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ABSTRACT

A detailed and accurate measurement technique for metering solids bulk 

pneumatic transportation often creates challenging problems to engineer and 

scientist. Problems occurred particularly due to spatial and temporal fluctuations of 

both the solid velocity and concentration during pneumatic transportation. During 

this development, it leads to the use of tomographic measurement techniques. A 

well-liked trend in the development of tomographic measurement techniques for 

research and production is the use of electrical techniques. One of the electrical 

tomographic techniques is electrical charge tomography or also known as 

electrodynamic tomography which offers inexpensive, non-invasive, simple and 

robust method for measuring particulate solids flow in pneumatic pipeline. In this 

research electrical charge tomography measurement is made by placing an array of 

16 electrodynamic sensors evenly around circumference of pipe to detect the 

existence of inherent charge on the moving particles which passes through the pipe. 

The converted voltage signals received from the 16 electrodynamic transducers are 

captured and stored by data acquisition card which acts as interface between the 

computer and the transducers. The two most commonly methods for image 

reconstruction namely linear back projection algorithm and filtered back projection 

algorithm are employed to produce tomographic image. The signals captured are in 

range of mass flow rate between 110g/s until 500g/s. Matlab is exploited to compute 

the image reconstruction and visualise the tomogram for concentration distribution 

across a given cross section of pneumatic pipeline. Baffles of diverse shapes are 

inserted to create various flow regimes whereby fuzzy logic technique is used to 

identify these flow regimes. The major conclusions drawn from this research were 

the successful use of the fuzzy logic technique for flow regime identification and 

producing an improved image of filtered back concentration profiles for each flow 

regime.  
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ABSTRAK 

 Keperincian dan ketepatan kaedah pengukuran pengaliran sesuatu pepejal 

sering menimbulkan cabaran pada para jurutera dan ahli sains. Masalah berlaku 

disebabkan oleh perubahan ruang dan masa pada kedua-dua halaju dan penumpuan 

semasa pengangkutan pneumatik. Ekoran dari perkembangan ini ianya menjurus 

kepada penggunaan pengukuran kaedah tomografi. Arah aliran yang diminati dalam 

perkembangan kaedah pengukuran tomografi kepada institusi penyelidikan dan 

pengeluaran adalah penggunaan teknik elektrikal. Salah satu daripada teknik 

tomografi elektrikal ialah tomografi cas elektrik atau pun dikenali sebagai tomografi 

elektrodinamik yang menjanjikan harga yang murah, tak invasif, mudah, dan tegar 

untuk mengukur aliran partikel pepejal dalam talian paip pneumatik. Dalam kajian 

ini pengukuran tomografi cas elektrik dijalankan dengan meletakkan satu tatasusunan 

16 penderia elektrodinamik yang sama jarak di lilitan paip untuk mengesan 

kewujudan cas pada bahan pepejal yang mengalir menerusi paip. Isyarat yang telah 

ditukar kepada voltan diterima dari 16 penderia elektrodinamik dikesan dan disimpan 

oleh kad perolehan data yang berperanan sebagai antara muka di antara komputer 

dan penderia-penderia.   Dua kaedah pembinaan imej yang dinamakan sebagai 

algoritma unjuran balik linear dan algoritma unjuran balik terturas telah digunakan 

untuk penghasilan imej tomografi. Isyarat yang dikesan dalam lingkungan kadar 

aliran jisim diantara 110g/s hingga 500g/s. Perisian Matlab digunakan untuk 

menghasilkan pembinaan imej dan pemaparan tomografi untuk taburan penumpuan 

di kawasan keratan rentas paip. Penghadang pelbagai bentuk dimasukkan untuk 

mewujudkan pelbagai rejim aliran dimana teknik logik kabur digunakan untuk 

mengenal pasti rejim aliran tersebut. Kesimpulan utama dihasilkan dari kajian ini 

adalah penggunaan teknik logik kabur sebagai kaedah mengenal pasti rejim aliran 

dan menghasilkan imej profil penumpuan balik terturas yang lebih baik untuk setiap 

rejim aliran. 
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CHAPTER 1 

INTRODUCTION

1.1 An Overview of Process Tomography and Its Development   

Tomography is defined as imaging by section. It comes from the Greek word 

tomos which conveys the meaning of "a section" or "a cutting" or “a slice” and graph

conveys the meaning of “picture”. The Helicon Encyclopaedia defines tomography 

as the obtaining of plane section images, which show a slice through an object 

(Rahmat, 1996).  

Early in 1826, a Norwegian physicist named Abel first published the concept 

of Tomography for an object with axi-symmetrical geometry. In 1914 Mayer 

developed the idea of tomography to fulfill the needs of medical non-invasive 

imaging technique. Then in 1917 an Austrian mathematician Radon extended the 

idea founded by Abel for objects with arbitrary shape. This was followed by Godfrey 

Hounsfield and Allen Cormack in 1979 who jointly received the Nobel Prize for 

successfully creating X-ray Tomography. 

In the mid-1980s there was a rapid progress in several centers with Sheffield 

University and Royal Hallamshire Hospital in the United Kingdom as well as 

Wisconsin University and Rensselaer Polytechnic Institute in the United States of 

America taking major roles. Subsequently medical scientists acknowledged the 

capability of Electrical Impedance Tomography (EIT) for imaging human body 

safely and at low cost. In the medical area, tomography has been used to image 
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swallowing, stomach emptying, lung ventilation and perfusion, pulmonary edema, 

blood clots, brain function, brain tumors and breast tumors. 

Tomography seems to be used as an imaging tool for medical purposes. 

However, the concept of tomography is not limited to the medical field instead it has 

been utilized in many research areas. For instance, in the field of seismologic 

information regarding the distribution of temperature can be obtained by measuring 

arrival times of earth quake at numerous seismic stations distributed over the globe 

(Lee, 2007). In the middle of 1980s, a research group at the University of Manchester 

Institute of Science and Technology (UMIST) designed an electrical capacitance 

tomography for imaging multi-component flows from oil wells and in pneumatic 

conveyors.

Over the last decade tomography has been developed as a reliable tool for 

imaging various industrial applications which is commonly known as Process 

Tomography (PT) or Industrial Process Tomography (IPT). Process Tomography can 

be applied to many types of process and unit operations, including pipelines, stirred 

reactors, fluidized beds, mixers and separators. Depending on the sensing mechanism 

used, it is non invasive, inert and non-ionising. It is therefore applicable in the 

process of raw material; in large scale and intermediate chemical production; and in 

the food and biotechnology area (Alias, 2002), 

The application of tomography in industries are also found in chemical, oil, 

gas, food processing, biomedical, pharmaceutical, and plastic product manufacturing. 

It has been used purposely for a better process control, optimization and efficient 

production (Sabit, 2005). 

Process Tomography allows boundaries between heterogeneous compounds 

or homogeneous objects in a process to be imaged in real time using non-intrusive 

sensors. Information on flow regime, velocity profile and concentration distribution 

in pipelines or process vessels will be discovered from the image. 

The basic concept of tomography is to install a number of sensors around the 

circumference of the pipe or vessel to be imaged. The information on the disposition 
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and distribution of objects within its sensing zone will be disclosed. A tomographic 

image of the cross section of the object being captured by sensors are reconstructed 

and displayed by a computer and after that the image data can be analysed for 

improvisation. The basic components of any tomography measurement systems are 

integration between hardware and software. The hardware consists of elements like 

sensors, signal generator and data control, where as the software is used for signal 

reconstruction and image displaying. An overview of process tomography system is 

shown in Figure 1.1. 

Figure 1.1: Overall schematic of process tomography system 

Nowadays there is an increasing need to be acquainted with the exact way the 

internal flows in process equipment are behaving. These needs occur because 

industry is under pressure to utilize resources more efficiently and to satisfy demand 

and legislation for product quality and reduced environmental emissions (Rahmat, 

1996). Tomographic instrumentation offers non-invasive technique and robustness to 
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solve industrial needs. It also includes tomographic imaging methods to manipulate 

the data from remote sensors in order to obtain precise quantitative information from 

inaccessible location (Dickin et al, 1991). 

The use of tomography would result in more rigorous and confident design 

basis for process equipment (Dickin et al, 1992), such as safety, cost saving in capital 

equipment, floor space and overall productivity. The other advantage of tomography 

technique is that the flow in particular pipeline can be monitored in more efficient 

manner and safety hazards in terms of charge accumulation and hot spots can be 

forewarned (Alias, 2002). 

1.2       Problem Statement 

The flow regime within the pipeline of a pneumatic conveying system, for a 

given particulate material may simultaneously exhibit several flow regimes 

throughout its length. If an unstable flow occurs it can result in vicious pressure 

surges which will increase both plant wear and product degradation problems. In 

addition, the identification of the flow regime at critical sections of pneumatic 

conveyor is fundamental to any void fraction estimate, upon which many standard 

measurements such as solids mass flow rate will depend. Insufficient air velocity 

may cause blocking within such system. Once blocking has occurred, it can be 

extremely difficult to remedy. Cross sectional imaging of the pipeline offers potential 

benefits in both control and fault monitoring of pneumatic conveying systems 

(Neuffer et al, 1999).

Electrical charge tomography has been used to visualize the particle 

distribution across a given cross section of pneumatic conveying system, whilst 

ensuring the information extracted may be used to achieve better control of the plant. 

However, a problem arises due to the non linear sensing mechanism of the electrical 

charge transducer (Green et al, 1995) which affected the accuracy of tomographic 

images calculated using linear back projection algorithm. This deficiency can be 

rectified by introducing the second algorithm called filter back projection algorithm. 
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The filter back projection algorithm combines filter masks with linear back 

projection to compensate for the lost signal strength at the center of pipe. On the 

other hand, filter masks are different for different flow regimes therefore prior 

knowledge of flow regimes being conveyed are necessary to determine the right filter 

mask (Sabit, 2005). This research investigates the use of fuzzy logic method to 

identify different types of flow regimes and furthermore produce improved 

concentration profiles.

1.3 Research Objectives  

1. To develope the hardware of tomographic measurement system using 

electrical charge transducer or better known as electrodynamic 

transducer.

2. To identify the flow regimes of particles conveying in pneumatic 

pipeline using fuzzy logic approach. 

3. To generate concentration profiles of solid particles over a cross-

section of pneumatic conveyor using linear back projection and 

filtered back projection algorithms 

1.4  Research Scopes  

 The scopes of the research are: 

1. Develope a measurement system of electrodynamic transducer for 

pneumatic conveyor. The performance of the electronic circuit of 

electrodynamic transducer will be investigated. 
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2. Develop an application program using Labview for data capture 

system.  Keithley KUSB-3116 data acquisition card is used to capture 

data from the sensors output. 

3. Develop an application program using Matlab to obtain tomographic 

images of concentration profiles based on the data captured from 

measurement section. 

4. Construct program using Matlab fuzzy logic toolbox for identification 

process of flow regimes. 

5. Verify the accuracy of the developed system by comparing the 

predicted data with measured data. 

1.5  Thesis Organization  

 Chapter 1 presents the general overview of process tomography, problem 

statement, research objectives, research scopes and thesis organization. 

Chapter 2 reviews the different types sensing mechanisms of sensor used in 

tomography system. Discussion in this chapter is concentrates on the related works 

which similar to this research. 

Chapter 3 describes the phenomenon of charging mechanism of solid 

particles in pneumatic pipeline, mathematical modeling of electrodynamic transducer 

and procedure how to calculate concentration profile. 

Chapter 4 presents the principle of fuzzy logic and the propose method for 

flow regimes identification. 
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Chapter 5 describes the structure of electrodynamic tomography measurement 

system which includes the design of the circuit, the gravity flow rig, data acquisition 

and storage, and the software for interface between sensor and computer. 

Chapter 6 presents the performance results of electrodynamic transducer, 

concentration profiles and tomographic images. The performance of fuzzy logic in 

identifying flow regimes process is discussed. 

Chapter 7 discusses the conclusion, contribution of this research and 

recommendation for future research.  
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