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Abstract: As part of manufacturing systems, the assembly line has become one of the most valuable 
researches to accomplish the real world problems related to them. Many efforts have been made to 
seek the best techniques in optimizing assembly lines. Problem statement: Since it was published by 
Salveson in 1955, some methods and techniques have been developed based on mathematical 
modeling. In recent years, some researches in Assembly Line Balancing (ALB) have been conducted 
using Soft Computing (SC) approaches. However, there is no comprehensive survey studies conducted 
regarding the use of SC in ALB problems, which is became the aim of this study. Approach: This 
study reviewed published literatures and previous related works that applied SC in solving ALB 
problems. Main outcomes: This study looks into the suitability of SC approaches in several types of 
ALB problems. Furthermore, this study provides the classification of ALB problems that can facilitate 
distinguishing those problems as fields of research. Result: This study found that Genetic Algorithms 
(GAs) are predominantly applied to solve ALB problems compared to other SC approaches. This high 
suitability in ALB refers to GAs’ main characteristics that include its robustness and flexibility. These 
SC approaches have mostly been applied to simple ALB problems, which are not problems that are 
covered in a real complex manufacturing environment. Conclusion/Recommendations: This study 
recommends that future researches in ALB should be conducted with regard to other issues, beyond the 
simple ALB problems and more practical to the industries. Besides the advantages of GAs, there are 
still opportunities to use other SC approaches and the hybrid-systems among them that could increase 
the suitability of these approaches, especially for multi-objective ALB problems. This study also 
recommends that human involvement in ALB needs to be considered as a problem factor in ALB. 
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INTRODUCTION 

 
 A manufacturing system could be defined as a 
collection of integrated equipment (including 
production machines and tools, material handling and 
work-positioning devices and computer systems) and 
human resources, whose function is to perform one or 
more processing and/or assembly operations on raw 
materials, a part, or set of parts (Groover, 2008). In this 
system, human resources are required either full time or 
periodically to keep the system running. There are 
seven systems included in a manufacturing system: they 
are; taxonomy, single-station cells, group technology, a 
flexible manufacturing system, manual assembly lines, 
automated assembly lines and transfer lines. In this 
study, the discussion will focus on an assembly line 

system. It is both an old problem and a new problem, 
due to the fact that many researchers still attempt to 
stumble on optimized ways, methods or techniques to 
assembly lines balancing. 
 Balancing assembly lines becomes one of the most 
important parts for an industrial manufacturing system 
that should be supervised carefully. The success of 
achieving the goal of production is influenced 
significantly by balancing assembly lines. Since then, 
many industries and for sure researchers, attempt to find 
the best methods or techniques to keep the assembly line 
balanced and even to make it more efficient. 
Furthermore, this problem is known as an assembly lines 
balancing problem. As there are many researches that 
have been performed, few techniques and methods have 
been used in solving the optimization problems. They are 
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based on mathematical modeling, such as the use of 
linear programming and then the latest are based on the 
soft computing approach, with the more famous one 
being the use of genetic algorithms. 
 

MATERIALS AND METHODS 
 
 Optimization could be defined as the effort, way, 
technique, method or system to use for calculating or 
finding the best possibilities of utilization of resources 
(which can be people, time, process, vehicles, 
equipment, raw materials, supplies and others) needed 
to achieve an expected result, with it being the best 
possible solution to the problem. In mathematics, the 
simplest case of optimization, or mathematical 
programming, refers to the study of problems in which 
one seeks to minimize or maximize a real function by 
systematically choosing the values of real or integer 
variables from within an allowed set. The first 
optimization technique, which is known as steepest 
descent, goes back to Gauss. Historically, the first term 
to be introduced was ‘linear programming’, which was 
invented by George Dantzig in the 1940s. The term 
‘programming’ in this context does not refer to 
computer programming (although computers are 
nowadays used extensively to solve mathematical 
problems). Instead, the term comes from the use of 
program by the United States military to refer to 
proposed training and logistics schedules, which were 
the problems that Dantzig was studying at the time. The 
wide variety of applications benefiting from 
optimization include: Production planning and 
scheduling, raw material blending, yield and revenue 
management, crew scheduling, financial portfolio 
management, product configuration, technician and 
truck dispatching, satellite mission planning and others. 
However, for those kinds of applications, there are 
many techniques and methods used for optimization 
purpose and basically they are divided according to the 
number of variables involved, which are called Single 
Variable Optimization (SVO) and Multi-Variable 
Optimization (MVO). 
 Another literature (Chong and Zak, 2008) stated 
the optimization problems are divided into two twice-
differentiable functions: Constrained and unconstrained 
problems. Unconstrained problems can be solved by 
finding the points where the gradient of the objective 
function is zero and using the Hessian matrix to classify 
the type of each point. The existence of derivatives is 
not always assumed and many methods were devised 
for specific situations. The basic classes of methods, 
based on smoothness of the objective function, are: 
Combinatorial methods, derivative-free methods, first 

and second order methods, gradient descent (aka 
steepest descent or steepest ascent), interior point 
methods, line search method, Newton's method, quasi-
Newton methods, subgradient method-similar to 
gradient method in case there are no gradients and 
many others. Constrained problems can often be 
transformed into unconstrained problems with the help 
of Lagrange multipliers. Few other popular methods 
such as ant colony optimization, beam search, bee 
algorithms, differential evolution, dynamic relaxation, 
evolution strategy, genetic algorithms, harmony search, 
hill climbing, particle swarm optimization, quantum 
annealing, simulated annealing, stochastic tunneling 
and Tabu search. However, among those methods, 
genetic algorithms, which are part of soft computing 
approaches, is the most used technique today for 
optimization matters, even compared with other soft 
computing approaches. It is because genetic algorithms 
provide an alternative to traditional optimization 
techniques by using directed random searches to locate 
optimum solutions in complex landscapes. 
 In this study, a survey study of soft computing 
applications in assembly line balancing is presented. 
The survey study focused on the efforts of previous 
works in finding the best techniques to optimize 
assembly lines based on soft computing approaches. 
Furthermore, this study is looking for the suitability of 
SC approaches in several types of ALB problems. 
 The discussions of this study are managed as 
follow. At first, we present an overview of this study 
and explain a few definitions and facts about 
optimization problems and the techniques used. We 
continue the discussion by detailing the assembly lines 
balancing, including its characteristics, layout, 
problems classification, and its role in manufacturing. 
A brief discussion of soft computing and its general 
capabilities is presented, and furthermore the soft 
computing applications in assembly lines balancing as 
the core this survey. At the end of this critical review, 
we present our conclusion and recommendation for 
future researches. 
 
Assembly line balancing: we brief an introduction in 
here to get more understanding about assembly lines 
balancing. The discussions cover basic knowledge 
about assembly lines, a few definitions, characteristics, 
problems classifications and the important of assembly 
lines balancing. 
 
Assembly lines and the balancing problem: There are 
three reasons why assembly lines were developed. They 
are for a cost-efficient mass-production of standardized 
products, designed to exploit a high specialization of 
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labor and the associated learning effects (Shtub and 
Dhar-El, 1989). Since then assembly lines have been 
gradually improved. Henry Ford’s introduction of 
assembly lines, from straight single-model lines to more 
flexible systems including, among others, lines with 
parallel work stations or tasks, customer-oriented 
mixed-model and multi-model lines, U-shaped lines as 
well as un-paced lines with intermediate buffers 
(Becker and Scholl, 2006). 
 Few definitions of assembly lines are given by few 
researchers. Becker and Scholl (2006) said that 
assembly lines are a traditional and still effective means 
of mass and large-scale production. They are also 
dubbed as flow-oriented production systems which are 
still typical in the industrial production of high-quantity 
standardized commodities and even gain importance in 
low-volume production of customized products. Lusa 
(2008) said that assembly lines could be defined as a 
production system made up of a series of workstations 
that are connected by a conveyor belt or a similar 
system that transports the object that is being 
assembled. Furthermore, Yaman (2008) stated that 
assembly lines are an example of flow lines which is 
the most commonly used system in a mass-production 
environment. Assembly lines enable the assembly of 
complex products by workers who have received a 
short training period (Gunasekaran and Cecile, 1998). 
Thus, an efficient assembly line design, as a part of a 
manufacturing system, is a vital problem for some 
companies. An assembly line is a usual solution for 
medium and high-production volumes. 
 In any case, an important decision problem, called 
also assembly line balancing problem, arises and has to 
be solved when (re-) configuring an assembly line. It 
consists of distributing the total workload for 
manufacturing any unit of the product to be assembled 
among the workstations along the line. Falkenauer 
(2005) explained that Assembly Lines Balancing 
(ALB), or simply Line Balancing (LB), are the problem 
of assigning operations to workstations along an 
assembly line, in such a way that the assignment is 
optimal in some sense. It has been an optimization 
problem which was very crucial for many industries. 
By managing an assembly line, few advantages occur, 
such as better labor and machine utilization, easy 
learning for workers, less work-in-process inventory 
and less space requirement (Veeramani, 2001). Mayers 
and Stephens (2005) stated some purposes of the 
assembly lines balancing technique. They are to 
equalize the workload among the assemblers, to 
identify any operational bottlenecks, to establish the 
speed of assembly lines, to determine the number of 

workstations, to determine the labor cost of assembly 
and packaging, to establish the percentage workload of 
each operator, to assist in plan layout and to reduce 
production costs.  
 Few literatures have stated the main objective of an 
assembly line, which is to increase the efficiency of the 
system by maximizing the ratio between throughput 
and required cost. An assembly chart shows the 
sequence of operations required to put a product 
together as the final stage of manufacture. This 
assembly process can be shown graphically by using 
the parts list and related drawings. In complex products, 
the sequence of assembly may have other alternatives. 
For a good decision among these alternatives, time-
standards and precedence lists are required (Meyers and 
Stephens, 2005; Boysen et al., 2007). With this 
background, an assembly line may be designed and 
balanced with the aim of optimizing the assembly system.  
For other descriptions of assembly systems and different 
balancing problems one could refer to Buxey et al. 
(1973); Baybars (1986); Shtub and Dhar-El (1989); 
Gosh and Gagnon (1989); Erel and Sarin (1998); Scholl 
(1999); Rekiek and Delchambre (2001) and the most 
recent survey of Becker and Scholl (2006). 
 
Characteristics of assembly lines: There is a work 
element and workstation as a part in assembly lines. 
Then, it is better to know about a work element and 
workstation first, before knowing all about the 
assembly lines. A work element is the smallest unit 
productive work that adds values to the product, such as 
tightening (thinning/reduction) a screw, welding, 
inserting a gear assembly. A workstation is also dubbed 
as a collection of a set of work elements that are 
performed there. A product is passed down the line and 
visits each workstation in sequence. An assembly line 
contains of a set of sequential workstations, typically 
connected by a continuous material handling system. It 
is designed to assemble component parts of a product 
and perform any related operations to produce the 
finished product. There also other components in there, 
namely workers (manual and robotic), a material 
handling system (conveyors), buffers, unloading and 
storage space, layout (linear, U-shape and others).  
 Referring to Tasan and Tunali (2008), an assembly 
line consists of a sequence of tasks, each having an 
operational processing time and a set of precedence 
relations, is widely adopted in manufacturing plans (by 
previous literature (Becker and Scholl, 2006), a 
sequence of workstations have the same meaning with a 
sequence of tasks in this context). Precedence relations 
contain  the  order  in  which  tasks  must be performed.  
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Fig. 1: Precedence graph 
 
Table 1: List of common notations 
Notations Definitions 
n Number of workstations; i = 1,…,n 
c Cycle time 
m Number of tasks;  j = 1,…,m 
tj
 

Processing time of tasks j 

tsum
 

Total processing time of tasks; 
m

sum j
j 1

t t
=

=∑  

WSi
 

Workstation load of workstation i 
t(WSi)

  
Workstation time of workstation i; 

i

i j
j WS

t(WS ) t
∈

= ∑  

Max(t(WSi))
  

Maximum workstation time 
K

 
Largest single processing time of a task, a constant 

Nv
 

Number of violations in precedence relations 
cɶ

 
Fuzzy cycle time 

it(W S)ɶ

 
Fuzzy workstation times for workstation s 

ns
 

Number of workstations in solution 
M

 
Number of models; k = 1,…,M 

qk
 

Demand ratio of model k 
it ik

 
Idle time for workstation i after processing model k 

IT i
 

Average idle time for workstation i; 
M

i ik
k 1

IT qk it
=

=∑  

E
 

Line efficiency 
f(s)

  
Fitness function of a solution c 

 
Figure 1 illustrates an example of precedence relations 
by a representation of a precedence graph, which 
contains 9 nodes for tasks, node weights in italic for 
task-processing times and arcs for orderings. It is noted 
that the most commonly used objective function in the 
literature is the maximization of line efficiency: 
 

sumt
E

n c
=

⋅
 

  
 The following Table 1 presents the widely-used 
notations in assembly lines balancing literature (Tasan 
and Tunali, 2008).  
 As follows, the characterizations of the relevant 
properties of assembly lines, which have to be 
considered when balancing those lines, are given: 
 
• Number and variety of products: If only one 

product or several products with (almost) identical 
production processes, e.g., production of compact 
discs (Lebefromm, 1999) or drinking cans (Grabau 
and Maurer, 1998) are assembled, the production 
system  can  be  treated  as  a  single-model  line. 

 
 
Fig. 2: Assembly line based on the number and variety 

of the products (redrawn Becker and Scholl, 
2006). (a) single-model line; (b) mixed-model 
line; (c) multi-model line 

 
In modern production systems however, several 
products or different models of the same base 
product often share the same assembly line. In 
general, two different forms of organization are 
distinguished (c.f. Wild, 1972; Buxey et al., 1973): 
A mixed-model line (A mixed-model line produces 
the units of different models in an arbitrarily 
intermixed sequence (cf. Scholl, 1999)) and a multi-
model line (A multi-model line produces a sequence 
of batches (each containing units of only one model 
or a group of similar models) with intermediate 
setup operations.). An illustration is given in Fig. 2, 
which shows the characteristics of assembly lines 
based on number and variety of the products 

• Line control: Assembly systems can be 
distinguished with regard to the control of job 
movements between stations. The exact type of 
line control, which has far-reaching consequences 
for the structure of the balancing decision, is 
divided into paced and un-paced lines 

• Variability of task times: In reality, task times are 
basically never deterministic (Tempelmeier, 2003) 

• Line layout: Traditionally, an assembly line is 
organized as a serial line, where single stations are 
arranged along a (straight) conveyor belt. The 
actual line layout is, however, not necessarily 
determined prior to the balancing decision. The 
real-world arrangement of the conveyor belt does 
not usually affect the assignment decision and can 
thus be ignored 

• Parallelization of assembly work: Assembly line 
production makes intensive use of increasing labor 
efficiency by partitioning the total work among 
different productive units 

• Equipment and processing alternatives: In order to 
perform a task assigned, the station must be 
equipped with productive resources like operators, 
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machines and tools which provide the skills and/or 
technological capabilities required. Furthermore, 
the necessary material must be made available 

• Assignment restrictions: In ALB, task assignments 
to stations are always restricted by precedence 
relationships. In model formulations, the 
corresponding precedence graph might either have 
a general structure or be restricted to some special 
graph type, e.g., linear (Kimms, 2000), diverging 
or converging graphs. In any case, the precedence 
graph has to be (made) acyclic to find feasible task-
processing sequences (Ahamdi and Wurgaft, 1994) 

 
Objectives: Several of the extensions outlined above 
can only be considered in a meaningful way, if other 
objectives than the capacity-oriented ones introduced in 
previous discussion are observed. Whenever alternative 
resources are available, resource costs will need to be 
regarded in the associated selection problem. 
 
Problem classification in assembly lines: There are a 
few ways in defining the problem of assembly lines 
balancing, while the problem also has variations which 
may add some complexity to the problem. Here are 
some variations which are introduced by Chow (1990): 
 
• Multiple products: Since assembly processes and 

process times may not be the same for different 
products, a single line cannot be balanced for all 
products 

• Variable process time: Variability may take a 
number of different forms and the two most 
common ones result from human inconsistencies 
found at manual operations and different reject 
conditions at test/ inspection operations 

• Multiple workstations: If the mean process time of 
an operation is larger than a planned completion 
cycle, multiple workstations are needed. However, 
line sizing and balancing become interrelated 
problems 

• Human factors: According to industrial 
experiences. it has been shown that the repetition 
of the same motion pattern induces excessive 
muscle fatigue and may lead to body injury 

• Product characteristics: An assembly line is usually 
composed of a number of subassemblies and tasks 
that belong to different subassemblies should not 
be assigned to the same operation 

• Length of cycle time: Assembly lines balancing 
problems are dependent on the selected cycle time 
and that the determination of cycle time is a 
complicated problem 

 Apart from the variations in the ways in defining the 
problems of assembly lines balancing as listed above and 
as stated earlier in this study, assembly lines balancing 
research has traditionally focused on the Simple 
Assembly Line Balancing Problem (SALBP), which has 
some restricting assumptions. However, nowadays, a lot 
of research work has been done in order to describe and 
solve more realistic generalized problems, namely 
General Assembly Lines Balancing Problems (GALBP). 
 Several version of ALBP also arise by varying the 
objective function (Scholl, 1999): They are Type-1 until 
Type-5 and Type-E and Type-F. Type-1 and Type-2 
have a dual relationship; the first one tries to minimize 
the number of workstations for a given cycle time and 
the second one tries to minimize the cycle time for a 
given number of workstations. Type 3-5 corresponds to 
maximization of workload smoothness, maximization 
of work relatedness and multiple objectives, with Type 
3 and 4 respectively (Kim et al., 1996). Type-E is the 
most general problem version, which tries to maximize 
the line efficiency by simultaneously minimizing the 
cycle time and a number of workstations. While the 
last, Type-F is an objective-independent problem, 
which is to establish whether or not a feasible line 
balance exists for a given combination of m and c. 
 Furthermore, several version of ALB problem also 
arise based on the problem structure. It can be classified 
into two groups. The first group are (Becker and Scholl, 
2006; Scholl, 1999), divided into Single-Model 
Assembly Line Balancing (SMALB) which is involve 
only one product, Multi-Model Assembly Line 
Balancing (MuMALB) which is involve more than one 
product produced in batches and Mixed-Model 
Assembly Line Balancing (MMALB) which is refer to 
assembly lines, which are not in batches. Meanwhile, the 
second group (Baybars, 1986) is divided into Simple 
Assembly Line Balancing (SALB), which is involves 
only one product, with features such as paced line with 
fixed cycle time, deterministic independent processing 
times, no assignment restrictions, serial layout, one sided 
workstations, equally equipped workstations and fixed 
rate launching and General Assembly Line Balancing 
(GALB), which is include cost function, equipment 
selection, paralleling, U-shape line layout and mixed-
model production.  
 In another survey of assembly line research 
(Falkenauer, 2005), there is an identification of 
additional difficulties (with respect to SALBP) that 
must be tackled in a line balancing tool, in order to be 
applicable in those industries and it may be become a 
reason why current researches should evolve towards in 
formulating and solving Generalized Problems 
(GALBP) with different additional characteristics such 
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as cost functions, equipment selection, paralleling, U-
shaped line layout and mixed-model production. They 
are: do not balance but re-balance, workstation 
identities, un-moveable operations and zoning 
constraints, cannot eliminate workstations, loads 
equalization, multiple operators, multi-operator 
operations, ergonomic constraints (operator positions), 
multiple products and drifting operations. Figure 3 
shows several problem versions which arise from 
varying the objective in SALBP. 
 From Fig. 3, few facts could be concluded as listed: 
 
• SALBP-E maximizes the line efficiency E 
• SALBP-1 minimizes the number m of stations 

given the cycle time c 
• SALBP-2 minimizes cycle time c given number m 

of solutions 
• SALBP-F seeks for a feasible solution given m 

and c 
 
 Based on a survey study by Boysen et al. (2008), 
assembly lines balancing problems are classified into a 
few groups in order to assign typical attributes to 
different aspects of real-world assembly systems. By 
doing so, joint occurrences of SALBP-extensions can 
be identified which are especially characteristic for 
certain groups of assembly systems in the real world. 
They are classified based on number models (single, 
mixed and multi-model), line control (paced line, un-
paced synchronous and un-paced asynchronous), 
frequency (full-time installation and reconfiguration), 
level of automation (manual lines and automated lines) 
and lines of business (automobile production). 
Furthermore, a comparison with the existing literature 
can clarify if solution procedures for these typical cases 
already exist or if their development remains for future 
research. Figure 4 shows a classification of assembly 
lines balancing problems made by Boysen et al. (2008). 
 On the other hand, due to very different conditions 
in industrial manufacturing, assembly line production 
systems and corresponding ALB problems show a great 
diversity (Boysen et al., 2007). For other descriptions 
of assembly systems and different balancing problems, 
please refer to, e.g., Buxey et al. (1973); Baybars 

(1986); Shtub and Dhar-El (1989); Ghosh and Gagnon 
(1989); Erel and Sarin (1998); Scholl (1999) and 
Rekiek and Delchambre (2001), as well as the most 
recent survey of Becker and Scholl (2006). Table 2 
summaries the classifications of assembly line 
balancing problem researches up to now. It is an 
adaptation from Tasan and Tunali (2008) and few 
modifications are made to complete it, based on the 
current surveys and investigations. 
 It is noted that Scholl and Becker (2006) present a 
survey on problem and methods for GALPB (seems 
quite similar with Baybars (1986)) with features such as 
cost/profit-oriented objectives, equipment selection/ 
process alternatives, parallel workstations/tasks, U-
shaped line layout, assignment task processing times 
and mixed-model assembly lines. 
 

RESULTS 
 
The important research of assembly lines balancing: 
Assembly lines have been studied extensively (since 
Salveson, 1955) by introducing his mathematical 
modeling and looking to the original aim of assembly 
lines. Balancing assembly lines is a recurring task in 
operation management, where such models have been 
used to support the decision maker in configuring an 
efficient assembly system to optimize productivity 
(Scholl and Klein, 1999; Boysen et al., 2007), which 
depends on the kinds of assembly lines as classified in 
Fig. 3, 4 and Table 2, so it became important and 
carries more benefits and advantages by optimizing 
assembly lines in order to optimize the productivity. 

 

 
 
Fig. 3: Version of simple assembly line balancing 

problem (redrawn Becker and Scholl, 2006) 
 
Table 2: Classifications of assembly line balancing problem 
 Based on Based on problem structure 
According to survey objective function ------------------------------------------------------------------------------------------------------------------------- 
by Chow (1990) Scholl (1999) Baybars (1986) Scholl (1999); Becker and Scholl (2006) Boysen et al. (2008) 
Multiple products Type-E  Simple Assembly Line Balancing Single-Model Assembly Line Balancing Number models  
Variable process time Type-F (SALB) (SMALB) Line control 
Multiple workstation Type 1 and 2 General Assembly Line Balancing Multi-Model Assembly Line Balancing  Frequency 
Human factors Type 3-5 (GALB) (MuMALB) Level of automation 
Product characteristics   Mixed-Model Assembly Line Balancing Line of business 
Length of cycle time   (MMALB)  
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Fig. 4: Kinds of assembly lines (redrawn Boysen et al., 

2008) 
 
 A well-known assembly design problem is the 
Assembly Line Balancing Problem (ALBP), which 
deals with the allocation of tasks among workstations 
so that the precedence relations are not violated and 
the given objective function is optimized. 
 ALPB falls into the non-deterministic polynomial 
hard (NP-hard) class of combinatorial optimization 
problems (Karp, 1972). The complexity of the ALBP 
renders optimum seeking methods impractical, for 
instance, of more than a few tasks and/or workstations, 
with assumptions there are m tasks and r precedence 

constraints and then there are 
r

m!

2
 possible task 

sequences (Baybars, 1986). Therefore, it can be time-
consuming for optimum seeking methods to obtain an 
optimal solution within this vast search space. This fact 
also carries out to a conclusion that researches in 
assembly lines is very important to do. Even so, many 
attempts have been made in the literature to solve the 
ALBP using optimum seeking methods, such as: 
Linear programming by Salveson (1955), Integer 
programming by Bowman (1960), Dynamic 
programming by Held et al. (1963) and Branch-and-
bound approaches by Jackson (1956). However, none 
of these methods have been proved to be of practical 
use for large problems, due to their computational 
inefficiency (Tasan and Tunali, 2008). 
 Furthermore, based on surveys by Tasan and 
Tunali (2008), Genetic Algorithms (GAs) received an 
increasing attention from researchers, since it provides 
an alternative to the traditional optimizations technique 
by using directed random searches to locate optimum 
solutions in complex landscapes. Few surveys also have 
been made regarding the subject, namely Dimopoulus 
and Zalzala (2000) who reviewed the use of 
evolutionary computation methods for solving 
manufacturing optimization problems, including the 
classic job-shop and flow-shop scheduling problems, 
assembly line balancing and aggregate production 
planning, Aytug et al. (2003) who have reviewed over 
110 papers using genetic algorithms to solve various 
types of production and operations management 
problems including production planning and control, 

facility layout design, line balancing, and supply chain 
management. They noted that none of these studies 
placed an adequate amount of emphasis on the use of 
genetic algorithms for solving ALBPs, since their scope 
was very broad., Scholl and Becker (2006) who 
presented a review and analysis of exact and heuristic 
solution procedures for solving ALBPs and Tasan and 
Tunali (2008) who presented the latest survey on it 
which conducts to the recent published literature on 
ALB including genetic algorithms and summarized 
the main specifications of the problems studied, the 
genetic algorithm suggested and the objective 
functions used in evaluating the performance of the 
genetic algorithms. 
 However, since there are many efforts by previous 
researchers in finding the best techniques in solving 
optimization problems in assembly lines balancing and 
of course there still wide open problems in ALB, those 
facts showed that research on assembly lines balancing 
is important and needs to be addressed in future. 
Furthermore, it will be important in manufacturing and 
for sure it is also of paramount importance in the 
industrial production of high-quantity standardized 
commodities (Boysen et al. 2007). 
 
Soft computing: Soft computing, according to 
Bonissone (1997) refers to a fusion of techniques that 
mainly bring together neural networks, fuzzy logic, and 
evolutionary algorithms (Dubois and Prade, 1998). 
Here, we present a brief discussion of soft computing 
and their general capabilities. Furthermore the 
applications of soft computing in assembly lines 
balancing are discussed. 
 
An overview of soft computing: The three techniques 
mentioned above are known as traditional technologies 
in soft computing. But nowadays, many more novel 
techniques in soft computing are arisen from behavioral 
studies, such as ant colony optimization, small world 
theory, and memes theory (Ovaska et al., 2006). 
Current results have concluded that these technologies 
have steadily changed the way to solve real-world 
problems in science and engineering. 
 The way soft computing techniques are used in 
solving problems differ to the way that traditional 
computer algorithms are used. Soft-computing 
techniques have the ability to generate solutions for 
many   computationally   difficult   problems 
(Chaudhari et al., 2006). However, in the midst of 
deployment of soft computing techniques to solve many 
such problems, it has also given rise to many 
fundamental questions that are of interest to the 
discipline of computer science. While many soft 
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computing techniques have attempted to give solutions 
to specific problems, it is not clear how this approach is 
generalized for solving all computational problems. 
Here are four such questions (Chaudhari et al., 2006): 
 
• Is the given soft-computing technique general 

enough, in the sense that, is it possible to express 
any arbitrary computation in that technique 

• Does the given soft-computing technique possess 
the ability of automatically generating a solution to 
any arbitrary problem for which an algorithm is 
known to exist 

• Does the given soft-computing technique possess 
the ability of generating automatically the most 
efficient solution to an arbitrary computable 
problem 

• When the given soft-computing technique does 
not generate the most efficient solution, does it 
generate a reasonably efficient solution, with the 
performance bound on how far the resulting 
solution would be from the most efficient 
solution? 

 
 However, few researchers (e.g., Turchin’s meta-
computations (1993 and 1996a) and super-compilations 
(Turchin, 1996b), Mitchell’s investigations (1994) for 
cellular automata computations have attempted to 
answer those questions, even if it has been very 
difficult. Another interesting field in soft computing is 
evolutionary computation. Evolutionary computing is 
based on the concepts of biological evolutionary theory 
that mimics the mechanics of reproduction, mutation, 
recombination, natural selection, and survival of the 
fittest. Three basic kinds of evolutionary computations are 
genetic algorithms, genetic programming and 
evolutionary algorithms. Follow we present a brief 
introduction to the computational capabilities of some soft 
computing frameworks (adopted from Chaudhari et al., 
2006). 
 
Turing machine: There is a famous list of nineteenth 
century problems by Hilbert which is “Does there exists 
an algorithm for deciding whether or not a specific 
mathematical assertion does or does not have a proof?” 
(Weisstein, 1999). Alan Turing, in 1937, showed that 
the answer for this problem is negative for elementary 
number theory. In the process of obtaining the solution 
to this problem, he invented the formalism of “Turing 
Machine”, which is now accepted as (one of the 
models) to represent any arbitrary computation; in fact, 
it is an accepted notion today that the problems which 
can be “computed” are precisely the ones for which a 
Turing Machine exists (Chaudhari et al., 2006). Turing 

machines are not assigned as a practical computing 
technology, but a thought experiment about the limits 
of mechanical computation. Thus, they were not 
actually constructed. Studying their abstract properties 
yields many insights into computer science and 
complexity theory. 
 
Neural networks: A neural network is an artificial 
system that aims to perform intelligent tasks similar to 
those performed by the human brain (Pitts and 
McCullough, 1947). A neural network stores its 
knowledge through learning within inter-neuron 
connection strengths known as synaptic weights. These 
networks have shown themselves to be adept at solving 
function approximation including time series 
prediction, fitness approximation and modeling, data 
processing including filtering, clustering, and also 
nonlinear controller. The most common neural network 
model is Multi-Layer Perceptron (MLP). The MLP and 
other neural network models can be trained using a 
learning algorithm such as (error) back-propagation, 
steepest descent, least square error, genetic algorithm, 
evolutionary computation, expectation-maximization 
and non-parametric methods. Using one of these 
algorithms, the weights are determined and the network 
is said to be trained for a set of data. 
 
Genetic algorithms: Genetic Algorithms (Goldberg, 
1989) are based on the Darwinian-type survival of the 
fittest strategy with sexual reproduction and Mendel’s 
theory of genetics as the basis of biological inheritance. 
In these theories, stronger individuals in the population 
have a higher chance of creating offspring. Each 
individual in the population represents a potential 
solution to the problem to be solved. Genetic 
algorithms do not work with a single point on the 
problem space but use a set, or population of points to 
conduct a search. This gives genetic algorithms the 
power to search multi-modal spaces littered with local 
optimum points. 
 Genetic algorithms can be used to train a multi-
layer perceptron in which weights form a parameter 
space. While genetic algorithms have the advantage of 
not getting stuck in local optima, they have other 
problems. When the search space is very large then 
genetic algorithm methods generally take a long time to 
converge to good quality solutions. The length of the 
search is due to the optimal generalization of the 
training process with no-prior knowledge about the 
parameter space. 
 
Evolutionary computing: Evolutionary Computation 
(EC) has become a standard term to denote a very broad 
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group of algorithms and techniques that are based on the 
principles of natural processes involving biological 
evolution. Evolutionary Algorithms (EAs) are mainly 
meta-heuristic and optimization methods that share some 
generic concepts borrowed from the natural process of 
biological evolution. Research in this area has mainly 
been focused on solving the problems which can be 
formulated as an exhaustive search over the space of all 
possible solutions. Using evolutionary computing 
frameworks, many approaches have been proposed in 
the last decade. Some approaches for global 
optimization algorithms include the approaches based 
on evolution of species (Davis et al., 1999), immune 
system (Castro et al., 2002), social behavior of ants 
(Bonabeau et al., 2000), memetic and cultural evolution 
(Ong et al., 2004; Ong et al., 2006). Many variants of 
ECs are also studied by various researchers. For 
example, Boettecher and Percus (2001) proposed a new 
optimization algorithm that is based on the principles of 
natural selection, but it does not follow the basic genetic 
algorithm framework for population reproduction. Their 
approach is one step towards integrating different models 
like principles of self-organized criticality of Bak and 
Sneppen (1993) in a broad EC framework. 

 
DISCUSSION 

 
Soft computing application: Based on a survey of 
published theoretical and application literature, it can be 
concluded that soft computing applications have been 
used and developed in many research fields and 
industry. Few of them are automotive and 
manufacturing, bioinformatics, phylogenetics, 
computational science, engineering, economics, 
chemistry, manufacturing, mathematics, physics and 
other fields, such as neural networks, which are data-
driven self-adaptive methods without depending much 
on prior knowledge about the structural relationship 
between demand forecasts and the determining factors, 
can approximate any continuous function arbitrarily 
well to any given accuracy (Pinkus, 1999). Other than 
the financial field, a major application of neural 
networks-based forecasting is in electricity load 
consumption study (Zhang, et al., 1998). As an 
approximator, similar to neural networks, fuzzy systems 
can also approximate any continuous function to any 
degree of accuracy (Ying, et al., 1999). Although the 
performance is similar, neural networks, which are 
known for their simplicity and model-free approach, 
have been well accepted in practice and used by many 
utilities for load forecasting (Hippert et al., 2001; 
Khotanzad, et al., 1998) and also there are many other 
soft computing applications for real-world problems. 

Soft computing in assembly lines balancing: It is 
reported that soft computing approaches have been used 
(among of them are fuzzy logic and genetic algorithms) 
in solving assembly lines balancing problems and it is 
also reported that genetic algorithms have been 
dominantly used. The uses of genetic algorithms 
received increasing attention from the researchers, since 
it provides an alternative to traditional optimization 
techniques by using directed random searches to locate 
optimum solutions in complex landscapes (Tasan and 
Tunali, 2008). In here, we discuss few previous works 
which used soft computing approaches in solving the 
assembly line balancing problems, and then the 
discussion followed by those who used genetic 
algorithms. 
 Hui et al., (2002) proposed fuzzy operator 
allocation for balance control of assembly lines in 
apparel manufacturing. In their work, they 
demonstrated the use of a fuzzy logic-based system in 
making balance control decisions. The experimental 
results show the advantages of the fuzzy logic-based 
approach over traditional methods, with its ability to 
reach the target production output more consistently. 
They also developed a system called FOA for operation 
allocation, based on a set of fuzzy rules and 
membership functions obtained through interview 
sessions with human experts. The performance of the 
FOA system was compared with that of the supervisors 
in a men’s shirt factory, using a set of data collected 
over 30 consecutive working days. It was found to 
outperform the actual supervisors and extends the 
literature by increased production efficiency of 30%. 
 Fonseca et al. (2005) proposed a work to model 
and solve the stochastic assembly line balancing 
problem with a fuzzy representation of the time 
variables as a viable alternative method. Two widely-
used line balancing methods, the Computer Method for 
Sequencing Operations for Assembly Lines 
(COMSOAL) and Ranked Positional Weighting 
Technique were modified and then transformed to solve 
the ALBP with fuzzy operating times. The fuzzy 
heuristics were then automated via Visual Basic. Three 
test example problems from the available literature 
were used to successfully validate the constructed fuzzy 
techniques. Thus, a viable alternative approach to 
solving the stochastic assembly line balancing problem 
was developed. The experimental results show that the 
new fuzzy methods are capable of producing solutions 
similar to and in some cases better than, those reached 
by the traditional methods. 
 Kara et al. (2009) proposed a binary fuzzy goal 
programming model for straight assembly line 
balancing uses and extends the IP model of Talbot and 
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Patterson (1984) and a BFGP model for U-shaped 
assembly line balancing uses and extends the IP model 
of Urban (1998). Some results and advantages are 
yielded from the proposed model. They are: 
 
• Allow decision-makers to consider the cycle time 

and the number of workstation goals as imprecise 
values 

• Minimize the number of workstations and the cycle 
time at the same time in a fuzzy environment 

• It is solved using the Chang’s (2007) primary 
BFGP method 

• It is valid and useful for straight and U-shaped 
assembly line balancing problems 

• Enable decision-makers to simultaneously consider 
conflicting objectives of assembly line balancing in 
a fuzzy environment 

• Allow decision-makers to assign priorities to the 
goals using weighted goal programming approach 

• All these aspects to enable the proposed models to 
be significant and integrated approaches for 
assembly line balancing 

• The combinatorial nature of the assembly line 
balancing problems makes the development of fast 
and effective heuristics significant 

 
 Based on the BFGP approaches proposed in this 
study, the development of heuristics can be considered 
as topics for further researches. 
 
Genetic algorithm in assembly line balancing: The 
discussion according to this issue was adopted from the 
survey by Tasan and Tunali (2008).  However, there are 

also few additional surveys for completing. The survey 
made is based on the classification given in Baybars 
(1986) which is to identify the major trends in types of 
problems studied. Figure 5 represents the structural 
framework for reviewing, which is done by Tasan and 
Tunali (2008). However, the discussions only focus on 
the uses of genetic algorithms for solving ALBP, based 
on problem specifications only. 
 Since the research on the ALB problems which 
used genetic algorithms in solving the problems is 
much heavier than the other soft computing techniques, 
so that the discussions are divided into two groups, 
namely SALBP and GALBP. I will start with the first 
one, which is research on SALBP problem. 

 
Research on SALB problem regarding the use of 
genetic algorithms: An assembly line consists of 
workstations k = 1,…m which are usually arranged 
along a conveyor belt or similar mechanical material 
handling equipment. The workpieces (jobs/tasks) are 
consecutively launched down the line and are moved 
from station to station. At each station, certain 
operations are repeatedly performed regarding the cycle 
time. Cycle time is a maximum or average time 
available for each work cycle. The basic problem 
described so far is called a Simple Assembly Line 
Balancing Problem (SALBP) in the literature (Baybars, 
1986). We focus the discussion on SALB problems 
which used genetic algorithms or a hybrid system on it 
to solve the problem and continued by the discussion 
on  GALB  problem  which   used   genetic  algorithm. 

 

 
 

Fig. 5: The structural framework for reviewing GAs in assembly line balancing by Tasan and Tunali 
(2008) (redrawn) 
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Falkenauer and Delchamber (1992) were the first to 
solve the SALB problem with Genetic Algorithms 
(GAs). Falkenauer (1991) presented the Grouping 
Genetic Algorithm (GGA) especially for solving 
grouping optimization problems, where the aim was to 
group members of a set into a small number of families 
in order to optimize objective function under given 
constraints. GGA has a special chromosome 
representation scheme and genetic operators, which are 
used to suit the representation scheme. Later, 
Falkenauer and Delchambre (1992) implemented the 
GGA to two grouping optimization problems; i.e., a bin 
packing problem and a SALB Type-1 problem. This 
study was the first attempt to balance an assembly line 
Type-1 problem with a genetic algorithm. The authors 
first presented a special representation scheme and 
special genetic operators for the bin packing problem 
and they later modified the special genetic operators for 
line balancing. Other implementations of GGA for 
solving ALBPs can be found in Falkenauer (1997); 
Rekiek et al. (1999) and Brown and Sumichrast 
(2005). 
 After Falkenauer and Delchambre (1992), the 
SALB problem was also studied by many researchers. 
Leu et al. (1994) developed a genetic algorithm to solve 
SALB Type-1 problems and used heuristic procedures 
to determine the initial population. They also proposed 
a number of techniques to deal with the feasibility 
problems during initialization of the population as well 
as after the reproduction phase. They also demonstrated 
the possibility of balancing assembly lines with 
multiple criteria and zoning constraints. 
 The first article, which presented a genetic 
algorithm application to the SMALB Type-2 problem, 
was published by Anderson and Ferris (1994). The 
authors mainly aimed at showing the effective use of 
genetic algorithms in solving combinatorial 
optimization problems. They first described a fairly 
typical serial implementation of a genetic algorithm for 
the ALBP and studied the effects of various genetic 
algorithm variables on the performance of the genetic 
algorithm. Later, they introduced an alternative parallel 
version of the genetic algorithm, where each individual 
in the population resided on a processor. The 
comparative study between serial and parallel genetic 
algorithms showed that the quality of the solutions from 
the parallel implementations was worse than the best 
solutions obtained from serial implementation. 
 Rubinovitz and Levitin (1995) used a genetic 
algorithm to obtain a SALB Type-2 problem, in which 
the processing time of a task was dependent upon 
workstation assignment. The authors compared the 
proposed genetic algorithm to Dar El and Rubinovitz 

MUST (1979), where the proposed genetic algorithm 
solved the problems involving more than 20 
workstations faster than MUST. Finally, the authors 
concluded that their genetic algorithm achieved its 
greater advantage when the precedence constraints were 
the least restrictive. 
 Kim et al. (1996) developed a genetic algorithm to 
solve multiple objective SMALB problems. They 
addressed several types of ALBP, such as to minimize 
the number of workstations (Type-1), minimize the 
cycle time (Type-2), maximize workload smoothness 
(Type-3), maximize work relatedness (interrelated tasks 
are allotted to the same workstation as much as 
possible) (Type-4) and a multiple objective with Type 3 
and 4 (Type-5). The authors placed the emphasis on 
seeking a set of diverse Pareto optimal solutions. 
Although, Kim et al.’s (1996) multi-objective genetic 
algorithm seems to be very promising, the chromosome 
representation scheme they used is not well suited to 
the some of the problem types, since they used a single 
chromosome representation scheme to represent all of 
the problem types. 
 Kim et al. (1998) considered maximizing the 
workload smoothness, which has been generally 
neglected in the literature. Extensive computational 
experiments were made and the advantages of 
incorporating problem-specific heuristics information 
into the algorithm were demonstrated. The 
experimental results showed that the proposed genetic 
algorithm outperformed the existing heuristics and the 
standard genetic algorithm. 
 Rekiek et al. (1999) proposed a grouping genetic 
algorithm by Falkenauer and Delchambre (1992) based 
on an Equal Piles approach for solving the SALB 
problem. They tried to assign tasks to a fixed number of 
workstations in such a way that the workload of each 
workstation was nearly equal by leveling on average the 
size of each workstation (minimizing the standard 
deviation of sizes). Therefore, the proposed method 
warranted obtaining the desired number of workstations 
and tried to equalize the workloads of workstations as 
much as possible. Later, Rekiek et al. (2001) developed 
a grouping genetic algorithm for solving multi-
objective assembly line design problems. 
 Bautista et al. (2000) considered the SALB 
problem with incompatibilities between tasks. To avoid 
assigning two incompatible tasks to the same station, 
the authors developed a Greedy Randomized Adaptive 
Search Procedure (GRASP), obtained from the 
application of some classic heuristic methods and a 
genetic algorithm. They first tried to solve the SALB 
Type-1 problem and then the SALB Type-2 problem 
once the number of workstations has been determined. 
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They also revised GRASP by using weights and called 
it Greedy Randomize Weighted Adaptive Search 
Procedure (GRWASP). In the proposed method, the 
greedy heuristic methods were based on the application 
of priority rules for assignment of tasks to workstations 
such as the longest processing time and the greatest 
number of immediate successors. The greedy heuristic 
favors tasks with the best index value, while the genetic 
algorithm phase simply changes the order of elements 
in the solution. Their comparative study showed that 
the proposed genetic algorithm and GRWASP resulted 
in better performance than the greedy heuristics and 
GRASP. 
 Ponnambalam et al. (2000) developed a multi-
objective genetic algorithm for SMALB Type-1 
problems to optimize several objectives simultaneously: 
the number of workstations, the line efficiency and the 
smoothness index. Several comparisons were made 
between other heuristics on several examples. The 
results of the comparisons indicated that the genetic 
algorithm performed better in all cases studied. 
However, the execution time for the genetic algorithm 
was found to be longer. 
 Sabuncuoglu et al. (2000) developed a new genetic 
algorithm to solve the SMALB problem by utilizing the 
intrinsic characteristics of the problem. The authors also 
proposed a method called ‘dynamic partitioning’ that 
modified chromosome structure of genetic algorithms 
to save CPU time. The method modifies the 
chromosome structure by allocating tasks to 
workstations (i.e., freezing certain tasks) that satisfy 
some criteria and continues with the remaining 
unfrozen tasks. Furthermore, they constructed a new 
elitism structure adopted from the concept of simulated 
annealing. It is observed that this new elitism structure 
contributes significantly to the performance of the 
genetic algorithm. In fact, the results of extensive 
computational experiments indicated that the proposed 
genetic algorithm approach outperformed the well-
known heuristics in the literature. 
 Carnahan et al. (2001) considered the physical 
demands placed on workers in solving the SALB 
Type-2 problem. In order to measure physical 
demand, the authors used grip strength capacity that 
represented the maximum finger flexor strength 
generated by a worker using a semi-pronated power 
grip. Three methods, i.e., a ranking heuristic, a 
combinatorial of the genetic algorithm and a problem 
space of the genetic algorithm, were developed to 
simultaneously minimize the maximum manual 
gripping demands and the cycle time. The authors 
concluded that the problem space of the genetic 
algorithm performed better than the others. 

 Goncalves and De Almedia (2002) presented a 
hybrid genetic algorithm, which combined heuristic 
priority rules with a genetic algorithm to solve the 
SALB Type-1 problem. Several problems from the 
literature have been used to demonstrate the 
effectiveness and robustness of the proposed hybrid 
genetic algorithm. The result of the experiments 
showed that the proposed method performed 
remarkably well. 
 Stockton et al. (2004a; 2004b) investigated the use 
of genetic algorithms for solving various problems that 
arise when designing and planning manufacturing 
operations; i.e., assortment planning, aggregate 
planning, lot sizing within material requirement 
planning environments, line balancing and facilities 
layout. In Stockton et al. (2004a), the authors have 
examined the application of a genetic algorithm to the 
SMALB Type-1 problem. They compared the 
performance of the genetic algorithm with a traditional 
solution method, i.e., Ranked Positional Weight (RPW) 
(Helgerson and Birnie, 1961). In Stockton et al. 
(2004b), the authors performed computational 
experiments in order to identify suitable genetic 
operators and parameter values. 
 Brown and Sumichrast (2005) compared the 
performance of grouping genetic algorithm GGA by 
Falkenauer (1991) against the performance of a typical 
genetic algorithm across a range of grouping problems, 
i.e., bin packing, machine part cell formation and SALB 
Type-1 problems. They applied the two techniques, i.e., 
standard GA and GGA, to a set of problems and 
compared the results, with respect to solution quality 
and computation time. They noted that both of the 
techniques managed to find the optimal solution for all 
the test problems, however GGA found the optimal 
solution more quickly. 
 
Research on GALB problems regarding the uses of 
genetic algorithms: Simply, the discussion on GALB 
problems is all of the problems that are not SALB. Such 
as: balancing of single-model or mixed-model, parallel, 
U-shaped and two-sided lines, with stochastic, fuzzy or 
dependent processing times. 
 Tsujimura et al. (1995) were the first to solve 
GALB problems with genetic algorithms. The authors 
used the fuzzy numbers to represent the imprecise, 
vague and uncertain task processing times, as the 
processing times are uncertain due to both machine and 
human factors. They proposed a genetic algorithm to 
solve SMALB Type-1 problems, represented the fuzzy 
processing times by triangular membership functions 
and illustrated the application of the proposed genetic 
algorithm on a problem with 80 tasks. 
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 Following Tsujimura et al. (1995), several versions 
of GALB problems were studied by many researchers. 
Suresh et al. (1996) used a genetic algorithm to solve 
the SMALB Type-1 problem with stochastic processing 
times. A modified genetic algorithm, working with two 
populations (one allowing infeasible solutions) and 
exchange of specimens at regular intervals, were 
proposed for handling irregular search space (i.e., the 
infeasibility problem due to problem specifications). 
The authors believed that a population of feasible 
solutions would lead to a fragmented search space, thus 
increasing the probability of getting trapped in a local 
minimum. They stated that infeasible solutions can be 
allowed in the population only if the genetic operators 
can lead to feasible solutions from unfeasible ones. 
Throughout the generations, some solutions were 
exchanged at regular intervals between the two 
populations (i.e., the exchanged solutions have the same 
rank of fitness value in their own populations). The 
results of the experiments indicated that the genetic 
algorithm working with two populations can give better 
results than the genetic algorithm with only feasible 
population. 
 Falkenauer (1997) presented a genetic algorithm 
based on a Grouping Genetic Algorithm (GGA) by 
Falkenauer and Delchambre (1992) and a branch-and-
bound algorithm for a SMALB Type-1 problem with 
resource-dependent processing times. The problem 
involved allocating resources with different cost and 
speed to each task and also assigning the tasks to 
workstations, in such a way that the total cost of the line 
is minimal. The author employed GGA to assign the 
tasks to workstations and then branch and bound 
algorithm to select the optimal source for each 
workstation. In this problem, the processing time of a 
task depends on the resources being used; therefore, 
resources with different costs and speeds are allocated 
to each task in addition to the assignment of tasks to 
workstations, in such a way that the total cost of the line 
is minimal. In the proposed method, the tasks were 
assigned to workstations by GGA and the optimal 
source for each workstation was selected by a branch-
and-bound algorithm. 
 Ajenblit and Wainwright (1998) were pioneers in 
balancing the U-shaped SMALB Type-1 problem using 
genetic algorithms. The authors dealt with two possible 
variations of this problem; minimizing the total idle 
time and balancing the workload between workstations, 
or a combination of both. They developed six different 
assignment algorithms to interpret a chromosome and 
assign tasks to workstations. The authors applied the 
proposed genetic algorithm to 61 test problems. In 
comparison to previous researchers, they obtained 

superior results in 11 cases, the same results in 49 cases 
and a worse result in one case. 
 Chan et al. (1998) proposed a genetic algorithm for 
a SMALB Type-1 problem in the clothing industry. The 
authors tried to improve the line efficiency by 
minimizing the time spent in assembly line balance 
planning. They also included the various skill levels of 
workers as problem-specific information to solve a 41-
task ALBP. The experimental results showed that the 
performance of a genetic algorithm was much better 
than the performance of the greedy algorithm, which 
performed optimization by proceeding to a series of 
alternatives and assigned the most skillful worker to 
each task. 
 Kim et al. (2000) developed a genetic algorithm for 
balancing a two-sided SMALB Type-1 problem with 
positional constraints. Two-sided assembly lines consist 
of two connected serial lines in parallel, where some 
task can be performed at one of the two sides of the 
line, while the others can be performed at either side of 
the line. In the two-sided assembly lines, the tasks were 
classified into three types: L (left); R (right) and E 
(either) type tasks. L-type tasks are easily performed at 
the left-hand side of the line, similarly R-type tasks are 
easily performed at the right-hand side of the line and 
E-type tasks are easily performed at both sides of the 
line. The performance of the proposed genetic 
algorithm was compared to integer programming and 
other heuristic methods by Kim et al. (1998b), using 
five test problems. The results indicated that the 
proposed genetic algorithm showed a better 
performance than the heuristics studied. The authors 
stated that the proposed genetic algorithm can be 
directly applied to the different versions of the ALBP. 
 Simaria and Vilarinho (2001a) proposed an 
iterative search procedure, including a genetic 
algorithm for a MMALB Type-2 problem with parallel 
workstations. The proposed genetic algorithm 
procedure was originally based on the model developed 
in Simaria and Vilarinho (2001b) for a SMALB Type-2 
problem, where the simulated annealing was used as a 
solution method. The iterative procedure starts with a 
lower bound of cycle time and successively solves the 
MMALB Type-1 problem by increasing cycle times. 
Once a feasible solution is found, the procedure 
employs a genetic algorithm to decrease the cycle time. 
Besides minimizing the cycle time, the procedure 
minimizes the workload balances. The iterative 
procedure was illustrated using a simple example with 
two assembly models and 25 tasks. 
 Chen et al. (2002) presented a genetic algorithm 
approach for assembly planning involving various 
objectives, such as minimizing cycle time, maximizing 
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workload smoothness, minimizing the frequency of tool 
change, minimizing the number of tools and machines 
used and minimizing the complexity of assembly 
sequences. They classified the assembly line planning 
problems into line balancing, tooling and scheduling 
problems. The proposed method was improved by 
including heuristic solutions into initial population and 
developing a self-tuning method to correct infeasible 
chromosomes. Several examples were employed to 
illustrate the proposed genetic algorithm. Experimental 
results indicated that the proposed genetic algorithm 
efficiently yields many alternative assembly plans to 
support the design and operation of an assembly system. 
 Miltenburg (2002) solved the assembly line 
balancing Type-1 problem and sequencing problems 
simultaneously for mixed model U-shaped assembly 
lines. They proposed a genetic algorithm to solve the 
balancing and sequencing problems jointly. The 
proposed genetic algorithm was found to offer good 
solutions. 
 Valente et al. (2002) proposed a genetic algorithm 
to solve assembly line balancing Type-2 problem in a 
real-world application, a two-sided car assembly line. 
The solution to the problem involved satisfying the 
constraints that the length of each workstation was 
constant. The proposed genetic algorithm was found to 
reduce the total assembly time of the current line by 
28.5%. 
 Brudaru and Valmar (2004) proposed a hybrid 
genetic algorithm for solving a SMALB Type-1 
Problem. They considered the processing times of tasks 
as fuzzy numbers like Tsujimura et al. (1995). Their 
hybrid method combined the branch-and-bound and 
genetic algorithm. The authors presented a special 
chromosome representation scheme, embryonic 
representation, which used subsets of solutions rather 
than the individual solutions. They also proposed a new 
type of genetic operator  called a growing operator to be 

used for the hybrid genetic algorithm. The proposed 
hybrid genetic algorithm was found to take a longer 
computation time, with respect to solution quality. 
 Martinez and Duff (2004) addressed the U-shaped 
SMALB Type-1 problem. They first solved this 
problem using 10 heuristic rules adapted from the simple 
line balancing problem, such as maximum ranked 
positional weight, maximum total number of follower 
tasks or precedence tasks and maximum processing time 
and compared these heuristic solutions with the optimal 
solutions obtained from previous researches. Following 
on, they modified Ponnambalam et al. genetic algorithm 
(2000) and inserted the solutions obtained using these 
heuristic rules to the initial population. They illustrated 
the proposed genetic algorithm using Jackson’s 
problem (1956). The results showed that the addition of 
a genetic algorithm can improve the current solution. 
 Simaria and Vilarinho (2004) expanded the 
application of their previous work in Simaria and 
Vilarinho (2001), where they proposed an iterative 
genetic algorithm-based search procedure for a 
MMALB Type-2 problem with parallel workstations. 
The authors have also conducted a set of computational 
experiments on a set of generated ALBPs. 
 Levitin et al., (2006) proposed a genetic algorithm 
for solving a special kind of SMALB Type-2 problem, 
i.e., Robotic Assembly Line Balancing (RALB) 
problem. The authors defined a robotic assembly line, 
where robots with different capabilities and 
specializations were assigned to the assembly tasks. 
Various procedures for adapting the genetic algorithm 
to the RALB problem, such as a local optimization (hill 
climbing) work-piece exchange procedure, were 
introduced. Tests were conducted on a set of randomly-
generated problems to determine the most effective 
genetic algorithm procedure, based on the best 
combination of parameters. 

 
Table 3: Summary of the previous research 
References Problem type Tools 
Falkenauer and Delchamber (1992) SALB Type-1  Grouping genetic algorithm 
Leu et al. (1994) SALB Type-1 Genetic algorithm with heuristic procedures 
Anderson and Ferris (1994) SMALB Type-2 Genetic algorithm 
Rubinovitz and Levitin (1995) SALB Type-2 Genetic algorithm 
Tsujimura et al. (1995) GALB (SMALB Type-1) Genetic algorithms 
Kim et al. (1996) SMALB Type-1, 2, 3, 4, 5 Genetic algorithm 
Suresh et al. (1996) GALB (SMALB Type-1) Genetic algorithm with stochastic processing times 
Falkenauer (1997) GALB (SMALB Type-1) Grouping genetic algorithm 
Ajenblit and Wainwright (1998) GALB (U-shape SMALB Type-1) Genetic algorithms 
Chan et al. (1998) GALB (SMALB Type-1) Genetic algorithm 
Kim et al. (1998a) SALB Type-2 Genetic algorithm 
Rekiek et al. (1999) SALB equal piles Grouping genetic algorithm based on Equal Piles approach 
Rekiek et al.(2001) Multi-objective ALB Grouping genetic algorithm 
Bautista et al. (2000) SALB Type-1, Type-2 GRASP with genetic algorithm and GRWASP with 
  genetic algorithm 
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Table 3: Continued 
Kim et al. (2000) GALB (SMALB Type-1) Genetic algorithm 
Ponnambalam et al. (2000) SMALB Type-1 Multi-objective genetic algorithm 
Sabuncuoglu et al. (2000) SMALB Genetic algorithm with dynamic partitioning 
Carnahan et al. (2001) SALB Type-2 Ranking heuristic 
  Combinatorial of genetic algorithm 
  Problem space of genetic algorithm (better than the others) 
Simaria and Vilarinho (2001a; 2001b) GALB (MMALB Type-2) Genetic algorithm  
 SMALB Type-2 Simulated annealing 
Chen et al. (2002) GALB (assembly planning Type-2) Genetic algorithm 
Goncalves and De Almeida (2002) SALB Type-1 Hybrid genetic algorithm (combination of heuristic 
  priority rules with genetic algorithm) 
Miltenburg (2002) GALB (MMALB and sequencing Genetic algorithm 
 simultaneously Type-1) 
Valente et al. (2002) GALB (SMALB Type-2) Genetic algorithm 
Hui et al. (2002) SALBP Fuzzy logic-based system 
Zha and Lim (2002) Intelligent design and planning of manual Neuro-fuzzy 
 assembly workstation 
Brudaru and Valmar (2004) GALB (SMALB Type-1) Hybrid genetic algorithm (combined branch and bound 
  with genetic algorithm) 
Martinez and Duff (2004) GALB (U-shape SMALB Type-1) 10 heuristic rules with genetic algorithm 
Simaria and Vilarinho (2004) GALB (MMALB Type-2) Iterative genetic algorithm based search procedure 
Stockton et al. (2004) SALB Type-1 Genetic algorithm 
 SMALB Type-1 Genetic algorithm with computational experiments 
Brown and Sumichrast (2005) SALB Type-1 Genetic algorithm  
  Grouping genetic algorithm (better than the others) 
Fonseca et al. (2005) Stochastic SALBP Fuzzy representation of the time variables as viable 
  alternative method 
Levitin et al. (2006) GALB (SMALB Type-2 for RALB) Genetic algorithm 
Noorul Haq et al. (2006) GALB (MMALB Type-1) Hybrid genetic algorithm (incorporated the solution from 
  the modified RPW method into genetic algorithm) 
Kara et al. (2009) Straight and U-shape ALBP Binary fuzzy goal programming model 

 
 Noorul Haq et al., (2006) proposed a hybrid 
genetic algorithm for solving MMALB Type-1 
problems. They incorporated the solution from the 
Modified RPW (MRPW) method into the genetic 
algorithms randomly-generated initial population to 
reduce the search space within the global search space. 
It was noted that this integration reduced the search 
time. The authors illustrated the implementation of a 
hybrid genetic algorithm approach on seven problems 
and compared the results with the MRPW and the 
standard genetic algorithm. The results showed that the 
proposed approach performed better than the standard 
genetic algorithm. The following Table 3 presents the 
summaries of the previous work regarding assembly 
line balancing and the uses of genetic algorithms in 
solving the problems. 

 
CONCLUSION 

 
 Assembly line balancing involves numerous 
problems such as costs, quality, environmental impact, 
safety, workers, products, reliability, accuracy, 
robustness of the system and others. In order to make 
the system stable and balanced, a good manager should 
take care of all the factors influencing assembly line 

balancing, since the first-time installation or when it is 
needed to reconfiguration them. As an approach, soft 
computing differs from a traditional method, such a 
conventional or hard computing, in that soft computing 
approaches are tolerant of imprecision, uncertainty, 
partial truth and approximation. In effect, the role 
model for soft computing is the human mind (Zadeh). 
With all the capabilities of soft computing, especially in 
optimizing and the simply use of it, make soft 
computing suitable for assembly line balancing 
problems that always attempt to optimize the system. 
The capabilities of soft computing in optimizing have 
been proven and it is better than hard computing. On 
the other hand, soft computing approaches make the 
optimization process simple to do than using the 
conventional one, which is impractical and 
computationally inefficient. 
 However, the fact is that soft computing has been 
used by many researches and among the approaches, 
fuzzy logic and genetic algorithms are already being 
used in solving assembly line balancing problems and 
genetic algorithms have become the most used method 
in solving assembly lines balancing problems. The use 
of genetic algorithms received increasing attention from 
the researchers, since it provides an alternative to the 
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traditional optimization technique by using directed 
random searches to locate optimum solutions in 
complex landscapes (Tasan and Tunali, 2008). 
 In Table 3, it could be listed in the findings survey 
study, based on problem specifications. They could be 
listed as follows (Tasan and Tunali (2008) with few 
modifications): 
 
• Almost half of the papers surveyed focused on 

SALB, the simplest version of assembly line 
balancing problems, while others half-focused on 
GALB 

• Only four articles surveyed dealt with mixed-
model assembly line balancing. They are Simaria 
and Vilarinho (2001a); Simaria and Vilarinho 
(2004); Miltenburg (2002) and Noorul Haq et al. 
(2006) 

• One of the articles (Miltenburg, 2002) tried to 
solve balancing and sequencing problems of 
mixed-model assembly lines simultaneously 

• Few of the surveyed papers studied on Type-1 
problems which minimized the number of 
workstations and a few others studied on Type-2 
problems which minimized the cycle time, but four 
of them (Kim et al., 1996; Bautista et al., 2000; 
Rekiek et al., 2002; Ponammbalam et al., 2000) 
considered the multi object 

• Only two articles by Suresh et al. (1996) and 
Fonseca et al. (2005) dealt with stochastic; another 
three, by Tsujimura et al. (1995); Brudaru and 
Valmar (2004) and Kara et al. (2009) dealt with 
fuzzy and all the others dealt with deterministic 
processing times 

• Only one article, by Rubinovitz and Levitin (1995), 
dealt with workstation-dependent and another one 
by Falkenauer (1997) dealt with resource-
dependent deterministic processing times 

• Only one article, by Bautista et al. (2000), 
considered the incompatibilities between tasks 

• Only one article, by Carnahan et al. (2001), 
considered the physical demands placed on 
workers during assembly line balancing 

• Only one article, by Levitin et al. (2006), 
considered RALB problems, where robots have 
different capabilities and specializations 

• Only one article, by Hui et al. (2002), considered 
the ability of the assembly line to reach target 
production output more consistently by a proposed 
fuzzy logic operator allocation-based approach 

• Only one article, by Kara et al. (2009), considered 
straight assembly line balancing and a U-shaped 
model using binary fuzzy goal programming 

 However, it is noted that most of the researchers 
focused on SALB, the simplest version of the problem 
with a single objective and ignore the recent trends, i.e., 
mixed-model production and U-shaped lines in the 
complex manufacturing environments, where ALBP are 
multi-objective in nature. So, it is clearly known and 
seen that most of the previous researches of assembly 
lines balancing did not take into account the human 
factor. It’s obvious that human factors influence the 
balancing of assembly lines, since there are still many 
jobs that prefer to be assigned to human beings, 
although automated production systems are most 
widely used. Akagi et al. (1983) were the first research 
to pay attention to it. They proposed a method called 
the Parallel Assignment Method (PAM) which is an 
alternative way to increase the production rate (hence 
lowering the cycle time) by assigning multiple workers 
to one workstation. The experimental results showed 
that practical problems which cannot be solved by serial 
line balancing methods are provided and solved by 
explaining the effectiveness of PAM and could be use 
to achieve a higher production rate. However, since 
then, there is very few researchers have achieved the 
same results or have developed Akagi et al.’s (1983) 
work further. Another finding also been made during 
this survey study. There are a many reasons which 
make genetic algorithms become one of the promising 
optimization techniques in solving assembly lines 
balancing problems even better than others in some 
cases. A few of them are listed in Table 4. 
 
Closing/Recommendation: This study has presented 
a survey study of assembly lines balancing, the 
problem classifications and their characteristics. A 
review on the uses of soft computing approaches in 
assembly line balancing is presented too, as the main 
concern of this study. This study shows the great 
effort made by many researchers to prove the 
capability of soft computing approaches in solving the 
line balancing problem, rather than using traditional 
methods such as mathematical modeling and other 
heuristic methods. This study also shows the importance 
of researching assembly line balancing. Regarding the 
review of previous works on assembly line balancing, 
this study shows that among the soft computing 
approaches, GAs have been used predominantly in 
solving assembly line balancing problems, especially 
the simplest ones. However, in contrast to the high 
suitability of genetic algorithms in assembly line 
balancing for multi-objective problems, some researchers 
(such as Kim et al., 1996; Ponnambalam et al., 2000) 
have proved that GA’s computation time is 
considerably longer. On the other hand, the multi-
objective  problems  of assembly line balancing are 
the  most  current  issues   that   need   to   be   addressed. 
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Table 4: List of other findings regard the uses of genetic algorithm in assembly line balancing 
Researchers Facts about genetic algorithms 
Rubinovitz and A few previous researches have produced several good methods and algorithms for solving assembly lines balancing 
Levitin (1995) problems, but most of the methods and algorithms suggested just one solution for assembly lines balancing problems 
 (Talbot, 1986). However, in reality, assembly line design needs to investigate alternative solutions, where preference for
 work allocation to stations is considered, or constraints other then technological precedence are taken into account. Therefore, 
 genetic algorithms are used, since it has the ability to generate multiple solutions to assembly lines balancing problems. The  
 ability of GAs have been compared to the one of optimization techniques, namely MUST (multiple solutions technique 
 (Dar-El and Rubinovitz, 1979)) which can also generate multiple solutions to assembly lines balancing problems, as Gas 
 do. The results show that GAs are faster than MUST algorithms in generating solutions, even for assembly lines balancing 
 problems with large number of stations and a high flexibility ratio. 
 Genetic algorithm-based assembly line balancing algorithms allows for balancing a line where task times are 
 station-independent. 
 The main characteristic of genetic algorithms which robustness implies high independence between the search process 
 and the problem complexity or size. 
 The procedures solution quality evaluation may be easily changed or modified, providing a desirable flexibility to consider 
 and elements and factors of real assembly line design and balancing. 
Kim et al. (1996) A genetic algorithms representation suitable to a wide variety of ALB problems, including multiple objective cases. 
 An efficient decoding method for individual representation of sequence alternatives. 
 A simple and effective repair method to preserve the solution’s feasibility. 
 The combinations of genetic operators for various single objectives and 
 In the case of multiple objectives, a selection scheme to produce diverse non-dominated solutions. 

Ajenblit and Genetic algorithms provide the ability to find one or more optimum sequences among 
r

m!

2
 possible task sequences with 

Wainwright (1998) m tasks and r ordering constraints than there are, while it is nearly impossible to obtain an efficient solution using a 
 deterministic algorithm. 
Rekiek et al. (1999) The classical assembly lines balancing approach tends to group operations under precedence and cycle time constraints. 
 This generally does not yield to a desired number of balanced stations. As no efficient computational methods leading to 
 the exact solution are known for the proposed problem, generally a heuristic method, namely a Grouping Genetic Algorithm 
 (GGA) is used to tackle it. 
Kim et al. (2000) A genetic algorithm is a proper strategy for solving the two ALB problems. Not only does GA find good quality solutions 
 quickly to such complex problems, but it is able to readily deal with constraints imposed on by the features of two-sided lines. 
 Therefore, a new GA, a genetic encoding and decoding scheme and genetic operators suitable for the problem are devised. 
Sabungcuoglu et al. The common characteristic of all the heuristic search methodologies is the use of problem-specific knowledge intelligently 
(2000) to reduce the search efforts. In this context, GAs are intelligent random search mechanisms that are applied to various 
 combinatorial optimization problems, such as scheduling, TSP and ALB. 
 GA can be used as a very effective search technique in solving difficult problems because of its ability to move from one  
 solution set to another and its flexibility to incorporate the problem-specific characteristics. 
 GAs are adaptive methods which can be used to solve optimization problems.  
 In general, the power of GAs comes from the fact that the technique is robust and can deal with a wide range of problem 
 areas. Although GAs are not guaranteed to find the optimal solution, they generally find good solutions within reasonable 
 computational requirements. 
 The effective use of GAs in the solution of combinatorial optimization problems, working specifically on the ALB problem. 
 The ability of GAs to consider a variety of objective functions is regarded as the major feature of GAs. 
 Some of the characteristics of GA devise with the inspiration of the ALB system. 
  Coding: Each task is represented by a number that is placed on a string (i.e., chromosome) with the string size equal to 
  the number of tasks. The tasks are ordered on the chromosome, relative to their order of processing. Then the tasks are 
  allocated into stations, such that the sum of the task times in each station does not exceed the cycle time. 
  Fitness function: The objective of the ALB problem considered. 
  Initial population: The initial population is generated randomly by assuring feasibility of precedence relations. 
  Crossover and mutation: The major reason that makes this crossover operator very suitable for ALB is that it assures 
  feasibility of the offspring. Since both parents are feasible, both children must also be feasible. Keeping a feasible 
  population is a key to the ALB problem, since preserving feasibility drastically reduces computational effort. The 
  mutation operator of Leu et al. (1994) is scramble mutation; that is, a random cut-point is selected and the genes after 
  the cut-point are randomly replaced (scrambled), assuring feasibility. 
  Elitism, i.e., replacing a parent with an offspring only if the offspring is better than the parent, is applied to both the 
  crossover and the mutation procedures. Both of these operators are the same as Leu et al.’s (1994) crossover and 
  mutation operators. 
  Scaling: The objective is to minimize the fitness scores, then it needs to assign the highest scaled fitness score to the  
  lowest fitness score and vice versa, to assign a probability of selection that is proportional to the fitness of chromosomes. 
  Selection Procedure: Each chromosome, consisting of an interval proportional to its scaled fitness score, are placed next 
  to each other on the [0,1] interval. Then, a uniform random number in the [0,1] interval is generated and the 
  chromosome which is assigned to the interval corresponding to the random number is selected. This procedure selects 
  chromosomes proportional to their fitness scores. 
  Stopping Condition: The algorithm terminates after a certain number of iterations. 
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Finally, this study also provides information to 
researchers about the problems in assembly line 
balancing which have been solved and also the ones 
that are still in progress. This study recommends the 
following for future research: The human involvement 
in assembly line balancing needs to be considered as a 
problem factor; there are still opportunities to use soft 
computing approaches that have other advantages 
compared to genetic algorithms, especially for multi-
objective problems; to increase the suitability of soft 
computing approaches, with the hybrid system being 
one possibility. 
 

ACKNOWLEDGMENT 
 
 The researchers honorably appreciate the 
Malaysian Ministry of Higher Education (MOHE) for 
the FRGS grant vote number 78366, Malaysian 
Ministry of Science, Technology and Innovation 
(MOSTI) and the Research Management Centre (RMC) 
of University Technology Malaysia (UTM) for the 
support in making this project successful. The authors 
also would like to express their cordial thanks to the 
reviewers for their valuable comments. 
 

REFERENCES 
 
Ahmadi, R. H. and H. Wurgaft, 1994. Design for 

synchronized flow manufacturing. Manage. Sci., 
40: 1469-1483. DOI: 10.1287/mnsc.40.11.1469 

Ajenblit, D.A. and R.L. Wainwright,1998. Applying 
genetic algorithms to the u-shaped assembly line 
balancing problem. Proceeding of the 1998 IEEE 
International Conference on Evolutionary 
Computation, May 4-9, IEEE Xplore Press, 
Anchorage, Alaska, USA., pp: 96-101. DOI: 
10.1109/ICEC.1998.699329 

Akagi, F. H., Osaki and S. Kikuchi, 1983. A method for 
assembly line balancing with more than one worker 
in each station. Int. J. Prod. Res., 21: 755-770. 
DOI: 10.1080/00207548308942409 

Anderson and, E. J., M.C. Ferris, 1994. Genetic 
algorithms for combinatorial optimization: The 
assembly line balancing problem. ORSA J. 
Comput., 6: 161-173. DOI: 10.1287/ijoc.6.2.161 

Aytug, H. M., Khouja and F.E. Vergara, 2003. Use of 
genetic algorithms to solve production and 
operations management problems: A review. Int. J. 
Prod. Res., 41: 3955-4009. DOI: 
10.1080/00207540310001626319 

Bak, P. and K. Sneppen, 19993. Punctuated equilibrium 
and criticality in a simple model of evolution. 
Phys. Rev. Lett., 71: 4083-4086. DOI: 
10.1103/PhysRevLett.71.4083 

Bautista, J., R. Suarez, M. Mateo and R. Companys, 
2000. Local search heuristics for the assembly line 
balancing problem with incompatibilities between 
tasks. Proceedings of the IEEE International 
Conference on Robotics and Automation, Apr. 24-
28,  IEEE Xplore Press, San Francisco, pp: 2404-
2409. DOI: 10.1109/ROBOT.2000.846387 

Baybars, I.,1986. A survey of exact algorithms for the 
simple assembly line balancing problem. Manage. 
Sci., 32: 909-932. DOI: 10.1287/mnsc.32.8.909 

Becker, C. and A. Scholl, 2006. A survey on problems 
and methods in generalized assembly line 
balancing. Eur. J. Operat. Res., 168: 694-715. DOI: 
10.1016/j.ejor.2004.07.023 

Boettcher, S. and A.G. Persus, 2001. Optimization with 
extremal dynamics. Phys. Rev. Lett., 86: 5211-5214. 
DOI: 10.1103/PhysRevLett.86.5211 

Bonissone, P.P., 1997. Soft computing: The 
convergence of emerging reasoning technologies. 
Soft Comput., 1: 1-6. DOI: 
10.1007/s005000050002 

Bonabeau, E., M. Dorigou and G. Theraulaz, 2000. 
Inspiration for optimization from social insect 
behavior. Nature, 406: 39-42. 
DOI:10.1038/35017500. 

Bowman, E.H., 1960. Assembly line balancing by 
linear programming. Operat. Res., 8: 385-389. 
DOI: 10.1287/opre.8.3.385 

Brown, E.C. and R.T. Sumichrast, 2005. Evaluating 
performance advantages of grouping genetic 
algorithms. Eng. Appli. Artifi. Intel., 18: 1-12. 
DOI: 10.1016/j.engappai.2004.08.024 

Brudaru, O. and B. Valmar, 2004. Genetic algorithm 
with embryonic chromosomes for assembly line 
balancing with fuzzy processing times. Proceeding 
of the 8th International Research/Expert 
Conference Trends in the Development of 
Machinery and Associated Technology. Neum, 
Bosnia and Herzegovina. 

Boysen, N., M. Fliedner and A. Scholl, 2007. A 
classification of assembly line balancing problems. 
Eur. J. Operat. Res., 183: 674-693. DOI: 
10.1016/j.ejor.2006.10.010 

Boysen, N., M. Fliedner and A. Scholl, 2008. Assembly 
line balancing: Which model to use when. Int. J. 
Prod. Econ., 111: 509-528. DOI: 
10.1016/j.ijpe.2007.02.026 

Buxey, G.M. N.D. Slack and R. Wild, 1973. Production 
flow line system design-a review. AIIE Trans., 5: 
37-48. DOI: 10.1080/05695557308974880 

Carnahan, B.J., B.A. Norman and M.S. Redfern, 2001. 
Incorporating physical demand criteria into 
assembly line balancing. IIE Trans., 33: 875-887. 
DOI: 10.1080/07408170108936880 



J. Computer Sci., 6 (2): 141-162, 2010 
 

159 

Castro, L. N. and J. Timmis, 2002. An artificial 
immune network for multimodal function 
optimization. Proceedings of the IEEE Congress on 
Evolutionary Computation (CEC’02), IEEE Press, 
Hawaii, pp: 669-674. 

Chan, C.C.K., P.C.L. Hui, K.W. Yeung and F.S.F. Ng, 
1998. Handling the assembly line balancing 
problem in the clothing industry using a genetic 
algorithm. Intl. J. Cloth. Sci. Technol., 10: 21-37. 
DOI: 10.1108/09556229810205240 

Chang, C.T., 2007. Binary fuzzy goal programming. 
Eur. J. Operation. Res., 180: 29-37. DOI: 
10.1016/j.ejor.2006.03.030 

Chaudhari, N.S., Y.S. Ong and V. Trivedi, 2006. 
Computational capabilities of soft-computing 
frameworks: An overview. Proceeding of the 9th 
International Conference on Control, Automation, 
Robotics and Vision, Dec. 5-8, IEEE Xplore Press, 
Singapore, pp: 1-6. DOI: 
10.1109/ICARCV.345433 

Chong, E.K.P. and S.H. Zak, 2008. An Introduction to 
Optimization. 3rd Edn., Wiley-Inter Sciences 
Series in Discrete Mathematics and Optimization. 
New York, USA., ISBN: 0-471-75800-0, pp: 479. 

Chen, R.S., K.Y. Lu and S.C. Yu, 2002. A hybrid 
genetic algorithm approach on multi-objective of 
assembly planning problem, Eng. Appli. Artifi. 
Intel., 15: 447-457. DOI: 10.1016/S0952-
1976(02)00073-8 

Chow, W.M., 1990. Assembly Line Design: 
Methodology and Applications. 1st Edn., Marcel 
Dekker Inc., New York, USA., ISBN: 0-8247-
8322-0, pp: 121. 

Dar-El, E.M. and Y. Rubinovitz, 1979. MUST-a 
multiple solutions technique for balancing single 
model assembly lines. Manage. Sci., 25: 1105-
1114. DOI: 10.1287/mnsc.25.11.1105 

Davis, L.D., K. De Jong, M.D. Vose and L.D. Whitley, 
1999. Evolutionary Algorithms. In: The IMA 
Volumes in Mathematics and Applications, Davis, 
L.D., K. De Jong, M.D. Vose and L.D. Whitley 
(Ed.). Springer Verlag., Berlin, ISBN: 10: 
0387988262, pp: 191-206. 

Dimopoulos, C. and A.M. Zalzala, 2000. Recent 
developments in evolutionary computation for 
manufacturing optimization: Problems, solutions 
and comparisons. IEEE Trans. Evolut. Comput., 4: 
93-113. DOI: 10.1109/4235.850651 

Dubois, D. and H. Prade,1998. Soft computing, fuzzy 
logic and artificial intelligence. Soft computing-a 
fusion of foundations. Methodol. Appli., 2: 7-11. 
DOI: 10.1007/s005000050025 

Erel, E., S.C. Sarin, 1998. A survey of the assembly 
line procedures. Prod. Plann. Control, 9: 414-434. 
DOI: 10.1080/095372898233902 

Falkenauer, E. and A. Delchambre, 1992. A genetic 
algorithm for bin packing and line balancing. 
Proceedings of the 1992 IEEE International 
Conference on Robotics and Automation, Nice, 
France, pp: 1186-1192. DOI: 
10.1109/ROBOT.1992.220088 

Falkenauer, E., 1991. A genetic algorithm for grouping. 
Proceedings of the 5th International Symposium on 
Applied Stochastic Models and Data Analysis, 
Apr. 23-26,  Granada, Spain, World Scientific 
Publishing Co. Pte. Ltd., Singapore, pp: 198-206. 

Falkenauer, E.,1997. A grouping genetic algorithm for 
line balancing with resource dependent task times. 
Proceedings of the 4th International Conference on 
Neural Information Processing, Nov. 24-28, 
University  of  Otago,   Dunedin,  New Zealand, 
pp: 464-468. 

Falkenauer, E., 2005. Line balancing in the real world. 
Proceedings of the International Conference on 
Product Lifecycle Management, (PLM'05), 200x 
Inderscience Enterprises Ltd., pp: 360-370. 
http://www.optimaldesign.com/Download/OptiLin
e/FalkenauerPLM05.pdf 

Ferrero, J., 2000. Computing in science and 
engineering. Comput. Sci. Eng., 2: 94-97. DOI: 
10.1109/MCSE.2000.10027 

Fonseca, D.J., C.L. Guest, M. Elam and C.L. Karr, 
2005. A fuzzy logic approach to assembly line 
balancing. Mathware Soft Comput., 12: 57-74. 
http://dmle.cindoc.csic.es/pdf/MATHWARE_2005
_12_01_05.pdf 

Ghosh, S. and R.J. Gagnon, 1989. A comprehensive 
literature review and analysis of the design, 
balancing and scheduling of assembly systems. Int. 
J. Prod. Res., 27: 637-670. DOI: 
10.1080/00207548908942574 

Goldberg, D.E., 1989. Genetic Algorithms in Search. 
Optimization and Machine Learning. 1st Edn., 
Addison-Wesley Professional, ISBN: 10: 
0201157675, pp: 229. 

Gonçalves, J.F., J.R. De Almeida, 2002. A hybrid 
genetic algorithm for assembly line balancing. J. 
Heuristics., 8: 629-642. DOI: 
10.1023/A:1020377910258 

Grabau, M.R. and R.A. Maurer, 1998. Assembly line 
balancing when scarp impact the bottom line. Prod. 
Inventory Manage. J., 39: 16-21. 

Groover, M.P., 2008. Automation, Production System 
and Computer-Integrated Manufacturing. 3rd Edn., 
Prentice Hall International, Inc., Upper Saddle 
River, New Jersey, ISBN: 0-13-207073-1, pp: 375.  



J. Computer Sci., 6 (2): 141-162, 2010 
 

160 

Gunasekaran, A. and P. Cecile, 1998. Implementation 
of productivity improvement strategies in a small 
company. Technovation, 18: 311-320. DOI: 
10.1016/S0166-4972(98)00005-4 

Helgeson, N.B. and D.P. Birnie, 1961. Assembly line 
balancing using the ranked positional weight 
technique. J. Ind. Eng., 12: 394-398. 

Held, M., R.M. Karp and R. Shareshian, 1963. 
Assembly line balancing-dynamic programming 
with     precedence   constraints.   Operat.   Res., 
11: 442-459. DOI: 10.1287/opre.11.3.442 

Hippert, H. S., C.E. Pedreira and R.C. Souza, 2001. 
Neural networks for short-term load forecasting: A 
review and evaluation. IEEE. Trans. Power Syst., 
16: 44-55. DOI: 10.1109/59.910780 

Hui, P.C.L., C.C. Keith, K.W. Chan, Yeung and S.F. Frency, 
N.G., 2002. Fuzzy operator allocation for balance 
control of assembly lines in apparel manufacturing. 
IEEE Trans. N.  Eng.   Manage., 49: 173-180. DOI: 
10.1109/TEM.2002.1010885 

Jackson, J.R., 1956. A computing procedure for a line 
balancing problem. Manage. Sci., 2: 261-272. DOI: 
10.1287/mnsc.2.3.261 

Karp, R.M., 1972. Reducibility among Combinatorial 
Problems. In: Complexity of Computer 
Computations, Miller, R.E. and J.W. Thatcher 
(Eds.). Plenum Press, New York, pp: 85-133. 

Kara, Y., T. Paksoy and C.T. Chang, 2009. Binary 
fuzzy goal programming approach to single model 
straight and u-shaped assembly line balancing. Eur. 
J. Operat. Res., 195: 335-347. DOI: 
10.1016/j.ejor.2008.01.003 

Khotanzad, A., R.A. Rohani and D. Maratukulam, 
1998. ANNSTLF-artificial neural network short-
term load forecaster-generation three. IEEE Trans. 
Power Syst., 13: 1413-1422. DOI: 
10.1109/59.736285 

Kim, Y.K., Y.J. Kim and Y.H. Kim, 1996. Genetic 
algorithms for assembly line balancing with 
various objectives. Comput. Ind. Eng., 30: 397-
409. DOI: 10.1016/0360-8352(96)00009-5Kimms, 
A., 2000. Minimal investment budgets for flow line 
configuration. IIE Transactions, 32: 287-298. DOI: 
10.1080/07408170008963907 

Kim, Y. K., Y. Kim and T.O. Lee, 1998. Two-sided 
assembly line balancing models. Technical report, 
department of industrial engineering. Chonnam 
National University, Korea. Cited in. DOI: 
10.1016/S0360-8352(01)00029-8 

Kim, Y.J., Y.K. Kim and Y. Cho, 1998. A heuristic-
based genetic algorithms for workload smoothing 
in assembly lines. Comput. Operat. Res., 25: 99-
111. DOI: 10.1016/S0305-0548(97)00046-4 

Kim, Y.K., Y. Kim and Y.J. Kim, 2000. Two-sided 
assembly line balancing: A genetic algorithm 
approach. Prod. Plann. Control., 11: 44-53. DOI: 
10.1080/095372800232478 

Lebefromm, U., 1999. Produktions Management. 4th 
Edn., Einführung MIT Beispielen Aus SAP R/3., 
Oldenbourg. München, ISBN: 10: 3486273523, pp: 3. 

Leu, Y.Y., L.A. Matheson and L.P. Rees, 1994. 
Assembly line balancing using genetic algorithms 
with heuristic generated initial populations and 
multiple criteria. Dec. Sci., 25: 581-606. DOI: 
10.1111/j.1540-5915.1994.tb01861.x 

Levitin, G., J. Rubinovitz and B. Shnits, 2006. A 
genetic algorithm for robotic assembly line 
balancing. Eur. J. Operat. Res., 168: 811-825. DOI: 
10.1016/j.ejor.2004.07.030 

Lusa, A., 2008. A survey of the literature on the 
multiple or parallel assembly line balancing 
problem. Eur. J. Ind. Eng., 2: 50-72. DOI: 
10.1504/EJIE.2008.016329 

Martinez, U. and W.S. Duff, 2004. Heuristic 
approaches to solve the u-shaped line balancing 
problem augmented by genetic algorithms. 
Proceedings of the IEEE Systems and Information 
Engineering Design Symposium, Apr. 16-16, IEEE 
Xplore Press, Charlottesville, VA., pp: 287-293. 
DOI: 10.1109/SIEDS.2004.239976 

Meyers, F.E. and M.P. Stephens, 2005. Manufacturing 
Facilities Design and Material Handling. 3rd Edn., 
Prentice Hall, Pearson Education Upper Saddle 
River, NJ., ISBN: 0131125354, pp: 106. 

Miltenburg, J., 2002. Balancing and sequencing mixed-
model u-shaped production lines. Int. J. Flex. 
Manuf. Syst., 14: 119-151. DOI: 
10.1023/A:1014434117888 

Mitchell, M., J.P. Crutchfield and P.T. Hraber, 1994. 
Evolving cellular automata to perform 
computations: Mechanisms and impediments. 
Phys. D., 75: 361-391. DOI: 10.1016/0167-
2789(94)90293-3 

Noorul, H.A., J. Jayaprakash and K. Rengarajan, 2006. 
A hybrid genetic algorithm approach to mixed-
model assembly line balancing. Int. J. Adv. Manuf. 
Technol., 28: 337-341. DOI: 10.1007/s00170-004-
2373-3 

Ong, Y.S. and A.J. Keane, 2004. Meta-lamarckian 
learning in memetic algorithm. IEEE Trans. 
Evolut. Comput., 8: 99-110. DOI: 
10.1109/TEVC.2003.819944 

Ong, Y. S., M.H. Lim, N. Zhu and K.W. Wong, 2006. 
Classification of adaptive memetic algorithms: A 
comparative study. IEEE Trans. Syst. Man 
Cybern.-Part B., 36: 141-152. 
http://ieeexplore.ieee.org/iel5/3477/33385/0158062
5.pdf 



J. Computer Sci., 6 (2): 141-162, 2010 
 

161 

Ovaska, S.J. and B. Sick, 2006. Fusion of Soft 
Computing and Hard Computing: Applications and 
Research Opportunities. In: Computational 
Intelligence: Principles and Practice, Yen, G.Y. 
and D.B. Fogel (Eds.). IEEE Computational 
Intelligence Society, USA., ISBN: 0-9787135-0-8, 
pp: 47-72. 

Pinkus, A., 1999. Approximation theory of the MLP 
model in neural networks. Acta, 8: 143-196. DOI: 
10.1017/S0962492900002919 

Ponnambalam,  S.G.,   P.   Aravindan,   G. Naidu and 
G. Mogileeswar, 2006. Multi-objective genetic 
algorithm for solving assembly line balancing 
problem. Int. J. Adv. Manuf. Technol., 16: 341-352. 
DOI: 10.1007/s001700050166 

Pitts, W.H. and W.S. Mc Culloch, 1947. How we know 
universals: The perception of auditory and visual 
forms. Bull. Math. Biophys., 9: 127-147. DOI: 
10.1007/BF02478291 

Rekiek, B., P. de Lit, F. Pellichero, E. Falkenauer and 
A. Delchambre, 1999. Applying the equal piles 
problem to balance assembly lines. Proceedings of 
the 1999 IEEE International Symposium on 
Assembly and Task Planning, July 21-24, IEEE 
Xplore Press, Porto, Portugal, pp: 399-404. DOI: 
10.1109/ISATP.1999.782991 

Rekiek,  B.,  P.  de  Lit,  F. Pellichero, T.L. Eglise and 
P. Fouda et al., 2001. A multiple objective 
grouping genetic algorithm for assembly line 
design. J. Intl. Manufactur., 12: 467-485. DOI: 
10.1023/A:1012200403940 

Rekiek, B. and A. Delchambre, 2001. Assembly line 
balancing and resource planning: What is done and 
what is still missing. Proceedings of the 17th 
International Conference on CAD/ACM and 
Factory of the Future (CARS and FOF), Durban, 
South Africa, pp: 86-93.  

Rekiek, B., A. Dolgui, A. Delchambre and A. Bratcu, 
2002. State of art of optimization methods for 
assembly line design. Annu. Rev. Control., 26: 
163-174. DOI: 10.1016/S1367-5788(02)00027-5 

Rubinovitz, J. and G. Levitin, 1995. Genetic algorithm 
for assembly line balancing. Int. J. Prod. Econ., 41: 
343-354. DOI: 10.1016/0925-5273(95)00059-3 

Sabuncuoglu, I., E. Erel and M. Tanyer, 2000. 
Assembly line balancing using genetic algorithms. 
J. Intel. Manuf., 11: 295-310. DOI: 
10.1023/A:1008923410076 

Salveson, M.E., 1955. The assembly line balancing 
problem. J. Ind. Eng., 6: 18-25. DOI: 10.1007/978-
1-84800-181-7_7 

Simaria, A.S. and P.M. Vilarinho, 2001. A genetic 
algorithm approach for balancing mixed model 
assembly lines with parallel workstations. 
Proceedings of the 6th Annual International 
Conference on Industrial Engineering Theory, 
Applications and Practice, (IETAP’01), San 
Francisco, USA., pp: 1-30. 

Simaria, A.S. and P.M. Vilarinho, 2001. The simple 
assembly line balancing problem with parallel 
workstations-a simulated annealing approach. Intl. 
J. Ind. Eng., 8: 230-240.  

Simaria, A.S. and P.M. Vilarinho, 2004. A genetic 
algorithm based approach to mixed model 
assembly line balancing problem of type II. 
Comput. Ind. Eng., 47: 391-407. DOI: 
10.1016/j.cie.2004.09.001 

Scholl, A. and R. Klein, 1999. Balancing assembly 
lines effectively: A computational comparison. 
Eur. J. Operat. Res., 114: 50-58. DOI: 
10.1016/S0377-2217(98)00173-8 

Scholl, A., 1999. Balancing and Sequencing of 
Assembly Lines. 2nd Edn., Physica-Verlag, 
Heidelberg, ISBN: 3-79808-1180-7, pp: 20. 

Scholl, A. and C. Becker, 2006. State of the art exact 
and heuristic solution procedures for simple 
assembly line balancing. Eur. J. Operat. Res., 168: 
666-693. DOI: 10.1016/j.ejor.2004.07.022 

Shtub, A. and E.M. Dar-El,1989. A methodology for 
the selection of assembly systems. Int. J. Prod. 
Res., 27: 175-186. DOI: 
10.1080/00207548908942537 

Stockton, D.J., L. Quinn and R.A. Khalil, 2004. Use of 
genetic algorithms in operations management part 
1: Applications. Proc. Institut. Mech. Eng.-Part B. 
J.  Eng.  Manuf., 218: 315-327. DOI: 
10.1243/095440504322984867 

Stockton, D.J., L. Quinn and R.A. Khalil, 2004. Use of 
genetic algorithms in operations management part 
2: Results. Proc Institut. Mech. Eng.-Part B. J.  
Eng.  Manuf., 218: 329-343. DOI: 
10.1243/095440504322984876 

Suresh, G., V.V. Vinod and S. Sahu, 1996. A genetic 
algorithm for assembly line balancing. Prod. Plann. 
Control., 7: 38-46. DOI: 
10.1080/09537289608930323 

Talbot, F.B., J.H. Patterson and W.V. Gehrlein, 1986. A 
comparative evaluation of heuristic line balancing 
techniques. Manage. Sci., 32: 430-454. DOI: 
10.1287/mnsc.32.4.430 

Tasan, S.O. and A. Tunali, 2008. A review on the 
current of genetic algorithm in assembly line 
balancing. Int. J. Manuf., 19: 49-60. DOI: 
10.1007/s10845-007-0045-5 



J. Computer Sci., 6 (2): 141-162, 2010 
 

162 

Tempelmeier, H., 2003. Practical considerations in the 
optimization of flow production systems. Int. J. 
Prod. Res., 41: 149-170. DOI: 
10.1080/00207540210161641 

Tsujimura, Y., M. Gen and E. Kubota, 1995. Solving 
fuzzy assembly line balancing using genetic 
algorithms. Comput. Ind. Eng., 29: 543-547. DOI: 
10.1016/0360-8352(95)00131-J 

Turing, A.M., 1937. Computability and lambda-
definability. J. Symbol. Logic, 2: 153-163. 
http://projecteuclid.org/euclid.jsl/1183383711 

Turchin, F.V.,1993. Program transformation with 
metasystem transitions. J. Funct. Programm., 3: 
283-313. DOI: 10.1017/S0956796800000757 

Turchin, F.V., 1996. Meta-computation: Meta-system 
transitions plus super-compilation. Lecture Notes. 
Comput. Sci., 1110: 481-509. DOI: 10.1007/3-540-
61580-6_24 

Turchin, F.V., 1996. Super-compilation:  Techniques 
and results. Lecture Notes. Comput. Sci., 1181: 
227-248. DOI: 10.1007/3-540-62064-8_20 

Valente, S.A., H.S. Lopes and L.V.R. Arruda. Genetic 
Algorithms for the Assembly Line Balancing 
Problem: A Real-World Automotive Application. 
In: Soft Computing in Industry-Recent 
Applications,  Roy, R., M. Köppen, S. Ovaska, T. 
Fukuhashi and F. Hoffman (Eds.). Springer-Verlag, 
Berlin, ISBN: 1-85233-539-4, pp: 319-328. 

Urban, T.L., 1998. Optimal balancing of u-shaped 
assembly lines. Manage. Sci., 44: 738-741. DOI: 
10.1287/mnsc.44.5.738 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Veeramani, R., 2001. Assembly Line Balancing. IE 
415, http://ecow.engr.wisc.edu/cgi- 
bin/get/ie/415/veeramani/courseoutline2001.pdf 

Wild, R., 1972. Mass-production Management: The 
Design and Operation of Production Flow-Line 
Systems. Jhon Wiley and Sons Ltd, London, ISBN-
10: 047194405X, ISBN-13: 978-0471944058 
1972, pp: 135. 

Weisstein, E.W., Decision Problem. Mathworld-A 
Wolfram Web Resource. CRC Press and Wolfram 
Research, Inc.   

 http://mathworld.wolfram.com/DecisionProblem.ht
ml 

Yaman, R., 2008. An assembly line design and 
construction for a small manufacturing company. 
Assembly Automat., 28: 163-172. DOI: 
10.1108/01445150810863743 

Ying, H.Y., S. Ding, Li and S. Shao, 1999. Comparison 
of necessary conditions for typical takagi-sugeno 
and mamdani fuzzy systems as universal 
approximators. IEEE Trans. Syst. Man Cybernet. 
Part A., 29: 508-514. 
http://ieeexplore.ieee.org/iel5/3468/17007/0078417
7.pdf 

Zhang, G., B.E. Patuwo and M.Y. Hu, 1998. 
Forecasting with artificial neural networks: The 
state of the artfi. Int. J. Forecast., 14: 35-62. DOI: 
10.1016/S0169-2070(97)00044-7 

 
 
 


