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Abstract: As part of manufacturing systems, the assembby tias become one of the most valuable
researches to accomplish the real world probleraect to them. Many efforts have been made to
seek the best techniques in optimizing assembégsliPr oblem statement: Since it was published by
Salveson in 1955, some methods and techniques bheee developed based on mathematical
modeling. In recent years, some researches in Asdgdnme Balancing (ALB) have been conducted
using Soft Computing (SC) approaches. Howevergtieeno comprehensive survey studies conducted
regarding the use of SC in ALB problems, which éxdme the aim of this studgpproach: This
study reviewed published literatures and previoceisted works that applied SC in solving ALB
problems. Main outcomes: This study looks into shéability of SC approaches in several types of
ALB problems. Furthermore, this study provides thassification of ALB problems that can facilitate
distinguishing those problems as fields of resedRelult: This study found that Genetic Algorithms
(GAs) are predominantly applied to solve ALB prabfecompared to other SC approaches. This high
suitability in ALB refers to GAs’ main characteitst that include its robustness and flexibility.eBb

SC approaches have mostly been applied to simpRB pdoblems, which are not problems that are
covered in a real complex manufacturing environm@uinclusion/Recommendations: This study
recommends that future researches in ALB shoulcopelucted with regard to other issues, beyond the
simple ALB problems and more practical to the iridas. Besides the advantages of GAs, there are
still opportunities to use other SC approachesthachybrid-systems among them that could increase
the suitability of these approaches, especially rfardti-objective ALB problems. This study also
recommends that human involvement in ALB needsetadnsidered as a problem factor in ALB.
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INTRODUCTION system. It is both an old problem and a new problem
due to the fact that many researchers still attetopt
A manufacturing system could be defined as astumble on optimized ways, methods or techniques to
collection of integrated equipment (including assembly lines balancing.
production machines and tools, material handlind an Balancing assembly lines becomes one of the most
work-positioning devices and computer systems) andmportant parts for an industrial manufacturingteys
human resources, whose function is to perform ane ahat should be supervised carefully. The success of
more processing and/or assembly operations on raachieving the goal of production is influenced
materials, a part, or set of parts (Groover, 2008jhis  significantly by balancing assembly lines. Sincenth
system, human resources are required either fud br  many industries and for sure researchers, attesnfotd
periodically to keep the system running. There areghe best methods or techniques to keep the assdimibly
seven systems included in a manufacturing systeey. t balanced and even to make it more efficient.
are; taxonomy, single-station cells, group techggl@  Furthermore, this problem is known as an assennig |
flexible manufacturing system, manual assemblysline balancing problem. As there are many researchds tha
automated assembly lines and transfer lines. Ia thihave been performed, few techniques and methods hav
study, the discussion will focus on an assemblg lin been used in solving the optimization problems.yTare
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based on mathematical modeling, such as the use ahd second order methods, gradient descent (aka
linear programming and then the latest are basethen steepest descent or steepest ascent), interiort poin
soft computing approach, with the more famous onemethods, line search method, Newton's method, quasi

being the use of genetic algorithms. Newton methods, subgradient method-similar to
gradient method in case there are no gradients and
MATERIALSAND METHODS many others. Constrained problems can often be

transformed into unconstrained problems with thip he

Optimization could be defined as the effort, way,of Lagrange multipliers. Few other popular methods
technique, method or system to use for calculating such as ant colony optimization, beam search, bee
finding the best possibilities of utilization ofs@urces algorithms, differential evolution, dynamic relaixet,
(which can be people, time, process, vehiclesgvolution strategy, genetic algorithms, harmonyaea
equipment, raw materials, supplies and others) eged hill climbing, particle swarm optimization, quantum
to achieve an expected result, with it being thet be annealing, simulated annealing, stochastic tungelin
possible solution to the problem. In mathematibg, t and Tabu search. However, among those methods,
simplest case of optimization, or mathematicalgenetic algorithms, which are part of soft compgtin
programming, refers to the study of problems inalthi approaches, is the most used technique today for
one seeks to minimize or maximize a real functign b optimization matters, even compared with other soft
systematically choosing the values of real or iateg computing approaches. It is because genetic afgosit
variables from within an allowed set. The first provide an alternative to traditional optimization
optimization technique, which is known as steepestechniques by using directed random searches &idoc
descent, goes back to Gauss. Historically, theétérsn  optimum solutions in complex landscapes.
to be introduced was ‘linear programming’, whichswa In this study, a survey study of soft computing
invented by George Dantzig in the 1940s. The ternapplications in assembly line balancing is presknte
‘programming’ in this context does not refer to The survey study focused on the efforts of previous
computer programming (although computers areworks in finding the best techniques to optimize
nowadays used extensively to solve mathematicahssembly lines based on soft computing approaches.
problems). Instead, the term comes from the use dfurthermore, this study is looking for the suitafibf
program by the United States military to refer toSC approaches in several types of ALB problems.
proposed training and logistics schedules, whichewe The discussions of this study are managed as
the problems that Dantzig was studying at the tinfee  follow. At first, we present an overview of thisudy
wide variety of applications benefiting from and explain a few definitions and facts about
optimization include: Production planning and optimization problems and the techniques used. We
scheduling, raw material blending, yield and rewenu continue the discussion by detailing the assenihbsl
management, crew scheduling, financial portfoliobalancing, including its characteristics, layout,
management, product configuration, technician angroblems classification, and its role in manufaicigr
truck dispatching, satellite mission planning atldeos. A brief discussion of soft computing and its gehera
However, for those kinds of applications, there arecapabilities is presented, and furthermore the soft
many techniques and methods used for optimizatiowomputing applications in assembly lines balanasg
purpose and basically they are divided accordindnéo the core this survey. At the end of this criticabiew,
number of variables involved, which are called &ng we present our conclusion and recommendation for
Variable Optimization (SVO) and Multi-Variable future researches.

Optimization (MVO).

Another literature (Chong and Zak, 2008) statedAssembly line balancing: we brief an introduction in
the optimization problems are divided into two te4c here to get more understanding about assembly lines
differentiable functions: Constrained and unconsé@ balancing. The discussions cover basic knowledge
problems. Unconstrained problems can be solved bgbout assembly lines, a few definitions, charasties,
finding the points where the gradient of the object problems classifications and the important of agdgm
function is zero and using the Hessian matrix #ssify  lines balancing.
the type of each point. The existence of derivatiie
not always assumed and many methods were devisgtssembly lines and the balancing problem: There are
for specific situations. The basic classes of m#dho three reasons why assembly lines were developesy; Th
based on smoothness of the objective function, areire for a cost-efficient mass-production of stadited
Combinatorial methods, derivative-free methodsstfir products, designed to exploit a high specializatién
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labor and the associated learning effects (Shtub anworkstations, to determine the labor cost of assgmb
Dhar-El, 1989). Since then assembly lines have beeand packaging, to establish the percentage workibad
gradually improved. Henry Ford’'s introduction of each operator, to assist in plan layout and to aedu
assembly lines, from straight single-model linegtwre  production costs.
flexible systems including, among others, lineshwit Few literatures have stated the main objectivenof
parallel work stations or tasks, customer-orientedassembly line, which is to increase the efficientyhe
mixed-model and multi-model lines, U-shaped lings a System by maximizing the ratio between throughput
well as un-paced lines with intermediate buffersand required cost. An assembly chart shows the
(Becker and Scholl, 2006). sequence of operations required to put a product

Few definitions of assembly lines are given by fewtogether as the final stage of manufacture. This
researchers. Becker and Scholl (2006) said thadssembly process can be shown graphically by using
assembly lines are a traditional and still effeetiveans ~the parts list and related drawings. In complexdpuats,
of mass and large-scale production. They are alse sequence of assembly may have other altersative
dubbed as flow-oriented production systems whigh arFor a good decision among these alternatives, time-
still typical in the industrial production of higjuantity ~ Standards and precedence lists are required (Meyers
standardized commodities and even gain importamce iStephens, 2005; Boysemt al., 2007). With this
low-volume production of customized products. LusaPackground, an assembly line may be designed and
(2008) said that assembly lines could be defined as Palanced with the aim of optimizing the assembbtesy.
production system made up of a series of workstatio For other descriptions of assembly systems andreliit
that are connected by a conveyor belt or a similaPalancing problems one could refer to Buxetyal.
system that transports the object that is being1973); Baybars (1986); Shtub and Dhar-El (1989);
assembled. Furthermore, Yaman (2008) stated th&e0sh and Gagnon (1989); Erel and Sarin (1998); I5cho
assembly lines are an example of flow lines whigh i (1999); Rekiek and Delchambre (2001) and the most
the most commonly used system in a mass-productiofecent survey of Becker and Scholl (2006).
environment. Assembly lines enable the assembly of
complex products by workers who have received &haracteristics of assembly lines: There is a work
short training period (Gunasekaran and Cecile, 1998€lement and workstation as a part in assembly .lines
Thus, an efficient assembly line design, as a pha  Then, it is better to know about a work element and
manufacturing system, is a vital problem for someworkstation first, before knowing all about the
companies. An assembly line is a usual solution fomssembly lines. A work element is the smallest unit
medium and high-production volumes. productive work that adds values to the produathsas

In any case, an important decision problem, calledightening (thinning/reduction) a screw, welding,
also assembly line balancing problem, arises asdda inserting a gear assembly. A workstation is alsobeal
be solved when (re-) configuring an assembly lihe. as a collection of a set of work elements that are
consists of distributing the total workload for performed there. A product is passed down thedime
manufacturing any unit of the product to be assethbl visits each workstation in sequence. An assembly li
among the workstations along the line. Falkenauecontains of a set of sequential workstations, @bic
(2005) explained that Assembly Lines Balancingconnected by a continuous material handling system.
(ALB), or simply Line Balancing (LB), are the preph  is designed to assemble component parts of a produc
of assigning operations to workstations along arand perform any related operations to produce the
assembly line, in such a way that the assignment ifinished product. There also other components éneth
optimal in some sense. It has been an optimizatiomamely workers (manual and robotic), a material
problem which was very crucial for many industries.handling system (conveyors), buffers, unloading and
By managing an assembly line, few advantages occustorage space, layout (linear, U-shape and others).
such as better labor and machine utilization, easy Referring to Tasan and Tunali (2008), an assembly
learning for workers, less work-in-process inventor line consists of a sequence of tasks, each hauing a
and less space requirement (Veeramani, 2001). idayeoperational processing time and a set of precedence
and Stephens (2005) stated some purposes of thelations, is widely adopted in manufacturing pléog
assembly lines balancing technique. They are tgrevious literature (Becker and Scholl, 2006), a
equalize the workload among the assemblers, tsequence of workstations have the same meaningawith
identify any operational bottlenecks, to establtie  sequence of tasks in this context). Precedenctamsa
speed of assembly lines, to determine the number afontain the order in which tasks must beqreréd.
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Fig. 1: Precedence graph

Table 1: List of common notations

Notations Definitions
n Number of workstations; i = 1,...,n
c Cycle time
m Number of tasks; j=1,...,.m
§ Processing time of tasks j
tsum Total processing time of tasks;,, = ZtJ
=
WS Workstation load of workstation i
t(WS) Workstation time of workstation it(WS )= z t
jows,
Max(t(Ws)) Maximum workstation time
K Largest single processing time of a task, a cohstan
Ny Number of violations in precedence relations
¢ Fuzzy cycle time
t(V~\/i S) Fuzzy workstation times for workstation s
Ns Number of workstations in solution
M Number of models; k = 1,...,.M
gk Demand ratio of model k
iti Idle time for workstation i after processing moHel
M
ITi Average idle time for workstation iT, = quitik
k=1
E Line efficiency
f(s) Fitness function of a solution c

Figure 1 illustrates an example of precedenceiosisit

by a representation of a precedence graph, which
contains 9 nodes for tasks, node weights in itadic
task-processing times and arcs for orderings. ibied
that the most commonly used objective functionhia t
literature is the maximization of line efficiency: .

£ = fam
nle

The following Table 1 presents the widely-used
notations in assembly lines balancing literaturas@n
and Tunali, 2008).

As follows, the characterizations of the relevant
properties of assembly lines, which have to be
considered when balancing those lines, are given:

* Number and variety of products: If only one
product or several products with (almost) identical
production processes, e.g., production of compact
discs (Lebefromm, 1999) or drinking cans (Grabauwe
and Maurer, 1998) are assembled, the production
system can be treated as a single-model line
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Fig. 2: Assembly line based on the number and warie

of the products (redrawn Becker and Scholl,
2006). (a) single-model line; (b) mixed-model
line; (c) multi-model line

In modern production systems however, several
products or different models of the same base
product often share the same assembly line. In
general, two different forms of organization are
distinguished (c.f. Wild, 1972; Buxegt al., 1973):

A mixed-model line (A mixed-model line produces
the units of different models in an arbitrarily
intermixed sequence (cf. Scholl, 1999)) and a multi
model line (A multi-model line produces a sequence
of batches (each containing units of only one model
or a group of similar models) with intermediate
setup operations.). An illustration is given in .Fy
which shows the characteristics of assembly lines
based on number and variety of the products

Line control: Assembly systems can be
distinguished with regard to the control of job
movements between stations. The exact type of
line control, which has far-reaching consequences
for the structure of the balancing decision, is
divided into paced and un-paced lines

Variability of task times: In reality, task timesea
basically never deterministic (Tempelmeier, 2003)
Line layout: Traditionally, an assembly line is
organized as a serial line, where single statioas a
arranged along a (straight) conveyor belt. The
actual line layout is, however, not necessarily
determined prior to the balancing decision. The
real-world arrangement of the conveyor belt does
not usually affect the assignment decision and can
thus be ignored

Parallelization of assembly work: Assembly line
production makes intensive use of increasing labor
efficiency by partitioning the total work among
different productive units

Equipment and processing alternatives: In order to
perform a task assigned, the station must be
equipped with productive resourcldes operators,
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machines and tools which provide the skills and/or  Apart from the variations in the ways in definithg
technological capabilities required. Furthermore,problems of assembly lines balancing as listed alaod
the necessary material must be made available  as stated earlier in this study, assembly linearzithg
»  Assignment restrictions: In ALB, task assignmentsresearch has traditionally focused on the Simple
to stations are always restricted by precedencéssembly Line Balancing Problem (SALBP), which has
relationships. In  model formulations, the some restricting assumptions. However, nowadays, a
corresponding precedence graph might either havef research work has been done in order to desarnbe
a general structure or be restricted to some specigolve more realistic generalized problems, namely
graph type, e.g., linear (Kimms, 2000), diverging General Assembly Lines Balancing Problems (GALBP).
or converging graphs. In any case, the precedence Several version of ALBP also arise by varying the
graph has to be (made) acyclic to find feasiblk-tas objective function (Scholl, 1999): They are Typerttil
processing sequences (Ahamdi and Wurgaft, 1994)ype-5 and Type-E and Type-F. Type-1 and Type-2
have a dual relationship; the first one tries tmimize
Objectives: Several of the extensions outlined abovethe number of workstations for a given cycle tinmel a
can only be considered in a meaningful way, if othe the second one tries to minimize the cycle time &or
objectives than the capacity-oriented ones intredin  given number of workstations. Type 3-5 correspdids
previous discussion are observed. Whenever alfeenat maximization of workload smoothness, maximization
resources are available, resource costs will nedaet of work relatedness and multiple objectives, witfp@
regarded in the associated selection problem. 3 and 4 respectively (Kinat al., 1996). Type-E is the
most general problem version, which tries to mazemi
Problem classification in assembly lines: There are a the line efficiency by simultaneously minimizingeth
few ways in defining the problem of assembly linescycle time and a number of workstations. While the
balancing, while the problem also has variationsctvh last, Type-F is an objective-independent problem,
may add some complexity to the problem. Here arevhich is to establish whether or not a feasiblee lin
some variations which are introduced by Chow (1990) balance exists for a given combination of m and c.
Furthermore, several version of ALB problem also
Multiple products: Since assembly processes an@rise based on the problem structure. It can tesitied
process times may not be the same for differentnto two groups. The first group are (Becker antdlic
products, a single line cannot be balanced for alR006; Scholl, 1999), divided into Single-Model
products Assembly Line Balancing (SMALB) which is involve

« Variable process time: Variability may take aonly one product, Multi-Model Assembly Line
number of different forms and the two most Balancing (MuMALB) which is involve more than one
common ones result from human inconsistenciegroduct produced in batches and Mixed-Model
found at manual operations and different rejectAssembly Line Balancing (MMALB) which is refer to
conditions at test/ inspection operations assembly lines, which are not in batches. Meanwthie

- Multiple workstations: If the mean process time ofSe€cond group (Baybars, 1986) is divided into Simple
an operation is larger than a planned completiofi\SSembly Line Balancing (SALB), which is involves
cycle, multiple workstations are needed. However0nly one product, with features such as paced i
line sizing and balancing become interrelatedfixed cycle time, deterministic independent prooess
problems times, no assignment restrictions, serial layong, sided

« Human factors: According to industrial workstations, equally equipped workstations anedix
experiences. it has been shown that the repetitioff€ launching and General Assembly Line Balancing
of the same motion pattern induces excessivdGALB), which is include cost function, equipment
muscle fatigue and may lead to body injury selection, paralleling, U-shape line layout and edix

. Product characteristics: An assembly line is uguall M°del production.

composed of a number of subassemblies and tasks In another survey of a_ssembly I|n.e. rgsearch
Falkenauer, 2005), there is an identification of

that belong to different subassemblies should not" ™ e :

be assigned to the same operation additional difficulties (with respect to SALBP) tha
* Length of cycle time: Assembly lines balancing must be ta<_:k|ed In-a line b_alancmg_ tool, in ortisbe

problems are dependent on the selected cycle tim%IOpIICabIe in those industries and it may be beqame

and that the determination of cycle time is areason why current researches should evolve towards

complicated problem formulating and solving Generalized Problems

(GALBP) with different additional characteristicach
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as cost functions, equipment selection, parallelidg  (1986); Shtub and Dhar-El (1989); Ghosh and Gagnon
shaped line layout and mixed-model production. They1989); Erel and Sarin (1998); Scholl (1999) and
are: do not balance but re-balance, workstatiorRekiek and Delchambre (2001), as well as the most
identities, un-moveable operations and zoningrecent survey of Becker and Scholl (2006). Table 2
constraints, cannot eliminate workstations, loadsummaries the classifications of assembly line
equalization, multiple operators, multi-operator balancing problem researches up to now. It is an
operations, ergonomic constraints (operator posjio adaptation from Tasan and Tunali (2008) and few
multiple products and drifting operations. Figure 3modifications are made to complete it, based on the
shows several problem versions which arise froncurrent surveys and investigations.
varying the objective in SALBP. It is noted that Scholl and Becker (2006) present
From Fig. 3, few facts could be concluded asdiste survey on problem and methods for GALPB (seems
quite similar with Baybars (1986)) with featuregisas

* SALBP-E maximizes the line efficiency E cost/profit-oriented objectives, equipment selevtio
« SALBP-1 minimizes the number m of stations process alternatives, parallel workstations/taslds,
given the cycle time ¢ shaped line layout, assignment task processingstime
e SALBP-2 minimizes cycle time ¢ given number m and mixed-model assembly lines.
of solutions
« SALBP-F seeks for a feasible solution given m RESULTS
and c

Theimportant research of assembly lines balancing:

Based on a survey study by Boyssral. (2008), Assembly lines have been studied extensively (since
assembly lines balancing problems are classifieslan Salveson, 1955) by introducing his mathematical
few groups in order to assign typical attributes tomodeling and looking to the original aim of asseynbl
different aspects of real-world assembly systems. Blines. Balancing assembly lines is a recurring task
doing so, joint occurrences of SALBP-extensions carPperation management, where such models have been
be identified which are especially characteristir f used to support the decision maker in configuring a
certain groups of assembly systems in the realdworl efficient assembly system to optimize productivity
They are classified based on number models (singldScholl and Klein, 1999; Boyseet al., 2007), which
mixed and multi-model), line control (paced ling)-u depends on the kinds of assembly lines as cladsifie
paced synchronous and un-paced asynchronoudyig. 3, 4 and Table 2, so it became important and
frequency (full-time installation and reconfigumt), carries more benefits and advantages by optimizing
level of automation (manual lines and automatedshn assembly lines in order to optimize the produgivit
and lines of business (automobile production).
Furthermore, a comparison with the existing literat
can clarify if solution procedures for these typicases Cycle timne ¢
already exist or if their development remains fatufe Given Minirize
research. Figure 4 shows a classification of asgemb
lines balancing problems made by Boyseal. (2008).

On the other hand, due to very different cond&ion
in industrial manufacturing, assembly line prodoati
systems and corresponding ALB problems show a great
diversity (Boysenret al., 2007). For other descriptions ) ) ) )
of assembly systems and different balancing projem Fig- 3: Version of simple assembly line balancing

Given SALBP-F SALBP-2

Mo mof

stations

Minimize BATBP-1 BALEBP-E

please refer to, e.g., Buxest al. (1973); Baybars problem (redrawn Becker and Scholl, 2006)
Table 2: Classifications of assembly line balangingblem

Based on Based on problem structure
According to survey objective function
by Chow (1990) Scholl (1999) Baybars (1986) Scti®9); Becker and Scholl (2006) Boysstral. (2008)
Multiple products Type-E Simple Assembly Line Badang  Single-Model Assembly Line Balancing Numbeydals
Variable process time  Type-F (SALB) (SMALB) Linertdool
Multiple workstation ~ Type 1 and 2 General Assenlbhe Balancing Multi-Model Assembly Line Balancing Frequency
Human factors Type 3-5 (GALB) (MuMALB) Level of arhation
Product characteristics Mixed-Model Assembly LBeancing Line of business
Length of cycle time (MMALB)
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Number of models | Single model ” Mixed model ” Mixed model | faC”lty |ay0ut design, line balancing, and Suppf}ain
Line control | Paced ” Unpaced asynchronous ” Unpaced synchronous | management- They noted that none of these studies
TFrequency | First-time installation || Reconfiguration | place(-j an ac_lequate amo"'_lnt of empha_SIS on the use of
genetic algorithms for solving ALBPs, since theioge
Level of automation | Manual lines || Automated lines |
was very broad., Scholl and Becker (2006) who
Line of business | Automobile production | | Further examples |

presented a review and analysis of exact and hguris
solution procedures for solving ALBPs and Tasan and
Tunali (2008) who presented the latest survey on it
which conducts to the recent published literatune o
ALB including genetic algorithms and summarized

A well-known assembly design problem is the o main specifications of the problems studied th
Assembly Line Balancing Problem (ALBP), which genetic algorithm suggested and the objective

deals with the allocation of tasks among workst&io f,nctions used in evaluating the performance of the
so that the precedence relations are not violatetl a genetic algorithms.
the given objective function is optimized. , However, since there are many efforts by previous
ALPB falls into the non-deterministic polynomial researchers in finding the best techniques in Bglvi
hard (NP-hard) class of combinatorial optimization ,,timization problems in assembly lines balancing a
problems (Karp, 1972). The complexity of the ALBP ot o rse there still wide open problems in ALBogh
renders optimum seeking methods impractical, fOrf,qtq showed that research on assembly lines baanc
instance, of more than a few tasks and/or worksiali s jmportant and needs to be addressed in future.

with assumptions there are m tasks and r preceden¢g,ithermore, it will be important in manufacturiagd

constraints and then there ard: possible task for sure it is also of paramount importance in the
2 . ~industrial production of high-quantity standardized
sequences (Baybars, 1986). Therefore, it can be-tim commodities (Boysest al. 2007).

consuming for optimum seeking methods to obtain an

optimal solution within this vast search spaces'lfhbt Soft Computing: Soft Computing, according to
also carries out to a conclusion that researches iBonissone (1997) refers to a fusion of techniqunes t
assembly lines is very important to do. Even sonyna mainly bring together neural networks, fuzzy logiogd
attempts have been made in the literature to sthlge eyolutionary algorithms (Dubois and Prade, 1998).
ALBP using optimum seeking methods, such asHere, we present a brief discussion of soft conmguti
Linear programming by Salveson (1955), Integerand their general capabilities. Furthermore the

programming by Bowman (1960), Dynamic gpplications of soft computing in assembly lines
programming by Helcet al. (1963) and Branch-and- palancing are discussed.

bound approaches by Jackson (1956). However, none
of these methods have been proved to be of practican overview of soft computing: The three techniques
use for large problems, due to their computationaimentioned above are known as traditional technekgi
inefficiency (Tasan and Tunali, 2008). in soft computing. But nowadays, many more novel
Furthermore, based on surveys by Tasan angkchniques in soft computing are arisen from besravi
Tunali (2008), Genetic Algorithms (GAs) received anstudies, such as ant colony optimization, smalllavor
increasing attention from researchers, since iViges  theory, and memes theory (Ovaskh al., 2006).
an alternative to the traditional Optimizationshleique Current results have concluded that these techh{ﬂog
by using directed random searches to locate optimurRave steadily changed the way to solve real-world
solutions in complex landscapes. Few surveys a@se h problems in science and engineering.
been made regarding the subject, namely Dimopoulus The way soft computing techniques are used in
and Zalzala (2000) who reviewed the use oOfsolving problems differ to the way that traditional
evolutionary ~ computation methods for solving computer algorithms are used. Soft-computing
manufacturing optimization problems, including thetechniques have the ability to generate solutians f
classic job-shop and flow-shop scheduling problemsmany computationally difficult problems
assembly line balancing and aggregate productiofChaudhariet al., 2006). However, in the midst of
planning, Aytuget al. (2003) who have reviewed over deployment of soft computing techniques to solvayna
110 papers using genetic algorithms to solve variousych problems, it has also given rise to many
types of production and operations managemenfundamental questions that are of interest to the
problems including production planning and control, discipline of computer science. While many soft

147

Fig. 4: Kinds of assembly lines (redrawn Boystil.,
2008)



J. Computer i, 6 (2): 141-162, 2010

computing techniques have attempted to give salatio machines are not assigned as a practical computing
to specific problems, it is not clear how this aggarth is  technology, but a thought experiment about thetéimi
generalized for solving all computational problems.of mechanical computation. Thus, they were not
Here are four such questions (Chaudkgal., 2006): actually constructed. Studying their abstract prige
yields many insights into computer science and
e Is the given soft-computing technique generalcomplexity theory.
enough, in the sense that, is it possible to espres
any arbitrary computation in that technique Neural networks: A neural network is an artificial
« Does the given soft-computing technique possessystem that aims to perform intelligent tasks samtb
the ability of automatically generating a solution  those performed by the human brain (Pitts and
any arbitrary problem for which an algorithm is McCullough, 1947). A neural network stores its
known to exist knowledge through learning within inter-neuron
« Does the given soft-computing technique posses§onnection strengths known as synaptic weightss@he
the ability of generating automatically the mostnetworks have shown themselves to be adept atngplvi
efficient solution to an arbitrary computable function —approximation including time series
problem prediction, fitness approximation and modeling,adat

« When the given soft-computing technique doesProcessing including filtering, clustering, and aals
not generate the most efficient solution, does itonlinear controller. The most common neural nekwor

generate a reasonably efficient solution, with themodel is Multi-Layer Perceptron (MLP). The MLP and
performance bound on how far the resultingOther neural network models can be trained using a

solution would be from the most efficient learning algorithm such as (error) back—pr.o.pagation
solution? steepest descent, least square error, geneticitafgor
evolutionary computation, expectation-maximization

However, few researchers (e.g., Turchin’s meta@nd non-parametric methods. Using one of these
computations (1993 and 1996a) and super-compikation@lgorithms, the weights are determined and the orétw
(Turchin, 1996b), Mitchell's investigations (199#) IS said to be trained for a set of data.
cellular automata computations have attempted to ) _ ) )
answer those questions, even if it has been ver{penetic algorithms: Genetic Algorithms (Goldberg,
difficult. Another interesting field in soft compng is ~ 1989) are based on the Darwinian-type survivalhef t
evolutionary computation. Evolutionary computing is fittest strategy with sexual reproduction and Méeisde
based on the concepts of biological evolutionagotli  theory of genetics as the basis of biological iitaace.
that mimics the mechanics of reproduction, mutation!n these theories, stronger individuals in the pajion
recombination, natural selection, and survival be t have a higher chance of creating offspring. Each
fittest. Three basic kinds of evolutionary compiotas are  individual in the population represents a potential
genetic  algorithms,  genetic ~ programming  andsSolution to the problem to be solved. Genetic
evolutionary algorithms. Follow we present a briefalgorithms do not work with a single point on the
introduction to the computational capabilities ofre soft ~ Problem space but use a set, or population of pdmnt

computing frameworks (adopted from Chaudreral,, ~ conduct a search. This gives genetic algorithms the

2006). power to search multi-modal spaces littered wittalo
optimum points.

Turing machine: There is a famous list of nineteenth ~ Genetic algorithms can be used to train a multi-

century problems by Hilbert which is “Does therégsesx ~ layer perceptron in which weights form a parameter
an algorithm for deciding whether or not a specificSPace. While genetic algorithms have the advantége
mathematical assertion does or does not have d33roo Not getting stuck in local optima, they have other
(Weisstein, 1999). Alan Turing, in 1937, showedttha Problems. When the search space is very large then
the answer for this problem is negative for elermgnt 9genetic algorithm methods generally take a long tim
number theory. In the process of obtaining thetamiu ~ Converge to good quality solutions. The length e t
to this problem, he invented the formalism of “Tgri  Search is due to the optimal generalization of the
Machine”, which is now accepted as (one of thelraining process with no-prior knowledge about the
models) to represent any arbitrary computatiorfagt, ~ Parameter space.

it is an accepted notion today that the problem&hvh ) ) ) )

can be “computed” are precisely the ones for wiich Evolutionary computing: Evolutionary Computation
Turing Machine exists (Chaudhatial., 2006). Turing (EC) has become a standard term to denote a veayl br
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group of algorithms and techniques that are baretie®®  Soft computing in assembly lines balancing: It is
principles of natural processes involving biologiica reported that soft computing approaches have bget u
evolution. Evolutionary Algorithms (EAs) are mainly (among of them are fuzzy logic and genetic algarigh
meta-heuristic and optimization methods that skaree  in solving assembly lines balancing problems and it
generic concepts borrowed from the natural prooéss also reported that genetic algorithms have been
biological evolution. Research in this area hasnigai dominantly used. The uses of genetic algorithms
been focused on solving the problems which can beeceived increasing attention from the researclsémse
formulated as an exhaustive search over the sffaat o it provides an alternative to traditional optiminat
possible solutions. Using evolutionary computingtechniques by using directed random searches &idoc
frameworks, many approaches have been proposed aptimum solutions in complex landscapes (Tasan and
the last decade. Some approaches for globalunali, 2008). In here, we discuss few previousksor
optimization algorithms include the approaches thasewhich used soft computing approaches in solving the
on evolution of species (Davig al., 1999), immune assembly line balancing problems, and then the
system (Castrcet al., 2002), social behavior of ants discussion followed by those who wused genetic
(Bonabeatet al., 2000), memetic and cultural evolution algorithms.

(Ong et al., 2004; Onget al., 2006). Many variants of Hui et al., (2002) proposed fuzzy operator
ECs are also studied by various researchers. Fallocation for balance control of assembly lines in
example, Boettecher and Percus (2001) proposedva neapparel manufacturing. In  their work, they
optimization algorithm that is based on the prifespof ~ demonstrated the use of a fuzzy logic-based system
natural selection, but it does not follow the bagnetic  making balance control decisions. The experimental
algorithm framework for population reproduction.elth  results show the advantages of the fuzzy logicdbase
approach is one step towards integrating diffenesdels  approach over traditional methods, with its ability
like principles of self-organized criticality of Baand reach the target production output more consistentl

Sneppen (1993) in a broad EC framework. They also developed a system called FOA for opmnati
allocation, based on a set of fuzzy rules and
DISCUSSION membership functions obtained through interview

sessions with human experts. The performance of the
Soft computing application: Based on a survey of FOA system was compared with that of the supersisor
published theoretical and application literatuteain be in a men’s shirt factory, using a set of data aiéd
concluded that soft computing applications havenbeeover 30 consecutive working days. It was found to
used and developed in many research fields andutperform the actual supervisors and extends the
industry. Few of them are automotive and literature by increased production efficiency o#@0
manufacturing, bioinformatics, phylogenetics, Fonsecaet al. (2005) proposed a work to model
computational science, engineering, economicsand solve the stochastic assembly line balancing
chemistry, manufacturing, mathematics, physics angroblem with a fuzzy representation of the time
other fields, such as neural networks, which are-da variables as a viable alternative method. Two widel
driven self-adaptive methods without depending muchused line balancing methods, the Computer Method fo
on prior knowledge about the structural relatiopshi Sequencing  Operations for Assembly Lines
between demand forecasts and the determining f&actor(COMSOAL) and Ranked Positional Weighting
can approximate any continuous function arbitrarilyTechnique were modified and then transformed teesol
well to any given accuracy (Pinkus, 1999). Othemth the ALBP with fuzzy operating times. The fuzzy
the financial field, a major application of neural heuristics were then automated via Visual Basiade&h
networks-based forecasting is in electricity loadtest example problems from the available literature
consumption study (Zhanget al., 1998). As an were used to successfully validate the construitizzy
approximator, similar to neural networks, fuzzyteyss techniques. Thus, a viable alternative approach to
can also approximate any continuous function to anyolving the stochastic assembly line balancing lemb
degree of accuracy (Yingt al., 1999). Although the was developed. The experimental results show tieat t
performance is similar, neural networks, which arenew fuzzy methods are capable of producing solstion
known for their simplicity and model-free approach, similar to and in some cases better than, thossheeh
have been well accepted in practice and used by marby the traditional methods.
utilities for load forecasting (Hipperet al., 2001; Kara et al. (2009) proposed a binary fuzzy goal
Khotanzadgt al., 1998) and also there are many otherprogramming model for straight assembly line
soft computing applications for real-world problems  balancing uses and extends the IP model of Talbdt a
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Patterson (1984) and a BFGP model for U-shapedlso few additional surveys for completing. Theveyr
assembly line balancing uses and extends the IRRImodmade is based on the classification given in Bagbar
of Urban (1998). Some results and advantages ard986) which is to identify the major trends in égoof
yielded from the proposed model. They are: problems studied. Figure 5 represents the structura

o . _ framework for reviewing, which is done by Tasan and
Allow decision-makers to consider the cycle time Tynali (2008). However, the discussions only foons
and the number of workstation goals as imprecisghe uses of genetic algorithms for solving ALBPsédxh

values on problem specifications only.

Minimize the number of workstations and the cycle Since the research on the ALB problems which
time at the same time in a fuzzy environment used genetic algorithms in solving the problems is
It is solved using the Chang’s (2007) primary much heavier than the other soft computing tectesgu
BFGP method so that the discussions are divided into two grpups
It is valid and useful for straight and U-shapednamely SALBP and GALBP. | will start with the first
assembly line balancing problems one, which is research on SALBP problem.

Enable decision-makers to simultaneously consider
conflicting objectives of assembly line balancing i
a fuzzy environment

Allow decision-makers to assign priorities to the
goals using weighted goal programming approach
All these aspects to enable the proposed models
be significant and integrated approaches fo

Research on SALB problem regarding the use of
genetic algorithms: An assembly line consists of
workstations k = 1,...m which are usually arranged
along a conveyor belt or similar mechanical materia
andling equipment. The workpieces (jobs/tasks) are
Randli i Th kpi jobs/task
; . rconsecutively launched down the line and are moved
assembly line balancing . . . .
, . . from station to station. At each station, certain
The combinatorial nature of the assembly line i ted| ; d dinavhie
balancing problems makes the development of fagpPerations are repeatedly periormed regar Ingy N
and effective heuristics significant time. Cycle time is a maximum or average time
available for each work cycle. The basic problem
Based on the BFGP approaches proposed in thigescribed so far is called a Simple Assembly Line

study, the development of heuristics can be consitle Balancing Problem (SALBP) in the literature (Bayhar
as topics for further researches. 1986). We focus the discussion on SALB problems
Genetic algorithm in assembly line balancing: The which used genetic algorithms or a hybrid systenit on

discussion according to this issue was adopted frem 0 Solve the problem and continued by the discussio
survey by Tasan and Tunali (2008). However, taeee 0N GALB problem which used genetic algarith

GAs for solving ALBP

Performance

Problem Specifications GA Specifications Specifications
Probl . . .

:Vp:m Method Selection type Experimental settings
Objective Initial population and :
] : ! pop : [ ] Survival Type Real world

function size of population i
Hypothetical
Chromosome o —
. 11 Feasibility
representation ' o L
] Termination Criteria
c rer ty d rati
tossovertypeandrate | | Termination Criteria
(Re) Real world
Mutation type and rate
; — Hypothetical
(Rm) P
Computation time
Termination Criteria

Fig. 5: The structural framework for reviewing Gisassembly line balancing by Tasan and Tunali
(2008) (redrawn)
150



J. Computer i, 6 (2): 141-162, 2010

Falkenauer and Delchamber (1992) were the first ttMUST (1979), where the proposed genetic algorithm
solve the SALB problem with Genetic Algorithms solved the problems involving more than 20
(GAs). Falkenauer (1991) presented the Groupingvorkstations faster than MUST. Finally, the authors
Genetic Algorithm (GGA) especially for solving concluded that their genetic algorithm achieved its
grouping optimization problems, where the aim was t greater advantage when the precedence constragnés w
group members of a set into a small number of famil the least restrictive.

in order to optimize objective function under given Kim et al. (1996) developed a genetic algorithm to
constraints. GGA has a special chromosomesolve multiple objective SMALB problems. They
representation scheme and genetic operators, veneh addressed several types of ALBP, such as to mieimiz
used to suit the representation scheme. Latethe number of workstations (Type-1), minimize the
Falkenauer and Delchambre (1992) implemented theycle time (Type-2), maximize workload smoothness
GGA to two grouping optimization problems; i.ebia  (Type-3), maximize work relatedness (interrelatesks
packing problem and a SALB Type-1 problem. Thisare allotted to the same workstation as much as
study was the first attempt to balance an assefiidy possible) (Type-4) and a multiple objective withp&y3
Type-1 problem with a genetic algorithm. The aushor and 4 (Type-5). The authors placed the emphasis on
first presented a special representation scheme armeking a set of diverse Pareto optimal solutions.
special genetic operators for the bin packing mobl Although, Kim et al.’s (1996) multi-objective genetic
and they later modified the special genetic opesdtar ~ algorithm seems to be very promising, the chroma@som
line balancing. Other implementations of GGA for representation scheme they used is not well suged
solving ALBPs can be found in Falkenauer (1997);the some of the problem types, since they usedgesi
Rekiek et al. (1999) and Brown and Sumichrast chromosome representation scheme to represent all o
(2005). the problem types.

After Falkenauer and Delchambre (1992), the Kim et al. (1998) considered maximizing the
SALB problem was also studied by many researchersvorkload smoothness, which has been generally
Leuet al. (1994) developed a genetic algorithm to solveneglected in the literature. Extensive computationa
SALB Type-1 problems and used heuristic proceduregxperiments were made and the advantages of
to determine the initial population. They also preed  incorporating problem-specific heuristics infornoeati
a number of techniques to deal with the feasibilityinto the algorithm were demonstrated. The
problems during initialization of the population asll experimental results showed that the proposed igenet
as after the reproduction phase. They also denaiadtr algorithm outperformed the existing heuristics ahel
the possibility of balancing assembly lines with standard genetic algorithm.
multiple criteria and zoning constraints. Rekiek et al. (1999) proposed a grouping genetic

The first article, which presented a geneticalgorithm by Falkenauer and Delchambre (1992) based
algorithm application to the SMALB Type-2 problem, on an Equal Piles approach for solving the SALB
was published by Anderson and Ferris (1994). Theroblem. They tried to assign tasks to a fixed nendd
authors mainly aimed at showing the effective use oworkstations in such a way that the workload ofheac
genetic  algorithms in  solving combinatorial workstation was nearly equal by leveling on averge
optimization problems. They first described a fairl size of each workstation (minimizing the standard
typical serial implementation of a genetic algaritfor  deviation of sizes). Therefore, the proposed method
the ALBP and studied the effects of various genetiavarranted obtaining the desired number of worksteti
algorithm variables on the performance of the genet and tried to equalize the workloads of workstatiass
algorithm. Later, they introduced an alternativeailal  much as possible. Later, Rekietkal. (2001) developed
version of the genetic algorithm, where each irdliel a grouping genetic algorithm for solving multi-
in the population resided on a processor. Theobjective assembly line design problems.
comparative study between serial and parallel genet Bautista et al. (2000) considered the SALB
algorithms showed that the quality of the solutitisn  problem with incompatibilities between tasks. Toidv
the parallel implementations was worse than thd besssigning two incompatible tasks to the same statio
solutions obtained from serial implementation. the authors developed a Greedy Randomized Adaptive

Rubinovitz and Levitin (1995) used a genetic Search Procedure (GRASP), obtained from the
algorithm to obtain a SALB Type-2 problem, in which application of some classic heuristic methods and a
the processing time of a task was dependent upogenetic algorithm. They first tried to solve the LBA
workstation assignment. The authors compared th&ype-1 problem and then the SALB Type-2 problem
proposed genetic algorithm to Dar El and Rubinovitzonce the number of workstations has been determined
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They also revised GRASP by using weights and called Goncalves and De Almedia (2002) presented a
it Greedy Randomize Weighted Adaptive Searchhybrid genetic algorithm, which combined heuristic
Procedure (GRWASP). In the proposed method, theriority rules with a genetic algorithm to solveeth
greedy heuristic methods were based on the applicat SALB Type-1 problem. Several problems from the
of priority rules for assignment of tasks to wostgins literature have been used to demonstrate the
such as the longest processing time and the gteatesffectiveness and robustness of the proposed hybrid
number of immediate successors. The greedy heuristgenetic algorithm. The result of the experiments
favors tasks with the best index value, while teeagic  showed that the proposed method performed
algorithm phase simply changes the order of elesnentremarkably well.
in the solution. Their comparative study showecdt tha Stocktonet al. (2004a; 2004b) investigated the use
the proposed genetic algorithm and GRWASP resultedf genetic algorithms for solving various problethat
in better performance than the greedy heuristiad anarise when designing and planning manufacturing
GRASP. operations; i.e., assortment planning, aggregate
Ponnambalamet al. (2000) developed a multi- planning, lot sizing within material requirement
objective genetic algorithm for SMALB Type-1 planning environments, line balancing and fact#itie
problems to optimize several objectives simultasgou layout. In Stocktonet al. (2004a), the authors have
the number of workstations, the line efficiency dhd  examined the application of a genetic algorithmihie
smoothness index. Several comparisons were madeMALB Type-1 problem. They compared the
between other heuristics on several examples. Thperformance of the genetic algorithm with a traditl
results of the comparisons indicated that the genet solution method, i.e., Ranked Positional Weight\(RP
algorithm performed better in all cases studied(Helgerson and Birnie, 1961). In Stocktost al.
However, the execution time for the genetic algont (2004b), the authors performed computational

was found to be longer. experiments in order to identify suitable genetic
Sabuncuoglet al. (2000) developed a new genetic operators and parameter values.
algorithm to solve the SMALB problem by utilizinge Brown and Sumichrast (2005) compared the

intrinsic characteristics of the problem. The autrelso  performance of grouping genetic algorithm GGA by
proposed a method called ‘dynamic partitioning’'ttha Falkenauer (1991) against the performance of aaypi
modified chromosome structure of genetic algorithmsgenetic algorithm across a range of grouping proble
to save CPU time. The method modifies thei.e., bin packing, machine part cell formation S#&LB
chromosome structure by allocating tasks toType-1 problems. They applied the two techniques, i
workstations (i.e., freezing certain tasks) thatisfa  standard GA and GGA, to a set of problems and
some criteria and continues with the remainingcompared the results, with respect to solution iual
unfrozen tasks. Furthermore, they constructed a neand computation time. They noted that both of the
elitism structure adopted from the concept of sated techniques managed to find the optimal solutionaflbr
annealing. It is observed that this new elitisnuctiure  the test problems, however GGA found the optimal
contributes significantly to the performance of thesolution more quickly.
genetic algorithm. In fact, the results of extemsiv
computational experiments indicated that the pregos Research on GALB problems regarding the uses of
genetic algorithm approach outperformed the well-genetic algorithms: Simply, the discussion on GALB
known heuristics in the literature. problems is all of the problems that are not SASEBch
Carnahanet al. (2001) considered the physical as: balancing of single-model or mixed-model, gakal
demands placed on workers in solving the SALBU-shaped and two-sided lines, with stochastic, fuzaz
Type-2 problem. In order to measure physicaldependent processing times.
demand, the authors used grip strength capacity tha Tsujimuraet al. (1995) were the first to solve
represented the maximum finger flexor strengthGALB problems with genetic algorithms. The authors
generated by a worker using a semi-pronated poweused the fuzzy numbers to represent the imprecise,
grip. Three methods, i.e., a ranking heuristic, avague and uncertain task processing times, as the
combinatorial of the genetic algorithm and a prable processing times are uncertain due to both macride
space of the genetic algorithm, were developed tdhuman factors. They proposed a genetic algorithm to
simultaneously minimize the maximum manual solve SMALB Type-1 problems, represented the fuzzy
gripping demands and the cycle time. The authorgrocessing times by triangular membership functions
concluded that the problem space of the genetiand illustrated the application of the proposedegien
algorithm performed better than the others. algorithm on a problem with 80 tasks.
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Following Tsujimuraet al. (1995), several versions superior results in 11 cases, the same result8 sades
of GALB problems were studied by many researchersand a worse result in one case.
Sureshet al. (1996) used a genetic algorithm to solve Chanet al. (1998) proposed a genetic algorithm for
the SMALB Type-1 problem with stochastic processinga SMALB Type-1 problem in the clothing industry.elh
times. A modified genetic algorithm, working wittwd  authors tried to improve the line efficiency by
populations (one allowing infeasible solutions) andminimizing the time spent in assembly line balance
exchange of specimens at regular intervals, werglanning. They also included the various skill levef
proposed for handling irregular search space (e, workers as problem-specific information to solvédla
infeasibility problem due to problem specificatipns task ALBP. The experimental results showed that the
The authors believed that a population of feasibleperformance of a genetic algorithm was much better
solutions would lead to a fragmented search sghas, than the performance of the greedy algorithm, which
increasing the probability of getting trapped ihoaal  performed optimization by proceeding to a series of
minimum. They stated that infeasible solutions ban alternatives and assigned the most skillful worteer
allowed in the population only if the genetic ogera  each task.
can lead to feasible solutions from unfeasible ones  Kim et al. (2000) developed a genetic algorithm for
Throughout the generations, some solutions werdalancing a two-sided SMALB Type-1 problem with
exchanged at regular intervals between the twgositional constraints. Two-sided assembly linassisi
populations (i.e., the exchanged solutions haveséinee  of two connected serial lines in parallel, wherenso
rank of fithess value in their own populations).eTh task can be performed at one of the two sides ®f th
results of the experiments indicated that the genet line, while the others can be performed at eitliee sf
algorithm working with two populations can give teet the line. In the two-sided assembly lines, the saskre
results than the genetic algorithm with only felesib classified into three types: L (left); R (right) dare
population. (either) type tasks. L-type tasks are easily peném at

Falkenauer (1997) presented a genetic algorithnthe left-hand side of the line, similarly R-typeska are
based on a Grouping Genetic Algorithm (GGA) byeasily performed at the right-hand side of the Bmel
Falkenauer and Delchambre (1992) and a branch-and:type tasks are easily performed at both sidethef
bound algorithm for a SMALB Type-1 problem with line. The performance of the proposed genetic
resource-dependent processing times. The problemlgorithm was compared to integer programming and
involved allocating resources with different costda other heuristic methods by Kimt al. (1998b), using
speed to each task and also assigning the tasks fiwe test problems. The results indicated that the
workstations, in such a way that the total coghefline  proposed genetic algorithm showed a better
is minimal. The author employed GGA to assign theperformance than the heuristics studied. The asthor
tasks to workstations and then branch and boundtated that the proposed genetic algorithm can be
algorithm to select the optimal source for eachdirectly applied to the different versions of theBP.
workstation. In this problem, the processing tinfieao Simaria and Vilarinho (2001a) proposed an
task depends on the resources being used; therefoiiterative search procedure, including a genetic
resources with different costs and speeds areadidc algorithm for a MMALB Type-2 problem with parallel
to each task in addition to the assignment of tasks workstations. The proposed genetic algorithm
workstations, in such a way that the total coghefline  procedure was originally based on the model deezlop
is minimal. In the proposed method, the tasks werén Simaria and Vilarinho (2001b) for a SMALB Type-2
assigned to workstations by GGA and the optimalproblem, where the simulated annealing was useal as
source for each workstation was selected by a hranc solution method. The iterative procedure starts vait
and-bound algorithm. lower bound of cycle time and successively solVes t

Ajenblit and Wainwright (1998) were pioneers in MMALB Type-1 problem by increasing cycle times.
balancing the U-shaped SMALB Type-1 problem usingOnce a feasible solution is found, the procedure
genetic algorithms. The authors dealt with two gdes employs a genetic algorithm to decrease the cywle. t
variations of this problem; minimizing the totalled Besides minimizing the cycle time, the procedure
time and balancing the workload between workstation minimizes the workload balances. The iterative
or a combination of both. They developed six ddfar procedure was illustrated using a simple exampté wi
assignment algorithms to interpret a chromosome antivo assembly models and 25 tasks.
assign tasks to workstations. The authors appled t Chenet al. (2002) presented a genetic algorithm
proposed genetic algorithm to 61 test problems. Irapproach for assembly planning involving various
comparison to previous researchers, they obtainedbjectives, such as minimizing cycle time, maximigi
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workload smoothness, minimizing the frequency of to used for the hybrid genetic algorithm. The proposed
change, minimizing the number of tools and machinesybrid genetic algorithm was found to take a longer
used and minimizing the complexity of assemblycomputation time, with respect to solution quality.
sequences. They classified the assembly line pignni Martinez and Duff (2004) addressed the U-shaped
problems into line balancing, tooling and schedylin SMALB Type-1 problem. They first solved this
problems. The proposed method was improved byroblem using 10 heuristic rules adapted from thmple
including heuristic solutions into initial populati and line balancing problem, such as maximum ranked
developing a self-tuning method to correct infelesib positional weight, maximum total number of follower
chromosomes. Several examples were employed tmsks or precedence tasks and maximum processieg ti
illustrate the proposed genetic algorithm. Experitae and compared these heuristic solutions with thamgbt
results indicated that the proposed genetic algorit solutions obtained from previous researches. Faligw
efficiently yields many alternative assembly plaios on, they modified Ponnambalaghal. genetic algorithm
support the design and operation of an assembigrays  (2000) and inserted the solutions obtained usiegeh
Miltenburg (2002) solved the assembly line heuristic rules to the initial population. Theyusgtrated
balancing Type-1 problem and sequencing problemshe proposed genetic algorithm using Jackson’s
simultaneously for mixed model U-shaped assemblyproblem (1956). The results showed that the additio
lines. They proposed a genetic algorithm to sohe t a genetic algorithm can improve the current sofutio
balancing and sequencing problems jointly. The  Simaria and Vilarinho (2004) expanded the
proposed genetic algorithm was found to offer goodapplication of their previous work in Simaria and
solutions. Vilarinho (2001), where they proposed an iterative
Valenteet al. (2002) proposed a genetic algorithm genetic  algorithm-based search procedure for a
to solve assembly line balancing Type-2 problenain \MALB Type-2 problem with parallel workstations.
real-world application, a two-sided car assembiieli  The authors have also conducted a set of compuitio
The so_Iutlon to the problem involved satlsfy!ng theexperiments on a set of generated ALBPs.
constraints that the length o_f each_workstanon Was | evitin et al., (2006) proposed a genetic algorithm
constant. The proposed genetic algorithm was fd_ond for solving a special kind of SMALB Type-2 problem,
reduce the total assembly time of the current biye ie., Robotic Assembly Line Balancing (RALB)

28.5%. . . !
. problem. The authors defined a robotic assembly, lin
Brudaru and Valmar (2004) proposed a hybrldwhere robots with different capabilities and

genetic algorithm for solving a SMALB Type-1 N .
Problem. They considered the processing timesstista specializations were assigned to the assembly .tasks
Various procedures for adapting the genetic algorit

as fuzzy numbers like Tsujimuret al. (1995). Their A
hybrid method combined the branch-and-bound and the RALB problem, such as a local optimizatibitl (
genetic algorithm. The authors presented a speci&limbing) ~work-piece exchange procedure, were
representation, which used subsets of solutiortserat 9generated problems to determine the most effective
than the individual solutions. They also proposeww  genetic algorithm procedure, based on the best
type of genetic operator called a growing opertidre ~ combination of parameters.

Table 3: Summary of the previous research

References Problem type Tools

Falkenauer and Delchamber (1992) SALB Type-1 Girayigenetic algorithm

Leuetal. (1994) SALB Type-1 Genetic algorithm with heudgtrocedures
Anderson and Ferris (1994) SMALB Type-2 Genetiodtgm

Rubinovitz and Levitin (1995) SALB Type-2 Genetlgarithm

Tsujimuraet al. (1995) GALB (SMALB Type-1) Genetic algorithms

Kim et al. (1996) SMALB Type-1, 2, 3, 4,5 Genetic algorithm

Sureshet al. (1996) GALB (SMALB Type-1) Genetic algorithm witltochastic processing times
Falkenauer (1997) GALB (SMALB Type-1) Grouping geaalgorithm

Ajenblit and Wainwright (1998) GALB (U-shape SMALBy/pe-1) Genetic algorithms

Chanet al. (1998) GALB (SMALB Type-1) Genetic algorithm

Kim et al. (1998a) SALB Type-2 Genetic algorithm

Rekieket al. (1999) SALB equal piles Grouping genetic algarithased on Equal Piles approach
Rekieket al.(2001) Multi-objective ALB Grouping genetic algtimn

Bautistaet al. (2000) SALB Type-1, Type-2 GRASP with geneticalthm and GRWASP with

genetic algorithm
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Table 3: Continued

Kim et al. (2000) GALB (SMALB Type-1) Genetic algorithm

Ponnambalanet al. (2000) SMALB Type-1 Multi-objective genetic algiim
Sabuncuoglet al. (2000) SMALB Genetic algorithm with dynamic p&dhing
Carnaharet al. (2001) SALB Type-2 Ranking heuristic

Combinatorial of genetic algorithm
Problem space of genetic algorithm (better tharothers)

Simaria and Vilarinho (2001a; 2001b) GALB (MMALB pg-2) Genetic algorithm
SMALB Type-2 Simulated annealing
Chenet al. (2002) GALB (assembly planning Type-2) Genetgoaithm
Goncalves and De Almeida (2002) SALB Type-1 Hylgrahetic algorithm (combination of heuristic
priority rules with genetic algorithm)
Miltenburg (2002) GALB (MMALB and sequencing Gerretilgorithm
simultaneously Type-1)
Valenteet al. (2002) GALB (SMALB Type-2) Genetic algorithm
Hui et al. (2002) SALBP Fuzzy logic-based system
Zha and Lim (2002) Intelligent design and plannifignanual  Neuro-fuzzy
assembly workstation
Brudaru and Valmar (2004) GALB (SMALB Type-1) Hyrgenetic algorithm (combined branch and bound
with genetic algorithm)
Martinez and Duff (2004) GALB (U-shape SMALB Typég-1 10 heuristic rules with genetic algorithm
Simaria and Vilarinho (2004) GALB (MMALB Type-2) dtative genetic algorithm based search procedure
Stocktonet al. (2004) SALB Type-1 Genetic algorithm
SMALB Type-1 Genetic algorithm with computationaperiments
Brown and Sumichrast (2005) SALB Type-1 Genetioatgm
Grouping genetic algorithm (better than the others)
Fonsecat al. (2005) Stochastic SALBP Fuzzy representatiomeftime variables as viable
alternative method
Levitin et al. (2006) GALB (SMALB Type-2 for RALB) Genetic algtim
Noorul Haget al. (2006) GALB (MMALB Type-1) Hybrid genetic algohitn (incorporated the solution from
the modified RPW method into genetic algorithm)
Karaet al. (2009) Straight and U-shape ALBP Binary fuzzylgragramming model

Noorul Haqg et al., (2006) proposed a hybrid balancing, since the first-time installation or wheis
genetic algorithm for solving MMALB Type-1 needed to reconfiguration them. As an approach, sof
problems. They incorporated the solution from thecomputing differs from a traditional method, such a
Modified RPW (MRPW) method into the genetic conventional or hard computing, in that soft conmumt
algorithms randomly-generated initial population toapproaches are tolerant of imprecision, uncertainty
reduce the search space within the global seamtesp partial truth and approximation. In effect, the erol
It was noted that this integration reduced the cdear model for soft computing is the human mind (Zadeh).
time. The authors illustrated the implementationaof With all the capabilities of soft computing, esfadlgi in
hybrid genetic algorithm approach on seven problemsptimizing and the simply use of it, make soft
and compared the results with the MRPW and theomputing suitable for assembly line balancing
standard genetic algorithm. The results showedttieat problems that always attempt to optimize the system
proposed approach performed better than the standafhe capabilities of soft computing in optimizingvlea
genetic algorithm. The following Table 3 preseriis t been proven and it is better than hard computing. O
summaries of the previous work regarding assemblyhe other hand, soft computing approaches make the
line balancing and the uses of genetic algorithms i optimization process simple to do than using the

solving the problems. conventional one, which is impractical and
computationally inefficient.
CONCLUSION However, the fact is that soft computing has been

used by many researches and among the approaches,
Assembly line balancing involves numerousfyzzy logic and genetic algorithms are already gein
problems such as costs, quality, environmental @hpa used in solving assembly line balancing problent an
safety, workers, products, reliability, accuracy, genetic algorithms have become the most used method
robustness of the system and others. In order kema in solving assembly lines balancing problems. Tee u
the system stable and balanced, a good managedshowf genetic algorithms received increasing attenfiom
take care of all the factors influencing assemliig | the researchers, since it provides an alternativéhe
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traditional optimization technique by using dirette However, it is noted that most of the researchers
random searches to locate optimum solutions irfocused on SALB, the simplest version of the proble
complex landscapes (Tasan and Tunali, 2008). with a single objective and ignore the recent teene.,

In Table 3, it could be listed in the findingswey  mixed-model production and U-shaped lines in the
study, based on problem specifications. They coeld Ccomplex manufacturing environments, where ALBP are

listed as follows (Tasan and Tunali (2008) with fewMulti-objective in nature. So, it is clearly knovamd
modifications): seen that most of the previous researches of aggemb

lines balancing did not take into account the human
« Almost half of the papers surveyed focused On{)acltor._lt’s (f)bvious ;Ihaf. human faCLOB inﬂuem&d?t
SALB, the simplest version of assembly line 'oaé)zmt:rl]r;% of assembly lines, since there are y
. : prefer to be assigned to human beings,
gﬂigc'ng problems, while others half-focused o although automated production systems are most
. Only four articles surveyed dealt with mixed- widely used. _Akaget_al. (1983) were the first research
> : ~CU” to pay attention to it. They proposed a methodedall
model assembly line balancing. They are Simarighe parallel Assignment Method (PAM) which is an
and Vilarinho (2001a); Simaria and Vilarinho gjternative way to increase the production raten¢be
(2004); Miltenburg (2002) and Noorul Ha al.  |owering the cycle time) by assigning multiple werk
(2006) to one workstation. The experimental results showed
* One of the articles (Miltenburg, 2002) tried to that practical problems which cannot be solveddrias
solve balancing and sequencing problems ofine balancing methods are provided and solved by
mixed-model assembly lines simultaneously explaining the effectiveness of PAM and could be us
« Few of the surveyed papers studied on Type-10 achieve a higher production rate. However, since
problems which minimized the number of then, there is very few researchers have achiebed t
workstations and a few others studied on Type-Zame results or have developed Akagal.’s (1983)
problems which minimized the cycle time, but fourW‘?rk further. Another finding also been made dunn_g
of them (Kim et al., 1996; Bautistat al., 2000: this survey_study. _There are a many reasons V\_/h_lch
Rekiek et al., 2002; Ponammbalaret al., 2000) make_gepetlc algor_lthms b_ecome_one of the promising
considered tﬁe mulfi object ’ optimization techniques in solving assembly lines

. Only two articles by Sureskt al. (1996) and balancing problems even better than others in some

; ; cases. A few of them are listed in Table 4.
Fonsecat al. (2005) dealt with stochastic; another W I I

three, by Tsujimuraet al. (1995); Brudaru and Closing/Recommendation: This study has presented
Valmar (2004) and Karat al. (2009) dealt with a survey study of assembly lines balancing, the
fuzzy and all the others dealt with deterministic problem classifications and their characteristigs.
processing times review on the uses of soft computing approaches in

e Only one article, by Rubinovitz and Levitin (1995), assembly line balancing is presented too, as tha ma
dealt with workstation-dependent and another oneoncern of this study. This study shows the great
by Falkenauer (1997) dealt with resource-effort made by many researchers to prove the
dependent deterministic processing times capability of soft computing approaches in solvihg

« Only one article, by Bautistaet al. (2000), line balancing problem, rather than using tradaion
considered the incompatibilities between tasks ~ Methods such as mathematical modeling and other

- Only one article, by Carnahaet al. (2001), heuristic methods. This study also shows the inapoet
considered the physical demands placed off r_esearchlng_assembly line balancmg._Regardmegt
workers during assembly line balancing review of previous works on assembly line balanging

. Only one article, by Levitinet al. (2006), this study shows that among the soft computing

considered RALB problems, where robots haveapproaches, GAs have been used predominantly in

different capabilities and specializations solving assembly line balancing problems, especiall

. ) . the simplest ones. However, in contrast to the high
*  Only one article, by Huét al. (2002), considered suitability of genetic algorithms in assembly line

the ability of the assembly line to reach targ:—’etfalalncing for multi-objective problems, some reskeears

production output more consistently by a proposeqg o a5 Kimet al., 1996; Ponnambalar al., 2000)
fuzzy logic operator allocation-based approach have proved that GA's computation time is

*  Only one article, by Karat al. (2009), considered considerably longer. On the other hand, the multi-
straight assembly line balancing and a U-shape@pjective problems of assembly line balancing are
model using binary fuzzy goal programming the most current issues that need to abdressed.
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Table 4: List of other findings regard the usege@ifetic algorithm in assembly line balancing

Researchers

Facts about genetic algorithms

Rubinovitz and
Levitin (1995)

Kim et al. (1996)

Ajenblit and
Wainwright (1998)

Rekieket al. (1999)

Kim et al. (2000)

Sabungcuoglet al.
(2000)

A few previous researches have predseveral good methods and algorithms for solaBsgmbly lines balancing
problems, but most of the methodd algorithms suggested just one solution for assehmies balancing problems
(Talbot, 1986). However, in reality, assembly liaesign needs to investigate alternative solutiaim®re preference for
work allocation to stations is considered, or t@msts other then technological precedence aentako account. Therefore,
genetic algorithms are used, since it has théyatulgenerate multiple solutions to assemblydibalancing problems. The
ability of GAs have been compared to the one ¢hupation techniques, namely MUST (multiple soduts technique
(Dar-El and Rubinovitz, 1979)) which can also gateemultiple solutions to assembly lines balangingblems, as Gas
do. The results show that GAs are faster than Mal§@rithms in generating solutions, even for assgimes balancing
problems with large number of stations and a fiighibility ratio.
Genetic algorithm-based assembly line balancigarithms allows for balancing a line where taskesnare
station-independent.
The main characteristic of genetic algorithms Whicbustness implies high independence betweeseidieh process
and the problem complexity or size.
The procedures solution quality evaluation magasly changed or modified, providing a desiral@gibility to consider
and elements and factors of real assembly lingdemd balancing.

A genetic algorithms representation sletad a wide variety of ALB problems, including rtiple objective cases.
An efficient decoding method for individual repeesation of sequence alternatives.
A simple and effective repair method to preseheedolution’s feasibility.
The combinations of genetic operators for varigingle objectives and
In the case of multiple objectives, a selectidmesge to produce diverse non-dominated solutions.

1
Genetic algorithms provide the abilityfind one or more optimum sequences amgzﬂg'g possible task sequences with

m tasks and r ordering constsathain there are, while it is nearly impossiblelttain an efficient solution using a
deterministic algorithm.
The classical assembly lines balancingagmh tends to group operations under precederteyate time constraints.
This generally does not yield to a desired nundbéalanced stations. As no efficient computationathods leading to
the exact solution are known for the proposedIprobgenerally a heuristic method, namely a Grayi@enetic Algorithm
(GGA) is used to tackle it.
A genetic algorithm is a proper stratemysblving the two ALB problems. Not only does GAdf good quality solutions
quickly to such complex problems, but it is aldledadily deal with constraints imposed on by #adres of two-sided lines.
Therefore, a new GA, a genetic encoding and dagatiheme and genetic operators suitable for tit#egm are devised.
The common characteristic of all the heuristrsbk methodologies is the use of problem-specifiaiedge intelligently
to reduce the search efforts. In this cdn®As are intelligent random search mechanismisafeaapplied to various
combinatorial optimization problems, such as salied, TSP and ALB.
GA can be used as a very effective search technigsolving difficult problems because of its @pito move from one
solution set to another and its flexibility to @rporate the problem-specific characteristics.
GAs are adaptive methods which can be used te sgltimization problems.
In general, the power of GAs comes from the faat the technique is robust and can deal with @& wadge of problem
areas. Although GAs are not guaranteed to findgtenal solution, they generally find good solasawithin reasonable
computational requirements.
The effective use of GAs in the solution of conatbamial optimization problems, working specificadli the ALB problem.
The ability of GAs to consider a variety of objgetfunctions is regarded as the major feature &6.G
Some of the characteristics of GA devise withittspiration of the ALB system.
Coding: Each task is represented by a numbeisipméaced on a string (i.e., chromosome) withstiimg size equal to
the number of tasks. The tasks are ordered ochifeenosome, relative to their order of processitigen the tasks are
allocated into stations, such that the sum otdBk times in each station does not exceed the tiyiwe.
Fitness function: The objective of the ALB prableonsidered.
Initial population: The initial population is gerated randomly by assuring feasibility of precederelations.
Crossover and mutation: The major reason thaem#ks crossover operator very suitable for ALEhat it assures
feasibility of the offspring. Since both pareats feasible, both children must also be feaskdeping a feasible
population is a key to the ALB problem, sincesgm@ing feasibility drastically reduces computagioeffort. The
mutation operator of Leet al. (1994) is scramble mutation; that is, a randotrpaint is selected and the genes after
the cut-point are randomly replaced (scramblas§uring feasibility.
Elitism, i.e., replacing a parent with an offggrionly if the offspring is better than the paréstapplied to both the
crossover and the mutation procedures. Bothesfaloperators are the same asédtel.’s (1994) crossover and
mutation operators.
Scaling: The objective is to minimize the fithessres, then it needs to assign the highest sfialeds score to the
lowest fitness score and vice versa, to assolzability of selection that is proportional tetfitness of chromosomes.
Selection Procedure: Each chromosome, consisfiag interval proportional to its scaled fitnessre, are placed next
to each other on the [0,1] interval. Then, a@mif random number in the [0,1] interval is genatated the
chromosome which is assigned to the intervalesponding to the random number is selected. Thisggiure selects
chromosomes proportional to their fitness scores.
Stopping Condition: The algorithm terminates mfteertain number of iterations.

157



J. Computer i, 6 (2): 141-162, 2010

Finally, this study also provides information to Bautista, J., R. Suarez, M. Mateo and R. Companys,
researchers about the problems in assembly line 2000. Local search heuristics for the assembly line
balancing which have been solved and also the ones balancing problem with incompatibilities between
that are still in progress. This study recomments t tasks. Proceedings of the IEEE International
following for future research: The human involveren Conference on Robotics and Automation, Apr. 24-
in assembly line balancing needs to be considesea a 28, IEEE Xplore Press, San Francisco, pp: 2404-
problem factor; there are still opportunities te soft 2409.DOI: 10.1109/ROBOT.2000.846387
computing approaches that have other advantageBaybars, 1.,1986. A survey of exact algorithms thoe
compared to genetic algorithms, especially for mult simple assembly line balancing problem. Manage.
objective problems; to increase the suitability sofft Sci., 32: 909-932. DOI: 10.1287/mnsc.32.8.909
computing approaches, with the hybrid system beindecker, C. and A. Scholl, 2006. A survey on proldem
one possibility. and methods in generalized assembly line

balancing. Eur. J. Operat. Res., 168: 694-715. DOI:
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