	17	Regeneration catalytic testing over Rh/Ni $(30:70)/Al_2O_3$ catalyst at various temperatures and various times towards CO ₂ conversion from methanation reaction	71
4.1	18	Catalytic performance of CO_2 methanation reaction using two reactors over Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ catalyst calcined at 400°C for 5 hours and testing simultaneously with H ₂ S gas	75
4.1	19	XRD diffractograms of Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ catalyst calcined at a) 400°C, b) 700 °C and c) 1000°C for 5 hours	77
4.2	20	XRD diffractograms of Rh/Ni $(30:70)/Al_2O_3$ catalyst calcined at a) 400°C, b) 700 °C and c) 1000°C for 5 hours	81
4.2	21	FESEM micrographs of fresh and spent Pd/Ru/Ni $(2:8:90)$ /Al ₂ O ₃ catalysts, calcined at 400°C for 5 hours with magnification 5000X and 50000X	85
4.2	22	EDX Mapping over Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ catalyst calcined at 400°C for 5 hours	86
4.2	23	FESEM micrographs of fresh and spent Rh/Ni $(30:70)/Al_2O_3$ catalysts, calcined at 400°C for 5 hours with magnification 5000X	88
4.2	24	EDX Mapping over Rh/Ni $(30:70)$ -Al ₂ O ₃ catalyst calcined at 400°C for 5 hours	89
4.2	25	Isotherm plot of fresh Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ catalyst	92

4.26	Isotherm plot of spent Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ catalyst	93
4.27	Isotherm plot of fresh Rh/Ni (30:70)/Al ₂ O ₃ catalyst	94
4.28	Isotherm plot of spent Rh/Ni (30:70)/Al ₂ O ₃ catalyst	94
4.29	FTIR spectra of (a) fresh (b) spent (c) regenerated Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ catalysts calcined at 400°C for 5 hours	95
4.30	FTIR spectra of (a) fresh (b) spent (c) regenerated Rh/Ni $(30:70)/Al_2O_3$ catalysts calcined at 400°C for 5 hours	95
4.31	Thermogram of Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ catalyst after aging in an oven for 24 hours at $80^{\circ}C-90^{\circ}C$	97
4.32	Thermogram of Rh/Ni $(30:70)/Al_2O_3$ catalyst after aging in an oven for 24 hours at $80^{\circ}C-90^{\circ}C$	98

LIST OF ABBREVIATIONS

ABS	-	Absorbance
BET	-	Brunnauer, Emmet and Teller
BJH	-	Barret-Joyner-Halenda
Btu	-	British thermal unit
c	-	Cubic
cf	-	Cubic feet
Cu Ka	-	X-ray diffraction from Copper K energy levels rate of
		conversion (percentage)
d	-	Pore diameter
DTA	-	Differential Thermal Analysis
EDX	-	Energy Dispersive X-ray Analysis
fcc	-	Face-centered cubic
FESEM	-	Field Emission Scanning Electron Microscope
FID	-	Flame Ionization Detector
FTIR	-	Fourier Transform Infrared
GC	-	Gas Chromatography
GHSV	-	Gas Hourly Space Velocity
ΔH	-	Enthalpy change
h	-	Hexagonal
hr	-	Hour
IWI	-	Incipient Wetness Impregnation techniques.
LNG	-	Liquefied Natural Gas
m	-	Monoclinic
MgKα	-	X-ray diffraction from Magnesium K energy levels rate of
		conversion (percentage)
MS	-	Mass Spectroscopy
NA	-	Nitrogen Adsorption

P/Po	-	Relative pressure; obtained by forming the ratio of the
		equilibrium pressure and vapour pressure P_o of the adsorbate
		at the temperature where the isotherm is measured
PDF	-	Powder Diffraction File
PKS	-	Palm Kernel Shell
ppm	-	Part per million
PROX	-	Prefential oxidation
RWSG	-	Reverse Water Gas Shift
SMSI	-	Strong metal support interaction
SDS	-	Sodium dodecyl sulphate
SNG	-	Substitute natural gas
tcf	-	Trillion cubic feet
TGA	-	Thermogravimetry Analysis
UGC	-	Urea gelation co-precipitation
VOC	-	Volatile Organic Compounds
wt%	-	Weight percentage
WGS	-	Water Gas Shift
XRD	-	X-ray Diffraction
θ	-	Half angle of diffraction beam
λ	-	Wavelength

LIST OF APPENDICES

APPEND	IX TITLE	PAGE
А	Preparation of Alumina Supported Nickel Oxide Based Catalysts and Its Ratio	115
В	Calculation of Methane Percentage	116
C	Schematic Diagram of Home Built Micro Reactor Connected using Two Isothermal Furnaces	117
D	Calculation of atomic weight percentage ratio of element in catalyst preparation	118
Е	Calculation of weight loss over Pd/Ru/Ni (2:8:90)/Al ₂ O ₃ catalyst	119

CHAPTER 1

INTRODUCTION

1.1 Natural Gas

Natural gas is a vital component of the world's supply of energy and one of the most useful of all energy sources. It is considered as an environmental friendly clean fuel, offering important environmental benefits when compared to other fossil fuels. Natural gas is colorless, odorless, tasteless, shapeless and lighter than air. Natural gas is the flammable gaseous mixture that occurs alone or with petroleum in underground reservoirs. It is predominantly methane (CH₄) and some higher molecular weight paraffins (C_nH_{2n+2}) generally containing up to four carbon atom.

Natural gas is the result of the decay of animal and plant remains (organic debris) that has occurred over millions of years. Over time, the mud and soil that covered the organic debris changed to rock and trapped the debris beneath the newly-formed rock sediment. Pressure and to some extent, heat changed some of the organic material into coal, some into oil (petroleum) and some into natural gas. Whether or not the debris formed coal, petroleum or gas depended upon the nature of the debris and the localized conditions under which the changes occurred (James, 2007).

Natural gas is produced in many countries around the world and most of those countries produce both oil and natural gas, a few produce only natural gas (James, 2007). Figure 1.1 shows natural gas reserves around the world. As illustrated in the figure, most of the world supply is in Eastern Europe and the Middle East. The

Eastern European reserves are dominated by Russian gas reserves (85% of the Eastern European gas reserves), which exceed 1,680 trillion cubic feet (tcf). Some of the undeveloped fields may contain more than 1,000 tcf of gas. In the Middle East, the major reserves are in Iran (940 tcf). Qatar, in a series of gas fields known as the "North Field", has more than 910 tcf of proven reserves (Seddon, 2006).

Figure 1.1 World gas reserves (6102 tcf) (Taken from Gas Usage and Value: The Technology and Economics of Natural Gas Use in the Process Industries, 2004)

Malaysia is the world's 13th largest natural gas reserves and 24th largest crude oil reserves. Malaysia is also the world's 3rd largest producer of Liquefied Natural Gas (LNG) with production capacity of 23 million metric ton per year. Our country is important to world energy markets because of its 75 tcf of natural gas reserves and its net oil exports of over 940,000 barrels per day. Natural gas consumption in 2002 was estimated at 1.0 tcf, with LNG exports of around 0.7 tcf mostly to Japan, South Korea and Taiwan (Ching, 2008).

When cooled to -160°C, natural gas enters the liquid phase, in which it occupies six hundred times less volume than in its gaseous state. The importance of liquefied natural gas (LNG) thus lies in transportation whereas natural gas requires long, expensive pipelines for global export and import while, LNG can be transferred in secure tanks by ship or truck. In order to produce liquefied natural gas (LNG), the

gas from offshore platform as the raw material needs to undergo various processes. Using pipeline system, the gas will be channel to the onshore station where the natural gas will undergo separation of acidic gas. This separation involved the removal of toxic gases such as H_2S and CO_2 . Technology used for liquefying natural gas so that it can be transported in tankers is improving. As technology continues to expand the options for gas transportation, demand for natural gas is expected to grow.

Gas customers or end users, fall into three broad classes which are residential, commercial and industrial. In addition, utilities and power suppliers use gas to generate electricity and some fleets of vehicles use gas as a transportation fuel. Figure 1.2 shows the domestic, commercial and industrial utilization of natural gas. Homeowners and other residential customers use gas for heat, hot water, cooking and cloth drying as well as in gas fireplaces and logs. Commercial businesses which account for about 14% of gas consumption use gas mainly for heat and hot water. Some larger buildings are also air-conditioned by gas powered equipment and many restaurants use gas to cook. Industrial customers who represent about 44% of all gas consumed use the fuel in tens of thousands of factories and mills to manufacture a great variety of product, from paper to cars (Busby, 1999).

Figure 1.2 Domestic, commercial and industrial utilization of natural gas (Taken from Natural Gas in Non-Technical Language, 1999)

This means that people tends to use more energy rather than conserve it because demand is strongly affected by price. Future supplies of natural gas and other limited energy resources will depend on how much energy we consume, how much we attempt to preserve for future generations and how well we learn to develop and use our remaining resources efficiently.

1.2 Acid Gas Treating Processes

Growing demand for natural gas is leading to an increase in the production of standard and contaminated natural gas. Malaysia large reserves and the existence of huge gas reserves in the nearby countries have ensured that natural gas is the future energy resource for Malaysia (Md. Yasin, 1987). Malaysia also has one of the most extensive natural gas pipeline networks in Asia. Table 1.1 shows the chemical composition of Malaysian crude natural gas which was analyzed by using Gas Chromatography-Mass Spectroscopy (GC-MS). It is consists mainly of simplest hydrocarbon which is methane (CH₄), along with heavier hydrocarbons such as ethane (C_2H_6) and propane (C_3H_8). Often, natural gas also contains impurities such as carbon dioxide, hydrogen sulfide and water as well as nitrogen, helium and other trace gases. The composition of a natural gas as it comes from the well varies from one location to another. It must be purified before it can be sold, liquefied or fed to a gas to liquids process.

Table 1.1	Chemical	l compos	ition	of cru	ide natu	ral ga	s from	Telaga	Berga	ding,
	Petronas	Carigali	Sdn.	Bhd.	(Taken	from	Labora	tory Se	rvices	Unit
	(UNIPEN	A), 2003)								

Gases	Composition (%)
CH ₄	47.9
C_2H_6	5.9
C_3H_8	3.2
CO_2	23.5
H_2S	5.4
Others (CO, O ₂ , N ₂ , H ₂ O)	24.1

Gas processing is necessary to ensure that the natural gas intended for use is clean-burning and environmentally acceptable. Natural gas used by consumers is composed almost entirely of methane but natural gas that emerges from the reservoir at the wellhead contains many components that need to be extracted. Although, the processing of natural gas is less complicated rather than the processing and refining of crude oil, it is equal and necessary before it can be used by end user.

One of the most important parts of gas processing is the removal of carbon dioxide and hydrogen sulfide. The removal of acid gases (CO_2 , H_2S and other sulfur components) from natural gas is often referred to as gas sweetening process. There are many acid gas treating processes available for removal of CO_2 and H_2S from natural gas. These processes include Chemical solvents, Physical solvents, Adsorption Processes Hybrid solvents and Physical separation (Membrane) (Kohl and Nielsen, 1997).

According to previous research done by Hao *et al.* (2002), there are ways to upgrading the low quality natural gas with selective polymer membranes. The membrane processes were designed to reduce the concentrations of CO_2 and H_2S in the natural gas to US pipeline specifications. However, this technique incurs high cost and low selectivity towards toxic gas separation. This technique also needs further development because the performance of membrane depends upon the specific characteristics of flue gas composition, and the specific features of the separation (i.e. large volumetric flow rate, low pressure source, high temperature, and the relative low commodity value of H_2S and CO_2) (Rangwala, 1996).

Another method of H_2S removal and one that leaves the CO_2 in the natural gas is called the Iron Sponge process. The disadvantage of this is that it is called a batch-type function and is not easily adapted to continuous operating cycle. The Iron Sponge is simply the process of passing the sour gas through a bed of wood chips that have been impregnated with a special hydrated form of iron oxide that has a high affinity for H_2S . Regeneration of the bed incurs excessive maintenance and operating costs, making this method inconsistent with an efficient operating program. If there are any real advantages in using this process, it is a fact that CO_2 remains in the gas, thereby reducing the shrinkage factor which could be significant for very large volumes with an otherwise high CO_2 content (Curry, 1981).

Chemical absorption processes with aqueous alkanolamine solutions are used for treating gas streams containing H_2S and CO_2 . They offer good reactivity at low cost and good flexibility in design and operation. However, depending on the composition and operating conditions of the feed gas, different amines can be selected to meet the product gas specification (Mokhatab *et al.*, 2006). Some of the commonly used alkanol-amine for absorption desulfurization are monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), diglycolamine (DGA), diisopropanolamine (DIPA) and methyldiethanolamine (MDEA). MDEA allows the selective absorption of H_2S in the presence of CO_2 but can be use effectively to remove CO_2 from natural gas in present of additives (Salako and Gudmundsson, 2005).

On the other hand, CO_2 and H_2S can be removed from natural gas via chemical conversion techniques. Catalysts for CO_2 methanation had been extensively studied because of their application in the conversion of CO_2 gas to produce methane, which is the major component in natural gas (Wan Abu Bakar *et al.*, 2008a). Usually, the catalysts were prepared from the metal oxide because of the expensiveness of pure metal. This process can increase the purity and quality of the natural gas without wasting the undesired components but fully used them to produce high concentration of methane (Ching, 2008). Methane (CH₄) gas was formed from the reaction of hydrogen gas and carbon dioxide gas through methanation process by reduction reaction as shown in Equation 1.1 below:-

$$\operatorname{CO}_{2(g)} + 4\operatorname{H}_{2(g)} \rightarrow \operatorname{CH}_{4(g)} + 2\operatorname{H}_{2}\operatorname{O}_{(l)}$$

$$(1.1)$$

This reaction is moderately exothermic, $H^{o} = -165 \text{ kJ/mol}$. Meanwhile, H_2S can also be reduced to elemental sulfur simultaneously by oxidation reaction as in Equation 1.2 below:-

$$H_2S_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow S_{(s)} + H_2O_{(l)}$$

$$(1.2)$$

In order for this method to be effective, a suitable catalyst must be applied to promote selective CO_2 methanation because of the main side product under this reaction also will be form (Eq. 1.3), which obviously should be avoided. Thus, high selectivity of the catalyst in promoting CO_2 methanation is paramount importance. In Equation 1.3, carbon monoxide produced by this reaction can also be used to form methane by reaction in Equation 1.4 with hydrogen.

$$\operatorname{CO}_{2(g)} + \operatorname{H}_{2(g)} \rightarrow \operatorname{CO}_{(g)} + \operatorname{H}_{2}\operatorname{O}_{(l)}$$

$$(1.3)$$

$$CO_{(g)} + 3H_{2(g)} \rightarrow CH_{4(g)} + H_2O_{(l)}$$
 (1.4)

Since the catalytic process through methanation and desulphurization reactions offers the best way to remove CO_2 and H_2S in the natural gas, therefore, the present study is to develop a catalyst based on nickel oxide with modifying the dopants using noble metal in order to fully remove these sour gasses at high conversion percentage possibly at low temperature.

1.3 Problem Statement

Carbon dioxide and hydrogen sulfide are commonly referred to as acid gases because they form acids or acidic solution (corrosive compounds) in the presence of water. These gases are generally undesirable components of natural gas. Natural gas can contain up to 28% of H₂S gas, consequently, it maybe an air pollutant near petroleum refineries and in oil and gas extraction areas. H₂S itself is colorless and flammable gas. It smells like rotten eggs that is toxic at extremely low concentration and can cause loss of the sense of smell. Inhalation of excessive levels of H₂S gas in confined space can result in unconsciousness, respiratory failure and death. It also has potential to corrode pipelines, storage tanks and other ship component which may cause operability problems including engine breakdown (Fred and Hans,1998). Besides that, the removal of H₂S gas from natural gas often necessary before combustion. The combustion of natural gas in the presence of H₂S yielded sulfur dioxide which when dissolved in water turn to very corrosive sulfuric acid or sulfurous acid. This may cause the acid rain phenomena to the earth which leads to the increase of acidity of the soil and affect the chemical balance of lakes and streams.

Carbon dioxide is also referred to as diluents because none of them burn and thus they have no heating value. This gas is not very harmful and may actually be used sometimes as "fillers" to reduce the heat content of the supply energy. Thus, its removal may be required in some instances merely to increase the energy content of the gas per unit volume. CO₂ removal may also be required because it forms a complex, $CO_2 \cdot CO_2$, which is quite corrosive in the presence of water. For gas being sent to cryogenic plants, removal of CO₂ may be necessary to prevent solidification of the CO_2 (Sanjay, 1987). Since the melting points of CO_2 and H_2S are higher than the boiling point of methane, it can potentially freeze during the cryogenic process. Freezing can lead to clogged LNG pipelines and storage vessels, producing various maintenance issues and hindering overall process efficiency. Similar to the H₂S gas, CO_2 in the presence of water may enhance the production of carbonic acid which leads to the acid rain phenomena. Furthermore, carbon dioxide is one of the greenhouse gases. As the level of carbon dioxide increases the warming of the earth's surface will also increase (Schneider, 1989). This phenomenon is called as greenhouse effect thus, can cause global warming. However, if none of these situations are encountered, there is no need to remove CO₂.

The existence of both carbon dioxide and hydrogen sulphide will reduce the quality of natural gas and at the same time increase the production cost of natural gas to fulfill the US Pipeline Specification, in which, the natural gas should only consist of 2 w/w % CO₂ and 4 ppm H₂S before it can be distributed to world market (Echterhoff and McKee, 1991). These gaseous are needed to be removed in order to prevent or minimize the release of hazardous gases into environment. This will helps to reduce problems of acid rain, ozone layer depletion or greenhouse effect. Many scientists believe that increasing levels of carbon dioxide in the earth's atmosphere will change the global climate.

1.4 Significant of Study

In this research, the potential catalyst that can be used to remove CO_2 and H_2S simultaneously which are present in wet natural gas consisting of 23% CO_2 and 5% H_2S was developed based on nickel oxide doped with noble metal. This catalyst offers very promising techniques for natural gas purification since H_2S gas is being converted to stable element of sulfur and unwanted CO_2 gas is being converted to the product, CH_4 thus will enhance the methane production.

The purification technique via this catalyst can remove acid gases in wet natural gas which is hazardous to the environment. This will help to prevent phenomena of acid rain, ozone layer depletion or greenhouse effect. Besides, it may be necessary to avoid the corrosion and clogging to the delivery pipeline. This purification method will certainly improve the quality and quantity of Malaysian natural gas and increase the market price of our natural gas that will benefit to our country. The utmost important, the potential catalyst will contribute to the growth of the national economy and create green and sustainable environment.

The catalyst is easily prepared, environmental friendly and reusable. All the ingredients in the fabrication of the catalyst are easily available, cheap and stable. The beauty of the catalyst is safer to handle because it can be used at low reaction temperature. It requires minimum modification to the already existing system and offers cost effective operating system.

1.5 Objectives of the Research

The main goal of this research is to develop the catalyst that can catalyze methanation and desulfurization reactions effectively and simultaneously at a very low temperature. The objectives of this research are :-

- 1. To synthesize the best supported nickel oxide based for carbon dioxide methanation and H₂S desulphurization reactions.
- 2. To test the catalytic activity of the prepared catalysts by using in-house built micro reactor coupled with FTIR.
- 3. To conduct several optimization parameters of the best prepared catalyst.
- 4. To characterize the best prepared catalysts in order to understand the physical properties of the prepared catalyst.

1.6 Scope of the Research

A series of alumina supported catalyst based on nickel oxide doped with noble metal were prepared using wetness impregnation techniques. Ruthenium chloride, nitrate salts of rhodium, palladium and platinum had been used as precursor for the dopants in this research. Meanwhile, catalytic testing was carried out by using house-built micro reactor coupled with FTIR towards the prepared catalysts. The production of methane gas was determined by Gas Chromatography analysis. All the prepared catalysts were tested based on trial and error basis where different mixed metal oxides with 90 wt% nickel loading were tested until the best performance catalyst was obtained. Then, the best two prepared catalysts were optimized according to the amount of nickel loading, different calcination temperatures of catalysts, different calcination temperatures of alumina support, various support materials and various preparation method. Lastly, the potential catalysts were tested on its reproducibility and regeneration activity. The characterization of the potential catalysts were conducted by various techniques in order to understand the physical properties of the catalysts such as X-Ray Diffraction for bulk structure, Field Emission Scanning Electron Microscope for morphology study, Energy Dispersive X-Ray Analysis for elemental composition study, Nitrogen Adsorption for pore texture and surface area of the catalyst. Meanwhile, Thermal Gravimetric Analysis to study the mass loss of the catalyst during temperature change and Fourier Transform Infrared Spectroscopy for the functional group study present in the catalyst.