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ABSTRACT 
 
 
 
 

 Noise in medical images is recognized as an important factor that determines 

the image quality. Image noise is characterized by noise power spectrum (NPS). Four 

methods of NPS determination were compared: Wagner, Beutel, Dobbins and 

Samei's methods on Lanex Regular/ TMG screen-film system and Hologic Lorad 

Selenia Full Field Digital Mammography system, with the aim of selecting the best 

method to use. These methods differ in terms of various parametric choices and 

algorithm implementations. The one-dimensional moving-slit method has been used 

in the past to characterize the NPS of analogue screen film system (Wagner's 

method). Beutel's method offers the advantage of providing a value of the NPS at 

zero frequency along with NPS calculated via autocorrelation function (ACF). The 

moving slit and ACF methods have been replaced by a 2-D Fourier analysis method 

with the advent of fast Fourier transform and faster computers. This method is based 

on two techniques. The first is based on the extraction of a one-dimensional slice 

through the two-dimensional NPS parallel to and immediately adjacent to the axes 

(Dobbins's method). The second is based on the extraction of a one-dimensional slice 

through the two-dimensional NPS, just on the axes (Samei's method). NPS 

computation using different methods have been attempted using codes written in 

MATLAB. Overall, the four methods generate a practical value of noise power 

spectrum between 10–3 – 10–6 mm2 at spatial frequency range 0 – 10 mm–1. It was 

found that the Dobbins’s method was the best method for NPS determination. 
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ABSTRAK 
 
 
 
 
Hingar dalam imej perubatan dikenalpasti sebagai faktor penting yang 

menentukan kualiti imej. Hingar imej dicirikan oleh spektrum kuasa hingar (NPS). 

Empat kaedah bagi menenentukan NPS telah dibandingkan iaitu kaedah Wagner, 

Beutel, Dobbins dan Samei ke atas sistem skrin-filem Lanex Regular/ TMG dan 

sistem mamografi digital medan penuh Hologic Selenium Lorad, dengan tujuan 

untuk memilih kaedah terbaik untuk digunakan. Kaedah-kaedah yang digunakan 

adalah berbeza dari segi pilihan pelbagai parameter dan implementasi algoritma. 

Kaedah celah bergerak satu dimensi telah digunakan sebelum ini bagi mencirikan 

NPS sistem skrin filem analog (kaedah Wagner). Kaedah Beutel mempunyai 

kelebihan dari segi memberikan nilai NPS pada frekuuensi sifar dan mengira NPS 

melalui fungsi autokorelasi (ACF). Kaedah celah bergerak dan kaedah ACF telah 

digantikan oleh kaedah analisis Fourier 2-D dengan terciptanya transformasi Fourier 

cepat dan komputer yang lebih laju. Kaedah ini berdasarkan dua teknik. Yang 

pertama berdasarkan pemilihan hirisan satu dimensi melalui NPS dua dimensi selari 

dan bersebelahan paksi (kaedah Dobbins). Yang kedua berdasarkan pemilihan 

hirisan satu-dimensi melaui NPS dua-dimensi, hanya pada paksinya (kaedah Samei). 

Pengiraan NPS menggunakan kaedah-kaedah yang berbeza telah dilakukan dengan 

menggunakan kod yang ditulis dalam MATLAB. Secara keseluruhan empat kaedah 

itu menjana nilai praktikal spektrum kuasa hingar antara 10–3 – 10–6 mm2 pada julat 

frekuensi ruang 0 – 10 mm–1. Telah didapati bahawa kedah Dobbins adalah kaedah 

yang terbaik untuk penentuan NPS. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 

 
 
 
 

1.1 Background of Study 
 
 

Noise is often defined as uncertainty in signal due to random fluctuations in 

that signal. There are many causes for these fluctuations. For example, an X-ray 

beam emerging from an X-ray tube inherently is statistical in nature. That is, the 

number of photons emitted from the source per unit time varies according to a 

Poisson distribution. The Wiener spectrum (WS) represents the noise power 

spectrum in an image as a function of spatial frequency. It, therefore, represents the 

relationship between noise and spatial resolution (Dobbins III, 2000). 

 

WS provides the means of characterizing image noise and plays a central role 

in ultimate measure of image quality. The noise in images is recognized as an 

important factor in determining image quality. Image noise may be characterized by 

the WS or noise power spectrum (NPS) (Hanson, 1998). 

 

The NPS may be understood in several but equivalent ways. It may be 

thought of as the variance of image intensity (i.e., image noise) distributed among 

various frequency components of the image; or may be pictured as the variance of a 

given spatial frequency component in an ensemble of measurements in that spatial 

frequency (Marsh and Malone, 2001). 

 

The medical image is a window into the human body; it is formed by the 

imaging modalities that use various forms of radiation and energy to open the body 
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to visualization from the interactions of energy with human tissue. The main 

interactions of the X-ray and tissue are in the forms of photo- electric effect and 

Compton scattering. Images formed by screen film imaging systems consist of a two 

dimensional optical density pattern on a photographic film. The process by which the 

density pattern is formed (often called the imaging chain) can be thought of as a 

serial sequence of three operations (Metz and Doi, 1979). (1) Passage of a beam of 

X-ray through the object to generate a two dimensional pattern of X-ray intensity 

which is incident on the recording system (screen film system); (2) interaction of the 

X-ray intensity pattern with screen phosphor to convert the X-ray intensity pattern 

into a light intensity pattern which is incident on photographic film; and (3) 

interaction of the light intensity pattern with the photographic emulsion to produce a 

latent image which after development yields a pattern. 

 

Image quality is determined by a combination of five more specific image 

characteristics. They are: (1) Contrast (2) Blurring (3) Artifacts (4) Spatial 

(geometric) characteristics (5) Visual noise. Contrast is the variation in film density 

(shades of gray) that actually forms the image or may be defined as a measure of 

relative brightness difference between two locations in an image (Cunningham 

2000). Without contrast there is no image. The film contrast between two areas is 

expressed as the difference between the density values.  Blurring reduces a 

characteristic that is known as spatial resolution. Resolution is expressed in terms of 

the number of line-pairs in a space of one mm that are visible. Increasing LP/mm 

generally relates to increasing detail. Therefore, a high spatial resolution indicates 

high (good) visibility of anatomical detail. Spatial characteristics are related to 

geometric unshappiness such as focal spot size and object magnification. Spatial 

resolution also refers to the ability of a system to represent distinct anatomic features 

within the object being imaged (Samei, 2003). 

 

Noise is undesirable image characteristics that reduce the visibility of specific 

objects. Any component of the signal that does not convey relevant information can 

be considered as noise (Holland, 1979). Examples of noise are the fluctuations in the 

source signal, randomness in the detector output, and superimposed structures which 

are not related to the signal of interest. 
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In general, image quality is determined by three primary physical parameters: 

contrast, spatial resolution and noise (Jessen, 2004). These quality parameters can be 

evaluated by objective image quality measurements such as signal-to-noise ratio 

(SNR), modulation transfer function (MTF) and Wiener spectra (WS).  Together they 

form a basis for the description of image quality, which encompasses the three 

primary physical image quality parameters, Figure 1.1. 

 

 

Figure 1.1 Image quality triangle: illustrates the Wiener spectrum in relation to 

parameters and physical image measurements.  Adapted from Marsh and Malone 

(2001). 

 

   With any imaging system, images are partially degraded by various sources 

of statistical fluctuation which arise along the imaging chain (Lissak et al, 1984). For 

example, quantum and electronic noise that produces random variations of signal that 

can obscure useful information in a diagnostic image. Random noise means 

fluctuations of the signal over an image, as a result of uniform exposure, and can be 

characterized by the standard deviation of the signal variations over the image of a 

uniform object. The Wiener spectrum must be used to get a more complete 

description of the spatial correlation of noise: it measures noise power as a function 

of spatial frequency (Dobbins et al, 2006). 

 



4 
 

The noise power spectrum (NPS) of a radiographic film can be expressed in 

three constituent noise sources and can be written as  

 

( ) ( ) ( ) ( )T Q G SW u W u W u W u= + +                                                               1.1 

 

where TW , QW , GW and SW stand for WS of the system radiographic noise, quantum 

mottle, film graininess and screen structure mottle respectively, and u is spatial 

frequency. Radiographic mottle is the fluctuations of film density from one area to 

another due to imaging system noise (Rossman, 1963; Doi et al, 1982; Wan, 1998). 

 

  The primary noise components vary spatially in the number of X-ray quanta 

absorbed in the screens associated with random structural inhomogeneities in the 

phosphor coating.  Film granularity is a component of radiographic mottle, which is 

due to the random distribution of developed grains in the processed emulsion. The 

optical density of a film associated with developed silver halide grains Dg is given by 

 

g bD D D= -                                                                                                                                                1.2   

 

where   D , bD    are the gross optical density of the film and the optical density of the 

film base, respectively. Structure mottle is due to fluctuation in the number of X-rays 

absorbed from one area of the phosphor layers to another arising from random 

inhomogeneities (as opposed to gross nonuniformities) in the phosphor coating 

(Barnes, 1982). 

 

Equation 1.1 can be expressed in digital mammography detectors as 

 

 ( ) ( ) ( ) ( )T Q SQ DW u W u W u W u= + +                                                              1.3 

 

This equation gives the total (NPS) expressed in terms of electrons generated 

in image display, where QW  is due to the number of X-rays interacting in the screen 

and the difference in the number of light quanta emitted from the screen per X-rays 

interaction. SQW  is due to the statistical fluctuation in the number of secondary quanta 
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that would occur in the absence of X-ray quantum noise. DW  is due to inherent 

detectors output–signal fluctuation caused by the number generation electrons in the 

CCD readout process (Madient and Yaffe, 1994). In modern X-ray systems, 

electronic devices introduce another type of noise (electronic noise) in the system 

(Zhang et al, 2007), (Lazzari et al, 2007). 

 
 
 
 
1.1.1 Screen Film System 
 
 

In conventional radiography, a patient is positioned between an X-ray source 

and the receptor. In screen film radiography, the receptor consists of the film 

mounted in contact with either one or two intensifying screens, as shown in Figure 

1.2.   

 

 

 

    

    

Figure 1.2 A conventional screen film radiographic receptor. 

 

The cassette contains an intensifying screen which, when exposed to X 

radiation, converts the radiation to light which exposes a photographic emulsion. The 

photographic film can be developed to provide an image to the observer. Films with 

emulsion on both sides of support were first demonstrated by Levy in 1897.  For 

exposure, these were sandwiched between two intensifying screens. The penetrating 

power of X-ray made it possible to produce similar images on two sides of the film 

(Van Metter and Dickerson, 1994). 

 

The light of an intensifying screen can, under certain conditions, penetrate the 

film emulsion and film base to expose the emulsion on the other side of the film base. 

This is called the crossover effect and causes unsharpness. The light that travels 

further to the emulsion on the other side is more scattered (Metz and Doi, 1979; 

Hertrich, 2005). 

 

Back screen 

       Film base 
Front emulsion 

Back emulsion 

Front Screen 
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The relationship between film density and exposure is often presented in the 

form of a graph, as shown in Figure 1.3. This graph shows the relationship between 

density and relative exposure. This type of graph is known as either a film 

characteristic curve or an H & D (Hurter and Driffield) curve (ICRU, 1995). 

 

                                

                                             

 

 

 

 

                             

 

 

Figure 1.3 A characteristic curve of a film that gives the relationship between 

optical density and relative exposure. 

 
 
 
 
1.1.2 Digital Detector Technology 
 
 

A digital X-ray detector is the key component of a digital radiography system. 

It has to fulfill several requirements concerning field size, pixel size, sensitivity, 

dynamic range, internal noise and readout. Digital X-ray detector technologies 

provide several advantages when compared with screen-film (SF) systems: better 

diagnostic quality of radiographic image, increased dose efficiency, better dynamic 

range and possible reduction of radiation exposure to the patient. A basic difference 

between digital detectors and screen film (SF) is that the detection of X- rays and the 

image display are separated in a digital imaging system. Therefore, the detector can 

be optimized for detection X-rays. Now the applications of detectors are becoming 

commercially available. They share the advantage of all digital detectors in that they 

produce images in digital form. This eliminates the need for a physical film to view 

Shoulder 

 

Relative exposure 

 

Toe 

O
pt

ic
al

 d
en

si
ty

 

 



7 
 

the image and allows images to be stored and transmitted digitally to wherever they 

need to be viewed (Granfors and Aufrichtig, 2000).  Other advantages, of digital 

detectors are the ability to enhance the images and to analyze the images by 

computer to improve diagnostic efficiency. 

 

There are two methods of image capture used in digital mammography, 

which represent different generations of technology: indirect conversion and direct 

conversion. Direct flat detector systems convert the X-rays directly into electric 

charge via a layer of material sensitive to radiation (e.g. amorphous selenium, a-Se). 

In indirect flat detector systems, X-rays first generate visible light in a scintillator 

(e.g. cesium iodide, CsI, like the image intensifier). Light sensitive photodiodes then 

convert light into electric charges (Samei, 2003; Hertich, 2005). Figure 1.4 is an 

example of a digital detector. 

 

 

Figure 1.4 Schematic picture of amorphous detector adapted from Granfors and 

Aufrichtig (2000).                     

 

In direct-conversion digital detectors, spatial resolution is limited only by the 

size of the pixel. The size of the pixel in these detectors can be made arbitrarily small 

to make the resolution performance extend to very high spatial frequencies. The 

ultimate limit of a very small pixel is the reduced X-ray flux impinging upon the 

detector the pixel size of full field digital mammography (FFDM) system range from 

50 to 100 microns ((Smith, 2003). The pixel size for the Hologic's selenium is 70 

microns and because of the design of this detector, this represents it’s true resolution 

characteristic. The maximum spatial resolution of an image is defined by pixel size 
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and spacing (i.e. the distance between centers of pixels). Digital detectors that have 

higher sensitivity allow better image quality at all frequencies, showing the ability to 

represent both small and large image structure as in Figure 1.5. 

  

 

   

       

      

     

                                     

 

 

Figure 1.5 A picture illustrating characteristic curve of mammography film to 

show that the display contrast (slope of curve) is suboptimal in lucent and dense 

regions of the breast.  Adapted from Smith (2003). 

 

             Mammographic imaging requires the detection and classification of 

extremely small objects. In particular, micro calcifications can be as small as 100 to 

200 microns. A useful Full Field Mammographic (FFDM) system must be able to 

image the smallest micro calcifications. 

 
 
 
 
1.2 Problem Statement  

 
   

The Wiener spectrum is an important tool used to evaluate the noise power 

spectrum (NPS) of an image in the spatial frequency domain. Many workers have 

reported on the measurement in the literature. There has been little comparative work 

done on the relative performance of different imaging modalities using the NPS. The 

measurement of the WS is not conceptually complicated but difficult to carry out 

experimentally and there has not been complete agreement on the best methods for 

these measurements. While there is a considerable literature on NPS computation, in 

practice the best methodology is not clear. The measurement of the NPS remains a 

complex subject; in spite of the laudable effort to reach a consensus on the best 
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measurement methodology, there is still a sizable amount of literature dealing with 

measurements made on various imaging modalities using a variety of techniques.  

 
 
 
 

1.3 Objective of Study 
 
 

The main objectives of this study are as follows: 

 

1. To study and analyze  different techniques used to evaluate the NPS 

effect of  medical   imaging namely 

 Wagner's method 

 Beutel's method 

 Dobbins's method 

 Samei's method 

 

2. To look for the most successful method and program to compute the 

NPS 

 
 
 
1.4 Scope of Study 

 
 

The scope of the study includes the following steps 

 

1. Collection of images from different sources, and different techniques 

and systems. Using MATLAB® Version 7.8.0.347 (R2009 a), to write 

special programs to calculate the NPS in four methods mentioned in 

Section 1.3.  

 

2.  Comparison of results, analysis and evaluation to determine the best 

method to calculate the NPS 
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3.  The focus of study is a comparison of different methods and not 

different imaging devices. 

 
 
 
 

1.5 Aim of Study 
 
 

The main purpose of this study is to produce characteristic evidences of the 

best method of noise analysis associated with X-ray images. The advantages, 

disadvantages and the consolidation of this method are to be investigated. 

 
 
 
 

1.6 Significance of Study 
 
 

Noise power spectrum (NPS) is an important concept that has been widely 

accepted for quantitative evaluation of image quality both in clinical practice and in 

research. NPS measurements', using both analog and digital systems has been studied 

in this research. This work will investigate some practical approaches in NPS 

measurement to using the limited amount of image data acquired to obtain accurate 

NPS estimations with best frequency resolutions. 

 
 
 
 

1.7 Images Used in Study 
 
 

This study was conducted at the University Technology Malaysia Skudai, 

Johor. Figure 1.6 shows images used in the study. Images A1.bmp and A3.bmp were 

prepared at the Aberdeen Royal Infirmary, Scotland. Images file0000.bmp, 

file0001.bmp and file0002.bmp were prepared at Putrajaya Hospital, Malaysia.  
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Figure 1.6 Images used in the study. 

 
 
 
 

1.8 Outline of Thesis 
 
 

This thesis focuses on the comparison of NPS properties of X-ray medical 

imaging systems. There are 5 chapters; the first chapter provides background of 

study, problem statement, aim of the study, objective of the study, scope of study, 

study area and significance of the study. Chapter 2 provides a literature review and 

theory.  

 

           Chapter 3 outlines the steps, techniques and method to be used in this research 

to achieve the research objectives and outcomes. It also gives a general outline of the 

steps and methodology used in this research such as data collection, software 

procedure and others. 

 

Chapter 4 is Results and Analysis. This chapter presents the results of this 

research and discusses the analysis carried based on the results. 

 

Chapter 5 is Conclusion and Recommendation. It gives the conclusion that 

has been reached from the study and the completion of this thesis. In this chapter, 

recommendations are also made based on the findings and analysis. 

A1.bmp A3.bmp file0000.bmp 

file0001.bmp file0002.bmp 
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