
2
SIMPLIFYING MASSIVE DATASETS
WITH COLOR AND TEXTURE IN 3D

REAL-TIME GAME ENGINE
DEVELOPMENT

Tan Kim Heok, Abdullah Bade, Daut Daman

 INTRODUCTION

Computational demanding paradigm like three dimensional
interactive applications always requires the simulation and display
of a virtual environment (VE) at interactive frame rates. Even with
the use of powerful graphics workstations, a complex VE can
involve a vast amount of computation, inducing a noticeable lag
into the system. This lag can severely compromise the display
quality.

Therefore, a lot of techniques have been proposed to
overcome the delay of the display. It includes motion prediction,
fixed update rate, visibility culling, frameless rendering, Galilean
antialiasing, level of detail, world subdivision or even employing
parallelism (Reddy 1997). Level of detail is certainly a great way
in resolving this problem.

A long time ago, programmers have used Level of Detail
(LOD) techniques to improve the performance and quality of their
graphics systems. The LOD approach involves retaining a set of
representations of each polygonal object, each with different levels
of triangle resolution. During the animation rendering stage,
objects deemed to be less important are displayed with a low-
resolution representation. Whereas object of higher importance is
displayed with higher details (Figure 2.1).

18

Due to the increasing size of datasets, the problem of
dealing with the meshes that are apparently larger than the main
memory existed. Thus, these data can only be rendered on high end
computer system. These massive data are practically impossible to
fit in available main memory in desktop personal computer. As a
result, it is very cost ineffective and not user friendly.

Figure 2.1 Different Level of Detail of Buddha Model

Suppose this problem can be solved by simplification
process, however, the conventional simplification technique need
to load the full resolution mesh into main memory in order to
perform the task. Consequently, out-of-core approach is invented
to overcome this deficiency. Lindstrom (2000) is the first

19

researcher who optimized the secondary memory usage instead of
depending on main memory in enormous mesh simplification.

In many computer graphics application, the realism of the
virtual environment is very important. Therefore, the preservation
on surface attributes is essential during the geometric
simplification process. Surface attributes, like normal, curvature,
color and texture show the details of the object. Without them, the
rendered scene will looked dull and unattractive to user.

PREVIOUS WORK

In this section, some previous works in existing simplification
operators, error metrics, spatial data structure (tree), level of detail
framework and some recent out-of-core approaches are presented.
In these methods, attention will draw to vertex clustering
simplification method, quadric error metrics, octree structure and
view-dependent framework.

The geometric simplifications operators include vertex
removal, edge collapse, half-edge collapse, vertex pair contraction
(virtual edge), triangle collapse, vertex clustering and face
clustering. Vertex removal, which is first introduced by Schroeder
et al. (1992) performs by removing a vertex and applying patching
to cover the created hole. Edge collapse (Hoppe 1996) is the
highest quality operator that contracts an edge to be a single vertex.
Half edge collapse chooses one of the vertex of an edge to be the
representative vertex, thus the quality are poorer. Vertex pair
contraction enable any pair of vertices to be merged even it is not
an edge. Alternatively, triangle collapse converts three vertices into
a vertex. Vertex clustering (Rossignac and Borrel 1993) contracts
all the vertices in a cell into an optimal vertex. Whereas face
clustering merge nearly coplanar faces into large clusters of faces
and it is less popular due to its low quality.

20

From all the simplification operators, vertex clustering is
the fastest algorithm. Low and Tan (1997) proposed a slight
variation on vertex clustering by using “floating cell” instead of
static grid. The most important vertex in a cell is chosen as
representative vertex. It offers higher quality result but slower
computation time. Luebke and Erikson (1997) use vertex
clustering together with Octree in their view-dependent refinement.

Typically geometric error metric can be done locally or
globally. The Hausdorff distance is probably the most well-known
metrics for making geometric comparisons between two point sets.
This metric is defined in terms of another metric such as the
Euclidean distance. Quadric error metrics is based on weighted
sums of squared distances (Garland and Heckbert 1997). The
distances are measured with respect to a collection of triangle
planes associated with each vertex. This technique is fast and good
fidelity even for drastic reduction. This work is extended to
preserve color and texture attributes (Garland and Heckbert 1998).

Spatial data structures are used to store geometric
information. The data or the object can be divided uniformly or
adaptively. BSP, quadtree, octree, kd-tree, R-tree are some
examples of spatial data structures. BSP divides world using line
(2D) or plane (3D). Quadtree is used in 2D environment whilst
Octree in 3D environment. Shaffer and Garland (2001) uses two
passes in out-of-core approach by first performing uniform
clustering like Lindstrom (2000) then adaptive subdivision using
BSP to re-cluster the mesh.

OEMM (Cignoni et al. 2002) uses Octree to partition the
mesh and edge collapse to simplify the mesh. It is slower but
higher quality. There are four types level of detail framework,
including discrete LOD, continuous LOD, view-dependent LOD
and hierarchical LOD. Discrete LOD generates all the static LOD
during preprocessing stage but continuous LOD creates data
structure from which a desired LOD can be extracted during
runtime. View-dependent solved problem with large object and can

21

span several resolution over a mesh. However, it is slow.
Hierarchical LOD can sit atop of discrete LOD and view-
dependent LOD to solve simplification on small object. There are
implementations on discrete LOD due to its simplicity like in
(Correa 2003). View-dependent LOD and hierarchical LOD are
also common nowadays. There is always combination of view-
dependent LOD and hierarchical LOD in geometric simplification.
There are some works on out-of-core simplification for view-
dependent refinement. Hoppe (1998) partitions terrain in
hierarchical format and seams are simplified further. Then, Prince
(2000) applied it to arbitrary mesh, but it needs too much of RAM
hence slow. Cignoni et al. (2002) extended it using an efficient
data structures but it is not reported how this data structure applied
to view-dependent refinement. El-Sana and Chiang (2002) also
segment the mesh and use edge collapse technique but did not
using any large model to test their out-of-core technique.

Lindstrom (2000) is the pioneer in out-of-core
simplification field. He created a simplification method, called
OOCS which is independent of input mesh and able to simplify
extremely large datasets as long as the output size is smaller than
the available main memory. Besides, less memory simplification
was also introduced. Afterward, enhancement is done on dropping
the dependency on output mesh as well in memory insensitive
simplification - OOCSx (Lindstrom and Silva 2001). At the same
time, many approaches were introduced by previous researchers in
simplifying the massive datasets (Borodin et al. 2003; Guthe et al.
2003; Isenburg et al. 2003).

ALGORITHM FRAMEWORK

This research introduces an approach for end-to-end and out-of-
core simplification and view-dependent visualization of large

22

surfaces. Besides, appearance preservation is proposed as well.
Here, the arbitrarily large datasets can be visualized by given a
sufficient amount of disk space. The work starts from a modified
memory insensitive simplification (OOCSx) (Lindstrom and Silva
2001). Then, construction of a multi-resolution hierarchy is
conducted. Finally, view-dependent rendering on output mesh is
carried out during run-time. The framework overview is shown in
Figure 2.2.

Figure 2.2 Framework Overview

Algorithm starts with a modified memory insensitive
simplification (Lindstrom and Silva 2001). This technique
eliminates the dependency on main memory size. The input mesh
is subdivided into uniform rectilinear grid. Next, vertex clustering

Preprocessing (Step 1)
Simplification

Preprocessing (Step 2)

Octree Construction

Run-time

View-dependent

23

simplification (Rossignac and Borrel 1993) is performed on each
cell. This simplification operator may introduce non-manifold
vertices and edges. Additionally, it may produce less quality output
mesh. Nevertheless, it is fast and suitable for our interactive
application. During simplification, generalized quadric error metric
(Garland and Heckbert 1998) is used to find the optimal
representation vertex and calculate the simplified color or texture
attribute. These tasks are performed on-disk and therefore random
accesses by using a sequence of external sorts should be avoided.
The output of this stage is a set of triangles and a set of quadric
matrices for its vertices.

In building the Octree, each triangle is associated with each
node in the tree. Each of them represents a grid cell in partitioned
mesh and has position and resolution. The triangles file and vertex
file are sorted based on the grid cell so that the neighbors are
stored together. The generated parent nodes are output sequentially
to a temporary file for a certain resolution. It is repeated until all
levels in Octree are represented. Lastly, we will get a temporary
file with single root node. Then, hierarchical structure is created in
a single file by linking all the levels from the coarsest to the most
detail level. In the run-time phase, the visible nodes are extracted
from Octree. Each of them is considered as active nodes and the
vertex information is loaded into a dynamic data structure. The
active nodes are expanded and collapsed based on view-dependent
criteria. We make the rendering and refinement stages run in
parallel.

SIMPLIFICATION

The main flow of work in OOCSx is similar with vertex clustering
(Rossignac and Borrel 1993) simplification process. The only

24

differences are the way of data is handled the process to find the
optimal vertex.

First, the mesh is subdivided into a uniform rectilinear grid.
Because our mesh is in three dimensions, therefore, the grid is
constrained to only 2m x 2m x 2m dimension. m is the number of
space subdivision in order to get the most detail mesh after
simplification. The most detail mesh here points to vertices in the
leaf nodes. These leaf nodes will be stored as leaf nodes in (m+1)
level in Octree later on. The root has cluster ID G(x) = 1. For the
kth child of a node’s ID is calculated as 8 G(x), + k, where k=0, 1,
2, 3, 4, 5, 6, 7.

We process the mesh, which is represented as a triangle
soup. A triangle soup is a sequence of triplets of vertex
coordinates. Steps to perform simplification are similar with
memory insensitive algorithm (Lindstrom and Silva 2001) as
follows:

Read one triangle, t = (xt
1, xt

2, xt
3) at one time. Then,

compute two orthonormal unit vectors e1 and e2 which lie
in the plane for t. Determine the grid location G(xt

i) for
each vertex (xt

i). We generate two files :
- Plane equation file : store < G(xt

i), e1, e2>for each vertex
in each triangle
- Triangle cluster: store 3 grid location < G(xt

1), G(xt
2),

G(xt
3)>(for vertices which fall into 3 different cluster)

Sort plane equation file using G as primary key using rsort
(Linderman 1996).
Compute quadric q using e1 and e2 to get optimal vertices x
with its color or texture attribute for each cluster (will be
explained in following section). The output is <G(xt

i), x>.
Replace cluster IDs in triangle file with corresponding
vertices. It is done by creating triangle cluster ID with
referring to the file which all the vertices of each triangle.

25

This stage generated two files for finest resolution in leaf
nodes for Octree; the triangle file and the cluster ID. The cluster ID
file is associated with its optimal vertex position and its surface
attributes.

Vertex Clustering

Vertex clustering can also be called spatial clustering as it
partitions the space into simple convex 3D regions. Because the
mesh always represented in Cartesian coordinate system, the
easiest way is to do rectilinear space partitioning. Figure 2.3 shows
how the vertex clustering works in 2D diagram.

Figure 2.3 Spatial Clustering Process (Lindstrom 2003)

GENERALIZED QUADRIC ERROR METRICS

This generalized quadric (Garland and Heckbert 1998) is created
from quadric error metrics (Garland and Heckbert 1997). This is
because original quadric error metrics only handles geometry
primitives (vertex position) in simplification. Although it is
extended from previous quadric error metric, however, it needs the

26

normal of the plane and two orthonormal unit vectors e1 and e2.
Let us look at where is the unit vector from in Figure 2.4.

Figure 2.4 Orthonormal vector e1 and e2 define the local frame with
origin p for triangle T (Garland and Heckbert 1998)

Consider the triangle T = (p, q, r) and we assume that all
properties are linearly interpolated over triangles. If it has color
attribute, then p=(px, py, pz, pr, pg, pb). If it has texture, then p=(px,
py, pz, ps, pt). To compute e1 and e2:

pq

pq
1e (1)

11

11
2))((

))((
eprepr

eprepr
e (2)

Squared distance D2 of an arbitrary x from T is
D2=vTAx +2bTx+c like in original quadric error metrics where:

2
2

2
1

2211

1111

)()(
)()(

epepppc

peepeepb

eeeeIA TT

 (3)

27

By solving Ax=b, we get the optimal vertex x with its simplified
surface attributes as well. To simplify different types of meshes,
refer Table 2.1 (Garland and Heckbert 1998).

Table 2.1 Space Requirement

Model type Vertex A Unique
coefficients

Geometry only (x y z)T 3x3 10
Geometry+2D texture (x y z s t)T 5x5 21
Geometry+color (x y z r g b)T 6x6 28
Geometry+normal (x y z a b c)T 6x6 28

OCTREE CONSTRUCTION

In this phase, we construct a coarse to refine level of detail
representation of the mesh in a tree data structure, called octree.
From previous process, we have the simplified mesh in the triangle
file. Next, we begin to construct the internal node of the Octree. It
is done by scanning the triangle file (from previous stage)
sequentially to generate every levels of Octree. As mentioned
before, the triangles in level (m+1) is already generated in
simplification process. Thus, we start from level L=m until m=1
(root node). The steps are similar with simplification process with
little differences:

Read one triangle, t = (G(xt
1), G(xt

2), G(xt
3)) at one time.

Then, compute two orthonormal unit vectors e1 and e2
which lie in the place for t. Determine the grid location
G(xt

i) for each vertex (xt
i). We generate two files :

28

- Plane equation file : store < G(xt
i), e1, e2 >for each vertex

in each triangle
- Triangle cluster: store 3 grid location < G(xt

1), G(xt
2),

G(xt
3)>(for vertices which fall into 3 different cluster)

Sort plane equation file using G as primary key using rsort
(Linderman 1996).
Compute quadric q using e1 and e2 to get optimal vertices x
with its color or texture attribute for each cluster (explained
in previous section). The output is <G(xt

i), x, q>.
Additionally, file offset within VL for each child node is
recorded and stored with its parents.
Lastly, we have the triangle file and a file with cluster ID
with its optimal vertex for level L.

The final step is to link the nodes together in a single
hierarchical structure file H using the offsets. Similar to multi-
resolution methods, we store the multi-resolution structure from
coarse to fine resolution.

VIEW-DEPENDENT RENDERING AND REFINEMENT

The refinement and rendering are run in two threads. In refinement
process, we use Best First search in finding the active nodes. Best
First search is a breadth first search with added heuristics. This
search enables the mesh to be updated progressively. Thus,
popping effects will not occur. This search also ensures the detail
is paged in and added evenly over the visible mesh. These are all
benefits from breadth first search. Meanwhile, we control our
frame rate using some heuristics.

We begin refinement process by creating the root node into
active node. In refinement process, we expand or collapse node.
Child nodes are added when we need more detail, otherwise

29

collapse the nodes. However, collapse and expand action only can
be applied to active nodes which are stored in dynamic data
structure in main memory.

 During rendering, we test on the boundary of node to the
view-frustum planes. If it is visible, expand the nodes. Otherwise,
collapse it in coarser form but not totally cull it off. This is to avoid
sudden changes in viewing perspective.
 If a node is visible, then compare the error threshold based
on distance aspect with the node’s quadric error. If quadric error is
lesser, collapse the node otherwise expand the node.

EXPECTED RESULTS

The proposed framework is expected to handle datasets which is
larger than available main memory size on low cost personal
computer. At the same time, it is able to preserve the surface
attributes. The surface attributes here are pointing to color or
texture details only. It can generate at least 15 frame rates per
second during run-time. Meanwhile, the output is view-dependent.
Figure 2.5 below shows the example of our expected output.

30

Figure 2.5 Simplification on Lucy Model. The Portion of the Mesh,
which Lie Outside of View Frustum is in Low Resolution

CONCLUSION

We have proposed an outline to simplify the massive datasets,
which has millions of polygon and preserve the surface attributes
(color and texture) after simplification process. To handle out-of-
core datasets, we have modified memory insensitive algorithm
(Lindstrom and Silva 2001) so that it can be used in simplifying
the mesh in geometry, color and texture aspects. Conventional
vertex clustering simplification operator is also applied. Even
though it produced a quite low quality output, but, it is enough for
game application. Accuracy is not that vital here like in medical
visualization. We have adopted the generalized quadric error
metric (Garland and Heckbert 1998) as the original quadric error
metric is not able to handle the surface attributes. This error metric
is robust and pretty accurate. Octree is used to make the data more
organized and easier to retrieve during run-time. Best first search
used here has the potential to get a faster solution in tree searching.
View-dependent refinement and rendering are run asynchronously.

31

REFERENCE

BORODIN, P., GUTHE, M. AND KLEIN, R. 2003. Out-of-Core
Simplification with Guaranteed Error Tolerance. In Vision,
Modeling and Visualization 2003, Munich, Germany, 309-316.

CIGNONI, P., MONTANI, C., ROCCHINI, C. AND SCOPIGNO, R. 2002.
External Memory Management and Simplification of Huge
Meshes. Visualization and Computer Graphics, IEEE
Transactions, 9(4), 525-537.

CORREA, W.T. 2003. New Techniques for Out-of-Core
Visualization of Large Datasets. Ph.D Thesis, Princeton
University.

GARLAND, M. AND HECKBERT, P. S. 1997. Surface Simplification
Using Quadric Error Metrics. In Proceedings of SIGGRAPH 97,
ACM Press. Los Angeles, California, Whitted, T. ed., 209-216.

GARLAND, M. AND HECKBERT, P. S. 1998. Simplifying Surfaces
with Color and Texture Using Quadric Error Metrics. In IEEE
Visualization ’98, Ebert, D., Hagen, H. and Rushmeier, H. eds.,
263-270.

GARLAND, M. 1999. Quadric–Based Polygonal Surface
Simplification. Ph.D. Thesis, Carnegie Mellon University.

GUTHE, M., BORODIN, P. AND KLEIN, R. 2003. Efficient View-
Dependent Out-of-Core Visualization. In Proceeding of The 4th

International Conference on Virtual Reality and Its Application
in Industry (VRAI’2003).

HOPPE, H. 1996. Progressive Mesh. In Proceeding of SIGGRAPH
96. Computer Graphics Proceedings, Annual Conference
Series, New Orleans, Louisiana, Rushmeier, H. ed., 99-108.

HOPPE, H. 1998. Smooth View-Dependent Level-of-Detail Control
and Its Application to Terrain Rendering. In IEEE Visualization
’98, IEEE, Research Triangle Park, North Carolina, D. Ebert, H.
Hagen, and H. Rushmeier, Eds., 35–42.

32

ISENBURG, M., LINDSTROM, P., GUMHOLD, S. AND SNOEYINK, J.
2003. Large Mesh Simplification using Processing Sequences.
Proceedings of Visualization 2003, IEEE, Seattle, Washington,
465-472.

LINDSTROM, P. AND SILVA, C. 2001. A Memory Insensitive
Technique for Large Model Simplification. In IEEE
Visualization 2001, San Diego, CA, 121-126.

LINDSTROM, P. 2000. Model Simplification using Image and
Geometry-Based Metrics. Ph.D Thesis, Georgia Institute of
Technology.

LINDSTROM, P. 2003. Out-of-Core Surface Simplification.
California: University of California, Davis, lectures on
"Multiresolution Methods" February 2003.

LOW, K. L. AND TAN T. S. 1997. Model Simplification using
vertex-clustering. In 1997 ACM Symposium on Interactive 3D
Graphics, ACM SIGGRAPH, Phode Island, Cohen, M. and
Zeltzer, D. eds., 75-82.

LUEBKE, D. AND ERIKSON, C. 1997. View-dependent
Simplification of Arbitrary Polygonal Environments. In
Proceedings of SIGGRAPH 97, ACM Press, Los Angeles,
California, T. Whitted, Ed., Computer Graphics Proceedings,
Annual Conference Series, 199–208.

PRINCE, C. 2000. Progressive Meshes for Large Models of
Arbitrary Topology. Master’s Thesis, University of
Washington.

REDDY, M. 1997. Perceptually Modulated Level of Detail for
Virtual Environment. Ph.D Thesis, University of Edinburgh.

ROSSIGNAC, J. AND BORREL, P. 1993. Multi-resolution 3d
Approximations for Rendering Complex Scenes. In Modeling in
Computer Graphics, Springer-Verlag, Falciendo, B. and Kunii,
T. L. eds., 455-465.

33

SCHROEDER, W. J., ZARGE, J. A. AND LORENSEN W. E. 1992.
Decimation of Triangle Meshes. In Computer Graphics
(Proceeding of SIGGRAPH 92), Chicago, Illinois, Catmull, E.
E. ed., 65-70.

SHAFFER, E. AND GARLAND M. 2001. Efficient Simplification of
Massive Meshes. In 12th IEEE Visualization 2001 Conference
(VIS 2001), San Diego, CA, 127-134.

