
2
SIMPLIFYING MASSIVE DATASETS
WITH COLOR AND TEXTURE IN 3D

REAL-TIME GAME ENGINE
DEVELOPMENT 

Tan Kim Heok, Abdullah Bade, Daut Daman

 INTRODUCTION   

Computational demanding paradigm like three dimensional 
interactive applications always requires the simulation and display 
of a virtual environment (VE) at interactive frame rates. Even with 
the use of powerful graphics workstations, a complex VE can 
involve a vast amount of computation, inducing a noticeable lag 
into the system. This lag can severely compromise the display 
quality.

Therefore, a lot of techniques have been proposed to 
overcome the delay of the display. It includes motion prediction, 
fixed update rate, visibility culling, frameless rendering, Galilean 
antialiasing, level of detail, world subdivision or even employing 
parallelism (Reddy 1997). Level of detail is certainly a great way 
in resolving this problem.  

A long time ago, programmers have used Level of Detail 
(LOD) techniques to improve the performance and quality of their 
graphics systems. The LOD approach involves retaining a set of 
representations of each polygonal object, each with different levels 
of triangle resolution. During the animation rendering stage, 
objects deemed to be less important are displayed with a low-
resolution representation. Whereas object of higher importance is 
displayed with higher details (Figure 2.1). 
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Due to the increasing size of datasets, the problem of 
dealing with the meshes that are apparently larger than the main 
memory existed. Thus, these data can only be rendered on high end 
computer system. These massive data are practically impossible to 
fit in available main memory in desktop personal computer. As a 
result, it is very cost ineffective and not user friendly.

Figure 2.1  Different Level of Detail of Buddha Model 

Suppose this problem can be solved by simplification 
process, however, the conventional simplification technique need 
to load the full resolution mesh into main memory in order to 
perform the task. Consequently, out-of-core approach is invented 
to overcome this deficiency. Lindstrom (2000) is the first 
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researcher who optimized the secondary memory usage instead of 
depending on main memory in enormous mesh simplification.  

In many computer graphics application, the realism of the 
virtual environment is very important. Therefore, the preservation 
on surface attributes is essential during the geometric 
simplification process. Surface attributes, like normal, curvature, 
color and texture show the details of the object. Without them, the 
rendered scene will looked dull and unattractive to user. 

PREVIOUS WORK 

In this section, some previous works in existing simplification 
operators, error metrics, spatial data structure (tree), level of detail 
framework and some recent out-of-core approaches are presented. 
In these methods, attention will draw to vertex clustering 
simplification method, quadric error metrics, octree structure and 
view-dependent framework.  

The geometric simplifications operators include vertex 
removal, edge collapse, half-edge collapse, vertex pair contraction 
(virtual edge), triangle collapse, vertex clustering and face 
clustering. Vertex removal, which is first introduced by Schroeder 
et al. (1992) performs by removing a vertex and applying patching 
to cover the created hole. Edge collapse (Hoppe 1996) is the 
highest quality operator that contracts an edge to be a single vertex. 
Half edge collapse chooses one of the vertex of an edge to be the 
representative vertex, thus the quality are poorer. Vertex pair 
contraction enable any pair of vertices to be merged even it is not 
an edge. Alternatively, triangle collapse converts three vertices into 
a vertex. Vertex clustering (Rossignac and Borrel 1993) contracts 
all the vertices in a cell into an optimal vertex. Whereas face 
clustering merge nearly coplanar faces into large clusters of faces 
and it is less popular due to its low quality.
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From all the simplification operators, vertex clustering is 
the fastest algorithm. Low and Tan (1997) proposed a slight 
variation on vertex clustering by using “floating cell” instead of 
static grid. The most important vertex in a cell is chosen as 
representative vertex. It offers higher quality result but slower 
computation time. Luebke and Erikson (1997) use vertex 
clustering together with Octree in their view-dependent refinement.  

Typically geometric error metric can be done locally or 
globally. The Hausdorff distance is probably the most well-known 
metrics for making geometric comparisons between two point sets. 
This metric is defined in terms of another metric such as the 
Euclidean distance. Quadric error metrics is based on weighted 
sums of squared distances (Garland and Heckbert 1997). The 
distances are measured with respect to a collection of triangle 
planes associated with each vertex. This technique is fast and good 
fidelity even for drastic reduction. This work is extended to 
preserve color and texture attributes (Garland and Heckbert 1998).

Spatial data structures are used to store geometric 
information. The data or the object can be divided uniformly or 
adaptively. BSP, quadtree, octree, kd-tree, R-tree are some 
examples of spatial data structures. BSP divides world using line 
(2D) or plane (3D). Quadtree is used in 2D environment whilst 
Octree in 3D environment. Shaffer and Garland (2001) uses two 
passes in out-of-core approach by first performing uniform 
clustering like Lindstrom (2000) then adaptive subdivision using 
BSP to re-cluster the mesh.   

OEMM (Cignoni et al. 2002) uses Octree to partition the 
mesh and edge collapse to simplify the mesh. It is slower but 
higher quality. There are four types level of detail framework, 
including discrete LOD, continuous LOD, view-dependent LOD 
and hierarchical LOD. Discrete LOD generates all the static LOD 
during preprocessing stage but continuous LOD creates data 
structure from which a desired LOD can be extracted during 
runtime. View-dependent solved problem with large object and can 
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span several resolution over a mesh. However, it is slow. 
Hierarchical LOD can sit atop of discrete LOD and view-
dependent LOD to solve simplification on small object. There are 
implementations on discrete LOD due to its simplicity like in 
(Correa 2003). View-dependent LOD and hierarchical LOD are 
also common nowadays. There is always combination of view-
dependent LOD and hierarchical LOD in geometric simplification. 
There are some works on out-of-core simplification for view-
dependent refinement. Hoppe (1998) partitions terrain in 
hierarchical format and seams are simplified further. Then, Prince 
(2000) applied it to arbitrary mesh, but it needs too much of RAM 
hence slow. Cignoni et al. (2002) extended it using an efficient 
data structures but it is not reported how this data structure applied 
to view-dependent refinement. El-Sana and Chiang (2002) also 
segment the mesh and use edge collapse technique but did not 
using any large model to test their out-of-core technique.

Lindstrom (2000) is the pioneer in out-of-core 
simplification field. He created a simplification method, called 
OOCS which is independent of input mesh and able to simplify 
extremely large datasets as long as the output size is smaller than 
the available main memory. Besides, less memory simplification 
was also introduced. Afterward, enhancement is done on dropping 
the dependency on output mesh as well in memory insensitive 
simplification - OOCSx (Lindstrom and Silva 2001). At the same 
time, many approaches were introduced by previous researchers in 
simplifying the massive datasets (Borodin et al. 2003; Guthe et al. 
2003; Isenburg et al. 2003).

ALGORITHM FRAMEWORK 

This research introduces an approach for end-to-end and out-of-
core simplification and view-dependent visualization of large 
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surfaces. Besides, appearance preservation is proposed as well. 
Here, the arbitrarily large datasets can be visualized by given a 
sufficient amount of disk space. The work starts from a modified 
memory insensitive simplification (OOCSx) (Lindstrom and Silva 
2001). Then, construction of a multi-resolution hierarchy is 
conducted. Finally, view-dependent rendering on output mesh is 
carried out during run-time. The framework overview is shown in 
Figure 2.2. 

Figure 2.2  Framework Overview 

Algorithm starts with a modified memory insensitive 
simplification (Lindstrom and Silva 2001). This technique 
eliminates the dependency on main memory size. The input mesh 
is subdivided into uniform rectilinear grid. Next, vertex clustering 

Preprocessing (Step 1) 
Simplification 

Preprocessing (Step 2) 

Octree Construction 

Run-time 

View-dependent 
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simplification (Rossignac and Borrel 1993) is performed on each 
cell. This simplification operator may introduce non-manifold 
vertices and edges. Additionally, it may produce less quality output 
mesh. Nevertheless, it is fast and suitable for our interactive 
application. During simplification, generalized quadric error metric 
(Garland and Heckbert 1998) is used to find the optimal 
representation vertex and calculate the simplified color or texture 
attribute. These tasks are performed on-disk and therefore random 
accesses by using a sequence of external sorts should be avoided. 
The output of this stage is a set of triangles and a set of quadric 
matrices for its vertices.  

In building the Octree, each triangle is associated with each 
node in the tree. Each of them represents a grid cell in partitioned 
mesh and has position and resolution. The triangles file and vertex 
file are sorted based on the grid cell so that the neighbors are 
stored together. The generated parent nodes are output sequentially 
to a temporary file for a certain resolution. It is repeated until all 
levels in Octree are represented. Lastly, we will get a temporary 
file with single root node. Then, hierarchical structure is created in 
a single file by linking all the levels from the coarsest to the most 
detail level. In the run-time phase, the visible nodes are extracted 
from Octree. Each of them is considered as active nodes and the 
vertex information is loaded into a dynamic data structure. The 
active nodes are expanded and collapsed based on view-dependent 
criteria. We make the rendering and refinement stages run in 
parallel.

SIMPLIFICATION

The main flow of work in OOCSx is similar with vertex clustering 
(Rossignac and Borrel 1993) simplification process.  The only 
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differences are the way of data is handled the process to find the 
optimal vertex.  

First, the mesh is subdivided into a uniform rectilinear grid. 
Because our mesh is in three dimensions, therefore, the grid is 
constrained to only 2m x 2m x 2m dimension. m is the number of 
space subdivision in order to get the most detail mesh after 
simplification. The most detail mesh here points to vertices in the 
leaf nodes. These leaf nodes will be stored as leaf nodes in (m+1) 
level in Octree later on. The root has cluster ID G(x) = 1. For the 
kth child of a node’s ID is calculated as 8 G(x), + k, where k=0, 1, 
2, 3, 4, 5, 6, 7.

We process the mesh, which is represented as a triangle 
soup. A triangle soup is a sequence of triplets of vertex 
coordinates. Steps to perform simplification are similar with 
memory insensitive algorithm (Lindstrom and Silva 2001) as 
follows: 

Read one triangle, t = (xt
1, xt

2, xt
3) at one time. Then, 

compute two orthonormal unit vectors e1 and e2 which lie 
in the plane for t. Determine the grid location G(xt

i) for 
each vertex (xt

i). We generate two files :  
- Plane equation file : store < G(xt

i), e1, e2>for each vertex 
in each triangle 
- Triangle cluster: store 3 grid location < G(xt

1), G(xt
2),

G(xt
3)>(for vertices which fall into 3 different cluster) 

Sort plane equation file using G as primary key using rsort
(Linderman 1996).  
Compute quadric q using e1 and e2 to get optimal vertices x 
with its color or texture attribute for each cluster (will be 
explained in following section). The output is <G(xt

i), x>. 
Replace cluster IDs in triangle file with corresponding 
vertices. It is done by creating triangle cluster ID with 
referring to the file which all the vertices of each triangle. 
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This stage generated two files for finest resolution in leaf 
nodes for Octree; the triangle file and the cluster ID. The cluster ID 
file is associated with its optimal vertex position and its surface 
attributes.

Vertex Clustering  

Vertex clustering can also be called spatial clustering as it 
partitions the space into simple convex 3D regions. Because the 
mesh always represented in Cartesian coordinate system, the 
easiest way is to do rectilinear space partitioning. Figure 2.3 shows 
how the vertex clustering works in 2D diagram. 

Figure 2.3 Spatial Clustering Process (Lindstrom 2003) 

GENERALIZED QUADRIC ERROR METRICS 

This generalized quadric (Garland and Heckbert 1998) is created 
from quadric error metrics (Garland and Heckbert 1997). This is 
because original quadric error metrics only handles geometry 
primitives (vertex position) in simplification. Although it is 
extended from previous quadric error metric, however, it needs the 
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normal of  the plane and two orthonormal unit vectors e1 and e2.
Let us look at where is the unit vector from in Figure 2.4. 

Figure 2.4  Orthonormal vector e1 and e2 define the local frame with 
origin p for triangle T (Garland and Heckbert 1998) 

Consider the triangle T = (p, q, r) and we assume that all 
properties are linearly interpolated over triangles. If it has color 
attribute, then p=(px, py, pz, pr, pg, pb). If it has texture, then p=( px,
py, pz, ps, pt). To compute e1 and e2:
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By solving Ax=b, we get the optimal vertex x with its simplified 
surface attributes as well. To simplify different types of meshes, 
refer Table 2.1 (Garland and Heckbert 1998).

Table 2.1  Space Requirement 

Model type Vertex A  Unique 
coefficients 

Geometry only (x y z)T 3x3 10 
Geometry+2D texture (x y z s t)T 5x5 21 
Geometry+color (x y z r g b)T 6x6 28 
Geometry+normal (x y z a b c)T 6x6 28 

OCTREE CONSTRUCTION 

In this phase, we construct a coarse to refine level of detail 
representation of the mesh in a tree data structure, called octree.  
From previous process, we have the simplified mesh in the triangle 
file. Next, we begin to construct the internal node of the Octree. It 
is done by scanning the triangle file (from previous stage) 
sequentially to generate every levels of Octree. As mentioned 
before, the triangles in level (m+1) is already generated in 
simplification process. Thus, we start from level L=m until m=1 
(root node). The steps are similar with simplification process with 
little differences: 

Read one triangle, t = (G(xt
1), G(xt

2), G( xt
3)) at one time. 

Then, compute two orthonormal unit vectors e1 and e2
which lie in the place for t. Determine the grid location 
G(xt

i) for each vertex (xt
i). We generate two files :  
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- Plane equation file : store < G(xt
i), e1, e2 >for each vertex 

in each triangle 
- Triangle cluster: store 3 grid location < G(xt

1), G(xt
2),

G(xt
3)>(for vertices which fall into 3 different cluster) 

Sort plane equation file using G as primary key using rsort 
(Linderman 1996).  
Compute quadric q using e1 and e2 to get optimal vertices x 
with its color or texture attribute for each cluster (explained 
in previous section). The output is <G(xt

i), x, q>. 
Additionally, file offset within VL for each child node is 
recorded and stored with its parents. 
Lastly, we have the triangle file and a file with cluster ID 
with its optimal vertex for level L. 

The final step is to link the nodes together in a single 
hierarchical structure file H using the offsets. Similar to multi-
resolution methods, we store the multi-resolution structure from 
coarse to fine resolution.

VIEW-DEPENDENT RENDERING AND REFINEMENT 

The refinement and rendering are run in two threads. In refinement 
process, we use Best First search in finding the active nodes. Best 
First search is a breadth first search with added heuristics. This 
search enables the mesh to be updated progressively. Thus, 
popping effects will not occur. This search also ensures the detail 
is paged in and added evenly over the visible mesh. These are all 
benefits from breadth first search. Meanwhile, we control our 
frame rate using some heuristics.  

We begin refinement process by creating the root node into 
active node. In refinement process, we expand or collapse node. 
Child nodes are added when we need more detail, otherwise 
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collapse the nodes.  However, collapse and expand action only can 
be applied to active nodes which are stored in dynamic data 
structure in main memory.  

 During rendering, we test on the boundary of node to the 
view-frustum planes. If it is visible, expand the nodes. Otherwise, 
collapse it in coarser form but not totally cull it off. This is to avoid 
sudden changes in viewing perspective.
  If a node is visible, then compare the error threshold based 
on distance aspect with the node’s quadric error. If quadric error is 
lesser, collapse the node otherwise expand the node.

EXPECTED RESULTS 

The proposed framework is expected to handle datasets which is 
larger than available main memory size on low cost personal 
computer. At the same time, it is able to preserve the surface 
attributes. The surface attributes here are pointing to color or 
texture details only. It can generate at least 15 frame rates per 
second during run-time. Meanwhile, the output is view-dependent.
Figure 2.5 below shows the example of our expected output.
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Figure 2.5   Simplification on Lucy Model. The Portion of the Mesh, 
which Lie Outside of View Frustum is in Low Resolution 

CONCLUSION 

We have proposed an outline to simplify the massive datasets, 
which has millions of polygon and preserve the surface attributes 
(color and texture) after simplification process. To handle out-of-
core datasets, we have modified memory insensitive algorithm 
(Lindstrom and Silva 2001) so that it can be used in simplifying 
the mesh in geometry, color and texture aspects. Conventional 
vertex clustering simplification operator is also applied. Even 
though it produced a quite low quality output, but, it is enough for 
game application. Accuracy is not that vital here like in medical 
visualization. We have adopted the generalized quadric error 
metric (Garland and Heckbert 1998) as the original quadric error 
metric is not able to handle the surface attributes. This error metric 
is robust and pretty accurate. Octree is used to make the data more 
organized and easier to retrieve during run-time. Best first search 
used here has the potential to get a faster solution in tree searching. 
View-dependent refinement and rendering are run asynchronously.
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