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ABSTRACT
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Model)

In this study, the development of an improved forward model for the mass

transfer process in the Rotating Disc Contactor (RDC) column was carried out. The

existing mass transfer model with constant boundary condition does not accurately

represent the mass transfer process. Thus, a time-varying boundary condition was

formulated and consequently the new fractional approach to equilibrium was derived.

This derivation initiated the formulation of the modified quadratic driving force,

called Time-dependent Quadratic Driving Force (TQDF). Based on this formulation,

a Mass Transfer of A Single Drop (MTASD) Algorithm was designed, followed by a

more realistic Mass Transfer of Multiple Drops (MTMD) Algorithm which was later

refined to become another algorithm named the Mass Transfer Steady State (MTSS)

Algorithm. The improved forward models, consisting of a system of multivariate

equations, successfully calculate the amount of mass transfer from the continuous phase

to the dispersed phase and was validated by the simulation results.
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ABSTRAK

Dalam kajian ini, pembentukan model ke depan yang lebih baik dan model

songsangan bagi proses peralihan jisim di dalam Turus Pengekstrakan Cakera Berputar

(RDC) telah dijalankan. Model yang sedia ada dengan syarat sempadan tetap tidak

mewakili proses peralihan jisim dengan tepat. Dengan itu, syarat sempadan yang

merupakan suatu fungsi masa berubah telah dirumuskan dan seterusnya pendekatan

pecahan untuk keseimbangan yang baru diterbitkan. Penerbitan ini telah memulakan

perumusan daya pacu kuadratik ubahsuai, yang dipanggil daya pacu kuadratik

bersandaran masa (TQDF). Berdasarkan perumusan ini, satu Algoritma Peralihan

Jisim untuk Sebutir Titisan (MTASD) telah direkabentuk , diikuti oleh satu algoritma

yang lebih realistik algoritma Peralihan Jisim untuk Multi Titisan (MTMD) yang mana

kemudiannya, telah diperbaiki dan dinamakan Algoritma Peralihan Jisim Berkeadaan

Mantap (MTSS).
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CHAPTER 1

INTRODUCTION

1.1 Preface

The study of liquid-liquid extraction has become a very important subject to be

discussed not just amongst chemical engineers but mathematicians as well. This type

of extraction is one of the important separation technology in the process industries

and is widely used in the chemical, biochemical and environmental fields. The principle

of liquid-liquid extraction process is the separation of components from a homogeneous

solution by using another solution which is known as a solvent [1, 2]. Normally, it is

used when separation by distillation is ineffective or very difficult. This is due to the

fact that certain liquids cannot withstand the high temperature of distillation.

There are many types of equipments used for the processes of liquid-liquid

extraction. The concern of this research is only with the column extractor type, namely

the Rotating Disc Contactor Column (RDC). Modelling the extraction processes

involved in the RDC column is the major interest in this work. Modelling can be

divided into two categories. One is the forward modelling and the other is the inverse

modelling.

From mathematical and physical point of view, it is generally easier to calculate

the “effect of a cause” or the outputs of the process than to estimate the “cause of

an effect” or the input of the process. In other words, we usually know how to use

mathematical and physical reasoning to describe what would be measured if conditions

were well posed. This type of calculation is called a forward problem. The resulting
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mathematical expressions can be used as a model and we call the process in obtaining

the values of outputs as forward modelling. The concern of this research is to develop

an improved mathematical model for the mass transfer process

1.2 Motivation

Several models have been developed for the modelling of RDC columns. The

modelling shows that the drop size distribution and the mass transfer processes are

important factors for the column performances. Since the behavior of the drop breakage

and the mass transfer process involve complex interactions between relevant parameters,

the need to get as close as possible to the reality of the processes is evident.

Several researchers namely Korchinsky and Azimzadih[3], Talib[4],

Ghalehchian[5] and Arshad[6] had been working in this area. Korchinsky and

Azimzadih[3] introduced a stage wise model for mass transfer process, which was

furthered by Talib[4] and Ghalehchian[5]. The unsteady-state models developed by

Talib[4] are referred to as the IAMT (Initial Approach of Mass Transfer) and BAMT

(Boundary Approach of Mass Transfer). To get closer to reality, Ghalehchian[5] had

developed a new steady-state model of mass transfer by including the idea of axial

mixing into the simulation of the mass transfer process. Then Arshad[6] developed a

new steady state model for hydrodynamic process, which updates the current hold up

and drops velocities in every stage after certain time intervals until the system reaches

steady state.

The mass transfer models are based on a radial diffusion equation with a

constant boundary condition. However a mass transfer model with varied boundary

condition has yet to be developed. The development of the model will enhance the

understanding of the real process. This is because in reality the concentration of the

drops in each compartment in the RDC column is not constant.

The forward model of the mass transfer process in the RDC column consists of

Initial Boundary Value Problem (IBVP) of diffusion equation, a nonlinear and a few

of linear algebraic equations. The details of the equations will be found in Chapter 3

to 5.
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1.3 Objectives of the Research

1. To investigate an equation that will be used as the boundary condition of the

IBVP.

2. To formulate a new fractional approach to equilibrium based on the IBVP of

time-dependent boundary condition.

3. To formulate a modified driving force based on the new fractional approach to

equilibrium.

4. To develop an algorithm for the mass transfer of a single drop in the multi-stage

RDC column.

5. To develop algorithms for the mass transfer of the multiple drops in the multi-

stage RDC column.

1.4 Scope of Study

This study will be based on a radial diffusion equation with varied boundary

value problem for mass transfer process and a few algebraic equations governed by

experiments carried out by a previous researcher for the process of hydrodynamics in

the RDC column. The study will also be based on the experimental data obtained by

the researchers at the University of Bradford under contract to Separation Processes

Service, AEA Technology, Harwell.

1.5 Significance of the Findings

This study achieves a new development of the forward model which will provide

a better simulation and hence get a better control system for the RDC column. This

study also give a significant contribution in the form of algorithms. These algorithms

are able to calculate the solution of the forward model for the mass transfer process in

the RDC column.
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1.6 Report Organization

Chapter 2 gives a literature review on liquid-liquid extraction in general. It

is then followed by a review on the RDC columns including the important processes

involved. The theoretical details on the drop distribution, breakage phenomena and the

mass transfer process are also included. The existing forward mathematical modelling

by the most recent researchers are presented. These reviews are significantly used as a

background in order to develop a new mass transfer model; which will be described in

Chapter 3.

Chapter 3 provides the formulation of the varied boundary function from the

experimental data in [4]. The details of the exact solution of the IBVP with the time

depending function boundary condition will be shown which is then followed by the

derivation of the new fractional approach to equilibrium. The comparison between the

new fractional approach to equilibrium and the one introduced in [7] will be made in

the last section of Chapter 3.

Chapter 4 comprises the development of the forward models of the mass transfer

in the multi-stage RDC column. Prior to the development, the formulation of the

modified quadratic driving force which is called Time-dependent Quadratic Driving

Force(TQDF) will be given. Based on this formulation, a Mass Transfer of A Single

Drop Algorithm is designed and this is then followed by a more realistic Mass Transfer

of Multiple Drops Algorithm. An alternative method for calculating the mass transfer

of a Multi-Stage System will also be presented in the form of an algorithm named as

the Mass Transfer Steady State Algorithm.

We then summarize the findings and suggest areas for further research in

Chapter 5.

1.7 Summary

In this introductory chapter, a short introduction on the liquid-liquid extraction

process particularly on the RDC column has been presented. The deficiency of the

existing mass transfer models in the multi-stage RDC column has also briefly discussed.
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Next, come the research objectives and scope, and the contributions of the work

described in the thesis. Finally, the outline of the thesis is presented.

The current chapter serves as a defining point of the thesis. It gives direction

and purpose to the research and the discussions presented here are the basis for the

work done in the subsequent chapters.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter is divided into six sections. The first section will discuss the liquid-

liquid extraction and the RDC column in general. The subsequent two sections will

give a brief information about the theoretical concepts and the mathematical equations

used in governing the mathematical models of the processes in the RDC column. The

fourth section will give a summary of the existing forward mathematical models.

2.2 Liquid-liquid Extraction

Liquid-liquid extraction is an operation that affects the transfer of a solute

between two immiscible or partially immiscible liquids. The two liquids are called

the feed and extraction solvent. In simple words, this is the process of the removal

of the solute, say C, from the feed, say solution A, by the extraction solvent B. The

solvent containing the solute C, after the extraction process is completed, is known as

the extract and the solution A from which the solute C has been removed is called

raffinate.

In this operation, the feed and extraction solvent, are brought into intimate

contact with each other in order to extract the solute from the feed. This is actually

a mass transfer operation based on the difference in concentration between two phases

(the feed and the solvent) rather than the difference in physical properties.

This principle and some of the special terminology of a single contacting stage

are illustrated in Figure 2.1. If equilibrium is established after contact, the stage is
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defined as an ideal stage. On the laboratory scale this can be achieved in a few minutes

simply by hand agitation of two liquid phases in a stoppered flask or separatory funnel

[8].

+ = 

Feed flow, F 

Solvent A  
     +     
 Solute C  

Solvent flow, S 

Solvent B 

Raffinate flow, R Extract flow, F 

Phase in equilibrium, one ideal stage 

Solvent A  
     +     
 Solute C  

Solvent B  
     +     
 Solute C  

Figure 2.1: Single contacting stage

There is a wide range of applications of liquid-liquid extraction, among them are

in petroleum industries, food processing, separation and purification of pharmaceutical

and natural products, etc [9, 10].

Liquid-liquid extraction equipment [11, 12] can be classified as

Mixer settlers consisting of an agitated tank for mass transfer followed by a settling

tank to separate both phases, due to a density difference between the two liquids.

Usually it requires a series of mixer settler for a desired separation. This type of

equipment is used when there will only be one equilibrium stage in the process.

Column Extractor consisting of a vertical column where the more dense phase enter

at the top and flows downwards whilst the less dense phase enters at the bottom

and flows upward. One of the phases can be pumped through the column at any

desired flow rate, while the maximum rate of the other phase will be limited by

the rate of the first phase and also the physical properties of both phases. There

is a maximum rate at which the phases can flow through the column and at this

rate the dispersed phase will be rejected at its point of entry and the column

is said to be flooded. Thus for a particular set of process conditions, the cross

sectional area of the column must be sufficiently large so that flooding does not

occur. The height of the column will be set by the rate of mass transfer and the

quantity of material that is required to be extracted.

There are two different types of column for the latter classification, which are

non-agitated and agitated columns. For the non-agitated column such as packed and

spray extraction column give differential contact, where mixing and settling proceed
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continuously and simultaneously. In particular for the packed column, to make it more

effective, the column is filled with packing such as Rascing or Berl saddles, which cause

the droplets to coalesce at frequent intervals. For the agitated column, there is a series

of disc or turbine agitators mounted on the central rotating shaft. Each agitator is

separated from the next agitator by a calming section, either a mesh of wire or a stator

ring, or perforated plate, that will encourage coalescence of the drops.

For the latter type of columns, such as Rotating Disc Contactor (RDC),

Oldshue-Rushton Contactor, Scheibel extractor and Rotary Annular Column are widely

used for liquid-liquid extraction[13]. The performance of these column contactors

indicates that they are more efficient and provides better operational flexibility than

non-agitated column type. In this study, we only concentrate on the RDC column.

Therefore, the details of this type of column are provided in the following section.

2.2.1 Rotating Disc Contactor Column

The rotating disc contactor column is one of the agitated mechanical devices

that is being widely used in the study of liquid-liquid extraction. It was initially

developed in the Royal Dutch/Shell laboratories in Amsterdam by Reman in 1948-52.

Some hundreds of RDCs are at present in use world-wide, ranging from less than 1m

to 4.5m in diameter [14]. There is another column with 2.8 meters in diameter and

100 actual stages along the column, which is used to remove colour bodies from high

molecular weight hydrocarbons (see [5]).

The mechanical layout of the RDC column is very simple and ideal for processing

liquids with different densities. According to Reissinger[15] , RDCs are preferable

compared to other extractor columns in the case of high through-puts and large capacity

range. The RDC column consists of a vertical cylindrical column in which horizontal

stator rings are installed. These rings are purposely fixed so that several compartments

are formed in the column. In the middle of the compartment, flat rotating disc plates

are installed, attached to a common rotating long shaft which is driven by an electric

motor. The diameter of the rotor discs are smaller than the diameter of the stator

opening, thus facilitating construction and maintenance. Above the top stator ring

and below the bottom stator ring, settling compartments are installed. Wide -mesh
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Figure 2.2: Schematic diagram of RDC column
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grids are used between the agitated section and the settling zones to nullify the liquid

circular motion, thus ensuring optimum settling conditions.

According to Korchinsky[16], an RDC’s performance is affected by its column

diameter, rotor disc diameter, stator ring opening, compartment height, number of

compartments and disc rotational speed. Careful consideration must be given to these

parameters in designing a satisfactory and efficient RDC column.

There are two important processes involved in the RDC column which are drop

size distribution and mass transfer process [13]. Beside the parameters mentioned

above, work on extraction has also shown that drop size distribution need to be

determined if improvements in design are to be made. There are two factors that

influence the drop size distribution which are the hydrodynamics of the drops and also

the breakage process of the drops in the column. Therefore in the following section,

some of the terminologies involved in the hydrodynamic process are given.

2.3 Hydrodynamics

The study of drops is more complex than that of solid particles or bubbles,

because of the internal motion and the drag coefficients involved. This section begins

with the review of terminal velocity of a single drop, leading to the ideas of slip velocity

and characteristic velocity.

2.3.1 Terminal velocity

The terminal velocity of the drop in an infinite unhindered medium is the

maximum speed of the drop motion obtained by balancing buoyancy and drag forces.

The factor determining terminal velocity are drop size, drop shape and the physical

properties of the system.

Based on the study of the movement of a single drop of various sizes, Grace et

al. (see Talib[4] ) built their own equation of terminal velocity. From these observation

they found that every drop has its own terminal velocity, in which the equation involves
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the dimensionless numbers i.e the Morton number, the Eotvos number and the Reynolds

number. The terminal velocity equation that they proposed is

Vt =
( µc
ρcd

)

M−0.149(J − 0.857), (2.1)

where

M = gµ4
c∆ρ
ρ2
cγ

’

J = 0.94H0.757 for 2 < H < 59.3,

J = 3.42H0.441 for H ≥ 59.3,

H = 4
3E0M

−0.149( µc
0.0009

)−0.14
,

E0 =
gd2∆ρ

γ ,

where Vt is the drop terminal velocity, M is the Morton number, E0 is the Eotvos

number, ρc and µc are the continuous phase density and viscosity respectively, ∆ρ is

the densities differences and γ is the interfacial tension.

For low values of H (i.e H ≤ 2), terminal velocity follows the Stokes’ law which is

Vt =
g∆ρd2

18µc
. (2.2)

2.3.2 Slip and Characteristic Velocity

Characteristic velocity is the velocity of single drop isolated from other drops

but influenced by column internal, geometry and agitation.

In the 1980’s many researchers made a correlation between slip velocity and

other terms such as hold-up or Reynolds number according to their own experiments

[17]. This led to a new development of the slip velocity and characteristic equation.

Based on 117 data points Godfrey and Slater [18] obtained the characteristic velocity

equation of single drop in RDC which is

Vk
Vt

= 1.0− 1.443(N 3rD
5
r)
0.305 − 0.494

( d

Ds −Dr

)0.766
, (2.3)
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where Vk is the characteristic velocity, Nr is the rotor speed, Dr is the rotor diameter

and Ds is the stator diameter.

However, according to Weiss et.al. [19], although this characteristic velocity is

a function of drop diameter, it is not the actual velocity of the drops. Then in 1996

Ghalehchian[5] extended the equation to become

Vk
Vt

= 1.0− 1.443(N 3rD
5
r)
0.305 − 0.494

( d

Ds −Dr

)0.766 − 4.08
Vc
Vt
. (2.4)

The slip velocity is the relative velocity of drops with respect to the continuous

phase. Under counter current flow as in RDC, the slip velocity is given by

Vs =
Vd
X

+
Vc

1−X
. (2.5)

Godfrey and Slater [18] showed that the slip velocity can also be represented as a

function of characteristic velocity and hold-up, X, that is

Vs = Vk(1−X)m, (2.6)

where Vk is the characteristic velocity, m = 0.129
√
Rek and Rek = ρcVkdi

muc
.

Applying the equation of slip velocity for each drop fraction, with assumption

that the amount of hold-up is uniform around all drop fractions, the basic hydrodynamic

equation may be written as

Vd = Vk(1−X)m − VcX

1−X
. (2.7)

2.4 Drop Breakage Phenomena

In an RDC column, the drops are dispersed into the column through a

distributor. This distributor is located at the bottom of the column. These drops will

rise up the column and will break into smaller drops of different sizes as they hit the

rotating discs. In the following subsections the important terms of the drop breakage

phenomena are given in order to understand the factors that affect the breakage of

drops in the column.
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2.4.1 Drop Size

Drop size is a very important variable affecting the hydrodynamic and mass

transfer processes. Several researchers studied the drop breakage in liquid-liquid system

in the RDC column [20, 21, 22, 16]. From these studies, they concluded that Weber

and Reynolds numbers are required to correlate the parameters involves for the drop

breakage factors in the column. According to Korchinsky [16], the smaller drop required

larger column diameter, because of lower slip velocities relative to the continuous phase

but provide larger specific interfacial surface area.

Knowledge on the prediction of column drop size is an important factor in

performance prediction or designing of RDC column. Large number of relatively

stationary small drops will decrease the column capacity. Larger drops will have larger

volume, low surface area per unit volume, higher slip velocity which means that the

column height must be increased to effect satisfactory extraction efficiencies for such

drops.

2.4.2 Maximum Drop Size

In a dispersion process there is a maximum drop diameter above which no drop

can exist in a stable condition. Kolmogrov’s theory of local isotropic turbulence was

used by Hinze [23] in 1955 to describe this maximum drop size. There is a relationship

between the power consumption per unit mass and the power consumption per disc in

a compartment with the later depending on disc Reynold number. Later more work

were done by Strand et al. [24], Zhang et al. [25], Slater et al. [26] and Chang-Kakoti

et al. [27]. Using several sets of data from different sources, Chang-Kakoti et al. [27]

found a correlation between the maximum drop size and the Sauter mean drop size, to

be

dmax = 2.4d0.832 , (2.8)

where
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d32 = 3.6× 10−5
( hc
Dr

)0.18
P 0.13E0.21. (2.9)

P = ρ2
cγ

3

gµ4
c∆ρ

, E = 4PR
πd2

chcρc
and

PR = 6.87×Re−0.658D ρcN
3
rD

5
r ReD < 6× 104

PR = 0.069×Re−0.155D ρcN
3
rD

5
r ReD ≥ 6× 104

2.4.3 Drop Breakage

Drop breakage in liquid-liquid system is induced by the effect of high shear

stress or by the influence of turbulent inertial stress. However as the diameter of the

drop decreases, the deforming stress across it also decreases. Due to these phenomena

a diameter is finally reached where the deforming stress is unable to break the drop.

2.4.4 Critical Drop Size and Critical Rotor Speed

Critical drop size is the maximum drop size below which drop do not break for

a given rotor speed. Correspondingly, for a given drop size in the column, the minimum

rotor speed below which no drop will break is called the critical rotor speed. This rotor

speed was given by Cauwenberg et al. [28],

Ncr = 0.802
γ0.7

ρ0.3c µ0.4c d0.59i D0.71r

(2.10)

for both laminar and turbulent regions. According to him, this relationship has

shown good agreement with the experimental data in RDC columns of different sizes

(152, 300, 600mm). He also found that the equation of critical drop size is

dcr = 0.685We−1.2D,ω Re
0.7
D,ωDr, (2.11)

where the disc angular Weber number and the Reynolds number are of the forms

WeD,ω =
ρc(2πNr)

2D3r
γ

, (2.12)
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and

ReD,ω =
ρc2πNrD

2
r

µc
, (2.13)

respectively.

2.4.5 Initial Number of Drops

The initial number of drops in an RDC could be controlled by the distributor

but basically it depends on the flow rate of dispersed phase, Fd and the size of initial

drop [6], that is
Number of drops

unit time
=

3Fd(d0/2)
−3

4π
. (2.14)

These drops are dispersed through the distributor, which is located at the top

or bottom of the column. The counter current flow of the phases can be achieved by

introducing different densities of liquid. The drops will rise up the column if their

density is less than that of the continuous phase. When the drops move through the

medium in the column, they will hit the rotating discs and will possibly break into

smaller drops until they arrive at the settling compartment.

2.4.6 Probability of Breakage

The probability of breakage for a given drop size is defined as the ratio of number

of broken drops and the total number of drops observed in a large sample number. In

1991, Bahmanyar and Slater [21] had introduced this idea of breakage probability.

Based on this idea, Cauwenberg et al. [28] had developed an equation of breakage

probability, P , for laminar region (ReD,ω < 105) and turbulent region (ReD,ω > 105)

which are

P =
0.258We1.16D,ω,m

1 + 0.258We1.16D,ω,m

, (2.15)

and

P =
0.00312We1.01D,ω,m

1 + 0.00312We1.16D,ω,m

, (2.16)

where WeD,ω,m represents as a modified Weber number that is

WeD,ω,m =
ρ0.5c µ0.5c (ω1.5 − ω1.5cr )Drdi

γ
, (2.17)



16

and

WeD,ω,m =
ρ0.8c µ0.2c (ω1.8 − ω1.8cr )D1.6r di

γ
, (2.18)

respectively.

2.4.7 Mean Number of Daughter Drops Produced

The breakage of a drop will result in various numbers and sizes of daughter

drops. The number of daughter drops produced depends on the initial mother drop

size, physical properties and agitation speed. Many researches have been carried out by

previous researchers concerning the mean number of daughter drops produced. Starting

from Hancil and Rod in 1981, followed by Eid (see [6]) then finally Bahmanyar and

Slater [21] worked out experiments using different chemical systems. The data obtained

were well represented by the equation

Xm = 2 + 0.9
( di
dcr

− 1
)

, (2.19)

where di is mother drop size, Xm is number of daughter drops produced and dcr is the

critical drop size at the appropriate agitation speed.

Also, from the work done by Coulaloglou and Tavlarides [29] and Jares and

Prochazka [30] concerning the the drop distribution of daughter drops produced,

they found that the Beta distribution function fits the experimental data in most

column including RDC. The Beta probability density function which is related to this

distribution can be written in the form

f(Xm, y) = (Xm − 1)(1− y)Xm−2 (2.20)

y is volume ratio of daughter drops to mother drops ie d3d/d
3
m.

2.5 Mass Transfer

In a single phase system, the mass transfer is defined as the movement of mass

or molecules from an area of high concentration to that of low concentration until a

homogeneous or equilibrium concentration in the system is achieved. Basically, there

are two modes of mass transfer in a single liquid phase:
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Molecular Diffusion This type of diffusion occurs in the absence of any bulk motion

of the liquid. In this mode, the phase will tend to a uniform concentration as a

result of the random motion of the molecules.

Eddy Diffusion Meanwhile eddy diffusion occurs in turbulent flow processes because

of the existence of bulk motion of the molecules. The phase will tend to a uniform

concentration due to agitation.

The mass transfer process in the RDC column considered in this study involves

liquids in turbulent flow. In this column, mass transfer will occur whenever there is a

concentration gradient between the two phases in direction of decreasing concentration.

The rate of mass transfer of materials from one phase to the other depends on the mass

transfer coefficient. The prediction of mass transfer coefficient have been studied by

many researchers and recently by Slater et al.[26] and Bahmanyar et al.[31] on mass

transfer rates of single drop in short RDCs and non-flowing continuous phase. In the

following subsection we provide some theories associated with mass transfer before the

modelling of mass transfer in the RDC column is discussed.

2.5.1 The Whitman Two-film Theory

This theory is the earliest and simplest theory of mass transfer between two

liquids phases across a plane interface [32] . It assumes that there is a thin layer

on both sides of the interface. In this thin film, resistance to mass transfer exists.

The mass transfer across these films is assumed to take place by molecular diffusion.

Outside these films the bulk concentration of the liquid phases are uniform which is

brought about by the eddy diffusion. The eddy diffusion caused by the turbulence in

the bulk is considered to vanish abruptly at the interface of the films. It is assumed

that equilibrium is established between the two phases at the interfaces. Therefore any

resistance to transfer at the phase boundary is non-existent.

In order to describe the above process explicitly, let two liquids X and Y with

bulk concentrations, xb and yb respectively where the direction of mass transfer is

assumed from the X phase to the Y phase. The schematic diagram in Figure 2.3 will

describe the process. In the X phase, mass transfer at a steady state from the bulk
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concentration to the interface is described by the equation

Jx = kx(xb − xi), (2.21)

and for the Y phase, the mass transfer is from the interface to the bulk concentration

which is

Jy = ky(yi − yb), (2.22)

where Jx and Jy are known as flux or rate of mass transfer. Meanwhile kx and ky are

the mass transfer coefficients for the liquids X and Y respectively.

y
i
 

x
i
 Y−Phase 

x
b
 

X−Phase 

Interface 

y
b
 

Direction of mass transfer 

Raffinate Phase Extract Phase 

Figure 2.3: Mass transfer at interface

Since equilibrium is established between the two phases at the interface, the

fluxes must be the same. Thus

kx(xb − xi) = ky(yi − yb). (2.23)

The expression governing the equilibrium at the interface is known as

equilibrium relation or equation. For example, the equilibrium relation for cumene-

isobutyric acid-water system is derived from the distribution of isobutyric acid (the

solute) between cumene and water data reported by Bailes et al. [33]. From this data

the equilibrium equation for the system is obtained which is

Cd = 0.135C1.85c , (2.24)
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where Cd and Cc are concentrations of isobutyric acid in cumene and aqueous

respectively. Another example is the equilibrium equation of butanol-succinic acid-

water system where the equation is

Cd = 1.086Cc − 0.849× 10−3C2c − 0.162× 10−4C3c . (2.25)

2.5.2 The Penetration Theory

In Whitman two-film theory, we only consider the mass transfer across the

interface as a steady-state process of molecular diffusion whereby in this study

the process of mass transfer in RDC column is actually an unsteady-state process.

Therefore a theory proposed by Higbie (see Slater[34]) known as penetration theory is

introduced here.

The theory was about a mechanism of mass transfer involving the following

processes:

• The movement of eddies from the bulk of a fluid with concentration cb to the

interface at a distance z from its original position.

• At the interface the solute transfer takes place by unsteady state molecular

diffusion for a short exposure time t.

• This bulk of fluids is then being replaced by another bulk of fluids as a result of

eddy diffusion.

The equation governing the transfer process is given by

∂c

∂t
= D

∂2c

∂z2
(2.26)

with the initial and boundary conditions

c = cb, z > 0, t = 0 (2.27)

c = ci, z = 0, t > 0 (2.28)

c = cb, z →∞, t > 0 (2.29)
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The solution of the above diffusion can be shown as

c− cb = (ci − cb)(1−
2√
π

∫ z
√

4Dt

0
exp(−u2)du), (2.30)

where 2√
π

∫

z
√

4Dt

0 exp(−u2)du is readily evaluated since it is actually a tabulated error

of function (erf( z√
4Dt

)). Therefore the expression (2.30) can be written as

c− cb = (ci − cb)(1− erf(
z√
4Dt

)). (2.31)

By Fick’s first law [34], the rate of mass transfer per unit area across the interface

at any instant can be found by evaluating

Jt = −D
(

∂c

∂t

)

z=0

= (ci − cb)

√

D

πt
. (2.32)

Averaging over time of exposure, te, gives

J =
(ci − cb)

te

∫ te

0

√

D

πt
dt

= 2(ci − cb)

√

D

πe
. (2.33)

From (2.22) and (2.23), the film mass transfer coefficient of the continuous and dispersed

phase are kx = 2
√

D
πe

and ky = 2
√

D
πe

respectively.

2.5.3 Dispersed Phase Mass Transfer Coefficient

Several theoretical models have been proposed for the estimation of the

dispersed phase mass transfer coefficient (Godfrey and Slater[18]). They found that

the dispersed phase mass transfer coefficient, kd is time-dependent. In general, three

situations arise depending on the state of the drops which are

• Molecular diffusion − Newman developed an equation for resistance in a solid

sphere that is

kd = −
d

6t
ln
[ 6

π2

∞
∑

1

1

n2
exp

−4n2π2Ddt

d2
]
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Then, in 1953, Vermeulen[35] proposed a useful approximation to this equation as in

Talib[4], ie

kd ≈ −
d

6t
ln
[

1− (1− exp
−4n2π2Ddt

d2
)1/2

]

• Circulating of drop − A circulating motion inside drops is induced by drag forces

arising from relative velocity of motion between a drop and continuous phase. Kroglg

and Brink (see [6]) provided a general solution for the problem of heat transfer which can

be used for both phases . Then this idea was expanded by Calderbank and Korchincki

to obtain an equation for the mass transfer coefficient in drops with laminar internal

circulation (see Godfrey and Slater[18]). The equation is

kd = −
√
2.25

d

6t
ln
[ 6

π2

∞
∑

1

1

n2
exp

−4n2π2Ddt

d2
]

• Oscillating drops − As drops become larger their shape may change due to the

nature of drag force involved. At some critical size, drops can start to oscillate in shape

and drag force are such that terminal velocity decrease as the drop size increase further.

Many models have been proposed to predict mass transfer coefficient under oscillating

condition. Skelland et al. [36] suggested that

kd = 31.4
Dd

d

(4Ddt

d2
)−0.43( µd

ρDdd

)−0.125(V 2ρc
γ

)0.37
.

2.5.4 Continuous Phase Mass Transfer Coefficient

There are three types of flow around the drops which influence the transfer of

solute from outside a stagnant drop. They are radial diffusion, natural convection and

forced convection. The continuous phase mass transfer coefficient for these types of

flow are correlated as a Sherwood number and are given respectively as

Shc = a1

where a1 is a constant,

Shc = a1 + a2
(gρc∆ρd

3

µ2c
Scc

)n
,

where Scc is Schmidt number defined as Scc = µcρcDc , a1, a2, n are constants and ∆ρ

is the difference in density and

Shc = a1 + a2(Rf)
n(Scc)

l,
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where a1, a2, n, l are constants.

The transfer is by radial diffusion if the continuous phase is stagnant. Whilst the

transfer is by natural convection if the continuous phase around the drop is subjected

to convection. For the latter type of flow, the transfer is by forced convection if the

continuous phase around the drop is subject to an external force forcing the continuous

phase to flow past the drop with velocities up to those of complete turbulence.

2.5.5 Overall Mass Transfer Coefficient

If the equilibrium distribution of solute strongly favours one phase, then the

principle resistance to mass transfer lies in the other phase. A brief explanation about

this concept can be found in [6]. In this work, the required overall dispersed phase

mass transfer coefficient, Kodi for drops with size di in stage n, is defined as

Kodi =
di
6ti

ln
(

∞
∑

n=1

6L2

β2n(β
2
n + L(L− 1))

exp
(

− 4Ddβ
2
ntr,i

d2i

))

,

where, L known as Sherwood number, βn cotβn +L− 1 = 0. The first six values of βn

for specified value of L are given by Crank[7].

2.6 The Existing Forward Mathematical Models of the Processes in the
RDC column

In this section, the existing forward mathematical model of the processes

involved in the RDC column are reviewed. This review only covers the most

recent researches on the models which were produced by Talib[4], Ghalehchian[5] and

Arshad[6] and Mohamed[37].

2.6.1 Talib’s work

Drop Distribution Model (Hydrodynamic Model)

Talib had modelled the break-up process for the drops moving up the RDC

column by assuming that each compartment has ten numbers of classes or cells of

equal widths which hold drops with sizes in the specified range.
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Light phase drops entering the extraction column from the distributer has the

chance of breaking into smaller drops on hitting the first rotor disc. The drops then

moved into the first compartment. Depending on their sizes, the drops are placed in the

appropriate cell. In a given cell all drops are then treated as having the same average

diameter size when considering possible breakage as they moved past the next disc.

Continuing in this way up the column, the number of drops and their size distribution

for all the compartments in the column can be determined.

In Talib’s work, the distribution of the drops were determined by two methods

namely the Monte Carlo and the Expected Value methods. In the simulation drop

break-up using the Monte Carlo Method, drops are considered as entering and moving

up the column one at a time. Meanwhile, the simulation by the latter method considered

the break-up of a swarm of N drops. Beside that, the simulation of drop break-up using

this method uses the probability, p and beta distribution, φ(x, y) differently from the

first method which uses random number.

Even though the distribution of the drops are found to be similar for both

methods, Talib concluded that the latter method was more efficient due to the less

simulation time needed and data requirement. The Monte Carlo Method requires

detailed information including the number of daughter drops produced from the break-

up of a drop, which depends on the size of the mother drop, the rotor speed and the

liquid used. However, the Expected Value Method requires only the average number

daughters produced.

Furthermore, Talib had introduced another model, Dynamic Expected Value

Method which was a modification of the EVM. The model was expected to give a more

realistic representation because it is based on different drop velocities for each class of

the drops whilst in the previous model, it was assumed that all drops have the same

velocity irrespective of their sizes.

Mass Transfer Model

In Talib’s early work, he had introduced two unsteady stage-wise models of

the mass transfer process in the RDC column namely the Initial Approach of mass

Transfer(IAMT) and the Boundary Approach of mass Transfer (BAMT). The first

model is based on the start up process of the drops entering a column with an
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undisturbed continuous phase whilst the second model is based on the presence of

drops throughout the length of the RDC column.

Talib also introduced the concept of the diffusion in a sphere, the theory of

the film mass transfer coefficients and the two film-theory. Beside that at the early

development of the models, Talib used the linear driving force for both the drop and

the continuous phases. Since the interface of a liquid drop in a continuous phase is

spherical in RDC column, Vermuelen[35] stated that the driving force in a drop can

be considered as non-linear which is known as the quadratic driving force. Talib then

incorporated this idea into the IAMT mass transfer model.

2.6.2 Ghalehchian’s work

In Ghalehchian’s work, hydrodynamic and mass transfer experimental results

from a pilot RDC column of 23 stages were used. Then a new stage wise model with

back-flow was developed. The model took into account the influence of drop breakage

at each stage.

Generally, Ghalehchian had produced the new steady state model of mass

transfer which is also basically based on the mathematical equation discussed in

Talib[4]. Figure shows the stage wise mass transfer process, where e is the back-flow

coefficient which is equal to Fd/Fc. Fd and Fc here, are dispersed and continuous phase

flow rate. The new model was said to be more realistic by including the idea of axial

mixing. The model also considered the extraction of unclean solution.

2.6.3 Mohamed’s work

In Mohamed’s work, the mathematical modelling of simultaneous drop diffusing

in RDC column is developed. In this model, it is assumed that the distribution of the

drops in the column is in equilibrium and the mass transfer from the continuous phase

to every drop occur simultaneously.

The total concentration for every drop is obtained by the Simultaneous Discrete

Mass Transfer(S-DMT) model. The model is actually based on Discrete Mass Transfer
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Figure 2.4: Stage wise back-flow for mass transfer process

Model as discussed in Talib[4]. From the model, Mohamed concludes that the two

drops will provide more cross-section area for the mass transfer compared to a drop for

same total volume.

2.6.4 Arshad’s work

In Arshad’s work, the hydrodynamic model is close to reality by following the

process from an undisturbed state into steady state. The model was found to reach

steady state quicker compared with Talib’s. The model was expected to update the
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value of the hold-up and the velocities of the drops moving up the column before

they reach the final stage. Then Arshad used the mass transfer model developed by

Ghalehchian to combine with the new hydrodynamic model. Arshad considered four

different physical/chemical systems of two different sizes of the RDC column.

In addition, Arshad observed and analyzed the simulation data to examine the

effects of varying input variables on output values yield. The analysis was done by

Principle Component Analysis (PCA) method. Arshad also had provided a review on

Artificial Neural Network (ANN) and Fuzzy Logic (FL) modelling. At the final stage

of his work, Arshad had introduced these concept to the RDC system.

2.7 Summary

In the beginning of this chapter, an overview of liquid-liquid extraction process

was provided. A review has been given, starting with the principle of the process and

it was then followed by the classification of the extraction equipment. To achieve the

aim of this research, the review on the RDC column was briefly given including the

important processes involved.

The mass transfer in the column are effected by the drop distribution and

breakage phenomena. The detailed description about these terms were provided leading

to the review on the mass transfer itself. The theoretical details on the mass transfer

coefficient were also included. A review on existing forward mathematical modelling by

the most recent researchers were also presented. These reviews are significantly used as

a background in developing a new mass transfer model; the works are detailed starting

in Chapter 3.



CHAPTER 3

THE FORWARD MASS TRANSFER MODEL

3.1 Introduction

The existing mass transfer models mentioned in Chapter 2 were based on

a radial diffusion equation with constant boundary conditions. However a mass

transfer model with varied boundary conditions has yet to be developed. Therefore,

in this chapter, a modified forward mass transfer model with time dependent function

boundary condition will be discussed. This function is derived from the experimental

data obtained in [4].

Following this derivation, Section 3.3.1 presents the details on how the solution

of the diffusion equation of the time varying boundary condition is obtained. This is

followed by the derivation of the new fractional approach to equilibrium. In Section 3.4,

the simulations for different drop sizes are carried out to see their effects on the new

fractional approach to equilibrium. Then a comparison between the fractional approach

to equilibrium introduced in [7] and the new one is also carried out in the last section

of this chapter.

3.2 The Forward Mass Transfer Model

In the RDC column, the mechanism of mass transfer across an interface between

two liquid phases is based on penetration theory. This theory was proposed by Higbie

in 1935 (see Slater [34]), which assumed that a packet of fluid with bulk concentration

travel to the interface at a distance from its original position. At the interface, the fluid
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packets undergo molecular diffusion for a short exposure of time, before being replaced

by another fluid packet.

The model discussed in this chapter is based on the model of the mass transfer

developed by Talib [4]. Talib [4] assumed that at each stage i, the drop has an initial

uniform concentration as well as the concentration of the medium phase. When a drop

enters a stage i, solutes from the uniform medium concentration surrounding the drop

are transferred to the drop or vice versa depending on the concentration difference

between the drop and the medium. In this study, only the transfer of solute from the

medium to the drop will be considered.

The study of the shape of the moving drops has been found useful in

understanding the dynamics of the moving drops since the drag on the drops depends

on their shapes during movement in another medium. The shape of liquid drops moving

in liquids is dependent on the balance between the hydrodynamic pressure exerted on

account of the relative velocities of the drop and field liquids, and the surface forces

which tend to make the drop a sphere. In this study we assume that all the drops

are spherical in shape, therefore the amount of solute transferred to the drops can be

obtained by using the concept of diffusion in a sphere.

3.2.1 Diffusion in a Sphere

Consider a sphere of radius a. The radial diffusion equation is

∂C

∂t
= D

(

∂2C

∂r2
+

2

r

∂C

∂r

)

(3.1)

where C = C(r, t) is the concentration at distance r from the center of the sphere at

time t and D is the diffusion constant.

If we make the substitution u = Cr, Equation (3.1) becomes

∂u

∂t
= D

∂2u

∂r2
(3.2)
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If the sphere of radius a has initial uniform concentration c1 and the surface of

the sphere is maintained at a constant concentration c0, the diffusion equation of the

sphere with a constant diffusion coefficient D is given by the initial boundary value

problem (IBVP),

∂u

∂t
= D

∂2u

∂r2
, 0 ≤ r < a, t ≥ 0 (3.3)

u(0, t) = 0, t > 0 (3.4)

u(a, t) = ac0, t > 0 (3.5)

u(r, 0) = rc1, 0 ≤ r < a (3.6)

These equations can be solved by the method of separation of variables.

Setting u(r, t) = R(r)T (t), we will get an ordinary differential equation of

R′′

R
=

T ′

DT
= −λ2,

where λ2 is a separation constant. Thus the general solutions for the space and time

variations are given as below,

R(r) =







B1 +B2r, λ = 0

A1 cosλr +A2 sinλr, λ 6= 0

T (t) =







B3, λ = 0

Be−Dλ2t, λ 6= 0
(3.8)

Therefore, the general solution for u(r, t) is

u(r, t) = R(r)T (t) =







(B1 +B2r)B3, λ = 0

(A1 cosλr +A2 sinλr)Be
−Dλ2t, λ 6= 0

where A1, A2, A3, B,B1, B2, B3 are the arbitrary constants.

Simplifying the above equation, we get

u(r, t) =







(H + Ir), λ = 0

(J cosλr +K sinλr)e−Dλ2t, λ 6= 0

Using the superposition rule, we get

u(r, t) = (H + Ir) + (J cosλr +K sinλr)e−Dλ2t,
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subject to boundary condition of Equations (3.4) and (3.5), we get

u(0, t) = 0 = H + Je−Dλ2t, t > 0 (3.12)

Since the coefficient of H and e−Dλ2t are linearly independent on the t interval,

it follows from (3.12) that we need H = 0 and J = 0, thus

u(r, t) = Ir +K sinλre−Dλ2t,

and

u(a, t) = ac0 = Ia+K sinλae−Dλ2t, t > 0

or

a(c0 − I)−K sinλae−Dλ2t = 0. t > 0 (3.15)

Again invoking the linear independence of coefficient of a(c0− I) and e−Dλ2t, it follows

from (3.15) that a(c0 − I) = 0 and K sinλa = 0, which gives

I = c0

K = 0, or sinλa = 0, (or both)

Here, the rule is to make the choice so as to maintain as robust a solution as possible,

then we take sinλa = 0 implies λn = nπ
a for n = 1, 2, 3, ......

Thus the solution becomes

u(r, t) = c0r +
∞
∑

n=1

Kn sin
nπr

a
e
−Dn2π2t

a2 .

To find the Kn, and hence to complete the solution of the problem, we now set t = 0

in the expression on the right and replace u(r, 0) by the initial condition u(r, 0) = rc1,

then we obtain

u(r, 0) = rc1 = c0r +
∞
∑

n=1

Kn sin
nπr

a
,

or

r(c1 − c0) =
∞
∑

n=1

Kn sin
nπr

a
.

This shows that the Kn are the coefficients in the half-range Fourier sine series

expansion of r(c1 − c0) over the interval 0 ≤ r ≤ a. Thus the Kn are given by

Kn =
2

a

∫ a

0
r(c1 − c0) sin

nπr

a
dr,
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and so

Kn =
−2a
nπ

(c1 − c0)(−1)n.

Thus the solution of IBVP of (3.3)-(3.6) becomes

u(r, t) = c0r +
2a

π
(c0 − c1)

∞
∑

n=1

(−1)n
n

sin
nπr

a
e
−Dn2π2t

a2 (3.21)

or

C(r, t) = c0 +
2a

πr
(c0 − c1)

∞
∑

n=1

(−1)n
n

sin
nπr

a
e
−Dn2π2t

a2 , (3.22)

where C(r, t) is the concentration of the drop at time t. In our work, we are interested

in the average concentration of the sphere, Cav, given by equation

Cav =
Ct

4πa3/3
, (3.23)

where the total concentration Ct of the sphere is obtained from

Ct =

∫ a

0
C(r, t)4πr2 dr. (3.24)

According to Crank [7], the total amount of diffusing substance entering or

leaving the drop which is denoted as fractional approach to equilibrium is used to relate

the analytical results to a mass transfer coefficient that is

F =
Cav − c1
c0 − c1

(3.25)

where Cav is the average concentration of the drop at time t and c1 and c0 are the

initial and boundary concentrations respectively.

Using this concept, the fractional approach to equilibrium is derived for the

problem of equations (3.3) to (3.6) , which is

Fc(t) = 1− 6

π2

∞
∑

1

1

n2
(e

Dn2π2t
a2 ), (3.26)

where the subscript c in Fc indicates that this term is already derived by Crank [7].

3.3 The Modified Model

As mentioned in previous section, we are interested in developing an improved

model of mass transfer of which the boundary condition is a function of time. To
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achieve this, we consider the normalized data obtained from the experimental work of

mass transfer in the RDC column with 152mm diameter and 23 stages of the iso-butyric

acid/cumene/watersystem (Talib [4]). In this system the iso-butyric acid in water is

acting as the feed(continuous phase) and the cumene is the solvent(dispersed phase).

The geometrical details of the RDC column used and the physical properties of this

system are given in Appendices A.1 and A.2.

Table 3.1: Normalized dispersed and continuous phase concentrations

Stage number dispersed(drop) continuous(medium)

0 0 0.912

7 0.118 0.947

11 0.162 0.960

15 0.232 0.981

19 0.269 0.992

23 0.285 0.997

24 0.294 1.00

Note: Stage 0 in Table 3.1 is the feed and exit for the dispersed and continuous phases

respectively and stage 24 is the exit and feed for the dispersed and continuous phases

respectively.

From the normalized data (see Table 3.1), we find that the concentration of the

continuous phase depends on the stage of the RDC column (the concentration is lesser

at the lower stage than the upper stage). This phenomenon has shown that there is

a mass transfer from the continuous to the dispersed phase. To relate the changes of

concentration with time, we consider 10 different classes of drops being formed from a

single mother drop as the mother drop hits the first rotor disc of the column. These 10

different sizes of daughter drops have different velocities depending on their sizes. The

velocity of the drops can be calculated using equation

v = vk(1− h)m, (3.27)

where vk is the characteristic velocity of the drop. h is the hold up which is defined as

the ratio of the total volume of the freely moving drops present in the column to the
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volume of the column and m is a constant.
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Figure 3.1: The velocity of 10 different sizes of drops in the RDC column.

The velocity of each drop is plotted against time as in Figure 3.1. From these

velocities the time spent by each drop in the compartment can be found. The residence

time for each size of the drop is tabulated in Table 3.2. The relationship between the

concentration of the continuous phase and the time taken for the 10 different sizes of

drops to reach a particular stage of the column can then be established. To achieve this,

we use the least squares method. In this method, we have to predict the relationship

between the two parameters by letting f̂1 as the predicted function of the concentration

of the continuous phase where f̂1 = â1i + b̂1it by a given value of t. The values of â1i

and b̂1i can be obtained from

b̂1i =
Sitif1
Sititi

and

â1i = f̄1 − b̂1it̄i

where

Sitf1 =
∑

tif1 −
∑

f1
∑

ti
n

and
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Sititi =
∑

t2i −
(
∑

ti)
2

n

where n = 7, t = tristgj and tri is the resident time for drop of size i, meanwhile stgj

is the stage at j given data, for example stg2 = 7. This method chooses the prediction

b̂1i that minimizes the sum of squared errors of prediction
∑

(f1 − f̂1)
2 for all sample

points.

Table 3.2: The values of residence time and the slip velocity for each drop size

Drop Size(i) 0.0004 0.0011 0.0018 0.0025 0.0032 0.0039 0.0046 0.0053 0.0060 0.0067

Time(tri) 6.5225 2.9145 1.8427 1.5256 1.3760 1.2943 1.2487 1.3235 1.4257 1.5378

Velocity 0.0117 0.0261 0.0412 0.0498 0.0552 0.0587 0.0609 0.0574 0.0533 0.0494

Thus, by using this method, it is found that the concentration of the continuous

phase depends on the function of time t, that is f1i(t) = a1i+ b1it, where i corresponds

to the different sizes of the drops and a1 and b1 are constants. The values of a1 for the

ten different sizes of drops are the same but the values of b1 might differ according to

drop sizes (refer Table 3.3). To find the best function which represents all the functions

of t, the mean of the slopes of these linear functions is taken as the slope of the new

function. This new function represents the relationship between the concentration of

continuous phase and the resident time for all the 10 different drop sizes.

By assuming that the concentration on the surface of the drop is the same as

the concentration of the continuous phase (the medium), we can use the new function

f1(t) as the boundary condition of equation (3.1). Thus, we get a modified model of

mass transfer of a single drop of which the boundary condition is a function of t, that

is

f1(t) = a1 + b1t, (3.32)
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Table 3.3: The values of a1 and b1

a1 b1

0.9671 0.0304 ×10−3

0.9671 0.0681 ×10−3

0.9671 0.1077 ×10−3

0.9671 0.1301 ×10−3

0.9671 0.1442 ×10−3

0.9671 0.1533 ×10−3

0.9671 0.1589 ×10−3

0.9671 0.1499 ×10−3

0.9671 0.1392 ×10−3

0.9671 0.1290 ×10−3

3.3.1 The Analytical Solution

The constant concentration ac0 in Equation (3.5) is now replaced by f1(t) from

Equation (3.32), producing

u(a, t) = af1(t), t > 0, (3.33)

while holding the other conditions unchanged. Rewrite Equations (3.3)-(3.6), where,

we get IBVP of time-varying function boundary condition of

∂u

∂t
= D

∂2u

∂r2
, 0 ≤ r < a, t ≥ 0 (3.34)

u(0, t) = 0, t > 0 (3.35)

u(a, t) = af1(t) = f(t), t > 0 (3.36)

u(r, 0) = rc1. 0 ≤ r < a (3.37)

The solution of this IBVP with varied boundary condition for conduction of

heat in solid is given by Carslaw and Jaeger in [38]. In this section, we show the

detailed steps in order to get the solution of the problem. The method of separation

of variables does not apply directly to the situation where time-varying boundary
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condition arise. However, we show how by reformulating the problem it can be reduced

to a nonhomogeneous diffusion equation.

Now, let the solution of these equations be

u(r, t) = U(r, t) + V (r, t), (3.38)

substitute this equation into (3.34) and rearrange the terms to obtain

Ut(r, t)−DUrr(r, t) = −[Vt(r, t)−DVrr(r, t)].

The appropriate boundary conditions are then

U(0, t) = −V (0, t), t > 0

U(a, t) = f(t)− V (a, t), t > 0

while the initial condition becomes

U(r, 0) = rc1 − V (r, 0), 0 ≤ r < a.

The idea now is to make the boundary conditions for U(r, t) homogeneous by

making a suitable choice for V (r, t). We will choose the simplest particular solution.

This is accomplished by setting

V (r, t) =
r

a
f(t). (3.41)

This choice for V (r, t) converts the equation for U(r, t), which is a nonhomogeneous

diffusion equation, although now it is subject to the homogeneous boundary conditions.

Rewrite IBVP of U(r, t), we get

Ut −DUrr = − r
a
f ′(t) 0 ≤ r < a, t ≥ 0 (3.42)

U(0, t) = U(a, t) = 0, t > 0 (3.43)

U(r, 0) = g(r)− r

a
f(0), 0 ≤ r < a (3.44)

where the related homogeneous problem is

vt −Dvrr = 0, 0 ≤ r < a, t ≥ 0 (3.45)

v(0, t) = v(a, t) = 0, t > 0 (3.46)

v(r, 0) = g(r)− r

a
f(0), 0 ≤ r < a (3.47)
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The solution of (3.45)-(3.47) by the method of separation of variables is

v(r, t) =
∞
∑

n=1

Ane
−Dn2π2t

a2 ϕn(r), (3.48)

where An = 2
a

∫ a
0 [g(r)− r

af(0)] sin
nπr
a dr and ϕn(r) = sin nπr

a .

The next step is to find a solution of the inhomogeneous problem of equations

(3.42)-(3.47) in the form of a series like (3.48), but in which the parameters An are

replaced by functions of t. The product Ane
−Dn2π2t

a2 will then become a function Tn(t)

so that the solution will be a series

U(r, t) =

∞
∑

n=1

Tn(t)ϕn(r), (3.49)

where

Tn(t) =
2

a

∫ a

0
U(r, t)ϕn(r) dr. (3.50)

We assume that Ut(r, t) is a continuous function in the region t > 0, 0 ≤ r ≤ a.

Under these circumstances, the integral in (3.50) has a derivative with respect to t

which can be calculated by differentiation under the integral sign. Referring to diffusion

equation of (3.42)-(3.44), we get,

T ′n(t) =
2

a

∫ a

0
Ut(r, t)ϕn(r) dr.

=
2

a

∫ a

0
[DUrr(r, t)−

r

a
f ′(t)]ϕn(r) dr.

=
2D

a

∫ a

0
DUrr(r, t)ϕn(r) dr −

2

a2
f ′(t)

∫ a

0
rϕn(r) dr. (3.51)

The last term of (3.51), denoted as

qn(t) = −
2

a2
f ′(t)

∫ a

0
rϕn(r) dr,

is a known function since − 2
a2 f

′(t) is given and using integration by parts we will get

2D

a

∫ a

0
Urr(r, t)ϕn(r) dr =

2D

a

∫ a

0
DU(r, t)ϕ′′n(r) dr.

Further because ϕ′′n = −λ2ϕn and λ = nπ
a

2D

a

∫ a

0
Urr(r, t)ϕn(r) dr =

−2D
a

∫ a

0
λ2U(r, t)ϕn(r) dr

=
−2Dn2π2

a3

∫ a

0
U(r, t)ϕn(r) dr,
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but from (3.50),
2D

a

∫ a

0
Urr(r, t)ϕn(r) dr = −

Dn2π2

a2
Tn(t) (3.54)

and substitute (3.54) into (3.51), we get

T ′n(t) = −Dn
2π2

a2
Tn(t) + q(t)

T ′n(t) +
Dn2π2

a2
Tn(t) = qn(t) (3.55)

Equation (3.55) is a first-order linear differential equation where the integrating

factor is e
Dn2π2t

a2 . Therefore the solution of (3.55) is

Tn(t) = Cne
−Dn2π2t

a2 +

∫ t

0
e
−Dn2π2(t−τ)

a2 qn(τ) dτ. (3.56)

Setting t = 0 in (3.50), we get the general equation of Tn, which is

Tn(0) = Cn =

∫ a

0
U(r, 0)ϕn(r) dr

=
2

a

∫ a

0
[g(r)− r

a
f(0)] sin

nπr

a
dr

=
2

a

∫ a

0
g(r) sin

nπr

a
dr +

2

nπ
(−1)nf(0), (3.57)

and

qn(t) =
2

nπ
f ′(t)(−1)n. (3.58)

The coefficient Tn(t) in (3.49) are completely known and hence problem (3.42)-

(3.44) has been solved. We have

U(r, t) =
2

a

∞
∑

n=1

e
−Dn2π2t

a2 sin
nπr

a

(
∫ a

0
g(r) sin

nπr

a
dr

)

+

2

π
f(0)

∞
∑

n=1

(−1)n
n

e
−Dn2π2t

a2 sin
nπr

a
+

2

π

∞
∑

n=1

(−1)n
n

e
−Dn2π2t

a2 sin
nπr

a

(
∫ t

0
f ′(τ)e

Dn2π2τ
a2 dτ

)

.

From (3.41) and u(r, t) = V (r, t) +U(r, t), the solution for diffusion equation of (3.34)-

(3.37) is

u(r, t) =
r

a
f(t) +

2

a

∞
∑

n=1

e
−Dn2π2t

a2 sin
nπr

a

(
∫ a

0
g(r) sin

nπr

a
dr

)

+

2

π
f(0)

∞
∑

n=1

(−1)n
n

e
−Dn2π2t

a2 sin
nπr

a
+

2

π

∞
∑

n=1

(−1)n
n

e
−Dn2π2t

a2 sin
nπr

a

(
∫ t

0
f ′(τ)e

Dn2π2τ
a2 dτ

)

.
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By taking f(t) = a1 + b1t which gives us

∫ t

0
f ′(τ)e

Dn2π2τ
a2 dτ = b1

(

a2

Dn2π2
e
Dn2π2t

a2 − a2

Dn2π2

)

and also we know that from the initial condition g(r) = c1r which resulted in

∫ r=t

r=0
g(r) sin

nπr

a
dr = c1

(−a2
nπ

(−1)n
)

,

then

u(r, t) =
r

a
(a1 + b1t) +

2c1a

π

∞
∑

n=1

(−1)n+1
n

e
−Dn2π2t

a2 sin
nπr

a
+

2a1
π

∞
∑

n=1

(−1)n
n

e
−Dn2π2t

a2 sin
nπr

a
−

2b1a
2

Dπ3

∞
∑

n=1

(−1)n+1
n3

sin
nπr

a
+

2b1a
2

Dπ3

∞
∑

n=1

(−1)n+1
n3

e
−Dn2π2t

a2 sin
nπr

a
(3.60)

Knowing that
∞
∑

1

(−1)n+1
n3

sin
nπr

a
= −(r3 − a2r)π3

12a3
,

substituting this equation into (3.60) and rearranging them , give us

u(r, t) =
r

a
(a1 + b1t) +

b1
6Da

(r3 − a2r) + 2
c1a− a1

π

∞
∑

1

(−1)n+1
n

e
−Dn2π2t

a2 sin
nπr

a
+

2b1a
2

Dπ3

∞
∑

1

(−1)n+1
n3

e
−Dn2π2t

a2 sin
nπr

a
. (3.61)

Thus the solution of the diffusion equation of (3.1) with respect to the initial-

boundary condition of Equations (3.35), (3.36) and (3.37) is

C(r, t) =
1

a
(a1 + b1t) +

b1
6Da

(r2 − a2) + 2
c1a− a1

πr

∞
∑

1

(−1)n+1
n

e
−Dn2π2t

a2 sin
nπr

a
+

2b1a
2

Dπ3r

∞
∑

1

(−1)n+1
n3

e
−Dn2π2t

a2 sin
nπr

a
. (3.62)

As mentioned in the previous section, we are interested in the average

concentration of the sphere, Cav, given by Equation (3.23). Substituting (3.62) into
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(3.24), we get

Ct =

∫ r=a

r=0

[1

a
(a1 + b1t) +

b1
6Da

(r2 − a2)
]

4πr2 dr +

∫ r=a

r=0

[

2
c1a− a1

πr

∞
∑

1

(−1)n+1
n

e
−Dn2π2t

a2 sin
nπr

a

]

4πr2 dr +

∫ r=a

r=0

[2b1a
2

Dπ3r

∞
∑

1

(−1)n+1
n3

e
−Dn2π2t

a2 sin
nπr

a

]

4πr2 dr (3.63)

= A+B + E (3.64)

where

A =

∫ r=a

r=0

[1

a
(a1 + b1t) +

b1
6Da

(r2 − a2)
]

4πr2 dr

=
4

3
πa2(a1 + b1t)−

4πb1a
4

45D
,

B =

∫ r=a

r=0

[

2
c1a− a1

πr

∞
∑

1

(−1)n+1
n

e
−Dn2π2t

a2 sin
nπr

a

]

4πr2 dr

=
8a2(c1a− a1)

π

∞
∑

1

1

n2
e
−Dn2π2t

a2 ,

E =

∫ r=a

r=0

[2b1a
2

Dπ3r

∞
∑

1

(−1)n+1
n3

e
−Dn2π2t

a2 sin
nπr

a

]

4πr2 dr

=
8b1a

4

Dπ3

∞
∑

1

1

n4
e
−Dn2π2t

a2 .

Thus the average concentration Cav of the sphere is

Cav =
(a1 + b1t)

a
− b1a

15D
+

6(c1a− a1)

π2a

∞
∑

1

1

n2
e
−Dn2π2t

a2 +

6b1a

Dπ4

∞
∑

1

1

n4
e
−Dn2π2t

a2 . (3.65)

Following with this result, we derive the new fractional approach to equilibrium

based on Equation (3.25), as

Fnew(t) =
Cav − c1
f(t)/a− c1

(3.66)

where f(t)/a and c1 are the boundary condition and initial condition of IBVP of

equation (3.1) respectively. By substituting (3.65) into (3.66), we get

Fnew =
(a1 + b1t)

a(a1 + b1t− c1)
− b1a

15D(a1 + b1t− c1)
+

6(c1a− a1)

π2a(a1 + b1t− c1)

∞
∑

1

1

n2
e
−Dn2π2t

a2 +

6b1a

Dπ4(a1 + b1t− c1)

∞
∑

1

1

n4
e
−Dn2π2t

a2 −

c1
(a1 + b1t− c1)

. (3.67)
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Figure 3.2: Sorption curve for sphere with surface concentration a1 + b1t

3.4 Simulations for Different Drop Sizes

We consider the drop of size 0.00705m in diameter. The time taken for the

drop to move upwards in one compartment is 0.8868 seconds. From the least square

method, we found that f1(t) is equal to 0.9187+0.0041t. Then let f(t) = a1+ b1 where

a1 = a(0.9187) and b1 = a(0.0041). Substitute this value and all the parameters into

(3.65) and we will get the relationship between the average concentration of the sphere

and the time, t. The relationship can easily be seen in Figure 3.2.

The comparison between this fractional approach to equilibrium, Fnew(t) and

the one obtained by Talib[4] is made based on the graph plotted in Figure 3.3. In

addition, simulations are also carried out to see the effect on fractional approach to

equilibrium with variations in drop sizes. A graphical representation of the effect of

variations in drop sizes is shown in Figure 3.4.

The concentration profiles of the curves shown in Figure 3.4 show that smaller

drops reach equilibrium concentration with the medium at a much faster rate than

larger drops. The profile of fractional approach to equilibrium of the modified model

compared with Crank’s[7] and Vermuelen’s[35] is similar.
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Figure 3.3: Fractional approach to equilibrium vs. time

3.5 Discussion and Conclusion

In this chapter the modified mass transfer model was formulated based on

experimental data. By least square method and the assumption that the concentration

on the surface of the drop is the same as the concentration of the continuous phase, the

boundary condition of the IBVP was found to be a time dependent function, f1(t) =

a1+b1(t). The analytical solution of the model was then detailed in Section 3.3.1. This

was followed by the derivation of the new fractional approach to equilibrium.

For comparison purposes, the new fractional approach to equilibrium profiles of

the time-dependent boundary condition and that of Talib[4] are shown in Figure 3.3.

Although the model considered here is a modification of the model proposed by Talib[4],

the new fractional approach to equilibrium profile agrees with the result obtained by

Talib. In conclusion, the new fractional approach to equilibrium gives a better theory

for further investigation of the mass transfer process in the RDC column. This is

because the new term was derived from the time-dependent boundary condition which

represents the real phenomena of the process in the column.

For further analysis, the simulations with variations in drop sizes were also

carried out to see their effect on the new fractional approach to equilibrium. From

Figure 3.4, the smaller the drop,the equilibrium concentration is more rapidly attained
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Figure 3.4: Fractional Approach to equilibrium vs. time for different drop sizes

. This is due to the fact that the smaller drop provides larger surface area to the volume

ratio, which causes a better absorption of the mass from the continuous phase.

The IBVP given by Equations (3.3), (3.4), (3.6) and (3.32) holds for a non-

moving drop in a stagnant medium. In a real RDC column drops are rising or falling in

the continuous phase, which induces internal circulation. The internal circulation has

the effect of distributing the solute uniformly in the drop to give the drop a uniform

concentration as it moves to the exit point. Therefore the following chapter will discuss

the mass transfer model of a moving drop in a non-stagnant medium.



CHAPTER 4

MASS TRANSFER IN THE MULTI-STAGE RDC COLUMN

4.1 Introduction

In the previous chapter we have shown the development of the modified mass

transfer model of time-dependent boundary value problem (BVP). The model involved

only the mass transfer of a single drop in a stagnant medium. The profile of the

fractional approach to equilibrium of the modified model agrees with the model

introduced by Talib[4] and Vermuelen[35].

Since in the RDC column the drops are moving in the continuous phase with

counter current direction, the mass transfer model of a moving drop in a non-stagnant

medium will be considered here. The new fractional approach to equilibrium is also

incorporated in developing the model.

According to the two-film theory, the concentrations of the two phases at

an interface where the equilibrium exist, is governed by the principles of physical

equilibrium. Due to this phenomenon at the interface, the boundary condition given

by Equation (3.36) has to be redefined. In the following section the IBVP with new

boundary condition will be given. In this section, the mass transfer model based on

modified quadratic driving force which is called Time-dependent Quadratic Driving

Force(TQDF) is described. Based on this model, we design a Mass Transfer of A Single

Drop Algorithm. This is then followed by a more realistic Mass Transfer of Multiple

Drops Algorithm. For comparison purposes, a normalization and the de-normalization
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techniques are given in Section 4.5.

An alternative method of calculating the mass transfer for a Multi-Stage System

is also presented in the form of an algorithm named as the Mass Transfer Steady State

Algorithm. Finally, a discussion about the models is also presented.

4.2 The Diffusion Process Based On The Concept Of Interface

Concentration

Consider the previous IBVP. The diffusion process based on the concept of

interface concentration is obtained by replacing Equation (3.32) with the interface

condition. Then we get

∂u

∂t
= D

∂2u

∂r2
, 0 ≤ r < a, t ≥ 0 (4.1)

us(a, t) = f(cs), t ≥ 0 (4.2)

u(r, 0) = rc1, 0 ≤ r < a (4.3)

where us is the drop surface concentration, cs is the concentration of medium at the

drop surface and us(a, t) = f(cs) is known as the equilibrium equation, which expresses

the concentration of the drop in equilibrium with the medium at the drop surface.

A drop with concentration cdin1 entering a column is subjected to the

concentration of the first compartment, cc1. Solutes from the continuous phase are

transferred to the drop. Now the concentration of the drop is cdout1 . On reaching

the next compartment, the drop concentration, cdin2 , where cdin2 = cdout1 , is now

in a continuous phase concentration of the second compartment, cc2, then the drop

concentration, cdout2 after leaving the second compartment can be obtained. By

applying the same approach to the drop as it moves through every compartment, the

drop concentration cdoutn at the final compartment, ccn can be determined.

The mass transfer model based on the linear driving force is realistic if the

interface of the two liquids in contact is a simple plane. In 1953, Vermuelen[35] had

shown that if one of the interfaces of the two liquids is spherical, than the driving
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force in a drop can be considered as non-linear. His expression known as quadratic

driving force was used successfully by previous researcher as can be found in [4]. In

this study we used the same concept and the new fractional approach to equilibrium is

also incorporated into the idea to get a new driving force named as Time Dependent

Quadratic Driving Force(TQDF).

The following section explains the rate of the mass transfer or flux across the

drop surface into the drop where the derivation of the time dependent quadratic driving

force is shown.

4.2.1 Flux Across The Drop Surface Into The Drop

The rate of mass transfer across the surface of the sphere given by flux J is

defined as

Jap =
dC

dt
, (4.4)

where ap is considered as ratio of the surface area to the volume of a drop. From

Equation (3.66) the fractional approach to equilibrium of the new model is

Fnew(t) =
Cav − c1
f1(t)− c1

and since the profile of fractional approach to equilibrium of the modified model is

similar to that of Crank[7] and Vermuelen[35] , we replace Fnew(t) with the one used

by Vermuelen that is

Fv = (1− e−Dπ2t/a2
)0.5. (4.6)

Thus, Equation (3.66) becomes

Fv =
Cav − c1
f1(t)− c1

(4.7)

Differentiating the above equation with respect to t, gives us

d

dt
(Fv) =

d

dt
(
Cav − c1
f1(t)− c1

),

1

2
(
Dπ2

a2
)(
1− F 2v (t)

Fv(t)
) =

1

f1(t)− c1

d

dt
(Cav)−

Cav − c1
(f1(t)− c1)2

d

dt
f1(t) (4.8)
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By taking Fv as (4.7) and rewriting, Equation (4.8) becomes,

d

dt
(Cav) =

1

2

Dπ2

a2
(f1(t)− c1)

2 − (Cav − c1)
2

(Cav − c1)
+

(Cav − c1)

(f1(t)− c1)

d

dt
f1(t) (4.9)

Substituting this equation into (4.4) and rearranging them, gives us

J =
1

2ap

Dπ2

a2
(
(f1(t)− c1)

2 − (Cav − c1)
2

Cav − c1
) +

1

ap

Cav − c1
(f1(t)− c1)

d

dt
f1(t)

=
4

2ap

Dπ2

d2
(
(f1(t)− c1)

2 − (Cav − c1)
2

Cav − c1
) +

1

ap

Cav − c1
(f1(t)− c1)

d

dt
f1(t)

=
1

3

Dπ2

d
(
(f1(t)− c1)

2 − (Cav − c1)
2

Cav − c1
) +

d

6

Cav − c1
(f1(t)− c1)

d

dt
f1(t) (4.10)

where ap = 6
d . The term ( (f1(t)−c1)

2−(Cav−c1)2
Cav−c1 ) is known as the time-dependent

quadratic driving force. In this study, the quadratic driving force term is different

from the one used by Talib[4]. Here, f1(t) is taken to be the surface concentration of

the drop instead of a constant, c0 which is used by Talib.

The rate of the mass transfer from the bulk concentration of the continuous

phase to the surface is given in the following section.

4.2.2 Flux in the Continuous Phase

The flux transfer in the continuous phase is given by

J = kc(cb − cs), (4.11)

where kc is the film mass transfer coefficient of the continuous phase. cb is the bulk

concentration in the continuous phase and cs is the concentration at the interface.

(cb−cs) is the linear concentration driving force from the continuous bulk concentration

to the drop surface.



48

4.2.3 Process of Mass Transfer Based on Time-dependent Quadratic

Driving Force

The mass transfer across the surface of the sphere given by flux J defined in

Equation (4.10) where ( (f1(t)−c1)
2−(Cav−c1)2

Cav−c1 ) is called the time-dependent quadratic

driving force. Meanwhile the flux transfer in the continuous phase is given by (4.11).

As stated before, at the interface, (4.10) and (4.11) are equal, that is

1

3

Dyπ
2

d
(
(f1(t)− c1)

2 − (Cav − c1)
2

Cav − c1
) +

d

6

Cav − c1
(f1(t)− c1)

d

dt
f1(t) = kc(cb − cs), (4.12)

where Dy is the molecular diffusivity in the drop phase. By substituting (4.7) into

(4.12), we will get

Dyπ
2

3d
(f1(t)− c1)(

1− Fv(t)
2

Fv(t)
) +

d

6
Fv(t)

1

dt
f1(t) = kc(cb − cs). (4.13)

In this work, the concentration of both phases is in a normalized form that is,

the concentration is dimensionless which lies in the interval between zero and one. For

simplicity and to differentiate the latter terms from the original terms, we denote Cav,

c1, f1(t), cb and cs as yav, y0, ys, xb and xs respectively. Then (4.13) becomes

Dyπ
2

3d
(ys − y0)(

1− Fv(t)
2

Fv(t)
) +

d

6
Fv(t)

1

dt
f1(t) = kx(xb − xs). (4.14)

By rearranging this equation, we get

ys =
3d

Dπ2
kx(xb − xs)

Fv
1− F 2v

− (
3d

Dyπ2
)(

Fv
1− F 2v

)(
d

6
)Fv(t)

1

dt
f1(t) + y0 (4.15)

Now, consider the situation at the drop surface. Equilibrium between the

medium and the concentration of drop is governed by equation

ys = f(xs), (4.16)

where for Cumene/Iso-butyric acid/Water system f(xs) = x1.85s .

The drop and medium concentrations, ys and xs, at the surface are found by

solving the non-linear equations of (4.15) and (4.16). In order to solve these equations,

we used bisection method. First, we substitute (4.16) into (4.15) which give us
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x1.85s =
3d

Dπ2
kx(xb − xs)

Fv
1− F 2v

− (
3d

Dyπ2
)(

Fv
1− F 2v

)(
d

6
)Fv(t)

1

dt
f1(t) + y0

0 =
3d

Dπ2
kx(xb − xs)

Fv
1− F 2v

− (
3d

Dyπ2
)(

Fv
1− F 2v

)(
d

6
)Fv(t)

1

dt
f1(t) + y0 − x1.85s .

Then let

g(xs) =
3d

Dπ2
kx(xb−xs)

Fv
1− F 2v

− (
3d

Dyπ2
)(

Fv
1− F 2v

)(
d

6
)Fv(t)

1

dt
f1(t)+y0−x1.85s . (4.17)

With the assumption that the values of ys and xs lie between 0 and 1, the

root of Equation (4.17) must lie in the interval [0, 1]. Let the root be c, then by the

bisection method we get c = 0+1
2 . This value is then substituted into Equation (4.17).

If g(c = 1/2) = 0 then the root of g is c = 1/2. Otherwise we have to repeat the

process of determining the value of c by checking the values of (g(0) × g(1/2)) and

(g(1) × g(1/2)). If (g(0) × g(1/2)) < 0 set a = 0 and b = 1/2, then c = 0+1/2
2 . If

g(1)× g(1/2) < 0 set a = 1/2 and b = 1 then c = 1/2+1
2 . With these values, repeat the

process until the root of g is obtained. These steps are well presented in the algorithm

below.

Bisection Algorithm

The following algorithm is used to calculate xs.

Step 1: Choose the initial solution of g, c, to lie in the interval [a, b] and initialize it

to a+b
2 . Set i = 1.

Step 2: Calculate the values of g(ai), g(bi) and g(ci) using Equation (4.17).

Step 3: If g(ci) ≤ 0.00001, set c = ci and stop.

else go to Step 4.

Step 4: If (g(ai)× g(ci)) < 0 set i = i+ 1, ai+1 = ai, bi+1 = ci and ci+1 =
ai+ci
2 , then

repeat Steps 2 to 3,

else if (g(ai) × g(bi)) < 0 set ai+1 = ci, bi+1 = bi and ci+1 =
ci+bi
2 , then repeat

Steps 2 to 3.
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The value of xs is substituted into Equation (4.15) or (4.16) to obtain ys. This

value is then used to calculate the average concentration of the drop using equation,

yav = Fnew(t)(ys − y0) + y0, (4.18)

where Fnew(t) is the new fractional approach to equilibrium. Then the amount of mass

transfer of the drops can be obtained by applying mass balance equation, that is

Fx(xin − xout) = Fy(yout − yin), (4.19)

where Fx and Fy are the flow rates of the continuous phase and the dispersed phase

respectively. The concentrations xin and yin are the uniform initial concentrations of

the continuous and drop phase. In this case xin and yin are xb and y0 respectively.

Meanwhile xout and yout are the exit concentration of the continuous and drop phase

respectively where we take yav as yout.

MASS BALANCE EQUATION 

y
out

=y
ave

 x
in

=x
b
 

y
in

=y
0
 x

out
 

Figure 4.1: Schematic diagram to explain the mass balance process

Equations (4.15)-(4.19) are used to calculate the amount of mass transfer from

the continuous phase to the drop. Based on various studies [17, 20, 27], the process

in the RDC column is very complicated because it involves not only mass transfer of

a single drop but infinitely many drops. These drops have different sizes and different

velocities. In this work we modelled the distribution of the drops along the column

exactly according to the model discussed by Arshad[6].

Before we construct a model that describes the mass transfer process as close

as the real process, the following section will explain the process of the mass transfer

of only a single drop with known size in the multi-stage RDC column.
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4.3 Mass Transfer of a Single Drop

In this section, the process of the mass transfer of a single drop in the continuous

unsteady state medium of the 23 stages RDC column is considered. As explained

in the previous section, each compartment in the RDC column corresponds to the

stage number. The model concerns the mass transfer process of a single drop in every

compartment, where each compartment has its own medium concentration.

In this model, we assume that the continuous phase is continuously flowing in

the column with a unit concentration. Then a drop is injected into the column with

zero concentration. We also assume that the mass transfer takes place only when the

drop reaches the first compartment. Here the new fractional approach to equilibrium

is used, which is based on Equation (3.66) where the equation of average concentration

of the drop Cav, is given by (3.65) such that the new fractional approach to equilibrium

is (3.67).

The time t given in the Equation (3.67) is replaced with residence time tr,i of

a particular drop i in a compartment. Using this residence time and Equations (4.15)-

(4.19), the drop concentration in the first compartment is obtained. This concentration

is then taken as the initial concentration of the drop as the drop enters the second

compartment. This process is repeated through the final stage. The second drop is

then injected into the column with zero concentration but this time the concentration

of the medium, xout as calculated in the first batch of the process is used. We stop the

simulation when the steady state of the concentration of the drop at every compartment

is reached. In other words, the simulation is completed when the difference between

the concentration at iteration t and iteration t − 1 is very small. This condition must

be satisfied at each compartment.

The model described above is presented in Subsection 4.3.1.
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4.3.1 Algorithm 4.1: Algorithm for Mass Transfer Process of a Single Drop

(MTASD Algorithm)

The process of mass transfer will continuously take place until the concentration

of the continuous phase is in equilibrium with the surface concentration of the drop.

The algorithm below describes the detail of the process of the mass transfer from stage

1 up to stage 23 for a single drop.

Algorithm to find the concentration of the liquids after the extraction

process of a single drop in 23 stages RDC Column.

This algorithm calculates the amount of the mass transfer from the continuous

phase to the drop.

Step 1: Input all the geometrical details and physical properties of the system. Set

iitr = 1, xin = 1 and yin = 0.

Step 2: Input initial values, that is xin and yin. Set j = 1 (stage 1)

Step 3: Calculate the value of fractional approach to equilibrium based on Varmulene

Equation (4.6) and the new Equation (3.67) which was based on the varied

boundary condition.

Step 4: Calculate the surface concentration of the medium and drop, xs and ys

respectively by solving the non-linear equations (4.15) and (4.16). Assume the

bulk concentration of the medium, xb is xin and the initial drop concentration,

y0 is yin.

Step 5: If ys > yin go to Step 6 else, set yout = yin, then go to Step 7.

Step 6: Determine the average concentration of the drops using Equation (4.18). This

value is taken to be the output concentration of the drop at jth stage, yout.

Step 7: Determine the concentration of the medium at the jth stage by using mass

balance equation of (4.19). This value is taken to be xout at the jth stage.

Step 8: If j > 23 go to Step 10,

else go to Step 9.
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Step 9: Update the initial value for the next stage.

9a: If iitr = 1, set xin = 1, yin = yout(iitr, j), ∀j = 1, 2, ...n

else go to 9b.

9b: If j ≤ n− 2 set xin = xout(iitr − 1, j + 2) and yin = yout(iitr, j),

else (j = n− 1) set xin = 1, yin = yout(iitr, j).

Set j = j + 1. Repeat Steps 3 to 8.

Step 10: Take ε = 0.0001. If |yout(iitr, j)− yout(iitr − 1, j)| ≤ ε, stop, else go to Step

11.

Step 11: Update the initial value for the next iitr.

11a: Start with iitr = 1 set xin = xout(iitr, j = 2), yin = 0

11b: iitr = iitr + 1 set xin = xout(iitr, j = 2), yin = 0 ∀iitr = 2, 3, 4, .....

Set iitr = iitr + 1. Repeat Steps 2 to 10.

Figure 4.2 is the schematic representation of the mass transfer process of a

single drop in 23 stages RDC column in the form of a flow chart.

4.3.2 Simulation Results

Using Algorithm 4.1, we run the program to produce simulation results of

the mass transfer process for a single drop in a 23 stage RDC column. The profile

concentrations of continuous and dispersed phase along the column are shown in

Figure 4.3. For comparison purposes we also plot the concentrations of the continuous

and dispersed phase based on the new mass transfer model and Crank solution as

seen in Figure 4.4. Simulations were also carried out for different drop sizes. The

concentrations of the drop of different drop sizes are shown in Table 4.1.

4.4 Mass Transfer of Multiple Drops

In a real RDC column, the dispersed phase is injected into the column in the

form of drops. These drops will rise up the column if their density is less than that of
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Table 4.1: The concentration of the drops along the column

Drop size

Stage

No d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

1 0.043 0.0093 0.0039 0.0026 0.0021 0.0018 0.0017 0.0017 0.0017 0.0017

2 0.0831 0.0185 0.0078 0.0051 0.0041 0.0036 0.0034 0.0034 0.0034 0.0034

3 0.1206 0.0275 0.0117 0.0077 0.0062 0.0054 0.0051 0.005 0.0051 0.0051

4 0.156 0.0364 0.0155 0.0102 0.0082 0.0072 0.0067 0.0067 0.0068 0.0069

5 0.1894 0.0452 0.0194 0.0128 0.0102 0.009 0.0084 0.0083 0.0084 0.0086

6 0.221 0.0538 0.0232 0.0153 0.0123 0.0108 0.0101 0.01 0.0101 0.0103

7 0.251 0.0624 0.0269 0.0178 0.0143 0.0126 0.0117 0.0117 0.0118 0.0119

8 0.2795 0.0708 0.0307 0.0203 0.0163 0.0144 0.0134 0.0133 0.0134 0.0136

9 0.3066 0.0792 0.0344 0.0228 0.0183 0.0162 0.015 0.0149 0.0151 0.0153

10 0.3326 0.0874 0.0381 0.0253 0.0203 0.018 0.0167 0.0166 0.0167 0.017

11 0.3573 0.0955 0.0418 0.0278 0.0223 0.0197 0.0183 0.0182 0.0184 0.0187

12 0.3809 0.1035 0.0455 0.0302 0.0243 0.0215 0.02 0.0198 0.02 0.0203

13 0.4036 0.1115 0.0491 0.0327 0.0263 0.0232 0.0216 0.0215 0.0217 0.022

14 0.4252 0.1193 0.0528 0.0351 0.0283 0.025 0.0232 0.0231 0.0233 0.0237

15 0.446 0.1271 0.0564 0.0375 0.0302 0.0267 0.0249 0.0247 0.0249 0.0253

16 0.4659 0.1347 0.06 0.04 0.0322 0.0285 0.0265 0.0263 0.0266 0.027

17 0.485 0.1423 0.0635 0.0424 0.0341 0.0302 0.0281 0.0279 0.0282 0.0286

18 0.5033 0.1498 0.0671 0.0448 0.0361 0.0319 0.0297 0.0295 0.0298 0.0303

19 0.5209 0.1572 0.0706 0.0472 0.038 0.0337 0.0313 0.0311 0.0314 0.0319

20 0.5379 0.1645 0.0741 0.0496 0.04 0.0354 0.0329 0.0327 0.033 0.0335

21 0.5541 0.1717 0.0776 0.052 0.0419 0.0371 0.0345 0.0343 0.0346 0.0352

22 0.5698 0.1789 0.0811 0.0543 0.0438 0.0388 0.0361 0.0359 0.0362 0.0368

23 0.5848 0.1859 0.0845 0.0567 0.0458 0.0405 0.0377 0.0375 0.0378 0.0384

Note: Initial concentration of continuous phase is 1 at stage 24 and initial concentration

of dispersed phase, di = 0, i = 1, 2, 3, ..., 10 at stage 0.
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Figure 4.3: The profile of the medium and drop concentration along the column with

respect to the new fractional approach to equilibrium

the continuous phase. In this mass transfer model, the process of solute transfer from

continuous phase to the drops is described as follows.

We assume that initially the continuous phase has a unit concentration, that

is in each stage j, for j = 1, 2, 3, ..., n = 23, the initial concentration of the continuous

phase, x(iitr, j) is one where iitr is the iteration number and j is the stage number.

Then the first batch of drops with the same size is injected into the column. Each drop

entering the first stage of the column has zero concentration.

This group of drops will move upward and break into smaller drops as they hit

the first rotor disc. As in [4], the daughter drops are modelled as such that they are

divided into ten different classes of size. It has to be noted that the mass transfer process

in the real RDC column occurs simultaneously. Here we define the concentration of a

certain group of drops with class size i, di in stage j as y(i)(iitr, j). As these drops with

initial concentration yiin(iitr = 1, j = 1) enter the first compartment, they are subjected

to the medium concentration of the first compartment, xin(iitr, j).

The drop surface concentration, y
(i)
s (iitr = 1, j = 1) in equilibrium with the

continuous phase, y
(i)
s (iitr = 1, j = 1) at the interface is then obtained by Equations

(4.15) and (4.16). In these equations, bulk concentration of the continuous phase, xb is
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Figure 4.4: The profile of the medium and drop concentration along the column with

respect to the new fractional approach to equilibrium and Crank solution

replaced by xin(iitr, j) = 1 and y0 is replaced by y
(i)
s (iitr = 1, j = 1). After obtaining

the drop surface concentration for each size, the next step is to determine the drop

average concentration, y
(i)
av (iitr, j). This is obtained by using Equation (4.18). Then,

the total concentration of the drops in each cell can be obtained from

y
(i)
total = N (i)(j)× V

(i)
drop × y(i)av , (4.20)

where N (i)(j) is the number of the drops in each cell i at stage j.

The next step is to calculate the average concentration of the drops in the first

compartment by using

Yav =

∑Ncl=23
i=1 N (i) × V

(i)
drop × y

(i)
av

∑Ncl=23
i=1 N (i) × V

(i)
drop

. (4.21)

The continuous phase concentration, xout(iitr, j) after some amount of solute was

transfered to the drops in the first compartment can be determined by using mass

balance of Equation (4.19).

The process continues to the second stage. Before we start the process, the

initial value of the drops and the medium have to be updated. The initial values of the

drops at second stage are equal to y
(i)
in (iitr = 1, j = 2) = y

(i)
av (iitr = 1, j = 1). Meanwhile

at this time, the continuous phase concentration remains the same, (x(iitr, j) = 1).
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After the updating process is completed, the process of mass transfer as explained

above is repeated through the final stage.

Now, the process proceeds to the next iteration. Here, the updating process

for the initial value of the drops and the continuous phase concentration also need

to be done. At the second iteration the initial value of the drops is zero, whilst the

continuous phase concentration, xin(iitr = 2, j = 1) = xout(iitr = 1, j = 2). The mass

transfer process is said to achieve the steady state if there exist ε = 0.0001 such that

|yout(iitr, j)− yout(iitr − 1, j)| ≤ ε.

The procedure to calculate the amount of mass transfer as explained in the

above subsection is divided into two algorithms. The first is the Basic Mass Transfer

Algorithm. In this algorithm, the amount of mass transfer from the continuous phase

to the drops is calculated for given values of initial concentrations. The other is the

main algorithm which is denoted as the Mass Transfer Multiple Drops Algorithm.

4.4.1 Basic Mass Transfer(BMT) Algorithm

This algorithm calculates the amount of mass transfer from the continuous

phase to the drops.

Algorithm 4.2: Basic Mass Transfer(BMT) Algorithm

Input: xin and y
(i)
in . Output: xout and y

(i)
out.

Step 1: Read the input values. Calculate the value of the fractional approach to

equilibrium based on the Varmulene equation, (4.6), the Crank equation, (3.26)

and the new equation, (3.67) which is based on the varied boundary condition.

Step 2: Calculate the surface concentration of the medium and drops, x
(i)
s and y

(i)
s ,

for i = 1, 2, 3, ...10 respectively by solving the non-linear equations of (4.15) and

(4.16) using bi-section method. Set the bulk concentration of the medium, xb is

xin and the initial drop concentration, y0 is yin.
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Step 3: If y
(i)
s > y

(i)
in for i = 1, 2, 3, ...10 go to Step 4, else set y

(i)
out = y

(i)
in , and go to

Step 6.

Step 4: Determine the average concentration of the drops, y
(i)
av for i = 1, 2, 3, ...10

using Equation (4.18).

Step 5a: Calculate the total concentration of the drops in each cell (i):

y
(i)
total = N (i) × V

(i)
drop × y(i)av

where N (i) is the number of drops in each cell(i) at stage j.

Step 5b. Calculate the average concentration of the drops in jth stage using Equation

(4.21).

Set Yav = yout at stage j.

Step 6: Determine the concentration of the medium at jth stage by using the mass

balance equation of (4.19).

Algorithm 4.2 is used in the Algorithm 4.3 to calculate xout and y
(i)
out at every

stage.

4.4.2 Algorithm for the Mass Transfer Process of Multiple Drops in the

RDC Column (MTMD Algorithm)

In the RDC column, the mass transfer process involved a swarm of drops.

Therefore, to provide a more realistic mass transfer model in the RDC column, we will

discuss the algorithm for the mass transfer process of the multiple drops as described

in previous section. The mass transfer process is based on the drop distribution as

explained in [4].

Algorithm 4.3: MTMD Algorithm

The algorithm calculates the amount of mass transfer from the continuous phase

to the drops.
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Step 1: Input all the geometrical details and physical properties of the system. Set

iitr = 1, xin = 1 and y
(i)
in = 0, ∀i = 1, 2, 3, ..., 10.

Step 2: Initialize xin and y
(i)
in , set j = 1.

Step 3: Apply BMT algorithm and calculate xout and y
(i)
out. If j > 23 go to Step 5,

else go to Step 4.

Step 4: Update the initial value for the next stage.

4a: If iitr = 1 ∀j = 1, 2, 3, ...n set xin = 1, y
(i)
in = y

(i)
av (iitr, j)

else go to 4b.

4b: If (j <= n− 2) set xin = xout(iitr − 1, j + 2), y
(i)
in = y

(i)
av (iitr, j))

else (j = n− 1) xin = 1, y
(i)
in = y

(i)
av (iitr, j)

Set j = j + 1. Repeat Step 3.

Step 5: Set ε = 0.0001. If |yout(iitr, j)− yout(iitr − 1, j)| ≤ ε, stop, else go to Step 6.

Step 6: Update the initial value for the next iitr.

6a: Start with iitr = 1 set xin = xout(iitr, j = 2), y
(i)
in = 0

6b: iitr = iitr + 1 set xin = xout(iitr, j = 2), y
(i)
in = 0 ∀iitr = 2, 3, 4, .....

Set iitr = iitr + 1. Repeat Steps 2 to 5.

The algorithm is presented as a flow chart in Figure 4.5.

4.4.3 Simulation Results

The simulation of the mass transfer model based on MTMD Algorithm were

carried out. For comparison purposes, the fractional approach to equilibrium based on

the Crank solution is also used. To validate the algorithm, we use the experimental

data from the SPS report (see Talib[4]). These data were produced by experimental

work on the mass transfer process of an RDC column with the geometrical properties

and system physical properties as given in Appendices A.1 and A.2. The results of the

simulations can be found in Figure 4.6.
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Figure 4.5: Flow chart for mass transfer process of MTMD Algorithm

Before the curve of the experimental data can be plotted (Figure 4.6), a few

steps of normalization have to be considered. The first and second experimental data

are given in Tables 4.2 and 4.3 respectively. Since the simulation of the forward

modelling program uses normalized data, we need to find a technique to normalize

the experimental data.

4.5 The Normalization Technique

To normalize the data, an equilibrium equation governing the mass transfer

process of the system needs to be known. In this study, the system used is the iso-

butyric acid/cumene/water system and the equilibrium equation of the system is

yO = 0.135x1.85A , (4.22)
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where yO is the organic(cumene-drop) phase and xA is the aqueous(continuous) phase,

all measured in gram per litre(g/l).

The normalization technique used is explained in the following procedure:

4.5.1 Normalization Procedure

Procedure 1: (Normalization Procedure)

Step 1: Assume that xAF is the feed concentration of continuous phase (iso-butyric

acid in feed) and ysmax g/l is the iso-butyric acid in equilibrium with xAF , the

relation xAF and ysmax is given by

ysmax = 0.135x1.85AF , (4.23)

where yO and xA are replaced by ysmax and xAF respectively.

Step 2: Dividing Equation (4.22) by (4.23), gives

y = x1.85 (4.24)
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Table 4.2: Experiment 1-Continuous phase (aqueous) and dispersed phase (organic)

concentrations

Rotating disc contactor column with 152mm diameter and 23 stages

Mass transfer direction: continuous phase to drop phase

System : Cumene/Iso-butyric acid/Water

Rotor speed NR = 5rad/s

Flow ratio (dispersed)/continuous phase) : 0.3333

Continuous phase (aqueous) Dispersed phase (organic)

Flow rate: 3.75 l/m Flow rate: 1.25 l/m

Feed concentration: 36.02 g/l Feed concentration: 28.66 g/l

Exit concentration: 23.97 g/l Exit concentration: 63.10 g/l

Stage 1 5 9 13 17 21

Continuous 24.02 24.95 26.18 27.85 30.10 32.91

Stage 3 7 11 15 19 23

Dispersed - 36.34 40.08 46.46 52.80 57.33

where

y =
yO
ysmax

, (4.25)

and

x =
xA
xAF

. (4.26)

Step 3: Determine the normalized values of the dispersed phase concentration using

Equation (4.25). In this study we assume that the feed concentration of the

dispersed phase is zero. In order to satisfy this assumption, we use yO = yexp−yF
where yexp is the experimental value of dispersed phase concentration at particular

stage and yF is the feed concentration of the dispersed phase.

Step 4: Calculate the normalized values of the continuous phase concentration for

each corresponding stage by mass balance equation, (4.19).
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Table 4.3: Experiment 2-Continuous phase (aqueous) and dispersed phase (organic)

concentrations

Rotor speed NR = 4.12rad/s

Flow ratio (dispersed)/continuous phase) : 0.3333

Continuous phase (aqueous) Dispersed phase (organic)

Flow rate: 5.0 l/m Flow rate: 1.67 l/m

Feed concentration: 39.64 g/l Feed concentration: 27.28 g/l

Exit concentration: 25.12 g/l Exit concentration: 60.98 g/l

Stage 1 5 9 13 17 21

Continuous 27.32 28.69 30.10 31.94 34.10 36.83

Stage 3 7 11 15 19 23

Dispersed - 39.42 44.88 53.42 57.95 59.85

The detailed calculation for the normalized values of the dispersed and

continuous phase are shown in the following example.

Example 1

In this example we use the experimental data 1 from Table 4.2.

Step 1: From Table 4.2, xAF = 36.02, Substitute this into (4.23), we get ysmax =

102.3151,

Step 2: Calculate the normalized value for dispersed concentration at stage zero (this

stage corresponds to the feed ) using Equation (4.25), that is y0 =
28.66−28.66
102.3151 = 0.

Step 3: Repeat step 2 for stage 7,11,15,19,23 and 24, where stage 24 corresponds to

the exit stage. At stage 7 we will get y7 =
36.34−28.66
102.3151 = 0.0751.

Step 4: With the assumption that the feed concentration of the continuous phase

is normalized so that its value is 1, Equation (4.19) is used to calculate the
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normalized continuous phase for stage 0,7,11,15,19 and 23. In this case we have

to calculate the normalized concentration at stage 23 first, that is x23 = x24 −
Fy
Fx

(y24 − y23) = 1.0 − 0.333(0.337 − 0.280) = 0.9810. Repeat this step for stage

19, 15, 11, 7 and 0.

The results for all stages can be found in Table 4.4. The normalized process can

also be done by first normalizing the continuous phase concentration followed by the

dispersed phase which uses the mass balance equation. The same procedure is applied

to the data in Table 4.3 which produced the normalized data in Table 4.4.

Due to the fact that the experimental data was not given for every stage, there

was no data for the continuous concentration at stage 3, 7, 11,15, 19 and 23. In these

circumstances, we have to construct a technique for de-normalization process to get the

values of the concentrations in g/l at this stages.

Table 4.4: Experiment 1-Normalized continuous and dispersed phase concentrations

Stage Continuous(x) Dispersed(y) Normalized x Normalized y

0 23.97 28.66 0.899 0

1 24.02

3 -

5 24.95

7 36.34 0.921 0.075

9 26.18

11 40.08 0.932 0.112

13 27.85

15 46.46 0.951 0.174

17 30.10

19 52.80 0.970 0.236

21 32.91

23 57.33 0.9810 0.280

24 36.02 63.10 1.0 0.337
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Figure 4.7: The continuous phase concentration along the column: Experiment Data 1

4.5.2 De-normalization Procedure

Procedure 2 (De-normalization Procedure)

Step 1: Assume that xj and yj are the normalized concentration of the continuous

and dispersed phase respectively at stage i . Xj and Yj are the experimental

concentration value of the continuous and dispersed phase respectively. Assume

also that the normalized concentration of the medium and its experimental value

has a linear relationship, that is, its gradient is m = X24−X0
x24−x0

.

Step 2: With the assumption that the normalized concentration of the medium

and its experimental value has a linear relationship, calculate the experimental

concentration of the medium of its respective normalized value:

Xj = X24 −m(1− xj). (4.27)

For example at stage 0, X0 = X24 −m(1− x0).

Step 3: Repeat step 2 until all the approximated experimental values at the

corresponding stage are calculated.

For the Data of Experiment 1, the de-normalization process will produce the

approximated experimental data at corresponding stages as can be seen in Table 4.5. To



67

Table 4.5: Experiment 1-De-normalized continuous concentrations

Stage Continuous(x) Normalized x

0 23.97 0.899

1 24.02

3

5 24.95

7 26.5953 0.921

9 26.18

11 27.9036 0.932

13 27.85

15 30.1743 0.951

17 30.10

19 32.441 0.970

21 32.91

23 33.9919 0.9810

24 36.02 1.0

see the effect of this de-normalization process on the experimental data, points with and

without the de-normalization data are plotted against stage number. From the graph

(see Figure 4.7), we can see that the trace of points containing de-normalized values at

certain stage, oscillate about the trace of points of the actual experimental data. This

phenomenon is explained by the fact that the de-normalized values at that particular

stages are calculated from the normalized values which are calculated through Step 4

in Procedure 1. In other words, the normalized values are not directly calculated from

the actual experimental values. Due to this reason there are some errors which affect

the smoothness of the de-normalized data curve(trace of the points).

In this case we have to construct a better technique for the de-normalization

process so that the de-normalized value curve will follow the behaviour of the actual

experimental data curve. In order to do this we include the error factor in the de-

normalization process, that is, in Step 2 of Procedure 2, Equation (4.27) becomes
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Xj = X24 −m(1− xj)± ê, (4.28)

where ê is the error factor.
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Figure 4.8: The error between the continuous phase concentration of Experiment Data

1 with and without de-normalized values

The differences between the two graphs in Figure 4.7 are then calculated along

the column. The relationship between the differences and the stage number is then

shown in Figure 4.8. It is then observed from Figure 4.8 that the error curve with

respect to stage number of the column has quadratic-like curve. By using Matlab Basic

Curve Fitting Tool-box, we represented the error data as a quadratic curve (see Figure

4.9) where the quadratic equation is

ê(j) = −0.0074j2 + 0.1889j + 0.0001, (4.29)

and j is the stage number of the column. This error function is then applied to Equation

(4.28) which resulted in a corrected de-normalized continuous phase concentration data.

These values are tabulated in Table 4.8. For comparison purposes, the corrected data

is then plotted against stage number of the column in Figure 4.10.

In the next section, another algorithm for the mass transfer process of the

multiple drops will be presented. In this model, the time when the next swarm of

drops is injected into the column is taken into account.



69

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Stage No

E
rr

or
(C

on
ce

nt
ra

tio
n)

data 1
   quadratic

Figure 4.9: The error is fit to Quadratic-like curve

Table 4.6: The error by quadratic fitting

Stage 0 7 11 15 19 23 24

Error 0 0.9608 1.1848 1.1725 0.9240 0.4391 0

4.6 Forward Model Steady State Mass Transfer of Multiple Drops

In a real RDC column, the drops are continuously injected into the column

according to the dispersed phase flow rate. This means that in order to produce the

mass transfer model as close as possible to the real process, the time when the next

swarm of drops is injected into the column need to be taken into consideration.

In this model, the mass transfer is calculated via the distribution of the drops

which is assumed to be in a steady state. The model can be explained as follows.

As in MTMD algorithm, we assumed that initially the continuous phase has a unit

concentration, while the first batch of drops is injected into the column with zero

concentration. This first swarm of drops with the same size will break into smaller

drops as they hit the first rotor disc.

These daughter drops are distributed into the cells according to their sizes as

explained in Section 4.4 . At the same time the mass transfer process occurs. The
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Figure 4.10: The continuous phase concentration along the column with corrected value

: Experiment Data 1

equations used are exactly the same as in MTMD algorithm. The steps of calculation

can easily be understood if we refer to the flow chart in Figure 4.11.

In the following algorithm, when the second swam of drops is injected into the

column, the drops will also move upward and break into smaller drops as they hit the

first rotor disc (in this algorithm we assumed that the number of iteration is equal to

the number of batches of drops injected into the column). Now, the second batch will

fill the first compartment whilst the first one moves to the second compartment. The

steps for calculating the mass transfer of the drops in the first compartment are exactly

the same as the first batch of the drops.

However, for the second compartment, we take the initial concentration of the

drops, yin as the output concentration of the drops when the iteration is equal to one,

that is yin(iitr = 2, j = 2) = yout(iitr = 1, j = 1). At this time the initial concentration

of the continuous phase remains the same, xin = 1. The complete procedure for

calculating the mass transfer at this stage is shown in Figure 4.12.

Now, when the third swam of drops enter the column, the same phenomenon

will occur, but this time the initial concentration of the continuous phase at the first

compartment is subjected to the output concentration of the continuous phase at the
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Figure 4.11: Flow chart for mass transfer process at iitr = 1

second compartment when the iteration is equal to two, that is xin(iitr = 3, j = 1) =

xout(iitr = 2, j = 2). Meanwhile the initial concentration of the drops, yin(iitr =

3, j = 1) = 0. The initial concentrations for the mass transfer at the second and third

compartments can be determined by following the steps given in the flow chart in Figure

4.13.

The same steps apply to the 4th, 5th, 6th, ..., nth swarm of drops. The step that

explains the way to determine the initial concentrations at particular stage is shown

in Figure 4.14. The phenomenon explained above will continue until the first batch

or group reaches the 23rd compartment (stage). At this instance the column is full

of drops. The iteration will continue until the concentration of the drops is in steady

state. In other words, the difference of the concentration for both phases at time t and

t − 1 is very small or negligible. The schematic diagram in Figure 4.15 illustrates the

phenomenon explained above.

The steps to calculate the amount of mass transfer as explained in this section

is divided into three algorithms. The first one is the Basic Mass Transfer Algorithm.
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Figure 4.12: Flow chart for mass transfer process at iitr = 2

In this algorithm, the amount of mass transfer from the continuous phase to the drops

is calculated for given values of initial concentrations. The next subsection is the main

algorithm which is denoted as the Mass Transfer Steady State Algorithm. It is then

followed by the Updating Mechanism Algorithm which is divided into two, these are

the Updating Initial Value for Next Iteration and the Next Stage Algorithms.

4.6.1 Algorithm 4.4: Algorithm To Find The Drop Concentration of

a Steady State Distribution in 23 Stages RDC Column (MTSS

Algorithm)

The algorithm calculates the amount of the mass transfer from the continuous

phase to the drops.

Step 1: Input all the geometrical details and physical properties of the system. Set
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Figure 4.13: Flow chart for the mass transfer process at iitr = 3

iitr = 1, xin = 1 and y
(i)
in = 0, ∀i = 1, 2, 3, ..., 10.

Step 2: Read initial values, that is xin and y
(i)
in , set j = 1.

Step 3: If iitr ≤ n, go to step 4, else go to Step 7.

Step 4: Apply BMT algorithm to calculate xout and y
(i)
out.

Step 5: If j < iitr, go to Step 6, else update initial value for iitr = iitr +1 go to Step

3,

Step 6: Update the initial value for the next stage. Set j = j + 1, repeat Steps 4 to

5.

Step 7: Now iitr = n+ 1. Read the input values and set j = 1.
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Figure 4.14: Flow chart describing the mass transfer process for iitr = 4, 56, ..., n

Step 8: Apply BMT algorithm to calculate xout and y
(i)
out.

Step 9: If j < n. Update the initial values for the next stage. Set j = j + 1, repeat

Steps 8 to 9, else go to Step 10.

Step 10: Set ε = 0.0001. If |yout(iitr, j)− yout(iitr − 1, j)| ≤ ε, stop, else Update the

initial value for the next iitr. Set iitr = iitr + 1, repeat Steps 8 to 9.

To update the initial value for the next stage and for the next iteration, the

following algorithms are considered.
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Figure 4.15: Schematic diagram of the mass transfer process in the 23-stage RDC

column
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Figure 4.16: Flow chart for mass transfer process of MTSS Algorithm
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4.6.2 Updating Mechanism Algorithm

Algorithm 4.5: Updating the Initial Value for Next Iteration (iitr) (UIVI)

Algorithm

The Algorithm is used to update the initial values for the next iteration.

Step 1 Read the current position of iitr and j.

Step 2 If iitr = 1, the updating input values of next iteration is xin = 1, y
(i)
in = 0

else (iitr > 1), the updating input values of next iteration is xin = xout(iitr−1, 2),

y
(i)
in = 0

Algorithm 4.5: Updating the Initial Value for the Next Stage (j) (UIVS)

Algorithm

The Algorithm is used to update the initial values for the next stage (j)

Step 1: Read the current position of iitr and j.

Step 2: If iitr ≤ n go to Step 3 else go to Step 5.

Step 3: If j < iitr

if (1 < iitr ≤ 3) ⇒ xin = 1, y
(i)
in = y

(i)
av (iitr − 1, j)

else(4 ≤ iitr ≤ n)

if (j = 1) ⇒ xin = xout(iitr − 1, j + 2), y
(i)
in = 0

elseif j ≥ iitr − 2 ⇒ xin = 1, y
(i)
in = y

(i)
av (iitr − 1, j)

else (2 ≤ j < iitr − 2) ⇒ xin = xout(iitr − 1, j + 2),

y
(i)
in = y

(i)
av (iitr − 1, j)

else (j < iitr) go to Step 4

Step 4: Apply the UIVI Algorithm to update the initial values for the next iteration.

Step 5: (iitr > n)

If j = 1 ⇒ xin = xout(iitr − 1, j + 2), y
(i)
in = 0
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elseif j ≥ n− 2 ⇒ xin = 1 y
(i)
in = y

(i)
av (iitr − 1, j)

else(2 ≤ j < n− 2) ⇒ xin = xout(iitr − 1, j + 2), y
(i)
in = y

(i)
av (iitr − 1, j).

4.6.3 Simulation Results

The simulations of the mass transfer model based on the MTSS Algorithm were

carried out. For comparison purposes, the output concentrations of the continuous and

dispersed phase for both MTSS and MTMD algorithms are listed in Table 4.7. To

analyze the result graphically, the six curves from MTSS, MTMD and experimental

data are plotted in Figure 4.17.

4.7 Discussion and Conclusion

A detailed description of the development of the mass transfer models has been

presented in this chapter. It begins with the concept of the diffusion equation which

is based on the interface concentration. In these models, the new fractional approach

to equilibrium was used to get the flux across the drop surface of Equation (4.10).

From this derivation, the term referred to Time Dependent Quadratic Driving Force

was formulated.

The MTASD Algorithm was designed based on the concept explained above.

This algorithm calculates the amount of solute transfer from the continuous phase to a

single drop. The simulations of the algorithm were also carried out for different size of

drops. The range of the size is from 0.0004 to 0.0007 meter in diameter. The output

concentrations of the drops for each size were listed in Table 4.1. From the data, it can

be seen that, the concentration of a smaller drop is higher than the bigger one at every

stage. This is because the smaller drop provides larger surface area compared to the

other. In fact, the velocity of the smaller drop is less, meaning that the smaller drop

has a higher residence time in each compartment.

Besides the new fractional approach to equilibrium, we also run the MTASD

algorithm using the fractional approach to equilibrium based on the Crank solution.
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Figure 4.17: The concentration of continuous and dispersed phase of MTMD, MTSS

Algorithm and Experimental

The simulation data of the medium and drop concentrations were plotted in Figure 4.4.

The profile of the curve using the new fractional approach to equilibrium agrees with

the one based on the Crank solution.

The idea to provide a model which is close to the real process of the mass

transfer in the column has driven us to develop the MTMD algorithm. This algorithm

calculates the mass transfer of the multiple drops. The drop distribution as explained

in Talib[4] was considered. To validate the algorithm, we used the experimental data

in Tables 4.2 and 4.3. These data have to be normalized, before the comparison of

the data could be made. Figure 4.6 shows six curves of the continuous and dispersed

phase concentrations for the mass transfer model developed by Talib, the new model

of MTMD algorithm and from the experimental data.

Although the result of MTMD algorithm showed that the model agrees with

the profile of the experimental data, in Section 4.6 another algorithm named MTSS

algorithm for the multiple drops mass transfer process was presented. In MTMD

algorithm the calculation of the mass transfer for the first batch of the drops was
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carried out up to the final stage without considering when the second batch of drops

was injected into the column. It seems that, in this algorithm the second batch of drops

was only injected when the first batch reached the top of the column. Similarly, the

third batch of drops would be injected when the calculation of mass transfer for the

second batch had been completed for all stages.

On the other hand, we considered the time when the next swarm of drops

was injected in MTSS algorithm. In this work, we assumed that the flow rate of the

dispersed phase was equal to the simulation time for each iteration. Therefore, in

the MTSS algorithm, the mass transfer for the second batch of the drops would be

calculated even as the first one just reached the second compartment. The process

of construction of the algorithm was illustrated in flow charts of Figures 4.11, 4.12,

4.13 and 4.14. The output concentrations for the continuous and dispersed phase from

MTSS and MTMD were listed in Table 4.7. From these data, we conclude that the

outputs from both algorithms do not give much difference. Figure 4.17 clearly is in

agreement with the above conclusion.

However, MTSS Algorithm has close trait to the real phenomenon of the mass

transfer process in the RDC column. It is because in the real RDC column the mass

transfer occurs simultaneously as explained in the MTSS Algorithm. Therefore, we

conclude that MTSS Algorithm gives a better representation of the real mass transfer

process and hence it is expected to produce better simulation results when compared

to the experimental data. The latter conclusion is in accordance with the dispersed

and continuous phase concentrations curves as shown in Figure 4.17.

The MTASD, MTMD and MTSS algorithms described in this chapter can be

used successfully to calculate the amount of mass transfer from the continuous phase

to dispersed phase.
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Table 4.7: The concentration of the dispersed and continuous phase according MTMD

and MTSS Algorithm

Stage Continuous Dispersed Continuous Dispersed

No (MTMD) (MTMD) (MTSS) (MTSS)

1 0.959 0.003 0.8949 0.0027

2 0.9594 0.0068 0.8951 0.0033

3 0.96 0.0117 0.8966 0.0078

4 0.9608 0.0176 0.8985 0.0136

5 0.9619 0.0245 0.9009 0.0206

6 0.9631 0.0324 0.9036 0.0287

7 0.9645 0.0412 0.9067 0.038

8 0.966 0.051 0.9102 0.0485

9 0.9678 0.0616 0.914 0.06

10 0.9695 0.073 0.9181 0.0725

11 0.9715 0.0853 0.9226 0.086

12 0.9733 0.0982 0.9275 0.1005

13 0.9754 0.1119 0.9325 0.1157

14 0.9773 0.1262 0.9379 0.1319

15 0.9794 0.1411 0.9436 0.1488

16 0.9814 0.1564 0.9494 0.1663

17 0.9835 0.1722 0.9554 0.1843

18 0.9855 0.1883 0.9616 0.203

19 0.9875 0.2047 0.9679 0.2219

20 0.9895 0.2212 0.9743 0.241

21 0.9915 0.2378 0.9808 0.2606

22 0.9933 0.2544 0.9872 0.2799

23 0.9953 0.2694 0.993 0.2974

24 0.9971 0.2783 0.9966 0.3081



CHAPTER 5

CONCLUSIONS AND FURTHER RESEARCH

5.1 Introduction

This chapter provides a summary and an overall conclusion of the findings

presented in this work and also gives an outline of some further research which are

worthwhile investigating in the future.

5.2 Summary of the Findings and Conclusion

The initial task of the work was to formulate an equation that will be used as

the boundary condition of the IBVP. This equation was expected to be a time varying

function. This was achieved by using the experimental data from [4]. From the data,

it was found that the concentration of the continuous phase depends on the stage of

the RDC column. In this work, the following assumptions are adopted:

• there are ten different classes of drops with different velocities depending on their

sizes,

• mass transfer of a single solute from continuous phase to a single drop,

• the drop is spherical and there is no coalescence of drops,

• the concentration of the drop along the radius r is assumed to be uniform
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• drop contact time for mass transfer coefficient estimation is residence time in the

compartment.

With these assumptions and by the least square method, it was found that the boundary

condition is a function of t, that is f1(t) = a1+b1t. The analytical solution of the IBVP

with the new boundary condition was detailed in Subsection 3.3.1.

The derivation of the new fractional approach to equilibrium was then

considered based on the analytical solution of the varied boundary condition IBVP. The

comparison of the new and existing fractional approach to equilibrium was carried out

by plotting the curves with respect to time on the same axes as in Figure 3.3. The curve

of the new fractional approach to equilibrium profile agrees with the result obtained by

Talib[4]. Therefore, from this initial task we conclude that the new fractional approach

to equilibrium, Fnew, represents the real phenomena of the mass transfer and hence

gives better tool for further development of the improved mass transfer model in the

column.

The development of the improved mass transfer model is one of the main aims

in this research. Therefore the IBVP which is based on the interface concentration was

considered. With this consideration and the new fractional approach to equilibrium,

a new driving force named Time-dependent Quadratic Driving Force (TQDF),

( (f1(t)−c1)
2−(Cav−c1)2

Cav−c1 ), was derived. The process of mass transfer of a single drop based

on TQDF is governed by:

1. The equilibrium equations

ys = f(xs),

2. The interface equation

ys =
3d
Dπ2 kx(xb − xs)

Fv
1−F 2

v
− ( 3d

Dyπ2 )(
Fv
1−F 2

v
)(d6)Fv(t)

1
dtf1(t) + y0,

3. The average concentration of the drop

yav = Fnew(t)(ys − y0) + y0,

4. The mass balance equation

Fx(xin − xout) = Fy(yout − yin).
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Based on these equations, the MTASD Algorithm was designed. This algorithm

calculates the amount of mass of a solute transfer from the continuous phase to a single

drop in the column. The process of mass transfer is said to be in a steady state, if there

exist ε = 0.0001 where the difference of the concentration at t = n and t = n − 1 is

less or equal to ε at every stage. At this point, the concentration of the drop interface

is in equilibrium with the medium. The complete description of the algorithm is well

illustrated as a flow chart in Figure 4.2.

The simulation of the MTASD Algorithm was also carried out using the Crank

solution of fractional approach to equilibrium, Fc. The validation of the MTASD

Algorithm was done empirically by plotting the curves of the simulation results from

both Fnew and Fc. It was found from Figure 4.3 that the curves of the dispersed and

continuous phase concentrations from the improved model agree with the curves from

the existing model in [4].

Based on various studies, the mass transfer process in the RDC column is very

complicated because it involves not only the mass transfer of a single drop but infinitely

many drops. These drops have different sizes and different velocities. Therefore, a more

realistic MTMD Algorithm is constructed which was later refined as another algorithm,

MTSS Algorithm. Both of the algorithms calculate the mass transfer of multiple drops

in 23-stages RDC column.

In this model, the total concentration of the drops in each cell is obtained by

applying Equation (4.20). Then using Equation (4.21), the average concentration of

the drop in each compartments is calculated. Finally the mass balance equation is

applied in order to obtain the amount of solute transfer from the continuous to the

dispersed phase. In the MTSS Algorithm the calculation of the mass transfer was done

simultaneously with respect to iteration time. In other word, as an example, the mass

transfer for iitr = 2 is calculated at stage two for the first swam of drops and at stage

one for the second swam of drops. This is contrary to MTMD Algorithm. In the

MTMD algorithm, the mass transfer at iitr = 1 is calculated at every stage without

considering the second swam of drops. The simulation data of both algorithms and the

experimental data are then plotted in Figure 4.17.

From this figure, it was empirically found that the output from both algorithms

do not give significant difference. However, MTSS Algorithm is more realistic due to
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the fact that mass transfer in the real RDC column occurs simultaneously as explained

in the MTSS Algorithm. In conclusion, MTSS Algorithm gives a better representation

of the real mass transfer process and hence it is expected to produce better simulation

results when compared to experimental data. The dispersed and continuous phase

concentrations curves in Figure 4.17 clearly show the agreement of the above conclusion.

For more definitive conclusion, the improved mass transfer model, where by

the output can be simulated MTSS Algorithm, gives a useful information and provides

better simulation results and hence better control system for the RDC column.

5.3 Further Research

This research presents the improved mathematical forward mass transfer model

for simulation of RDC Column. All the objectives of the research are achieved

successfully. However, the following research suggestions, in our opinion are worthwhile

investigations:

• Establishment of a technique for assessing the inverse models of the corresponding

new forward mass transfer models.

The MTASD, MTMD MTSS algorithms described in this report can be used

successfully to calculate the amount of mass transfer from continuous phase to

dispersed phase. But this type of modelling, which is known as forward modelling

is not efficient enough to determine the required input parameters in order to

produce certain values of output parameters. The determination of the input

values by trial and error consumes a lot of computer time and it will be costly

if actual processes were involved. Therefore, a new technique which is based

on fuzzy approach is suggested in a further research to determine the input

concentration of both phases for a certain value of output concentrations. This

type of modelling is called inverse modelling.

• Development of Inverse Model of the hydrodynamic process.

The parameters involved in the hydrodynamic process in the RDC column

are complexly interrelated. Therefore only certain parameter values can be
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controlled and adjusted such as that of rotor speed (Nr), dispersed phase flow

rate (Fd) and interfacial tension (γ). Although interfacial tension could not be

controlled directly but at least by varying this value will provide us with some

useful information. These three parameters are determined or fixed outside the

RDC column, but once they are applied to the modelling, it will give whatever

calculated value for the holdup. This is an inverse problem of type coefficient

inverse problem.

• Development of the intra-stage control system for the RDC column.

In this study the inverse problem in determining the value of the input parameter

for the desired value of output of 23-stage RDC column has been successfully

solved. Intra-stage control system is the control system inside the RDC column.

The inverse algorithm developed in this study only need the information of the

input and output parameters outside the RDC column. Whilst for the intra-

stage control, more information is needed in particular the information on the

concentrations of both liquids at certain stage or if possible at every stage in the

RDC column.

• Further investigation and development on the theory of two dimensional fuzzy

number in multi-stage systems.

• Development of the integrated model of the hydrodynamic and mass transfer

processes.

Parallel processing is suggested to be introduced in order to develop the integrated

model of the hydrodynamic and mass transfer processes. This integrated model

is hoped to give better simulation and better control system for the RDC column.
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APPENDIX A

Geometrical and Physical Properties of RDC Column

Geometrical properties of RDC column

Number of stages 23

Height of a compartment(m) 0.076

Diameter of rotor disc(m) 0.1015

Diameter of column(m) 0.1520

Diameter of stator ring(m) 0.1110

Rotor speed(rev/s) 4.2

Table A.1: The geometrical properties of the rotating disc contactor (RDC) column.
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Physical properties of the system(cumene/isobutyric acid/water)

Continuous phase:isobutyric acid in water

Dispersed phase:isobutyric acid in cumene

Viscosity of continuous phase (kg/ms) 0.100E-2

Viscosity of Dispersed phase (kg/ms) 0.710E-3

Density of continuous phase (kg/ms3) 0.100E+4

Density of dispersed phase (kg/ms3) 0.862E+3

Molecular diffusivity in the continuous phase (m2/s) 0.850E-9

Molecular diffusivity in the dispersed phase (m2/s) 0.118E-8

Table A.2: The physical properties of the system used.



APPENDIX B

GLOSSARY

A glossary of the acronyms used in the thesis is provided below. The acronyms

represents some useful mathematical concepts or terms and the names for some

algorithms.

NAME MEANING

ANN Artificial Neural Network

BAMT Boundary Approach of Mass Transfer

BMT Basic Mass Transfer

EVM Expected Value Mathod

FL Fuzzy Logic

IAMT Initial Approach of Mass Transfer

IBVP Initial Boundary Value Problem

IP Inverse Problem

IMDMS Inverse Multiple Drops MUlti-stage

ISDSS Inverse Single Drop Single Stage

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

MTASD Mass Transfer of a Single Drop

MTMD Mass Transfer of Multiple Drops

MTSS Mass Transfer steady State

PCA Principle Component Analysis
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RDC Rotating Disc Contactor

TQDF Time-dependent Quadratic Driving Force

S-DMT Simultaneous Discrete Mass Transfer

UIVI Updating Initial Value for Next Iteration

UIVS Updating Initial Value for Next Stage

X-ray CT X-ray Computed Tomography
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