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ABSTRACT  

 

 

 

 

Correct wave data is a very important input to predict the performances of the 

marine vehicles and structures at preliminary design stages particularly regarding 

safety, effectiveness and comfort of passengers and crews. Presently, available wave 

data in Malaysian seas are based on visual observations from ships, oil platforms and 

limited wave buoys whose accuracy, reliability and comprehensiveness are often 

questioned.  This study presents an effort to derive a more reliable and comprehensive 

wave database for Malaysian sea areas using satellite altimetry. Significant wave 

height, wind speed and sigma0 data is extracted from oceanographic satellite 

TOPEX/Poseidon for selected area. Results are presented in the form of probability 

distribution functions and compared to data from Global Wave Statistics (GWS), 

Malaysian Meteorological Service (MMS), Petronas Research Scientific Services 

(PRSS) and United State National Data Buoy Center (NDBC). This project has shown 

that the data provided by TOPEX/Poseidon satellite can be used to derive wave 

periods and the results indicate that the Hwang Method was the best approach to 

derive wave period for Malaysian ocean data  
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ABSTRAK 

 

 

Data bacaan ombak yang tepat adalah input yang paling penting untuk 

menjangka prestasi kenderaan di air and struktur marin pada tahap awal bagi reka 

bentuk dengan mengambil kira keselamatan, kecekapan dan keselesaan penumpang 

dan pekerja kapal. Pada masa ini, data ombak yang terdapat di Malaysia adalah 

berasaskan kepada penilaian mata kasar terhadap ketinggian ombak yang dilakukan 

daripada kapal, pelantar minyak dan boya ombak yang terhad di mana ketepatan, 

kebolehkepercayaan dan penyeluruhannya selalu di ragui. Kajian ini menunjukkan 

usaha untuk membangunkan satu pangkalan data yang lebih dipercayai keupayaannya 

dan lebih menyeluruh dengan menggunakan satelit altimeter. Ketinggian ombak yang 

signifikan, kelajuan angin dan nilai sigma0 diekstrak daripada satelit oseanografi 

TOPEX/Poseidon untuk beberapa kawasan yang terpilih. Keputusannya akan 

dipamerkan dalam bentuk Fungsi Taburan Kebarangkalian dan kemudian 

dibandingkan dengan data daripada Statistik Ombak Dunia (GWS), Perkhidmatan 

Kaji Cuaca (MMS), Pusat Khidmat Penyelidikan dan Saintifik Petronas (PRSS) dan 

Pusat Data Boya Kebangsaan Amerika Syarikat. Projek ini menunjukkan data yang 

diperolehi daripada Satelit TOPEX/Poseidon boleh digunakan untuk menerbitkan 

nilai tempoh ombak dan keputusan menunjukkan yang pendekatan Hwang adalah 

yang terbaik bagi data laut Malaysia. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Ships are built for the purpose of carrying men, material or weapon upon the 

sea. In order to accomplish its mission, ship must posses several basic characteristics. 

It must float in a stable upright position, move with sufficient speed, be able to 

manoeuvre at sea and in restricted waters, and be strong enough to withstand the 

rigors of heavy weather and wave impact. To design a ship with these features, naval 

architects must have an understanding of ship dynamics. 

 

 

With a simple knowledge of hydrostatics a naval architect can produce a ship 

that will float upright in calm waters. However, ships rarely sail in calm waters. 

Waves, which are the main source of ship motions in a seaway, affect the 

performance of a ship considerably and the success of a ship design depends 

ultimately on its performance in a seaway.  

 

 

The mission effectiveness of the ship is severely limited if the vessel cannot 

perform its mission when the sea is rough. This may be due to increased risk to the 
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safety and survivability of the ship, increased demands on powering, or the severity 

of the motion-induced accelerations, which prevent the ship’s crew, equipment and 

systems from functioning effectively. More often then not, we end up with ships and 

boats that fail to perform in rough weather condition.  

 

 

Since the end of the 1950’s new analytical methods were developed to predict 

the response from definition of the wetted surface of the hull and some simple 

measure of mass distribution. Throughout this performance assessment process, a 

good and reliable wave data is required. For example, Hoffman and Fitzgerald 

(1978) emphasized the importance of the simulating operation of crane vessel in 

realistic waves. Their earlier work shown that errors up to 100% in magnitude of 

motion may occur arising from the use of inadequate wave data. Data is required 

regarding the probability of occurrence of wave heights and period in Malaysian 

waters. This data are presently available based on publications by periods in Marine 

Meteorology and Oceanography, Malaysian Meteorological Service, example MMS 

(1996). Also, sometimes data published by BMT (1986) is used. Although there is 

some problem in accuracy of data based on voluntary reporting, for time being we 

have to rely on these for probability of occurrence of wave heights and periods.  

 

 

Since the available wave data for Malaysian ocean are not reliable and 

comprehensive, new effort to collect wave data must be made. Ocean wave 

measurement from satellite combined with global wave and atmospheric numerical 

models are dramatically changing our way of obtaining ocean wave data for 

engineering purposes. Satellite observations are now at the point of providing 

reliable global long-term wave statistics. Thus, the aim of this project is to develop 

Malaysian ocean wave database using satellite in the mission to provide the reliable 

wave data for Malaysia. 

 

 

The satellite altimeter uses microwave radar pulse that is sent from orbiting 

satellite, bounces off the sea surface and returns to the orbiting spacecraft to measure 

the wave height of sea at a certain location and time. Radio pulse from a satellite 
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altimeter reflects from the wave crest, later from the wave troughs. The reflection 

stretches the altimeter pulse in time, and the stretching in measured to calculate wave 

height. The travel time of this pulse is then recorded. The significant wave height is 

derived from the stand up characteristic of a pulse waveform reflected from the sea 

surface, crests and troughs on that occasion. The wave data measured by one satellite 

called TOPEX/Poseidon is available free online given by Jet Propulsion Laboratory 

(JPL). By verifying the accuracy of the satellite altimeter data, continuous 

measurement of the wave data of Malaysian ocean can be done at much effective and 

inexpensive way. 

  

 

 

 

1.2 Objective of the Study  

 

 

To derive Malaysian ocean waves data using satellite altimetry and present it 

in a form suitable for engineering purposes. 

 

 

 

 

1.3 Scopes of the Study 

 

 

This study involves the use of satellite data, processing it using certain techniques 

and presenting in formats useful for engineering purpose. The study is limited by the 

following boundaries: 

i. The study will only involve TOPEX/Poseidon satellite. 

ii. Only wave data from the satellite and relevant associated data will be 

analysed. 

iii. The case study will involve a portion of sea areas; however the method will 

be applicable to others. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction 

 

 

This chapter is giving an overview of the requirement of wave data, the 

wave data source and currently available wave data collection. 

 

 

 

 

2.2 Wave in Marine Engineering 

 

 

Knowledge of ocean waves is essential for any activity connected with the 

seas. The largest forces on ships, as well as on offshore rigs and coastal defences, 

generally come from surface waves, which can cause delay, damage and destruction. 

For example, offshore structures have been severely damaged by large waves and 

have to be regularly repaired against fatigue damage. Millions of pounds of damage 

have been inflicted upon breakwaters in recent years from the combined effect of 

waves and surges in sea level (Carter et al., 1989). 
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To provide efficient advice for these activities not only significant wave 

height (SWH) but also measurements of the mean wave length and the mean wave 

direction are necessary. These integral wave parameters are available from a few 

stations and from ships measuring on opportunity. Certainly, more valuable is the 

knowledge of the entire wave spectrum, which describes the frequency-direction 

distribution of the wave energy density.  

 

 

 

 

2.2.1 Coastal Engineering 

 

 

Waves, generated primarily by the wind, propagate from the ocean to the 

shoreline across the continental shelves. These waves undergo many processes 

before they dissipate in the surf zone; refraction, diffraction, shoaling, and breaking. 

The energy and momentum associated with the waves arriving at the surf zone used 

to create longshore and cross-shore currents. Wave not only damage breakwaters, but 

also move the sand comprising beaches and deposit them somewhere else. Taken 

over long periods for this sand transported away from the site than toward it, this 

becomes the ‘long-shore drift’, which is an important geological phenomenon. 

Beside that waves can also be generated by submarine earth quake, volcanic eruption 

and tides. 

 

 

The ongoing rise in the sea level due to the glacial melting since the last ice 

age and now perhaps accelerated by the Greenhouse Effect creates a pervasive 

mechanism for shoreline retreat. Tidal inlets, connecting bays or lagoons to the 

ocean, also contribute to the shoreline retreat by capturing beach sand into ebb and 

flood shoals. The processes of coastal erosion are very complex, involving three 

dimensional flow fields created by the breaking waves, unsteady turbulent sediment 

transport in both the water column and on the bottom, and a moving shoreline 

(Holman, 1995). Further offshore the role of the waves seems to be more that of 

mobilizing the bed material, which is then moved by tidal and other currents. The 
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other side of this coin, many researches are being conducted worldwide to develop 

predictive models of this erosion process.  

 

 

Numerous devices have been devised to stop the erosion process. These can 

be divided into two basic types which is the hard and soft structures. Hard structures 

have been the traditional tool of the coastal engineers. These include groins 

(structures oriented perpendicular to the shoreline to slow the transport of sand along 

a shoreline), jetties (placed at inlets to keep sand from the navigational channel), 

breakwaters (to reduce wave action in harbours), and sea walls (to prevent the 

erosion of the upland). The soft structures are those that are more natural. The 

primary example is beach nourishment, which is the placement of sand on an eroding 

beach. Nourishment is a short-term measure, as it does not fix the cause of the 

erosion; however, it is the only method that involves adding sand to the coastal 

system. Mangrove is also one of the natural coastal protections and believed to have 

reduced the damage caused by the recent Tsunami in December 2004. 

 

 

 

 

2.2.2 Seakeeping 

 

 

 Seakeeping calculations are important in assessing the performance of a 

floating structure. It is particularly the operability aspect, and critical for small crafts 

such as patrol boats. Unlike most large ships, which use the oceans only as a 

highway for commerce, patrol vessels perform their primary mission of security 

patrol at sea; often performing these complex maneuvers in hostile conditions. The 

effectiveness and efficiency of these tasks depend very much upon the seakeeping 

capability of the vessels. Boats that behave poorly in bad weather not only endanger 

the life of the crew, but also may have a less effective delivery capability. Moreover, 

weather downtime will be increased, limiting the number of effective surveillance 

and patrol. 
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 As the descriptive tool for seakeeping events, one way considered being 

the most useful for direct calculation of many valuable statistics is uses the energy 

spectrum. The pioneering work of Denis and Pierson (1953) on the application of 

superposition and spectral analysis techniques to seakeeping studies revolutionized 

seakeeping analytical studies. The energy spectrum is simply a presentation of the 

squared amplitudes of the frequency component of the sample records. This type of 

presentation, which indicates an estimate of the true spectrum, permits the treatment 

of ship behavior in the frequency domain so that ship performance can be related to 

the frequency response characteristics of the ship. Resultant responses of the ship can 

be estimated from the sum of responses of the ship to a train of individual regular 

waves of known frequencies (Omar Yaakob et al., 2003).  

 

 

The wave incidents on the vessel are assumed to be long-crested. For such 

waves, the way in which the energy of the sea distributed at various encounter 

frequencies is given by the sea spectrum Sζ (ωe). By the principle of linear 

superposition, the sea spectrum can be related to the motion spectrum through the 

transfer function or response amplitude operator, RAO. If the motion RAO per unit 

wave amplitude or the transfer function at various encounter frequencies are 

designated H (ωe), the spectral response of the selected response is Sr (ωe) then the 

particular seaway is given by: 

Sr(ωe) = Sζ(ωe) x │H(ωe)│²          (2.1) 

The above method is normally used to predict motion responses of floating vessels. 

The sea spectra in this case are either actual sea-spectra measured at sea or idealized 

theoretical approximation such as Bretschneider, Pierson-Moskowitz or ITTC 

spectral formulations (Bhattacharya, 1978). 

 

 

Equation (2.1) is also useful in full-scale experimental studies. If the time 

series of the waves heights incident on the vessel and the associated vessel motion 

response can be measured, Sζ(ωe), Sr(ωe) and hence H(ωe) can be calculated. This 

method is indeed useful, because it will enable us to derive the transfer function and 

hence RAO from the response spectrum of the vessel under test using 

H(ωe) = √ Sr(ωe)/ Sζ(ωe)             (2.2) 
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The transfer functions obtained in this manner can be used for comparison with 

RAOs from theoretical studies. Also, they can be used to estimating the response of 

the vessel in other seaways for which spectrum can be defined.  

 

 

In absence of actual sea spectra, theoretical sea spectra are used. There are 

various theoretical representations of the sea spectra. Standard textbooks on waves 

mechanics or seakeeping refer to these spectra representation with various names 

such ITTC, ISSC, Breitschneider, Pierson-Moskowitz, and JONSWAP etc., see for 

example Bhattacharya (1978). Most of these belong to a general class of spectra 

referred to as the gamma-spectra. The gamma-spectrum has the standard form: 

S(ω) = Dω-1  exp –Bω-n                    (2.3) 

The four parameters D, B, l and n control the shape of the spectra. The parameter l 

determines asymptotic behavior of the high frequency tail of the spectrum. Parameter 

B is scale parameter of the frequency linked to the peak frequency, Ω through:  

   B = 1/n Ω n                              (2.4) 

Parameter D determines the overall level of the spectral density and does thus 

indicate the general severity of the sea state. D is normally considered a universal 

constant D=αg² where α is Philips constant equal to 0.0081. The frequently used 

gamma spectrum is Pierson-Moskowitz spectrum. It has the form: 

S(ω)=0.0081g²/ω5 exp -5/4(ω/Ω)-4   (2.5) 

i.e. the values of l and n are 5 and 4 respectively. 

 

 

For not fully developed sea, the spectrum has distinct peaks and to take these 

into account, peak-enhanced Pierson-Moskowitz spectrum is proposed and renamed 

as JONSWAP spectrum: 

S(ω)=0.0081g²/ω5 exp -5/4(ω/Ω)-4 +exp -1(ω-Ω)² /2(σω)² ln γ } (2.6) 

In this case γ is the peak enhancement factor, the effect of which is to increase the 

peak of the spectrum. 

 

 

 Despite the preponderance in the use of theoretical sea spectra, it is more 

recommended to use actual sea spectra. If that is not possible, sea spectra more 
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tailored to the local eave conditions should be used. Hoffman and Fitzgerald (1978) 

emphasized the importance of simulating the operation of crane vessel in realistic 

waves. Their earlier work has shown that errors up to 100% in magnitude of motion 

may occur arising from the use of inadequate wave data. Soares and Trovao (1992) 

investigated sensitivity of seakeeping prediction to spectral models and concluded 

that short-term responses are sensitive to the type of spectral model used while for 

long-term predictions only Pierson-Moskowitz model could be used. 

 

 

Thus, it is important to have an accurate knowledge on the characteristics of 

the ocean waves when estimating the seakeeping performance of ships at sea (Ogawa 

et al., 1997). The wave used for the design ship is long-term data in all condition. 

Therefore, there is a need to establish the method of continuous wave data collection 

(Sakuno et al., 2003).  

 

 

 

 

2.2.3 Offshore Engineering 

 

 

Waves are generally the most important environmental factor producing 

forces on offshore structures. The design of offshore structures used for oil and gas 

present problems, due to environmental hazards from wind and current forces and the 

weight of the structure. In traditional design techniques the structure is first designed 

to withstand the most severe conditions which it is likely to meet in 50 or 100 years. 

Thus, as well as an estimate of extreme wave conditions; the statistics of all waves 

throughout the year have to be specified. The system for reliability techniques has 

been developed. In these, the probability distributions of the loads are calculated and 

compared with the ability of the structure to withstand these loads, also on a 

probability basis: that is, taking account of variable factors such as the yield stress of 

the steel and the strength of the welds. The risk of failure can then be estimated and 

kept to a sufficiently low value.  
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In relation to the development of offshore oil and gas production at the 

offshore sea, there was a big push to gain enough knowledge to ensure the safety of 

the offshore structures in relation to the environmental forces. Oil price rises caused 

by high oil demand in the 1970s has prompted offshore development throughout the 

world in order to be self sufficient. However, there is plenty left to do as more 

sophisticated methods of design are introduced by engineers. An example is that 

designers now wish to take advantage of the low probability that the adverse extreme 

environmental factors will all occur simultaneously, but oceanographers cannot yet 

provide them with the necessary information on joint probabilities of occurrence 

(Tucker, 1991).  

 

 

 

 

2.2.4 Wave Power 

 

 

 The power is very variable, of course, so that there must be alternative 

methods of generation available. This means that the cost of the power has to 

compete with the cost of the fuel saved and not with the total generating costs. While 

solar radiation and winds are distributed over the planet’s entire surface, wave energy 

is concentrated along coastlines, which total about 336,000 km in length. At a global 

renewable rate of 1012 to 1013 watts, the average wave energy flux worldwide is of 

the order of several to a few tens of kilowatts per meter of shoreline (kW/m). Thus 

the energy density of ocean waves is at least an order of magnitude greater than the 

natural processes that generate them. 

 

 

 The energy present in ocean waves have been recognized since dawn of 

civilization mostly through its destructive actions. But effort to harness this source of 

energy has driven inventors to come up with inventive and novel ideas and devices to 

convert energy present in the ocean waves to a more useful form of energy. The first 

reported patent for a wave energy device was filed in 1799 in Paris, by the Girards, 

father and son. Since then more than one thousand patents have been filed in various 
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countries with only few ideals that show promises in its ability to capture and convert 

wave energy effectively. During 1970s, an increased interest on wave energy 

conversion was seen due to the dramatic increase in oil prices especially in Europe. 

The greatest efforts were concentrated in United Kingdom, Norway and Japan. 

Efforts by others European nations and countries such as Sweden, Portugal, 

Denmark, India, China, Australia and United States also contributed to the 

advancement of wave energy conversion techniques and devices (Pin, 2005). 

 

 

 After a series of research into the possibilities, it soon became apparent that 

the available wave data were inadequate both to assess the resource and for design of 

the wave energy converters. Directional information is needed, and the techniques 

for routine directional measurement were only just being developed. It was therefore 

necessary to develop techniques to provide a long term measurement of the wave and 

this opportunity seen in the remote sensing technique. What the designers required 

was a set of directional wave spectra representative of the long-term wave climate, 

which they could use in model basins to test the overall performance of their devices. 

Some clever and ingenious devices to harness the power were designed and tested at 

model scales. In the end, none seemed capable of development into economic 

systems where the competition was large mainland fossil-fuelled generating stations. 

However, where the competition is relatively small diesel generators, which is 

typical of the situation on islands, then the economics look more promising, and 

developments of this type are under way at the present time (Tucker, 1991). 

 

 

 

 

2.3 Wave Data Sources  

 

 

Based on the variety of the requirement for wave data, there are also various 

categories of wave data available such as instrumental measurement, visual 

observations, wave forecasting and remote sensed to fulfil this purposes. However, 

there are advantages and disadvantages among them according to the nature and 
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origin of data (see Appendix A). For example, whether the visual observation is the 

most useful data for wave data requirement, the probability of wave height of the 

ship report is thought to be smaller than other data sources because ships tend to try 

to avoid the storm seas. On the other hand, buoy measurement is considered to be 

one of the best sources of information since it measures wave mechanically, however 

it has a disadvantage of limited number of deployments for vast area of the oceans 

(Ogawa et al., 1997). Although there are many types of sensor working under remote 

sensing method and it seem all of them had accuracy and derivation algorithm 

problem, but the satellite altimeter data seems to be one of those fields where 

optimist feel that the promise is great. The information below briefly explain about 

this wave data available in sort of the principles and how its work. 

 

 

 

 

2.3.1 Instrumentals Measurement 

 

 

Wave instrumentals measurement or direct observation was the most accurate 

way to measure the wave height concerning the area of each particular study. But this 

method needs a highest cost, expose to the vandalism and unfortunately scarce 

limitary point data in the fields of wide areas. For example, Draper et al. (1965, 

1967, and 1970) presented statistics from measurements performed with a Tucker 

wavemeter at some Ocean Weather Stations (OWS), during a period of 3-4 years, but 

the total number of measurements of each station corresponds roughly to only one 

year of complete data. This is too short length of time to allow the statistical 

confidence necessary to long-term predictions (Gonzalez et al., 1991). Thus this 

measured wave data can only be used to calibrate the others measurement. There are 

four main categories of instruments to measuring the wave, which are known as 

wave staff, sub-surface sensor, buoys and shipborne systems (See Appendix B). 

 

 

Wave staffs are also known as fixed instruments measuring waves are used 

when a structure is available to mount them on or, rarely when it is economic to build 
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special structure. The output can be recorded on site, telemeter to shore, or sent along 

a cable. One problem, which is often quite serious, is that they need to be mounted 

well away from any sizeable structural members: 10 diameters away. The examples 

for this wave staffs are stepped-contact staffs, resistance-wire staffs, capacitance-

wire gauges and the Baylor wave gauge. 

 

 

Generally sub-surface sensors are mounted on or near the seabed and are 

either self-contained and therefore have to be recovered and replaced at regular 

intervals, or connected to shore via a cable. A snag with the former is that a 

malfunction may result in a considerable length of data being lost before it is 

downloaded. In the case of the latter, the cable route must avoid areas where trawlers 

operate or ships anchor. The examples for this measuring system are pressure 

sensors, inverted echo sounders and particle velocity meters. 

 

 

Apart from remote sensing devices, the only way of satisfying this 

requirement is to use sensors, which are in buoy or small vessels. There are many 

offshore buoys deployed in the oceans mainly by meteorological agencies, and it has 

been found that a wave-recording buoy can gives results, which are not influenced by 

proximity of a structure. They are considered to be unbiased and the most reliable 

gathering wave information since they measure waves by mechanical or electronic 

instruments. Despite with these advantages, the buoy has a reduced area of coverage 

and the limited availability, which is often due to commercial restrictions (Gonzalez 

et al., 1991).  

 

 

A small buoy floating on the sea surface moves up and down with the waves. 

Its vertical acceleration can be measured, this can be integrated twice to give the 

vertical displacement. Although the concept is simple, there are a number of 

problems in its successful implementation. There is really only one device which has 

overcome the entire problem successfully, and it has become the industry standard 

for offshore recording. This is the Waverider manufactured by Datawell in the 

Netherlands (Tucker, 1991).  
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A number of devices have been devised which rely on the attenuation of 

waves with depth, in effect using the deep still water as a reference. Although some 

of these have been used successfully for short periods, they have largely fallen into 

disuse following the successful development of accelerometer buoys. Most buoys 

telemeter the wave data to a platform or to a shore station, though some also record 

on board to improve the data return for historical data. Direct radio telemeters can be 

used for short range. For longer ranges, buoys have been designed which telemeter 

via satellites. In this case some data compression is required to reduce the number of 

bits to the capacity of the satellite channel. Gonzalez et al. (1991) describes a system 

in which a Wave Buoy transmits by radio to a nearby ‘mother’ buoy that is enough to 

contain adequate battery supplies and which is retransmits the data via 

GEO/METEOSAT satellite. This has a larger data capacity. The examples for buoys 

are Pitch-roll-heave buoys, ‘Clover-leaf’ buoys and Particle-following buoys.  

 

 

The Shipborne Wave Recorder (SBWR) was the first device capable of 

recording waves on the deep sea during a storm. Although not very accurate by 

modern standards, its cheapness to run and high data return have led to its extensive 

use. Mounted symmetrically on each side of whether ship and light vessels. Each 

contains a vertical accelerometer mounted on a critically damped short period 

pendulum, and a pressure sensor connected to the sea through a hole in the side of 

the ship. The accelerometer outputs are integrated twice and added to pressure 

signals, giving in each case the surface elevation relative to a fixed horizontal plane. 

These concepts are very simplified of what actually happens in practice. The 

interaction of the ship and the waves is complex, particularly in relation to the 

distribution of pressure on the hull, and satisfactory theoretical treatment has not 

been found. However, some are still in use today. Thus, its existence has made a 

significant contribution to our understanding of waves.   
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2.3.2 Visual Observations 

 

 

There is a huge volume of observations of waves from ships in normal 

service all over the world, and these are held in data banks of various meteorological 

offices. A major source of visual wave data is the compilation made by Hogben and 

Lumb (1967), which cover most of the ship routes to and from Europe. The Pacific 

Ocean is not so well documented but this can be supplemented with the data from 

Yamanouchi and Ogawa (1970), which covers that ocean in detail. Another 

important compilation is due to Walden (1964), containing visual observations 

performed in the North Atlantic Ocean Weather Stations (OWS), during a period of 

10 years.  

 

 

As the wave statistical data, generally, are often shown in the form of 

occurrence frequency diagram, correlation table, of significant wave height and 

average wave period. However, Global Wave Statistics atlas, Hogben et al. (1986) 

(GWS) (see Figure 2.1) wave data presented in terms of joint probability distribution 

of significant wave heights and zero-crossing wave period for the global selection of 

104 sea areas. The data represent an updated and corrected version of the Hogben 

and Lumb (1967) data. The observations are divided into subsets for each 

combination of area, season, and wave direction classification used. In particular, the 

distribution of the wave periods conditional on the wave height was corrected by an 

analytical modeling of the joint probability distribution of heights and periods, 

avoiding use of visual observations. Afterwards, this distribution, together with the 

marginal distribution of visually observed wave heights, was used to reconstruct the 

scatter diagram of wave heights and periods by a computer analysis program (Bitner-

Gregersen and Cramer, 1994). 
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Figure 2.1: Joint probability distribution function diagram (scatter diagram) 
for area 62, (BMT 1986) 

 

The format of its standard scatter diagram is derived by a rounded number of 

one thousandth (1/1000) for its print out version and accuracy of 0.000001/1000 for 

its PC version. The wind observations were used to improve the reliability of the 

wave statistics. Unfortunately, many of the voluntary observing ships do not have 

anemometer installed but determine the wind speed via visual estimation by relating 

simultaneous visual estimates of wind strength on the Beaufort scale, wave height 

and wave direction. These are analysed on both a seasonal and an annual basis (Tilo 

and Stephan, 2000).  

 

There are the advantages and disadvantages on the visual observation method 

to derived wave data. According to Soares (1986), it has three important properties of 

wave data from voluntary observation ships that make it unique. The first and 

probably most important aspect is that it already incorporates the effects of bad 

weather avoidance. By avoiding the very large storms due to early meteorological 

information the probability of failure of ship structures are from high sea states can 

be much reduced. Because avoidance measures are the result of subjective 

evaluations of the ship captains, the process is difficult to model analytically. Thus, 
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the use of data from voluntary observation ship appears as the possibility of 

representing the effect and this makes the data of voluntary observing ships 

preferable for the analysis of ship structures. However it is inappropriate to the 

analysis of fixed structures such as platforms. In this case the data from the Ocean 

Weather Stations is more appropriate. Another advantage of the data from transiting 

ships is that it is collected along trade routes used by merchant ships, where the need 

for information is greatest. A third advantage is that the estimates of mean values are 

likely to have no bias. Because the observations are made in many different ship 

types and sizes, they show reasons supports the hypothesis of systematic differences 

between measurements made in different geographical areas. Although the 

assessment properties of the sea states by visual observations involves a significant 

degree of estimation variability, but it is possible to collect large samples of data, 

which may compensate for the variability because it is relatively inexpensive 

procedure.  

 

On the other hand, because of the visual data usually come from ship reports 

which is an important part of them are concentrating on the main shipping routs, 

these data bring up some shortcomings due to observation itself. Firstly, the wave 

height was reported in adverse climatic conditions tend to be overestimated by the 

observer and secondly, more ships sail in good weather conditions consequently 

samples are biased toward lower wave height values. The result is that this sample 

does not fit accurately of the lognormal model, which is usually appropriate for wave 

study, when the observations reported as calms are included in the sample (Gonzalez 

et al., 1991).  

 

The visual observation also shows a large correlation coefficient and 

variability lower or equal than any of the hindcast techniques. Observations made by 

voluntary ships and trawlers in the North Sea (Ewing and Hogben, 1966) show the 

same trend as the comparison between voluntary ships and weather ships (Hogben 

and Lumb, 1967), i.e. voluntary ships over predicted the amount of low waves and 

under predicted the amount of larger waves. However, two main reasons have been 

advanced by Hogben and Lumb (1967) to explain the conclusion that voluntary ships 
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tend to underestimate wave height from weather ship. Firstly, it was the larger size of 

the voluntary ships which would lead the observers to make the lower estimates. 

Secondly, voluntary ships can dodge some of the rough while the weather ships are 

always on station.  

 

Not surprisingly, discrepancy between the Global Wave Statistics (GWS) and 

instrumental data is observed. For the considered locations, the GWS data both 

underestimate as well as overestimate significant wave height while the zero-

crossing wave period (Tz) mean value is systematically overestimated for low Hs 

while it is underestimated for large Hs. The opposite effect is observed for the 

standard deviation of Tz. The marginal empirical cumulative distributions of Tz, 

indicate also that the GWS data may underestimate the extreme wave periods. 

However, the instrumental database applied in the study is too limited to draw 

general conclusion as well as to specify a regression of the instrumental data on the 

GWS data. The GWS data represent the average conditions for each of the 104 ocean 

zones, while the instrumental data used in the analysis are representative for specific 

locations only (Bitner-Gregersen and Cramer, 1994). 

 

Some of the research had also shown that the GWS have a different quality at 

the different ocean areas. For example, Chen & Thayamballi (1991) had compared 

the effect of use of the GWS data contra hindcast data in ship response analysis. For 

some ocean zones the GWS data have led to higher responses and slightly higher 

fatigue damage. However, that was not the case for other ocean zones. Therefore it 

was concluded that two sets of wave data were not quite consistent and should be 

used with care. It is also show by Bitner-Gregersen et al. (1993), which had 

compared the GWS data with the Wave Rider Bouy (WRB) and Oceanographic Data 

Acquisition Project (ODAP) buoy wave data, which was accepted as the standard 

wave measurements for design work at sea. The 20 years extreme values were 

evaluated based on the GWS data deviated from extremes obtained by use of the 

instrumental wave buoy data. It was indicated that the GWS data might 

underestimate the zero-crossing wave period as well as overestimate the significant 
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wave height. It was also indicated that the uncertainty involved in use of the GWS 

data contra the instrumental data might be larger than the variation in wave induced 

loads and fatigue damage, between the different ocean areas (Bitner-Gregersen and 

Cramer, 1994). 

 

The bias of wave period mean value and standard deviation in GWS is 

smaller for the North Atlantic than for the other locations considered. Comparison of 

the GWS and instrumental empirical probability densities of Hs and Tz, presented by 

Andrews et al. (1983), confirms also that accuracy of the North Atlantic GWS data 

seems to be satisfactory. The North Atlantic area has a high density of traffic, 

resulting in a larger database for this area, and a better agreement with the 

instrumental data for this area is therefore also to be expected. 

 

While the quality of individual observations is questionable and the other 

type of wave data is now available, visual observations of wave height are still the 

main source of statistical information of waves during the last twenty years, that 

covers most of the oceans areas for the prediction of extreme wave conditions to be 

used in the design of ship structures. Generally, when using ship observation, data 

have to be carefully checked and evaluated (Tilo and Stephan, 2000). The usefulness 

of these visual observations depends, however, on a proper calibration with the 

accurate measurements of the wave characteristics. For example, Hogben et al. 

(1986) compared the GWS marginal distributions for wave height and periods, for 

which statistics was given, corresponded to be necessary to apply any correction 

factors, usually used for estimating significant wave heights from visual wave height 

observations. From the different regression equations available, the one have been 

recommended by the International Ship Structures Congress are the ones due to 

Hogben and Lumb (1967): 

Hs = 2.55 + 0.66 Hv    (2.7) 

Applying the proposed equations to an observed sea state will under predict the wave 

height by 7%. This value indicates the magnitude of the uncertainties involved in 

transforming visually observed wave height in occasional ships to instrumental wave 
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height. It is not too large, being of the same order of magnitude of other uncertainty 

sources in the calculations of wave loads. However, accuracy of the data is still 

questioned in the literature (Gonzalez et al., 1991) 

 

 

 

 

2.3.3 Wave Hindcasting 

 

 

Hindcast wave data could be an alternative to visual wave observation. 

Compared with data from instrumental measurements, hincast data cover a much 

wider sea area and do not miss storms because of instrument malfunction. Hindcast 

techniques use records of wind speed to estimate corresponding wave conditions. 

This is achieved by modeling the process of generation and propagation of waves by 

wind (Gonzalez et al., 1991). The hindcast data as a good means of interpolating 

wave statistics between instrumental sites, they give data over longer periods and 

also give directional information, which is available from very few instrumental 

sites. The models described here are basically for deep water of intermediate depths. 

The final run-up to the coast or over shallow banks is a complicated matter. 

 

 

This method has been carried out for many years, but the modern 

development was triggered by Second World War, when in all theatres of war the 

Allies had to make landings on enemyheld beaches. An ability to predict the wave 

conditions was vital. Early methods were largely concerned with predicting the wave 

height and period from the local wind, taking account of the distance over which the 

wind was blowing its ‘fetch’ and the time for which the wind had been blowing at a 

more-or-less constant speed its ‘duration’. Such methods are still useful in certain 

circumstances. As the speed and capacity of computers develop, it became 

practicable to design models which take account of the propagation of wave energy 

from one area to another. However, because of the limited power of computers and 

of the lack of adequate understanding of wave generation processes, the early models 

had to be rather simplistic in their approach. 
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The second generation of finite-difference model resulted from a clearer 

understanding of the energy transfer processes, in particular the third-order 

processes, but had to simplify the representation of these because of the limitations 

of computer power at that time. Second-generation models have been in routine use 

for many years and large data sets have been built up. What usually stored is 

sometimes known as ‘nowcast’ data: that is, the estimate of the wave field at the time 

of calculation taking into account the most recently available wind data. A preferred 

method to gain long-term wave statistics is to run wave forecasting models on 

historic wind data a process known as ‘hindcasting’. The historical wind information 

is more reliable then the real-time estimates of wind fields, partly because a 

considerable quantity of late information can be incorporated. In hindcast model, it is 

usual to run the model for most severe to run it for a long continuous period (Tucker, 

1991). 

 

 

Increases in computer power and improvements to the algorithms for 

computing third-order wave-wave interactions have made it possible to develop a 

‘third generation’ model in which the spectrum is developed step-by-step, using the 

full energy balance equation. Develop in recent year, the hindcasting are prepared 

using numerical wave models with the hindcast wind as input and using the physics 

of wave growth, transmission and decay (Carter et al., 1989). This has the advantage 

of not having to make priori assumptions about the spectral shape, and should 

therefore give better results in complicated conditions such as hurricanes. 

 

 

The advantage of hindcast methods is that wind data is more abundant and 

generally more reliable than visual observations. Some ships are equipped with 

anemometers that measure the wind speed, with less error than the visual estimations 

of wave properties (Quayle, 1980). A large hindcast study has been going on for 

some years to generate a wave data base for the North Atlantic, as reported by 

Cumming and Bales (1980). Another important program covers the North Sea and 

denoted by NORSAW (Haring, 1979). Hindcasts exist also for the Mediterranean 

Sea (Lazanoff et al., 1973).  
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Recently, wave data collection using hindcast method was generated by Japan 

Weather Association for global wave database. The database is the simulated wave 

data (wave height, wave period, wave direction and wind velocity) using JWA3G 

model, 1985-1999 (15 years). Time and grid intervals are 6 hours and 2.5 degree 

(about 250 km mesh) (Tilo and Stephan, 2000). Also, there is a Wave Model (WAM) 

[WAMDI Group (1988)], which was operated routinely at the European Centre for 

Medium-range Weather Forecasts (ECMWF) (Staabs and Bauer, 1998). Modelled Hs 

are provided from WAM (cycle 4) with global 3º x 3º grid and with forcing by 

ECMWF 6-hourly wind fields. The modelled Hs fields are stored every 6 hours. The 

major improvement of WAM cycle 4 with respect to WAM cycle 3 is the dynamic 

coupling between the wave-induced stress and the atmospheric stress (Komen et al., 

1994).  

 

 

However, substantial uncertainty can be obtained from calibrations of 

hindcast methods. On the other hand, the hindcasting methods are not very accurate 

and considerably improved if the models are initiated and updated with others 

sources observations of wave height and period (Carter et al., 1989). In the last 

decade, the performance of wave models has significantly improved, due to 

improved accuracy in the wind forcing fields, and to the assimilation of altimeter 

data (total energy of waves). It has been shown that the assimilation of altimeter data 

in wave model improves the forecast of the Hs (Lefevere et al., 2003). For example, 

errors in wave modeling using WAM are caused mainly by incorrect wind forcing 

and less by insufficient resolutions. Since August 16, 1993, Hs from the European 

Remote Sensing (ERS) altimeter have been assimilated into the WAM model at 

ECMWF (Staabs and Bauer, 1998). 

 

 

Nowadays ERS-2 wind/wave altimeter data are assimilated on a daily basis in 

several meteorological centers. With the launch of ENVISAT and Jason, we should 

have the unprecedented opportunity of the availability in quasi-real time (within few 

hours) of data from several altimeters and from SAR, offering an improved coverage. 

A system able to assimilate all these data should provide higher quality wave field 

analyses and forecasts (Lefevere et al., 2003). Finally, it is important to note that 
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these major hindcast programs concern ocean areas which are already reasonably 

well documented by various types of wave data. Therefore they do not fill the gaps 

of the visual wave data and cannot be considered yet as a real alternative (Soares , 

1986).  

 

 

 

 

2.3.4 Remote Sensing in Wave  

 

 

Remote sensing is one of the indirect observations and it is defined as making 

measurement by using electromagnetic waves, so that no mechanical disturbance of 

the sea-surface is caused. This indirect observation is not so sensitive comparing with 

the direct observation but we can get the data easily and cheaply in wide areas with 

the same instrument in short time of period. Remote sensing is widely applied to 

research of the ocean. At present the space-borne radars allow us to realize a global 

overview of the state upper layer of the ocean surface and to obtain information on 

its characteristics, such as significant wave height (altimeter), and wind speed 

(altimeter and scatterometer). This information is necessary for the solution of a 

broad list of problem in oceanology, meteorology, navigation and ocean safety 

engineering. Electronic wave scattered by the ocean surface contain the information 

on its characteristics. A wide range of electromagnetic wavelengths has been 

successfully used, from infrared pulsed lasers to high frequency (H.F) radio waves 

travelling horizontally over the sea surface and being reflected back by sea waves of 

half their wavelength.  

 

 

There are two classes of remote sensors for waves; direct and indirect 

sensors. Direct sensors measure directly some relevant parameter of the wave 

system. The example is the altimeter and Doppler radar. The interpretation of results 

of sensors is reasonably straightforward. Indirect sensors are the main system, which 

have interaction via some other physical process, usually by its interaction with wave 

at or near the Bragg resonant wavelength. This needs a greatly complicated 
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interpretation. Large amounts of effort have been put in these systems, but they are 

still not very accurate quantitative tools. The example of this type sensor is Synthetic 

Aperture Radar (SAR), H.F radar and Plan Position Indicator (P.P.I) ground based 

radar. There are various type of radar based on the position of the sensors transmit 

the electromagnetic such as Ground-based Radars, Airborne sensors and Satellite-

borne sensors. 

 

 

2.3.4.1 Ground-based Radars 

 

 

a) Vertical Radar 

 

 

The first type of Ground-based Radars is the vertical radar. It is the simplest 

in concept. A transmitter mounted, for example, an offshore platform sends a pulse 

of radiation vertically downwards in a narrow beam and measures the delay before 

the echo from the sea surface is received. This delay may be measured digitally or 

converted to an analogue signal, and it measures of the elevation of the sea surface 

immediately below the instrument. An infrared laser device developed by Thorn-

E.M.I has been successfully deployed at several sites. Dacunha & Angevaare (1988) 

give the results of a long-term intercomparison of one of these with other wave 

sensors, showing good agreement. More recently, it was intercompared with many 

others wave measuring devices by Allender et al. (1989) in the Wadic experiment. 

Although it occasionally gave short flat sections and was slightly ‘spiky’ near the 

crests of very large waves in severe storms, these were considered to be minor faults, 

and it was in fact chosen to provide most of the reference data set used. Microwave 

radars have also been used for this application. 
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b) Plan Position Indicator (P.P.I) Radar 

 

 

P.P.I. radar is also ground base radar. Conventional high-resolution short-range 

ships radars are suitable for this application, with minor modifications. One complete 

sweep of the radar is photographed at suitable intervals. The gain is set so that the 

‘sea clutter’, that is, the echoes from the sea-surface, is clearly visible. The height of 

the radar is fairly critical. As the height is raised, so the reflection of signals from 

distant waves increases, but at too great height the contrast is lost and the image of 

the wave disappears. A height giving a grazing angle of about 0.5o at extreme range 

seems to be about right. The precise physical mechanism at work in producing the 

backscatter pattern are not too clear, though in some cases it seems likely that 

reflections from the crest are being seen with the wave trough being shadow. Such 

installations are comparatively cheap and simple. They give the predominant 

direction of the waves, and this is very useful, in conjunction with a point wave 

recorder, for coastal engineering problems. Working further offshore in a depth 

sufficiently great so that changes in the phase velocity of the waves are negligible 

over the area of a radar image, navigation radar mounted on a ship or other suitable 

platform can be used with a more sophisticated system of analysis. 

 

 

If there is a current present (or the ship is drifting), this produces a Doppler 

shift in the frequencies of the waves. The current can be estimates by measuring this 

Doppler shift from the temporal transforms. In the presence of noise, this involves 

estimating the position of the peak of the spectrum. The result from all the spatial 

harmonics can be averaged to give a better estimate of the current. Having obtained 

this current, one can go back to the temporal transform and select just the energy at 

the frequency corresponding to the revised dispersion relationship (that is, taking 

account of the Doppler shifts). Young et al. (1985) claim that the resulting low-noise 

spectrum is the same shape as the true surface elevation spectrum of the waves.  

 

 

 

 



  26

c) Microwave Doppler Radar 

 

 

The third type of the ground base based radar is the Microwave Doppler 

radar. In concept, these shine a narrow microwave beam to illuminate a small patch 

of the sea surface, and measure the Doppler shift of the echo due to the very short 

Bragg-resonant waves being carried back and forth by the surface particle velocity 

due to the longer waves. If the wave system is considered as the linear superposition 

of many components, then for each component (in deep water) the particles travel in 

circular orbits. If all the wave components were travelling towards the radar, then the 

statistics of the particle velocities seen by the radar would be the same as the 

statistics of the vertical velocities. When integrated, they would then give a 

displacement time-history whose spectrum and statistics would be the same as those 

of a vertical displacement record. Note that this is not true when wave are nonlinear, 

so such radars cannot be used to measure the shape of extreme waves. However, they 

do measure the horizontal component of surface particle velocity correctly in 

nonlinear waves, and this is a very useful measurement. 

 

 

 
Figure 2.2: A microwave Doppler radar looks at small patch of the 

sea surface (Tucker, 1991).  
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d) High Frequency (H.F) Radar  

 

 

The H.F radar is now established as a powerful tool for measuring the patte

of surface currents over an area out to a range about 30 km, with an accuracy of 

about ± 3 cm/s in all conditions. Much has been claimed for its potential for 

measuring directional wave spectra out to ranges of perhaps 150 km, but 

development of this still had a rather limited success. Three main practic

rn 

the 

al versions 

f H.F. radar have been developed. The first was the CODAR (coastal oceans 

ynamics applications radar) intended for measuring both waves and current, and 

develop

tch 

, 

 and 

one negatively Doppler shifted from the transmitter frequency. These lines 

corresponded to echoes from the Bragg resonant waves travelling towards and away 

from radar. With no current, the Doppler shifts are equal to the frequency of the 

Bragg resonant wave, and therefore in the range 0.1 to 0.6 Hz approximately. If a 

component of the surface current is following towards the radar, it will increase the 

Doppler shift of the approaching wave and decrease that of the receding wave.  

 

o

d

 by Barrick and Lipa (1979). The second was the Ocean Surface Current 

Radar (OSCR) developed by King et al. (1984) specifically for current measurement. 

The third is longer wavelength H.F. radar developed at the University of 

Birmingham by Shearman et al., (1987) mainly for wave measurement. 

 

 

The radars are used are coherent stretched-pulse radars which is continuous 

transmission radars arranged to illuminate only one approximately rectangular pa

of the sea-surface. The backscattered signal is received and its spectrum computed

giving a result as in Figure 2.3. In 1955 D.D. Crombie showed that the radar echo 

from a patch of the sea-surface contained two main spectral lines, one positively
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Figure 2.3 : A measured H.F radar backscatter spectrum (Tucker, 1991).  

 

 

For wave measurement, more complex second-order mechanism of 

backscatter is therefore used. Hasselman (1971) and Barrick (1972) established this 

technique as the foundation. Because the hydrodynamic equations are nonlinear, two 

wave trains of different frequency and direction interact to form two further 

components of the surface profile with different wavelength and moving in different 

directions. If the direction of one of these second-order wave trains coincides with 

the radar look direction and the Bragg resonant condition is met, it will reflect radio 

energy back to the receiver, then the Doppler shift was determined by the wavelength 

and directions of the two original sea waves. Since a wind-generated sea contains a 

wave spectrum of waves in frequency and direction, there will be a spectrum of 

Doppler shifts in the signals reflected back to the radar receiver. Note that these 

components are not free-travelling waves. Thus, there is a secondary peak in Doppler 

spectrum corresponding to the second harmonic of a sea wave of twice the Bragg 

wavelength travelling towards the radar. 
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The second mechanism works rather like a corner-cube reflector (See Figure 

2.4). If two sea wave trains of suitable wavelengths are travelling at right angles to 

one another, then the radar waves can be reflected first from one and then from the 

other back to the receiver. In each case the Bragg resonant condition must be met at 

the angle of incidence, which will in general be different for each of the two wave 

trains. Thus, again, a signal will be received which covers a spectrum of Doppler 

frequencies. The process is most effective when the two waves are travelling at 45o 

to the axis of radar beam, giving another peak at a frequency of 23/4 fB. Other small 

peaks can sometimes be seen corresponding to the third and fourth harmonics, but 

these are not considered in the analysis.  

 

 

 
 

rks for H.F. radar (Tucker, 1991) 

 

 

Figure 2.4: How corner-cube reflection wo
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2.3.4.2 Airborne Sensor  

 

 

a) Radar Altimeter 

 

 

Many attempts have been made to measure waves by using a narrow-beam 

vertical radar altimeter mounted in an aircraft flying low over the sea, so that the 

illuminated patch is small compared to the sea wavelengths of interest. These have 

 instrumental difficulties, partly to the cost and 

ther problems of flying aircraft, both during development and operationally, but 

ore fundamentally because of the difficultly of interpreting the resulting records. 

The air  

le to 

 

cross the track of the aircraft and in 

sections of 1024 cells along the track. The resolution is 1.4o across the track and 1o 

along the track, with 15cm in surface elevation. The aircraft was flown at heights of 

 m  across the track and about 5 

 along the track. The system is corrected for the roll of the aircraft, and for the 

oppler shifts in the wave spectrum due to the drift and forward speed of the aircraft. 

Ambig

s 

all been unsuccessful partly owing to

o

m

craft is flying faster than the phase velocity of the waves, but there will be

some component wavelengths and directions for which the resulting frequency as 

seen by the aircraft is near zero, and such waves are not measured. It is impossib

keep an aircraft at exactly constant altitude, so that low-frequency noise is also 

introduced. In practice, this noise has seriously contaminated the results, even when a

vertical accelerometer was used to measure the vertical motion of the aircraft and to 

compensate for it.  

 

 

b) Surface Countering Radar 

 

 

Walsh et al. (1985) describe an airborne surface contouring radar which 

measures the directional spectrum of the waves. This is across-track scanning radar, 

which contours the sea-surface in 51 cells a

200 and 400 m, giving surface resolution of 3 to 5 m

m

D

uities are removed by using two directions of flight, but this works only if the 

wave spectrum at any particular frequency has a single directional lobe. Comparison
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of this system with other surface sensors gave very encouraging results. The system 

seems more suited to one-off experiments than for routine measurements, no

because of the costs of flying an aircraft routinely, but also because it seems un

that the aircraft could fly at the low altitude required in the extreme conditions when 

routine measurements are most important. 

 

 

c) Radar Ocean Wave Spectrometer (ROWS) 

 

 

t only 

likely 

his concept has been implemented from aircraft, but is in principle suitable 

r satellites. The short-pulse radar is directed at the sea surface at a relatively steep 

m the vertical for the proposed satellite instrument). 

The pulse is backscattered from the sea surface, and the time history of the 

backscattered energy is analysed. The pulse is short enough to resolve the sea 

n the range direction, but the width of the illuminated patch 

 several wavelengths, thus averaging wave travelling across the range direction and 

iving directionality. The returns from successive pulses are averaged in range bins 

fixed re

 

 

sure the shape of the Earth’s surface, and this has shown 

ome fascinating results. The microwave radar altimeter is conceptually the simplest 

f the active remote sensing instruments, and, after nearly two decades of spaceborne 

T

fo

angle of incidence (10o to 13o fro

wavelengths of interest i

is

g

lative to the sea surface. The aerial is rotated to look at the sea successively in 

all directions. It is assumed that the law relating the backscattering cross-section σ0 to

the wave characteristics is known, so that the Fourier transform from each directional 

look can be related to the directional spectrum in a known way (Tucker, 1991). 

 

 

2.3.4.3 Satellite Borne Sensors 

 

 

a) Radar Altimeter  

 

 

A number of altimeters of the same general type have been flown. Their main

application has been to mea

s

o
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operation, it has become a well-developed and documented tool. The primary 

purpose for the development of the spaceborne altimetry was oceanic physics, where 

altimeters were proposed for the measurement of mean sea level and sea state. In 

addition to oceanographic applications, the satellite altimeter has proven to be a 

useful tool for studying the continental ice sheet of Greenland and Antarctica. The 

satellite altimeter is a nadir-pointing instrument designed to measure the precise time 

it takes a radiated pulse to travel to the surface and back again. If the orbital position 

of the satellite is known relative to a reference surface, then the measured time 

converted to range can be used to derive the elevation of the reflecting surface (See 

Figure 2.5) (Davis, 1992).  

 

 

 
 

Figure 2.5: The satellite borne precision altimeter used for measuring wave 

height (Tucker, 1991).  

 

 

b) Synthetic Aperture Radar 

 

 

he Synthetic Aperture Radar (SAR) produces an image of the sea surface 

(See Figure 2.6) the 

T

, and the analysis starts by a 2D spectral analysis of subsets of 
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image. However, the SAR image spectrum has turned out to be far from the actual 

wave spectrum and rather complicated post-processing is necessary for extracting 

quantitative wave information. The core of the methodology is Hasselmann’s non-

linear ocean-SAR spectral transform develop in the early nineties. Despite intensive 

research over several years, there is still quite some way to go before the SAR-ocean 

rsi ned from the 

altimeter.  

inve on reaches the accuracy for the significant wave height obtai

 

 

 
 

Figure 2.6: SAR image of waves diffracting (Tucker, 1991).  
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2.4 Currently Available Wave Data Collection in Malaysia 

 

 

Presently, sources for wave data especially on wave height and wave period 

available in Malaysia for engineering purposes are limited. Researchers ha

on the visual observation data and the wave spectrum, which are based on we

sea conditions and parameters for engineer

ve to rely 

stern 

ing applications. A brief information and 

ummary on the status of available wave data collection in Malaysia is presented 

here. 

ritish Maritime Technology (BMT) provides the data that contains statistics 

of ocean wave climate for whole globe generally known as Global Wave Statistics 

atlas, Hogben et al. (1986). The data are presented in terms of probability 

distributions of wave heights, periods and directions for global selection of sea areas. 

The data have been derived by a quality enhancing analysis of a massive number of 

visual observations of both waves and winds reported from ships in normal service 

all over the world, using computer program called NMIMET (Tucker, 1991). 

However, there are disadvantages on this data, which is based on visual observation 

from ship. As ships will try to avoid stormy areas, fewer reports are available from 

stormy area. Secondly, the whole of South China Sea, Straits of Malacca and the 

G  

inaccurate data for particular area. And thirdly, there is no data for certain critical 

areas for example Indonesian, Southern Philippines and North Australian sea areas 

(See Fi

ccuracy is 

s

 

 

B

ulf of Siam are lumped into one area, which is area 62, and hence this will provide

gure 2.7).  

 

 

Malaysian Meteorological Service (MMS) provides monthly statistics of 

marine meteorological observation information such as wind waves and swells for 

example MMS, 1996 (See Appendix C). The wave and wind data collected are 

derived from marine surface observations reported by ships operating in the 

Malaysian waters which participated in the World Meteorological Organization 

Voluntary Observation Ships Scheme, oilrigs and lighthouses. Similar to GWS the 

data were compiled based on visual observation in which the a
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questionable. Also, it is based on voluntary reporting and thus, no data were 

available for some areas.   

 

 

 

6). 

isadvantage on these two devices. For example, the buoy was located 

in the atoll structure in Layang-layang region at Sabah. The waves thus measured are 

near th

al range 

 data 

eld. 

 

ave 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: GWS data area for Southeast and North Australian Sea (BMT, 198

 

 

MMS also provides the forecasting wave data and buoy data but there are 

advantage and d

e atoll instead of the open sea. This in-situ reference also suffers from the 

relatively small number of data sets and the incomplete coverage of the natur

of variations of Hs. MMS also uses a wave-forecasting model called WAM. The

provided by the MMS is presented on monthly charts with individual values in 

squares of 2o latitude by 2o longitude and with forcing by MMS 6-hourly wind fi

Errors in wave modeling using WAM are caused mainly by incorrect wind forcing 

and less by insufficient resolutions (Staabs and Bauer, 1998). 

 

 

Last but not least, there are also wave database on Malaysian ocean area

collected by commercial companies for their operational used, for example the w
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database collected by Petronas Carigali Sdn. Bhd. But these wave data are not 

published and not easily available to the public. 

 

 

 

2.5 Summary  

 

 

Early in this chapter, the importance of the wave data to the marine 

engineering field, especially seakeeping is briefly described. It is clear that in order 

to obtain a good and reliable wave data, the raw data collected must be subjected to 

the precise calculation. A reliable and efficient device will need to be deployed 

besides the strong and stables s waves. This was 

followed by reviewing the various methods of measurement, observation and 

forecasting to get the wave data. The advantages and disadvantages of these methods 

are com ared  

 two sources of published data for wave are publicly available 

in Malaysia; which is Global Wave Statistics (GWS) from British Maritime 

Technology Ltd., (1986) and the Monthly Summary of Marine Meteorological 

Observ

g 

 to rely on 

and for others requirement are not reliable and 

insufficient, new effort to collect wave data must be made. One method which is 

bservation and collection of wave data via remote sensing seem to have great 

otential for development. The next chapter will describe the satellite altimetry 

chnique in detail.  

 

 

tructure to withstand the severe 

p

 

Presently, only

ations from Malaysian Meteorological Service (MMS). These data were 

based on the visual observations covering selected areas mainly along shippin

routes. Marine technologists have no viable alternatives and therefore have

these for the time being. Since the available wave data for engineering design 

calculations for Malaysian ocean 

o

p

te
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CHAPTER 3 

 

 

 

 

SATELLITE ALTIMETRY 

 

 

 

 

3.1 Introduction 

 

 

The previous chapter has shown that wave data is an important input to 

engineering design calculations. A number of sources of wave data and their 

respect

ter 

ive strengthen and weaknesses have been reviewed. One important 

development in this field is satellite altimetry. This chapter introduces concept and 

application of satellite altimetry. 

 

 

 

 

3.2 Past and Present Satellite Altimeter 

 

 

The ‘proof of concept’ of a satellite radar altimeter was established by an 

instrument carried on SKYLAB in 1973. The United States satellite SEASAT, which 

was only operational for three months in 1978, was the first satellite with an altime

to give global coverage, from 72oS to 72oN. An earlier satellite of NASA, GEOS-3 

launch in April 1975, carried an altimeter, but it could not store the data on board so 
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it did not provide global coverage. It was not until March 1985 that another altimeter 

was launched, in the US Navy’s satellite GEOSAT. As indicated by its name 

(GEOdetic SATellite), the satellite’s primary purpose was to measure the marine 

geoid with high precision. Because of the strategic value of the gravity field which is 

obtainable from the geoid, the data from the first 18 months of observations we

classified b

re 

ut some data including wave height values have been released. The 

classified geodetic mission ended in September 1986, and during October the 

satellite s orbit was altered, placing it into a 17-day repeat pattern in which it 

operated until the satellite failed in January 1990; although there was a significant 

decline in data coverage from about March 1989. Thus GFO has provided, for the 

e of wave data (from 72oS to 72oN) 

(Carter et al., 1989).  

 

fe. 

arth 

radar 

t for studying variability of sea 

level and associated global climate changes, but also provides excellent estimates of 

SWH but only from 66oS to 66oN (Carter et al., 1989). The main instrument is the 

dual fre e 

vy’s 

-

’

first time, several years of near-global coverag

 

 

Then, the European Space Agency’s ERS-1 was launched in July 1991 into

an orbit covering 82oS to 82oN, and is still working well, long after its planned li

The satellite ERS-1 was designed to carry out a wide ranging programme of E

remote sensing research. To achieve this, ERS-1 operates a suite of remote sensing 

instruments, including a radiometer, scatterometer, synthetic aperture radar and 

altimeter. It has operated in various repeat-orbits: 3-day, 35-day and currently 168-

days. Its replacement ERS-2 was launched in March 1995; but ERS-1 also continue. 

The US/French satellite T/P was launched in September 1992 into a 10 day repeat 

orbit. Its primary task is monitoring sea surface heigh

quency T/P altimeter, but the satellite also carries the experimental solid stat

single frequency Poseidon Altimeter which operates 10% of the time. After some 

degradation in performance of the main T/P altimeter, the back-up B-side altimeter 

was switched on in February 1999 and took over the T/P altimeter. Then, US Na

Geosat Follow-On (GFO) altimeter satellite was launched in February 1998 to carry 

on the mission. The altimeters onboard, ERS-1&2, T/P-POSEIDON and GEOSAT 

Follow-On (GFO) provided continuous wave height and wind speed measurements 

over more than 15 years time period. Today, with the successful launches of JASON
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1, in December 2001, and ENVISAT, in April 2002, five altimeters are flying 

together.  

 

 

 

 

3.3 Altimeter Principles and Techniques 

 

 

The satellite altimeter is nadir-pointing instrument designed to measure the 

precise time it takes a radiated pulse to travel to the surface and back again. If the 

orbital position of the satellite is known relative to a reference surface, then the 

measured time, converted to range, can be used to derive the elevation of the 

reflecting surface. A very narrow pulse (<10 ns) is transmitted in order to obtain a 

small range resolution. In addition to measuring range, the altimeter records an 

averaged number of return echoes (typically 100), and estimates other geophysical 

parameters such as ocean wave height and return pulse magnitude. A diagram

altimeter pulse interaction with a flat surface and the corresponding return echo is 

shown 

 

 

As the incident pulse strikes the surface, it illuminates a circular region that 

increas  of 

will 

f the 

 

 of the 

in Figure 3.1, reproduced from Davis (1992). 

es linearly with time. Correspondingly, a linear increase in the leading edge

the return waveform occurs. After the trailing edge of the pulse has intersected the 

surface, the region backscattering energy to the satellite becomes an expanding 

annulus of constant area. At this point, the return waveform has reached its peak and 

then begins to trail off due to the reduction of off-nadir scattering by the altimeter’s 

antenna pattern. For a rough ocean surface, the leading edge of the return pulse 

be “stretched” because scattering from the wave crests precedes the scattering from 

the wave troughs as the pulse wavefront progresses downward. Thus the width o

return pulse can be related to the height of the ocean waves (Davis, 1992).  
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d planar 

 

sion. To do this correction, for example the T/P 

arries a two-fre ency radar altimeter to accurately measure the ionospheric 

propa

measure vapou  is to measure sea level relative 

to a terrestrial reference frame. This requires independent measurements of the 

rbital trajec titude, longitu co

an be accur it f

Doris system on board of T/P for example uses a network of 50 ground beacons, 

de, transmitt developed by CNES. Doris uses the 

 shift on the termine e velocity of 

traject y relative to the Earth. This position is determined relative to an arbitrary 

, an e ellipsoid is a raw approximation of 

 

Figure 3.1: Interaction of an altimeter radar pulse with a horizontal an

surface (Davis, 1992) 

 

 

For more details explanation, as electromagnetic waves travel through the 

atmosphere, they can be decelerated by water vapour or by ionisation. Once these

phenomena are corrected for, the final range between satellite and ocean surface (R) 

will be estimated within a 2 cm preci

c qu

gation delay and three-frequency microwave radiometer which is able to 

r in the troposphere.  The ultimate aim

satellite o tory, i.e. exact la de and altitude 

(S) in a mber o

ordinates. The 

 wayssatellite c ately tracked the satellite orb  nu . The 

worldwi ing to th  satellite. It was e

Doppler beacon signals to accurately de  th the 

satellite on its orbit, and dynamic orbitography models to deduce the satellite 

or

reference surface  ellipsoid. This referenc
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Earth’s surface, a sph les. The satellite titude above th

e ellipsoid, d ithin 3 cm. The sea surface height 

(SSH), is the range at a given instant from the sea surface to reference ellipsoid. 

Since the sea depth is not known accurately everywhere, this reference provides 

accurat

und the 

 The 

al variations, etc). The 

summary for the past and present satellite altimeter measurement precisions and orbit 

accuracies was shown in Table 3.1.  

 

 

uracy 

ere flattened at the po  al e 

referenc istance S, is available to w

e, homogeneous measurements. The sea level is simply the difference 

between the satellite height and the altimetric range:  

SSH=S-R 

The SSH value takes account of such effect as the geoid and dynamic topography. 

The geoid was assuming that the sea surface height would exist without any 

disturbances (e.g. wind, currents, tides, etc.). It is due to gravity variations aro

world, which are turn due to major mass and density differences on the seafloor.

ocean circulation or dynamic topography, which comprises a permanent stationary 

component (permanent circulation linked to Earth’s rotation, permanent winds, etc.) 

and highly variable component (due to wind, tides, season

 
Table 3.1: Summary of Satellite Altimeter Measurement Precisions and orbit

Accuracies (Fu and Cazenave, 2001) 

 

Satellite 
 

Mission period 
 

Measurement 
Precision (cm) 

Orbit Acc
(cm) 

GEOS-3 
 

April 1975 December 1978 
 

25 
 

~500 
 

Seasat 
 

July 1978-October 1978 
 

5 
 

~100 
 

Geosat 
 

March 1985-December 1989 
 

4 
 

30-50 
 

ERS-1 
 

3 
 

July 1991-May 1996 
 

8-15 
 

T/P/POSEIDON 
 

October 1992-present 
 

2 
 

2-3 
 

ERS-2 
 

August 1995-present 
 

3 
 

7-8 
 

Jason-1 December 2001-present 2 2-3 
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All the altimeter missions listed operate at Ku-band. The choice of freque

is constrained by both the system and operational requirements. Since narrow

transmitted pulse (typically 3 ns) is required to achieve a reasonable range precision, 

high frequency operation will support both the large receiver bandwidth and narrow

antenna beamwidth requirements. The upper limit on the operational frequency is 

constrained by atmospheric attenuation effects that significantly degrade the 

performance of the altimeter for frequencies >18GHz. In addition to a Ku-band 

transmitter so that ionospheric propagation delays can be accurately measured. The

two-frequency system will produce a subdecimeter range precision so that very small

dynamic variations in the ocean surface can be detected.  

 

ncy 

 

 

 

 

 is worth to note here that radars cannot directly measure the characteristics 

of the sea surface. Therefore the second stage is radar data processing; the reason 

why it is important to have and develop good retrieval algorithm (Panjaitan et al., 

icrowave instruments, the radar altimeter is supported 

by a noncontroversial mathematical model relating the return waveform to sea 

surface interaction. Since the backscatter area seen by the altimeter is restricted to a 

fraction ximated 

 

is the transmitted pulse profile, 

and Ps(t) is a term involving the distribution of scatterers, their backscattering 

properties, and the antenna gain. From this convolutional form, many researchers 

like Barrick (1972), Brown (1977) and Lipa and Barrick (1981) obtained a model to 

describ eter return waveform. 

he present ~4 cm state-of-the-art overall accuracy of the surface height 

estimat

40 

 

It

2002). In contrast with other m

 of a degree around the nadir position, the ocean surface can be appro

by a horizontal planar surface with a large number of scattering facets distributed 

randomly about the mean sea surface. Moore and Williams (1957) showed that the 

mean altimeter return waveform could be described by the convolution of two terms, 

   Pr(t) = Pτ(t)*Ps(t)                    (3.1)

Where Pr(t) is the received power at the satellite, Pτ(t) 

ing the altim

 

 

T

es h has been achieved through major technological advancements in 

precision orbit determination and a dedicated effort to improve each of more than 

sensor and geophysical algorithms. This attention to algorithm improvements has 
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transformed altimetry from semi quantitative measurement of sea-surface height 

which the distinction between measurement errors and geophysical signals was 

sometime difficult to discern, to a highly quantitative measure of sea-surface height 

variability that is providing insight into the wide range of dynamical processes. 

major ben

for 

A 

efit of the high degree of accuracy is that it is no longer essential for users 

to be deeply versed in all of th

eters can be derived from the satellite backscatter. For 

example, TOPEX/Poseidon can produce data of SWH, windspeed (U), sigma0 (σ0), 

sea surface height, sea surface anomaly, water vapour content, total electron content 

and oth  and 

 

e idiosyncrasies of satellite altimetry. Altimetry has 

thus become a standard tool for oceanographic research (Fu and Cazenave, 2001).  

 

 

 

 

3.4 Altimeter Estimation 

 

 

Several param

ers geophysical data. In this section, the explanations only focus on SWH

wind speed according to the scope of this study. In addition, the derivation of wave 

period from this estimation will be explained briefly. 

 

 

 

3.4.1 Significant Wave Height (SWH)  

 

 

Significant wave heights, SWH are a measure of the general sea state, an 

‘average’ value of the prevailing conditions. It was originally defined, about fifty 

years ago when only visual observations could be obtained, as the mean height of the 

one-third highest individual waves, crest to trough. This was considered to give 

about the same values as an experienced ‘seaman’s estimate of ‘mean’ wave height. 

With the development of instruments which measured time series of the sea surface 
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elevation (η), SWH was redefined in terms of the statistical variance of the sea 

surface: 

SWH=4√< η2 >    (3.2) 

Where,

t to 

y 

adar altimeters fitted in earth-observing satellites are mounted to point 

vertica

d 

   (3.3) 

 

, is around 5 – 10 km, 

depending on the height of the satellite and on sea state (Carter et al., 1989). There is 

quite different for ERS-1/2b Fast Delivery Products (FD) which is the estimated on 

board- the conversion to the SWH is done using a look-up table. This table is derived 

y a comparison of the altimeter derived SWH with ECMWF wave models (WAM) 

 (Tilo and Stephan, 2000).  

 

 < η2 > is the surface variance. The ‘4’ was introduced so that, for a narrow-

band sea, the old and new definitions have the same value. Note that < η2 > can be 

measured either over an area of the sea surface at any instant or over a period of time 

at a single position. Assuming statistical stationary in both space and time over the 

area and period of measurement, then the spatial and temporal definitions turn ou

be numerically identical. So this definition of significant wave height can be equall

applied to, say time series of η from buoy or to a stereographic photograph of the sea 

surface – or to a ‘snap shot’ of the sea surface from a radar altimeter (Carter et al., 

1989).  

 

 

R

lly downwards. Their primary purpose is to measure the height of the satellite 

above the sea surface and hence provide information about the geoid; but the shape 

of the return pulse (σs) also gives an estimate of the sea surface variance, < η2 >, an

hence the width of the leading edge is used to estimate significant wave height 

(SWH), where; 

SWH = 4* σs          

and the range to the mean surface is associated with the half-power position on the 

leading edge of the waveform. Essentially, the higher the waves in the footprint of 

the radar pulse, the more spread-out the time of arrival of the front of the return 

pulse. Thus, the significant wave height is estimated only from that portion of the sea 

surface which contributes to the leading edge of the return pulse. Returns further 

away from nadir, which forms the trailing edge of the return pulse, are not taken into

account. The effective footprint, from which SWH is derived

b

prior to an assimilation



  45

A problem in estimating SWH is that individual returns from the sea surface 

are sev from 

es 

ged, 

 

print’ 

ined 

son 

).  

f 

 

ttenuates the radar signal), whereas buoy and ship data 

can become increasingly unreliable in high seas. However, the T/P SWH data 

employed have been corrected for the sea state bias, static atmospheric pressure and 

various id 

e 

 

n estimate of surface wind speed is generated from the radar altimeter 

measurement of normal incidence surface backscatter (σ0), which is itself derived 

erely contaminated by noise. To reduce the effect of this, values of SWH 

individual pulses, which are transmitted at 1000 Hz, are averaged to obtain 1 s valu

which are transmitted to ground stations. In practice, 50 or 100 pulses are avera

and the mean over 1 s of these averages is transmitted; the standard deviation of 

these averages is also transmitted, and provides useful quality check. The satellite

orbits the Earth in around 100 minutes, which gives the speed of the radar ‘foot

over the ocean as about 7 km/s, so estimates of significant wave height are obta

at 7 kilometre intervals along the satellite track (Carter et al, 1989). This is a rea

for satellite altimeter only provides the SWH not the sea surface height (SSH

 

 

In fact, when compared against in-situ measurements this derived estimate o

significant wave height gives a residual root mean square of about 0.3 m, close to the

estimated accuracy of the in-situ measurements themselves. The altimeter has the 

added benefit of being largely unaffected by extreme sea conditions (except during 

very heavy rainfall, which a

 other intervening factors-as described in (Glazman et al., 1996). The geo

and tidal (solid Earth and ocean) variation have also been removed from the data. 

The residual error of SSH measurements is presently believed to be about 5 cm. On

particular component of this error is of special concern. This component arises from

the remaining uncertainty in the satellite orbit and could introduce a slight different 

in the SSH values on difference satellite passes up to 3 cm.  

 

 

 

 

3.4.2 Wind Speed  

 

 

A
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from the power of the reflected radar pulse received back at the altimeter. The 

physical principles behind this wind speed measurement are that the wind blowing 

over the ocean surface generates small centimetre scale ripples at a similar wave 

 band, which reduce the power of the signal 

reflected directly back up toward the altimeter and hence reduce the measured 

backscatter (σ0). The algorithm used to convert σ0 into surface wind speed was 

derived

erived 

S-1, 

ent 

ence 

 wind speed presents more difficulties than for SWH. 

irstly because wind speed is not the only geophysical parameter interacting with the 

ltimeter backscatter coefficient, which is rely the main operational altimeter wind 

speeds arge 

ter 

urately 

 

 

length to the radar, ~2.3cm for Ku 

 empirically from co-located measurements of altimeter σ0 and buoy 

measured wind speed. The algorithm in current, almost universal, usage was d

by Witter and Chelton (1991) for Geosat data, and has since been applied to ER

ERS-2 and T/P data. When compared against in situ wind measurements, altimeter 

wind speeds show a residual root mean square (r.r.m.s) of 1.5 ms-1 or better. Rec

studies have developed improved wind speed algorithms which include a depend

on both σ0 and significant wave height and have shown (r.r.m.s) accuracies of close 

to 1.2 ms-1 (Cotton, 1998). 

 

 

Estimating surface

F

a

algorithm. Other parameters such as SWH, wave age and fetch induce l

scatter on altimeter wind speed estimates. Secondly σ0 depends strongly on altime

electronics, and absolute calibration is presently not available, though being under 

investigation within the ENVISAT RA-2 validation activities. Thirdly, small 

variation of σ0, as for instance 0.2 dB for ERS-2, induces significant errors on 

retrieved wind speed. Because the relation between sigma0 and wind speed is non-

linear the obtained statistical slope and intercept cannot be used to correct acc

the altimeter wind speed (Queffeulou, 2003). 
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3.4.3 

necessary before an altimeter wave period parameter reaches a suitable stage of 

maturity to enable its acceptance by the research community (Fu and Cazenave, 

e approaches have been suggested to derive the 

ave period in term of zero upcrossing.  

 

wave 

parame rs that can be measured by a radar altimeter (significant wave height and 

radar b  a 

pendent term in the final proposed algorithm. However, some sea state 

dependence reminded and it was found that the algorithm could not provide reliable 

estimates in conditions where moderate to large wave heights and low winds 

occurred together. It was therefore recommended that the use of the algorithm should 

be restricted to conditions with wind speed above 2 ms-1 and altimeter derived 

b) 

eter 

ht 

Derivation Wave Period 

 

 

Satellite altimeter does not provide the wave period parameter. Recently, 

there is an effort among the scientists to define a non-scaled the wave period. 

However, the derivation of wave periods from altimeter data is still in its early 

development (Carter et al., (1992); Davies et al., 1997). Large scale verification is 

2001). For the time being, only thre

w

 

a) Davies Method  

 

 

A theoretical algorithm was developed based upon the theory of wave 

statistics, and on the relationship of the moments of the wave spectra to the 

te

ackscatter). Further empirical developments resulted in the inclusion of

wave age de

pseudo wave ages of less than 13.  

 

 

Hwang Method. 

 

 

Recent study of tilting effects on radar backscatter indicates that the altim

wind speed (U) measurement are accurate to better than 1 m/s, and are within the 

accuracy of buoy measurements. The combination of wind speed and wave heig
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further yields the information of wave period (T). It is therefore quite feasible th

can obtain the three critical parameters of a wave field (H, T and U) from satellite 

altimeter and can provide a long-term monitoring of the wave climate of th

at we 

e world 

ocean b

on the retrieval of altimeter 

wind speed is well documented; and few earlier studies have already considered the 

development of altimeter wave period model. However, the sea state dependence in 

these se

the 

3.5 he Accuracy of Satellite Wave Data 

ld potentially lead to more 

refined wind and sea state field analysis at global and regional scales. Accurate 

calibration is important for all applications, but particularly so for climate studies, 

where a ld 

ate 

ased on assumptions of a “saturated” sea conditions and negligible swell.  

 

 

c) Gommenginger Method. 

 

 

The existence of sea state development effects 

mi-empirical models spanned only a small range of environmental 

conditions. The purely empirical wave period algorithm developed on the basis of 

largest to-date dataset of collocated altimeter/buoy spectra measurements.  

 

Full description of the derivation methods will be further explained in 

Chapter 4. 

 

 

 

 

T

 

 

The use of remotely sensed wind and SWH shou

ny bias in the altimeter wave heights, even of one or two percent, wou

effect the statistics. This would then render the database useless for studies of clim

change in which trends of one or two percent per annum in annual mean wave 

heights have been found to be of significance (Cotton et al., 2004). It is thus of 

crucial importance to analyse the consistency between the various data sets and the 

characterization of their respective weaknesses (Queffeulou et al., 2003).  
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However, there are problems in this purpose. Firstly, it is due to insufficien

in-situ data used for calibration or the large distance between the in-situ sensors 

measure

t 

and 

ments. Only a few locations worldwide, oil platforms or buoys, exist for 

calibra

 

 data 

to 

he nature 

 

 buoy 

ajor obstacle to the full exploitation of these data. 

 various studies, data from altimeters were validated against in-situ 

observations from buoys. Uncertainties still remain about which of the SWH data 

sets agrees more closely with the “true” sea state. On average, the accuracy of SWH 

from altimeters was repeatedly confirmed to be below the commonly used error 

range 1 to 20 m. Note that a 

recent study shows that SWH from T/P are, on average, 5% lower than those from 

the buoys, with RMS scatter about the mean relation of 30 cm. It is also found an 

undere

tions. The limited geographical distribution causes problems due to the 

different sea state behaviour in different regions. In some studies ECMWF wind 

fields are used for calibration, but the local wind may vary more rapidly than 

computed from the models (Tilo and Stephan, 2000). 

 

 

Secondly, many authors have carried out calibration and validation studies on

wind and wave measurements from spaceborne altimeters, using a variety of

sets and techniques. However, because of these authors have used different 

procedures and different validation data sets, it is difficult to combine their results 

form a single combined assessment of the relative accuracies and reliabilities of the 

measurements from the different altimeters. They also very rarely consider t

of the errors in the individual data sets before considering which techniques are most

appropriate (Cotton, 1998). This confusing situation exists across altimeter and

data sets, and creates a m

  

 

 

 

3.5.1 Validation with Instrumental Measurement  

 

 

In

boundaries of 0.5 m or 10% (whichever is larger) in the 

stimation of SWH from ERS-1 against TOBIS buoys (Staabs and Bauer, 

1998).  
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However, many comparison studies have shown excellent agreement of the 

wind and wave measurements between satellite altimeters and ocean surface buoy 

data (Carter et al., 1989; Tilo and Stephan, 2000; Panjaitan et al., 2002; Hwang et al

1997b; Hwang et al., 1998). For example, a comprehensive comparison of wind 

speed and wave height between the T/P altimeters and 14 moored buoys along th

west coast of Canada show the excellent a

., 

e 

greement between the altimeter and buoy 

measur ents of the significant wave height is found for the nine buoys in exposed 

positio . The excellent agreement on the wave height measurement is also 

confirm

 

 

(1999) analyzed the T/P altimeter wind and wave measurements in the Yellow and 

em

ns

ed in the Gulf of Mexico stations. The comparisons of the significant wave 

height, wind speed and characteristic (average) wave period derived from the T/P 

Ku-band altimeter and NDBC buoy data points within 10 km spatial lags shows the 

average ratio and one standard deviation of wave heights, wind speeds and 

characteristic wave periods are 1.01±0.14, 0.95±0.11, 1.06±0.13, respectively. This 

means that the measurements from the two systems are essentially equivalent 

(Hwang et al., 1997b).  

 

 

For coastal regions, the agreement is clearly not as good. The large variation 

in coastal comparison is attributed to the local variation of the wave conditions due 

to the close proximity to the shoreline. It is further shows that in the exposed 

locations, the R.M.S data scatter is greatly reduced when the spatial distance between

T/P and buoy observations is reduced to 10 km (Hwang et al., 1997b). 

 

 

 

 
3.5.2 Validation with Wave Model/ Hindcast Data 

 

 

The comparison of long term wave height probability between the satellite 

data and the forecast data in the southern parts of Sunda Strait and Lombok Strait 

was shown that the data is very similar, and it turns out that accuracy is not inferior 

in satellite data compared with the in-situ data (Sakuno et al., 2003). Hwang et al.,
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East China Seas. The results show that model simulations are in good agreement 

with T/P measurements in terms of the local mean and standard deviation of the 

variables (wave height and wind speed).  

 

he others study of wave and wind statistics derived from T/P measurements 

and the numerical output of WAM and NCEP (National Centres for Environmental 

Predict

 

ars 

 

r 

 

or wind speed, the remotely sensed winds tend to be underestimated at low 

winds a  

 

T

ion) to drive the global and regional wave model grids, show that the average 

properties of wind speeds and wave heights between the numerical simulation and 

remote sensing measurements are in good agreement, within 10 percent in most cases

for both the mean and standard deviation of these average quantities. But wave 

heights for WAM hindcast are slightly higher than the T/P data. In general, the 

annual average predicted by the WAM model agrees very well with the T/P 

measurement. In cases with discrepancies, the disagreement in wave height appe

to correlate with disagreement in wind speed or wind stress used to drive the model 

(Hwang et al., 1999). However, this is disagreed by Staabs and Bauer (1998) where

the SWH from WAM is seen to be lower than SWH from T/P for SWH value highe

than 2.7 m and vice versa for SWH lower than 2.7 m. Staabs and Bauer (1998) also

suggest that the SWH from T/P is overestimated at the high sea state compared to 

SWH from WAM. 

 

 

F

nd overestimated at high winds. The overall bias, r.m.s difference correlation

coefficient and symmetrical regression coefficient are about -1.50 m/s, 2.90 m/s, 0.75 

and 1.16, respectively. The highest bias values, about 50, are found at low wind 

speeds (less than 4 m/s) (Queffeulou et al., 2003). This is different from Hwang et al. 

(1999) result which is the average wind speed used in WAM is in general higher than 

the T/P observation. However, the inter-calibration of altimeters is an important issue 

for improving the analyses and forecast when assimilating several altimeters in a 

numerical wave model. In order to consolidate these results, longer assimilation 

period will be considered (typically one month) (Lefevere et al., 2003). 
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3.5.3 Validation with Crossover Satellite Altimeter 

 

 

Collocation procedures and analysis developed at LOS-CERSAT are applied 

to valid

AT 

nd wind 

h GFO, 

/s 

o QuickScat wind speed, T/P 

underestimating the wind speed in the Mediterranean Sea. Main difference is the 

fetch, resulting in different sea state wave age.  

 (2003) was to proved that the buoy 

equipped with a Global Positioning System (GPS) receiver has the potential to 

greatly increase the number of locations where satellite calibrations can be performed 

since G

ited 

 can 

bal scale 

networks) and GPS based orbit determination for low earth orbiters. The experiment 

was conducted off the California coast near the Texaco off-shore oil platform, 

Harvest, during cycle 34 of T/P observational period. The bias in the T/P altimeter 

was found to be was -14.6±4 cm using K&RS and 13.1±4cm with GIPSY OASIS II.  

ate ENVISAT RA-2 and JASON-1 SWH, sigma0 and wind speed 

measurements, using buoy, ERS-2, T/P and GEOSAT FO altimeter data. ENVIS

and JASON Ku SWH are shown to be underestimate SWH, but for sigma0 a

speed parameter it shown positive biases and well correlated respectively wit

T/P or ERS-2 (Queffeulou, 2003). According to Queffeulou et al., (2003), T/P 

altimeter and QuickScat data are collocated (10 km, 30 min) from July 1999 to 

August 2002. Results are given for two areas: one including the Mediterranean Sea, 

the Black Sea and Caspian, the other one over an off-shore Western Atlantic area. 

The bias between QuickScat and T/P is only 0.06 m/s in Atlantic Ocean (0.97 m

std) but 0.63 m/s in the Mediterranean Sea (0.91 m/s std). This difference between 

the two areas is confirmed when binning according t

 

 

Other experiments by Queffeulou et al.,

PS now provide three- dimensional positioning coverage nearly anywhere on 

or above the surface of the earth. Traditionally satellite calibrations have been lim

to locations such as islands or offshore platforms where conventional tide gauges

be used. Two GPS software packages were used in these calibration experiments: 

Kinematic and Rapid Statis (K&RS) develop by G.L. Mader, and GIPSY-OASIS II 

(GOA II) developed at the Jet Propulsion Laboratory. K&RS was developed 

specifically for high precision kinematic positioning. GOA II was developed for 

more general applications such as high precision geodesy (using glo
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Then, the statistical intercomparison of SWH retrieved operationally from 

ERS-1 SAR wave mode spectra with altimeter-derived SWH from T/P done by 

Bauer and Heimbach (1998) reveals a good agreement among the data. The 

correlation of SWH of ERS-1 altimeter with SWH of T/P is 0.83. The r.m.s 

esearch done by 

Staabs and Bauer (1998) the SWH from T/P are constantly larger than the SWH from 

ERS-1 about 0.3. This gives evidence that SWH from T/P contain more and/or higher 

values al 

 be higher than SWH T/P values.  

Cotton and Carter (1994) also found that the SWH from ERS-1 to be smaller than 

SWH from T/P, which seem to confirm this results. 

 

.5.4 Validation with Visual Observation  

 

s 

t 

 

 

 

deviations of collocated data sets are equal to 0.74 m. From the r

of SWH than from ERS-1. In regions of low sea states, such as the tropic

oceans SWH from ER-1 values were found to

 

 

 

3

 

 

Comparison of monthly mean wave heights between visual observation from

ship and T/P shows that wave heights from satellite data overestimated to visual 

observation data from ships. This could be due to lack of wave data when sea i

rough. However, on the whole, correlation is high and it turns out that the T/P data 

processed in JPL observed wave height in accuracy high on the average (Sakuno e

al., 2003). More than that, the r.m.s of the differences of collocated radar altimeter 

wind speeds and visual wind speed estimation in the meteorological database is ±1.8

m/s for ERS-2/FD and ±1.6 m/s for T/P (Staabs and Bauer, 1998). 
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3.6 

w Water. 

 

 

he spatial resolution of satellite altimeter data is no better than 7 km or so 

long the track. Further, generally, altimeter data are only useful when the satellite 

easurements are often either missing or 

iased for the first few measurements after passing from land to sea. However, in 

ome cases, when shallow water area is rather large compared to the altimeter 

resolut ss 

ea, 

atial Representatively  

 

 

 more remote and data sparse regions of the world the altimeter provides an 

efficient means to extend short period wave measurements both temporally and 

sibility study for building a Tapered Channel wave 

nergy converter and power plant on the southern coast of the Indonesian island 

Application and Present Study of Satellite Altimeter 

 

 

Presently, satellite altimetry is being applied in a number of areas. The 

following section describes some examples. 

 

 

 

 

3.6.1 Direct Use of Satellite Measurement in Shallo

T

a

moves from the sea towards the coast as m

b

s

ion or the satellite track is oriented alongshore, then altimeter can neverthele

be very useful. An example of the former type is given first, from the North S

which is a shallow basin of large extent. Next example where the satellite is oriented 

alongshore is given from Norwegian waters. In fortunate situations, it is possible to 

use altimeter data for model verifications also in coastal waters as the example in 

Norway 1994 (Harald and Stephen, 1999).   

 

 

 

 

3.6.2 Studies of Temporal and Sp

In

spatially. In connection with a fea

e
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Java. Nevertheless, altimeter data have often been employed over the years also in 

r a 

ave 

 

 

98). 

e 

arying exposure to wind seas and swells, various 

Norwegian data sets and also data from a swell dominated wave climate off Portugal. 

Another example is the climatologies application at the Gulf of Mexico and Yellow, 

East China Seas and European Sea. 

 

 

 

3.6.4 

l 

 

more data rich waters such as North Sea and Nowegian Sea, for example, evaluate 

the spatial representativesness of a long term measured series from one location fo

second site in the same area. And also, altimeter data were used together with wave 

model data to better document the longer term wave climate and to have a re-look at 

the extreme predictions (Barstow and Krogstad, 1993). 

 

 

 

 

3.6.3 World-wide Wave Climatology  

 

 

The fact that altimeter data are available globally over a regular “net” (the 

ground tracks), allows us relatively easily make global comparisons of w

conditions. An example of one such application was in connection with development

of the Norwegian Con Wec wave energy converter. T/P data were recently used to

estimate the wave energy resources along all coasts globally (Barstow et al., 19

Two years of the altimeter data were used in constructing the global map of th

available wave energy resources in deep water. For example various data sets from 

the South Pacific islands with v

 

Coastal Wave Statistics 

 

 

Both in wave energy and other coastal applications, offshore wave conditions wil

not be representative of conditions at the coast. Although spatial gradients along-

coast offshore is relatively small in most cases, the transformation in wave conditions
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from deep water in to the coast may be large even over a relatively short distance. I

some cases, if one is lucky to have a satellite track passing from the offshore and 

close to the site of interest, it is possible to make a simple transfer function from deep

water to the site. How

n 

 

ever, this is only useful where one can accept a spatial 

r so. Nevertheless, this method is often useful to 

ive a quick, rough estimate of the wave conditions at a site. In order to provide 

ore accurate wave conditions at a coastal location, in the absence of on-site 

measur st 

 

 (1986-

, 

3.6.5 ave Atlases 

 

 

Traditionally, wave atlases based on visual observations have provided wave 

obal oceans. With many years of satellite data available, 

ere now exist several global wave atlases based on satellite altimeter data. 

owever, it was early realised during the development of the World Wave Atlas 

(WWA

e 

de 

. 

ime 

resolution of no better than 20km o

g

m

ements, satellite wave measurements are not sufficient alone and the be

approach is to validate and, if necessary, calibrate data from an existing global or

regional wave model archive using satellite data. The resultant time series can then 

be used as input to a suitable shallow water wave model to perform the 

transformation to the coastal locality of interest. For example 10 year archive

96) global wave model from the UK Met. Office. Other existing global archives

which could be used alternatively, are those derived from the Fleet Numerical 

Spectral Global Ocean Wave Model (SGOWM) and the global WAM model 

operated by the European Centre for Medium-Range Weather Forecast (ECMWF) 

(Harald and Stephen, 1999).    

 

 

 

 

W

statistics covering the gl

th

H

) that many users of wave data are interested in wave statistics for only one or 

few areas around the world. Therefore, it was decided that rather than producing on

atlas for the whole globe with low resolution and accuracy, WWA should provi

basically all available data for smaller areas at the highest resolution and accuracy

Thus, World Wave Atlas is, in fact, a composite of atlases, including every marit

country world-wide.  
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3.6.6 Wave Model Validation  

 

 

With an along-track resolution of 7 km, the spaceborne measurements 

represent a valuable addition to the study of regional oceanography. The spatial 

resolution of the spaceborne altimeter in the groundtrack direction is comparable to

or better than of the numerical models used for regional simulations. One of the 

major issues in the numerical hindca

 

sting and forecasting is the difficulty of 

validation and verification. While comparisons with point measurements from 

discrete and sparsely distributed wave buoys provide some degree of statistical 

confidence, the spatial distribution of the modeled wind and wave fields cannot be 

easily assessed (Hwang et al., 1999). Spaceborne altimeter outputs have been used 

d ation and/or evaluation of model performance with 

ifferent wind products. For example, errors in wave modeling using WAM are 

aused mainly by incorrect wind forcing and less by insufficient resolutions. Since 

August

 cannot be denied that satellite altimeter application in marine area in Asia is 

very lim  study. A group of researchers lead by Yuji 

Sakuno

e objective with the 

for mo el validation, data assimil

d

c

 16, 1993, SWH from the ERS altimeter have been assimilated into the WAM 

model at ECMWF (Staabs and Bauer, 1998).   

 

 

 

 

3.6.7 Present Study  

 

 

It

ited and still in initial stage of

 from Hiroshima University in Japan (Sakuno et al., 2003) carried on a 

research in Indonesian domestic sea due to the lack of available wave data there. 

Their objective was to create the new methods of wave data collection based on 

satellite data. They used the method develop by Hogben et al. (1986) to estimate the 

wave period from satellite altimeter data with the relationship of joint log-normal 

probability distribution which is fitted to each set of measured data. The second 

study was done by the researchers from Indonesia lead by James P. Panjaitan (2000) 

from Kampus IPB Darmaga, Bogor. They also had the sam
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Japanese researcher which is to develop an alternative for wave data collection in 

Indonesia domestic sea using the satellite altimeter data. But the difference is they 

are not interested to estimate the wave period from satellite altimeter data and mo

focus on the validation of the data.  

 

re 

e 

 

Satellite altimeter also can be accessed from the other website, for example, 

 the US, NOAA’s (National Environmental Satellite, Data and Information Service 

ESDIS). UCDS and Scripps Oceanographic Institution runs the Coastal Data 

formation Program where information on the net provides a synopsis of the latest 

oastal conditions including wave, wind and temperature measurements and even an 

l Nino swell forecast. In Europe, the Committee on Earth Observation Satellites 

EOS), of which ESA is a major member, serves as a focal point for application of 

atellite measurements. The organisation’s home page at 

ttp://ceos.esrin.esa.it:8000/infosys has effective search facilities and links, e.g., to 

e national earth observation networks within the organisation. The Centre for Earth 

bservation (CEO) is another European initiative to encourage the wider use of 

 

 

 

3.6.8 Online Wave Database  

 

 

At this time, all the satellite altimeter data have been published in the internet 

for easier access of user by their domain server. For example, T/P data are the 

Merged Geophysical Data Record (MGDR) distributed by CNES AVISO and 

NASA/JPL offers on the internet in the form of text data describe latitude, longitud

and significant wave height (SWH). ERS altimeter data are the ESA Ocean Product 

(OPR) processed and distributed by the French Processing and Archiving Facility 

(CERSAT, 1996). The GFO data are the Intermediate Geophysical Data Record 

(IGDR) distributed by John Lillibridge (NOAA/NESDIS/ORA) via the GFO 

calibration validation dedicated website (Queffeulou, 2003).  
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information generated by satellites. Its web site contains much useful information, 

nks and actual application cases for remote sensing data including ocean waves. 

 

 

Several university groups, in particular the Southampton Oceanography 

Centre in the UK are active within altimeter re earch. There are also commercial 

companies, which provide analyses based on satellite wave data. Satellite Observing 

Systems sell both near real-time wind a ation and global climate 

analyses. The French company MeteoMer has cooperation with Ifremer developed 

the Cliosat wave atlas, but limited information is available on the net. In Norway, 

Oceanor ASA is selling the World Wave Atlas and in the Netherlands the ARGOSS 

Company is developing several applications of satellite data (Clayson, 1989). It is 

important to note that, most of these bsites focused in Western 

Ocean area and some of them also provided the satellite wave data for a whole world 

but for the client or user, they must buy or purchase to get the data whereas we can 

use the data freely from the public domain servers. Hence, there is a great need to 

develop Malaysian ocean satellite wave database to provide a reliable wave data at 

h on website for others to access.  
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CHAPTER 4 

 

 

 

 

METHODOLOGY 

 

 

 

 

4.1 Introduction 

This chapter describes e the Malaysian ocean wave 

database in the form of scatter diagram for engineering purposes from the satellite 

altimetry observation. The summary of the procedures is shown in Figure 4.1. It 

starts with downloading the satellite wave data from internet and then the data is 

sorted within Malaysian ocean areas. Then the data is subjected to two procedures, 

ave height (SWH) and 

second to derive the wave period from the other wave parameters given by satellite 

wave data. After that the joint probability distribution between SWH and wave 

period n will 

 

 

the methodology to deriv

first to calculate the probability distribution of significant w

(Hs-Tz) will be calculated. And finally, this joint probability distributio

be tabulated in the form of scatter diagrams similar to the format used by Global 

Wave Statistic (GWS). These procedures were performed automatically by using a 

simple computer program.  
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4.2 ownloading Satellite Wave Data from Internet 

 this research, one set of satellite wave data was taken from satellite 

altimetry collected by TOPEX/Poseidon in period of May 1997 until August 2003. 

These data are the text data containing date, time, location SWH and etc (See Figure 

4.2). The data is given in the form of SWH for sea surface height which is defined as 

the mean height of the highest of 1/3 of the waves, wind speed and also the sigma0.  

This satellite is a joint program between NASA and the Centre Nationale 

’Etudes Spatial (CNES). These data are available at JPL website (Physical 

  

Figure 4.1 : The flowchart of procedure to develop Malaysian ocean wave database 

using satellite altimetry 
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Oceanography Distributed Active Archive Center (PO.DAAC) Home Page) and can 

be downloaded free from PODAAC website. TOPEX/Poseidon was launched on 10 

August 1992 and remains fully operational. On 15 August 2002 (cycle 365 pass 111) 

the T/P

e 02 s 

n board, the TOPEX/POSEIDON satellite caries a dual-frequency radar 

altimeter (TOPEX), a single-frequency soli eter (POSEIDON), the 

TOPEX Microwave Radiometer (TMR), a DORIS tracking system receiver, a laser 

retrorefle

intercalibration has produced a singl /P altimeter data set. At single 

latitude the satellite ground track is 2.8º apart in longitude, which is repeated every 

9.92 days (typically called a 10-day repeat cycle). A set of corrections is applied for 

rbit errors, atmospheric delay, tides and sea state effects (Cipollini et al., 1997). The 

., 1994). 

 

 

Figure 4.2: TOPEX/Poseidon text data containing the date, location, SWH and etc 

(ftp://podaac.jpl.nasa opex_poseidon/im

 

 

 satellite began its drift phase to a new orbit in preparation for the Tandem 

Mission. The drift phase lasted until 16 Septemb r 20 ending with cycle 368, pas

171. Data for cycle 368, pass 172 and later are on the final fixed tandem mission 

ground track, which is interleaved with the Jason-1 (launched on 7 December 2001) 

ground track, doubling the temporal and spatial coverage. 

 

 

O

d-state altim

ctor array, and a Global Positioning System (GPS) receiver. Careful 

e, combine T

o

rms accuracy of the sea surface height retrieval is about 2-3 cm (Cheney et al

 

 

 

 

 

 

 

 

 

.gov/sea_surface_height/t ages/). 
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4.3 

he data for Malaysian Ocean will be sorted based on latitude and longitude 

in text data, which is

Sorting Data for Malaysian Ocean  

 

 

T
°0 N- °10 N for latitude and °94 E- °120 E for longitude. The data 

set wer milar 

ee 

l. 

e divided into smaller areas, 2º x 2º for latitude and longitude which is si

as MMS Monthly Summary of Marine Meteorological Observations report grid (S

Figure 4.3). Indeed, the region by 2º in latitude by 2º in longitude for averaging the 

satellite data is enough in reducing the spatial difference according to Carter et a

(1989). The 48 areas are labelled for easier recognition.  

 

 
 

 2º x 2º for latitude and longitude separation for Malaysia 

ocean area. 

 

Figure 4.3:  The
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4.4 Calculating the Probability Distribu i cant W Height 

lity distribution of significant wave height 

P(H) will be calculated. The P(H) is simply to be calculated by totaling P(H) for 

every Malaysian ocean 2º x 2º areas. The significant wave height data from satellite 

altimeter is needed to be assumed as continuous variate, a relative frequency (fi) to a 

class (Hi) based on Global Wave Statistic (GWS). If the total frequency is set to N, 

a Pi) (probability distributions) of the significant wave height 

re calculated as follows: 

tion of Sign fi ave 

 

From these sorted data, the probabi

the rel tive frequencies (

a

                                       

     
1=

=

∑
i

i

i
i

P

N
f

P

   (4.1)  

Where;  Pi = probability of occurrence 

              fi = relative frequency to a class of 0.1 m 

              N = total frequency  

 

 

eers need wave periods for their design calculation. However, 

satellite wave data do not provide wave period directly. Thus, there is a need to 

derive wave period value from e

 

ata. 

 

The derivation of wave periods from altimeter data is still in its early 

The ultimate aim of this calculation is to observe the reliability and the 

accuracy of satellite wave height data compared to the local in-situ measurement. 

More than that, engin

 other basic parameter of sat llite data.  

 

 

 

4.5 Derivation of the Wave Periods from Satellite Altimeter D
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development (Carter et al., (1989); Davies et al., (1997)). Three approaches have 

) and 

ommengiger et al. (2003). However, these studies are in their early stages, and 

large sc

 its acceptance by the research 

community (Fu and Cazenave, 2001). All of these methods will be explained briefly 

in this section. 

 

 

 

4.5.1 

Empirically, peak period of the wave field, T, is related to wind speed, U, and 

wave h

been taken which are made by, Hwang et al, (1997a), Davies et al, (1998

G

ale verification is necessary before an altimeter wave period parameter 

reaches a suitable stage of maturity to enable

 

Hwang Method 

 

 

eight, H, and is given by;  
67.02 ))/((048.0)/( gHUgTU =                   (4.2) 

where,  is the gravitational constant. Hwang reported that using the T/P data to 

derive U and H, the period calculated from (4.2 was fo nd to h y less

6%) than the buoy measured peak period. 

 

4.5.2 Davies Method 

Relating the sigma0 value with the probability distribution of the sea surface 

slopes allows the variance of the slopes to be expressed in ter f the spatial 

spectral moments. Using the dispersion relationship t rted 

temporal spectral moments. As a result we can obtain an estimate of the fourth 

oment, m4, as a function of sigma0. Combining this with m0, obtained 

from the signific eter to estim eriod, 

g

) u be slig tl  (by 

 

 

 

 

 

ms o

hese can be conve into the 

spectral m

ant wave height value, allows the altim ate wave p
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T , by analogy an altimeter wave period as equal to;  

 

a.   So

1/ 4

0

4

mTa
m

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                   (4.3) 

The algorithm was then modified to include an empirically determin d depe

upon “pseudo wave age” (a wave age like parameter that can be derived from 

altimeter); 

                   Pseudo wave age, ξa = 2.56. (Hs
2.g2/U10

4)0.3        (4.4) 

The fin rst stage calculates an altimeter 

period as function of significant wave height and radar backscatter, the second stage 

is quad age 

         Tz = a + bTa + cζ 2 + eζa       (4.5) 

Where;  

.1991 

arly tests suggested that the altimeter could provide a wave period estimate 

which w

nt that is related under the 

Geometrical Optics approximation to the inverse of the mean square slope (mss) of 

the lon

e ndence 

 

 

al algorithm is two stage functions, the fi

ratic function of this altimeter period and altimeter derived pseudo wave 

(a function of significant wave height and wind speed). 

 

a + dTa 2 + fTaζa  

a = 3.6231; b = 0.0754; c = 0.1943; d = -0.0188; e = 0.0000; f = 0

 

E

as accurate to approximately 0.7s.  

 

 

 

 

4.5.3 Gommengiger Method 
 
 

This method uses the radar backscatter coefficie

g ocean waves: 

0 1~
mms

σ                         (4.6) 

In turn, ocean wave slope is dimensionally equivalent to the ratio of some 

measure of the    ocean wave height and the ocean wavelength, L:  
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~ SWHslope
L

            (4.7)

The ocean wavelength is related to wave period, T and phase velocity, c, through 

L=cT. Under the deep-water approximation, the wave phase velocity is related to the

ocean wave period through the dispersion relationship for gravity waves: 

 

 

 

2
gTc
π

=                                 (4.8) 

So that T  

And 

 

        

                               (4.9) 

                                     (5.0) 

        

 

ing Orthogonal Distance Regression for linear models in log-log 

space of the form to derive zero up-crossing periods, Tz are; 

 

2~L

2

4~ SWHmss
T

 

and thus: 
0 2 0.25~ ( )T SWHσ

From this, simple empirical model was built by performing a linear 

regression of wave period from buoy against this approximate T. Then the 

coefficients fitted us

10 10( ) 0.361 0.967* ( )zLog T Log T= +          (5.1) 

 

4.6 Ca

 

 

 

lculate the Joint Probability Distribution Function of Hs-Tz  and 

Tabulate in Scatter Diagram Format 

 

Generally, joint probability distribution function of H (significant wave 

height) and T (zero crossing wave periods) is given by: 
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)()(),( HTPHPTHP =                (5.2) 

 

where;  (H): marginal probability distribution of wave height   P

         )( HTP : Conditional probability of wave period given the height H 

or SWH from satellite data is seem a straight 

forw d  probability of wave period given by the 

hei till at the early stage of research. Wave 

dat nefit. Thus, the data should be banked in 

proper format, preferably with a central data bank such as the British Oceanographic 

Dat perly documented. In engineering design 

calc ures, wave data are used either in the form of 

stat

wave height period from 

sate t Hs-Tz probability 

dia

in Figu airs of wave heights and wave periods 

wil  histogram which is also known as a 

sca e nearest 

0.5  Tz to the nearest 0.5s. The number of observations falling 

into t on the chart is then calculated and divided by total number of 

observations to give the occurrence in part per thousand. These figures are rounded 

to the nearest whole number. Where the number of occurrences is less than 1 part per 

thousand, the actual number is given to allow better assessment of the probability of 

unu umber of observations should be quoted (Tucker, 

199

4.7 ent of Computer Program 

 

The probability distribution f

ar  method but for the conditional

ght H is quiet complicated method and s

a collection is generally of long-term be

a Centre and above all it should be pro

ulations of ships and offshore struct

ically data or converted into mathematical models.  

 

In this research, the result for wave height data and 

llite altimeter observation will be tabulate in the form of join

grams (scatter diagrams) which was developed by Hogben et al., (1986) as shown 

re 2.1. Probability of occurrence of p

l be presented in the form of bivariate Hs-Tz

tter diagram. Each individual observation of Hs will be rounded to th

m and its associated

 each compartmen

sual conditions. The total n

1). 
 

 

 

 

 

 

 Developm
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o automate the procedure, a computer program was written using Fortran 

77. The flowchart is given in Figure 4.4 and the program code is given in Appendix 

D.  

4.7.1 rogram Overview 

 

 

This program sorts the data based on latitude and longitude for the selected 

alaysian ocean area. Then the program calculates the wave periods using the 

pecific algorithm. The probability of occurrence of the pairs of wave heights and 

erived wave periods will be counted. And after that, the scatter diagram which is 

ased on this joint probability of occurrence will be tabulated.  

 

4.7.2 he algorithm of the Programme 

1. et the num of file k=0 

2. ead the selected year ‘cyear’ 

3. ead the selected month ‘cmonth’ 

4. ead the selected area ‘clocation’ 

5. entify the ‘cyear’ to the ‘years’ 

6. entify the ‘cmonth’ to ‘month’ 

7. entify the num of file ‘nflile’ 

8. ead the filename ‘filenm = number//month//years’ 

9. pen the file  

10. ead the number of data (ndata) at the file header 

T

 

 

 

 

P

M

s

d

b

 

 

 

T

 

 

S

R

R

R

Id

Id

Id

R

O

  R
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11. ead the year, day, hr, minute, sec, y, Z, sig0, SWH, U 

12. ssigning  the location name based on y and Z values within 2o x 2o latitude 

nd longitude using else if function 

13.  area = location ; value (k) = value (I) 

14. dd 1 to the number of file  

15. lose the file 

16. Print heading 

17. Identify the ‘area’ to ‘location’ 

18.  Print the data values 

19. Save file 

20. Compute w

21.  Print the wave period values 

22.  Set count = 0 

23. As long as there are data values ; add 1 to count 

24. Divide the count by the total of data to get the probability  

25. Print the scatter diagram 

26. Save file 

27. End 

 

 

 

 

 

 

 

 

 

 

 R

  A

a

 If

  A

  C

ave period 
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Read the y
sec, y, Z, s

 

 

 

 

 

 

 

 

Figure 4.4: Flow 

 

 

 

 

 

 

 

 

 

 

Sort wave data
latitude and lon

Compute 
specific fo

Count 
distrib

 

 

 

 

Sa
di

 
 

Start
ear, day, hr, minute, 
ig0, SWH, U 

chart for the computer program 

 

 

 within within 2o x 2o 
gitude based on y and Z  

the wave period u
rmula  

sing 

probability 
ution Hs-Tz  

ve scatter 
agram  

End



  72

 

 

CHAPTER 5 

 

 

 

 

RESULTS AND DISCUSSIONS 

 

 

.1      Introduction 

The methods to derive probability of occurrence of wave periods and joint 

robability distribution of wave heights and periods are applied to a particular 

Malays f 

alaysia which is Monthly Summary of Marine Meteorological Observations (1997-

001) from Malaysian Meteorological Services (MMS) (1997) and also with Global 

ave Statistic from British Maritime Technology (BMT) (1986). Another 

omparison was done with data from Petronas Research and Scientific Services Sdn. 

 

 

A2, 

data from MMS for comparison with T/P. T/P data for year 1997-2001 are obtained 

 

 

5

 
 

p

ian sea area. The results will be compared with the respective wave data o

M

2

W

c

Bhd. (PRSS, 2005). 

 

 

5.1.1 Validation of T/P with MMS 

 

 

For comparison with MMS data, five boxes from grids of Figure 4.3 are 

chosen and these are shown in Figure 5.1. The boxes selected namely labeled as 

B3, C5, D6 and E7. These areas are chosen because of the availability of adequate 
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and compared with MMS data for the same period.  

 

 

 

 

5.1.2 Validation of T/P with GWS 

 

 

GWS data covers the whole of South China Sea, Straits of Melaka and Gulf 

of Siam. Therefore for comparison with GWS data, the satellite data for the area 

bounded by the box will be used (see Figure 5.1).  

 

 

 

 

.1.3 Validation of T/P with PRSS 

Petronas Research and Scientific Services Sdn. Bhd. (PRSS, 1981) provides 

easured sea surface data by wave radar measurement on the offshore oil and gas 

roduction platforms in the South China Sea at latitude of 6.4oN and longitude of 

04.0o E.  For comparison with this data, T/P data was selected within the gray 

olored boxes (see Figure 5.1) which is between the longitude of 104°E to 106°E and 

titude 6°N to 8°N. The data was in period for year 1997-2000. 

5

 

 

m

p

1

c

la
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Figure 5.1: Location of selected area for comparison  

 

 

 

 

5.2 Wave Heights Data  

 

 

Results of wave height comparison data are given in following sections: 

 

 

 

 

5.

 

 

 

/P is given in Table 5.1 and Figures 5.2 to 5.6 represents areas of A2, B3, C5, D6 

2.1 Comparison Between T/P and MMS 

The comparison of 5 year (1997-2001) average wave heights from MMS and

T
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and E7 respectively. It is shown that the T/P data agreed well with the data from 

MMS especially in A2, B3 and C5. For D6 and E7, T/P average wave heights seem 

higher then MMS data. The percentage column show only 19% from overall data had 

differences over 50% with another. The A2, B3 and C5 are in the main ship traffic 

lanes and thus unlike D6 and E7 they do not suffer due to inadequate wave data 

report. As been stated by Gonzalez et al. (1991), because visual data usually come 

from ship reports which are mainly on the main shipping routes; these data contains 

some shortcomings as discussed in section 2.4.   

 

 

The T/P wave heights also show reasonable values based on the Malaysian 

wave climate which is influenced by the northeast monsoon (November-March) and 

the southwest monsoon season (June to September). As shown in Figures 5.2 to 5.6, 

du

an MMS. This is related to the fact that voluntary data collected and reported were 

iased toward lower wave heights because more ships incorporates the effects of bad 

weather avoidance (Gonzalez et al., 1991; Soares, 1986).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ring monsoon seasons which are in q01, q03 and q04, the T/P results are higher 

th

b
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Table 5.1: Comparison of average wave he ht from MMS and T/P for area A2, B3, 

 

ig

C5, D6 and E7. 

AREA   A2     B3     C5     D6     E7   
TEMPORAL MMS T/P % MMS T/P % MMS T/P % MMS T/P % MMS T/P %
Q02-1997 0.4 0.69 29 0.8 0.73 7 1 0.79 21 0.8 0.9 10 0.95 1.14 19
Q03-1997 0.85 1.04 19 0.95 0.79 16 1.35 0.94 41 1 1 0 1.2 1.54 34
Q04-1997 0.77 0.92 15 1.15 1.41 26 1.23 1.62 39 1.17 1.7 53 1.27 1.96 69
Q01-1998 0.97 0.96 1 0.9 1.28 38 1.2 1.33 13 1 1.44 44 1.33 1.37 4 
Q021 15 0.87 0.94 7 0.97 1.19 22998 0.93 0.72 21 0.73 0.85 12 1.03 0.88
Q03-1 55 0.87 0.89 2 1.17 1.01 16998 0.9 0.87 3 0.73 0.71 2 1.3 0.75
Q04-1998 0.77 0.89 12 0.9 1.45 55 1.47 1.54 7 0.97 1.77 80 1.37 2.19 82
Q01-1999 0.83 1.27 44 0.97 1.98 101 1.1 1.11 1 1.27 2.25 98 1.43 2.17 74
Q02-1999 0.57 0.53 4 0.6 0.53 7 0.93 0.61 32 0.83 0.78 5 1.1 1.08 2 
Q03-1999  1.27 200.67 0.86 19 0.93 0.77 16 1.07 0.81 26 0.87 1.19 32 1.47
Q04-1999 631.03 0.95 8 1.33 1.12 21 1.3 1.19 11 1.6 1.83 23 1.6 2.23
Q01-2 2.4 83000 0.83 0.91 8 0.83 1.07 24 0.9 1.02 12 1.17 1.94 77 1.57 
Q02-2 0.84 6 000 1.17 0.66 51 0.6 0.59 1 0.87 0.63 24 0.87 0.51 36 0.9 
Q03-200 230 0.83 0.8 3 0.9 0.74 16 1.03 0.84 19 1 1.16 16 1.23 1.46
Q04-2 1.9 47000 0.67 0.73 6 0.87 1.18 31 1.27 1.29 2 1.2 1.39 19 1.43 
Q01-2 1.06 19 0.63 1.18 55 1.3 1.34 4 1.5 2.15 65001 0.87 0.83 4 0.87 
Q02-2 0.58 1 0.57 0.61 4 0.77 0.72 5 1.1 0.92 18001 0.77 0.48 29 0.57 
Q03-2001 1.17 0.77 40 0.77 0.71 6 0.4 0.85 45 0.97 0.99 2 1.33 1.33 0 
Q04-200 2.17 0 

 
1 0.67 0.88 21 0.93 1.59 66 1 1.67 67 0.67 1.64 97 2.17 
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Figure 5.2: Comparison of average wave height from MMS and T/P for area A2. 
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Figure 5.3: Comparison of average wave height from MMS and T/P for area B3. 

 

 

Area C5

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Q02
-19

97

Q0
19

97
99

8
19

98
19

99
19

99
20

00
20

00
20

01
20

01

Hs

1.8

4-
Q02

1
Q04

-
Q02

-
Q04

-
Q02

-
Q04

-
Q02

-
Q04

-

Years

MMS
T/P

 
 

Figure 5.4: Comparison of average wave height from MMS and T/P for area C5. 
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Figure 5.5: Comparison of average wave height from MMS and T/P for area D6. 
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Figure 5.6: Comparison of e wa ight

 

 

averag ve he  from MMS and T/P for area E7. 
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5.2.2 Comparison Between T/P and GWS

 

 

Table 5.2 and Figure 5.7 showed the comparison of marginal probability of 

occurrence of wave heights between the T/P and Global Wave Statistic (GWS). The 

result shows the GWS probabilities are less in low wave heights, and the median 

being about 4.5m compared to 3m for T/P. It also indicates that the GWS data show 

a wider wave range than T/P.  

 

Table 5.2: Comparison of marginal probability occurrence of wave height between 

T/P and GWS 

 
 Hs T/P GWS 

 

0-1m 561 354
1-2m 346 385
2-3m 77 172
3-4m 15 60
4-5m 1 20
5-6m 0 7
6-7m 30
7-8m 0 1
8-9m 0 1
9-10m 0 0
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Figure 5.7: Comparison of marginal probability of occurrence of wave height 

between T/P and GWS 
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The pro . A 

 the 

bability of exceedance curve for each distribution is plotted in Figure 5.8

3-parameter Weibull function with the following equation is used to describe

distributions in the quantities values (Bitner-Gregesen and Cramer, 1994): 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−⎥⎦
⎤

⎢⎣
⎡ −

=≥
− ββ

α
γ

α
γ

α
β HsHsHsxP exp)(

1

   (5.1) 

where α, β and γ are the parameters defining the shape of the curve.  By curve fittin

methods, the parameters describing the GWS and T/P distributions in quant

values for this particular location. The result are obtained and given in Table 5.3. 

 

 

Table 5.3: Weibull Parameters 

g 

ities 

for Wave Height Exceedance Cumulative 

Probabilities 

 

Parameter α β γ 

GWS 1 0.5 0.2 

T/P 2.7 2 1.8 

 

 

0.4

0.6

0.8

1

1.2

P(
x>

H
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F 8: ili u e ce 

The results i ate th  data ided by T/P markedly different from 

that given by GWS.  The shape of the probability exceedance curve shows that 

generally wave heig rom e low  this s re cording to Bitner-

igure 5.  Probab ty distrib tion of wav  exceedan

ndic at the  prov

hts f T/P ar er at elected a a. Ac
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Gregersen and Cram 1994 the c ered l ns, th S data both 

underestimate as we  over ate s cant wave height. Thus, the inconsistent 

trend in GWS data  lead to errone sults for designing ocean structures in 

the selected area. 

 

 

 

 
5.2.3 Comparison Between T/P and PRSS 

 

 

The other comparison of 4-year marginal probability of occurrence of wave 

heights between T/P data and PRSS is given in Table 5.4 and Figure 5.9. The buoy 

data shows a preponderance of lower wave heights. This may due to apart from the 

different regularity between in-situ and satellite measurements, the measurement 

principles are also quite different (Park et al., 1993). The result also showed that both 

data was abundant in the same range which is 0 to 1m but significant for T/P in the 

range of 1 to 2m. Both data sets show that no waves are recorded beyond 4m wave 

heights in that area for period 1997-2000. This seems to agree with the result in 

T

er ( ), for onsid ocatio e GW

ll as estim ignifi

could ous re

section 5.2.2 where the maximum wave heights from T/P are in range of 4 to 5m. 

his again indicates that the accuracy of GWS data can be argued. 
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Table 5.4: Comparison of marginal probability occurrence of wave height 

between T/P and PRSS 

 

Hs PRSS Topex 

0-1m 0.72 0.51 

1-2m 0.25 0.39 

2-3m 0.03 0.10 

3-4m 0.00 0.00 

4-5m 0.00 0.00 

5-6m 0.00 0.00 

6-7m 0.00 0.00 

7-8m 0.00 0.00 

8-9m 0.00 0.00 

9-10m 0.00 0.00 
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Figure 5.9: Comparison of marginal probability occurrence of wave height 

between T/P and PRSS 
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5.3 erivation Satellite Wave Period Data  

 

 

 erivations of wave periods from satellite wave data using three approaches 

have been described in sec uoy measured data from 

two sites; NDBC and PRSS.  

 

 

 

 

5.3.1 Compa o een T/P and NDBC 

 

 

Prior to obtaining the PRSS data, the validation of wave period was done 

using data of other countries. This is due to inadequate in-situ data available for 

Malaysian sea. Therefore, comp ris n etween T/  da  an  th  bu  data from 

National Data Buoy nt  ( D C w  ne for one site in the Florida Sea. The 

buoy was deploy d t e °  and latitude 28º4 (see Figure 

5.10). The data contain m e  e fo he data not 

only contain wave heights but also wind speeds, average wave periods and wind 

direction. The data are available for free download from the ma ain NDBC 

erver (National Data Buoy Center Home Page). The comparison was made between 

this data with T/P within long itude 28ºN to 30ºN for 

average of 4 year period 1997-2000. 

 

D

D

tion 4.5. Comparison made with b

ris n Betw

a o b P ta d e oy

 Ce er N B ) as do  

e between longi ud  86 12′ W 7′N 

easur d wav  data r every hour everyday. T

in dom

s

itude 86ºW to 88ºW and lat
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Figure 5.10: Location of selected buoy-42039 (black box area) 

 

 

Comparison with the ND

result which is showed in Table 5.5 and Figure 5.11 indicates hat e H ang method 

seems to clo y h ith he u  d ta A ou  the alu s of rob bility peak 

period are q  fa t it still in the same range which is between 4.5s to 5.5 s. On 

the other ha  th av  pe ods de v o gin er methods 

were in the erent range of peak probability which is 3.5s to 5s. It should be noted 

however, that the various m thods use f re  typ s of ave per ds.

Gommenginger m od nd a e e ssin  per od hile Hwang 

method derives peak periods while buoy period data are given as mean wave period. 

 

Table 5.5: C mparison of ma a rom T/P 

data with NDBC buoys data. 

 T(sec) N DAVIES 

BC buoy data had shown encouraging results. The 

t th w

sel

uite

nd,

diff

 matc  w  t  b oy a . lth gh  v e  p a

r bu

e w e ri  ri ed using Davies and G mmen g

e  di fe nt e  w  io  

eth  a  D vi s m thod give zero-cro g i s, w

o rginal probability occurrence of w ve height f

 

DBC HWANG GOMMEN
0-1 0.00 0.01 0.09 0.07 
1-2 0.00 0.11 0.14 0.00 
2-3 0. 18 .0000 0.11 0.  0  
3-4 0.26 0.20 .57 0 0.64 
4-5 0.53 0.21 .04 0 0.27 
5-6 0.17 0.17 .00 0 0.04 
6-7 0.02 0.05 .00 0 0.04 
7-8 0.00 0.04 .00 0 0.01 
8-9 0.00 0.01 .00 0 0.00 

9-10 0.00 0.00 0.00 0.00 
10-11 0.00 0.00 0.00 0.00  
11-12 0.00 0.00 0.00 0.00  
12-13 0.00 0.00 .00  0 0.00 
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T/P vs NDBC
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Figure 5.11: Comparison of marginal probability occurrence of wave 

riod  T/P a wi DBC data

 

 

 

 

5.3.2 Joint Probability Data 

 

Scatter diagrams representing the joint probability distributions of wave 

ights and periods are presented in Tables 5.6 to 5.9. The data are presented in a 

probability d ons for 

satellite data derived using the three methods are shown in Tables 5.7, 5.8 and 5.9 

spectively.  

 

It is quite difficult to see any resemblance or discern any pattern of 

similarities between the probability distributions obtained using the various methods. 

. pe from  dat th N buoy 

 

he

format similar to GWS as shown earlier in Table 4.4. Table 5.6 shows joint 

istributions for measured data from PRSS while the distributi

re
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To inve

0. 

so 

surprisingly with the GWS. The Davis et al. method and Gommengiger et al. method 

results show peak probabilities between 3 to 5 seconds while Hwang, PRSS and 

GWS indicate peak probabilities around 6 s

stigate just period distribution, comparison of marginal probability 

occurrence of wave periods from PRSS wave data with the marginal probability 

occurrence of wave periods derived using the various methods is given in Table 5.1

The data is plotted in Figure 5.12.  

 

 

Figure 5.12 indicates that there seems to be a very close match between 

Hwang et al. method and the measured PRSS period distribution and al

econds. In addition, unlike others, Hwang 

and PRSS show there are appreciable occurrences of wave periods between 6 to 9 

seconds. It should be noted again however, that the various methods use different 

types of wave periods. PRSS data and Hwang method data are given as peak periods 

while Gommengiger, Davis and GWS derive zero-crossing periods. It can be 

concluded that the Hwang method show the best fit when compared it to in situ 

measurement from PRSS and NDBC.  
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Table 5.6: PRSS Measured data 

 
            

 TOTAL 112 267 282 183 122 31 2 1 1 0 0 1000 

 >14             

13-14             

12-13             

11-12             

10-11             

9-10             

8-9             

7-8             

6-7             

5-6             

4-5             

3-4            1 

S
IG

N
IF

IC
A

N
T 

W
A

V
E

 H
E

IG
H

T 

2-3    1 12 21      34 

 1-2  13 42 89 94 8      246 

 0-1 112 254 240 94 16 1 1 1 1   718 

   4-5  6-7  8-9  10-11 ~ 12-13 ~ TOTAL 

  <4  5-6  7-8  9-10  11-12  >13  

    PEAK PERIOD (s)       

           

Table 5.7: Davies Method 
         

 TOTAL 618 314 38 27 1 1 1     1000 

 >14             

 

13-14             

12-13             

11-12             

10-11             

9-10             

8-9             

7-8             

6-7             

5-6             

4-5  2          2 

3-4  3          4 

S
IG

N
IF

IC
A

N
T 

W
A

V
E

 H
E

IG
H

T 

2-3 75 21          96 

 1-2 294 83 4 1 1 1 1     385 

 0-1 249 205 34 26        514 

   4-5  6-7  8-9  10-11 ~ 12-13 ~ TOTAL 

  <4  5-6  7-8  9-10  11-12  >13  

    ZERO CROSSIN  PERIOD (s)     

 
G
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Table 5.8: Gommenginger Method 
      

 TOTAL 465 290 186 53 5 1      1000 

 >14            

 

 

13-14             

12-13             

11-12             

10-11             

9-10             

8-9             

7-8             

6-7             

5-6             

4-5     2       2 

3-4    1 3       4 

S
IG

N
IF

IC
A

N
T 

W
A

V
E

 H
E

IG
H

T 

2-3   44 52        96 

 1-2 1 241 141 1        384 

 0-1 464 49          513 

   4-5  6-7  8-9  10-11 ~ 12-13 ~ TOTAL 

  <4  5-6  7-8  9-10  11-12  >13  

    ZERO CROSSING PERIOD (s)     

 

 

Table 5.9:  Hwang Method 
         

 TOTAL 61 232 248 229 154 52 17 5 2   1000 

 >14             

13-14             

12-13             

11-12             

10-11             

9-10             

8-9             

7-8             

6-7             

5-6             

4-5       1 1    2 

3-4      1 2     4 

S
IG

N
IF

IC
A

N
T 

W

2-3    6 58 28 4     96 

A
V

E
 H

E
IG

H
T 

 1-2 3 9 109 181 66 10 3 1 2   384 

 0-1 58 223 138 43 30 14 6 2    515 

   4-5  6-7  8-9  10-11 ~ 12-13 ~ TOTAL 

  <4  5-6  7-8  9-10  11-12  >13  

    PEAK PERIOD (s)       

 



  89

 

 

 

 

Table 5.10: Comparison of marginal probability occurrence of wave period between

T/P, PRSS and GWS data for area 6°N-8°N, 106°E -108°E. 

 

Tz (sec) PRSS Davies Hwang Gommen GWS 
0-1 0.00 0.00 0.00 0.00 0.00 
1-2 0.00 0.00 0.00 0.00 0.00 
2-3 0.00 0.00 0.01 0.07 0.00 
3-4 0.11 0.51 0.05 0.39 0.08 
4-5 0.27 0.41 0.23 0.29 0.28 
5-6 0.28 0.04 0.25 0.19 0.34 
6-7 0.18 0.03 0.23 0.05 0.20 
7-8 0.12 0.01 0.15 0.00 0.07 
8-9 0.03 0.00 0.05 0.00 0.02 
9-10 0.00 0.00 0.02 0.00 0.00 
10-11 0.00 0.00 0.00 0.00 0.00 
11-12 0.00 0.00 0.00 0.00 0.00 
12-13 0.00 0.00 0.00 0.00 0.00 

 
 

Probability Occurrance of Wave Period
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Figure 5.12: Comparison of marginal probability occurrence of wave period betwee

T/P, PRSS and GWS data for area 6°N-8°N, 106°E -108°E. 
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5.4 

gh the wave height data was enough to use in preliminary stage of ship 

portant of wave period cannot be neglected. According to Soares 

e is an important parameter governing the 

tation. However the calibration of the wave 

se of fewer studies are available and a lack of correlation 

easured periods. It is also due to the lower quality of 

 data. Furthermore, the existing analyses adopt different definitions of 

eriod, complicating the comparisons between results (Soares, 1986).  

 

As been shown in the result earlier the difficulties to make the comparison 

ith the same type of wave period due to the lack of the in situ data can cause the 

nfair comparison. However, when the same type of in situ data compared with the 

ame type of derived wave period from satellite, they showed the encouraging result 

 Figures 5.11 and 5.12. This research can conclude that the Hwang method 

rovides the best fit for Malaysian ocean wave data. This is supported by Carter et al. 

989) that in regions of low swell effects, the combination of wind speed and wave 

eight further yields the information of wave period which is similar with the 

quation that is used by Hwang.  

 

 

The other reason for this conclusion was based on the advantage and 

isadvantage of the approach that is suggested by respective researchers. For 

xample, the Davies method always gives the values for the wave period although 

e wave period that measured from satellite was zero. This happened because the 

alue for one coefficient to derive the wave period does not relied on any values 

arameter and this coefficient give the minimum value for wave 

eriod from satellite. On the other hand, Gommenginger et al. (2003) mentioned in 

eir paper that their method was better suited to wind-sea conditions than to swell 

 

Overall Discussion 

 

 

Althou

design, but the im

(1986), the average period of the sea stat

response of ocean structures to wave exci

periods is difficult becau

between the observed and the m

wave period

p

w

u

s

in

p

(1

h

e

d

e

th

v

from the satellite p

p

th
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conditions which is different from our sea conditions. As reported by Omar and Ad

 the measured data from Malaysian sea seemed to emanate from a 

mise of wind-driven sea waves and low frequency swell. Therefore using the

enginger metho

i 

(2001),

compro  

Gomm d can lead to the error in derivation. 

 

Gomm  situ data not only causes the limitation in 

omparison but also hinder the process of deriving suitable coefficients for areas 

 

error in
 

 
 
 

 
 
 

 

 

 
 

 
 
 

 
 

 

Another aspect to consider is on the use of coefficients in Davies and 

enginger methods. The lack of the in

c

considered. When using the coefficients derived from other locations, it can cause

 the calculation and its accuracy is debatable. 
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CHAPTER 6 

 

ATIONS 

 

 

Currently, the only available wave data sources at Malaysia are the Monthly 

gical 

Service

Technology Ltd (BMT). These two sources are the main reference for the marine 

chnologists such as naval architects, ship designers, coastal and offshore engineers 

speed f

observa

questio cause of the lack of sources, they have to rely on these 

r their calculation, but they are aware of the limitation and accuracy. Thus, a new 

 

 

Ocean wave measurements from satellite are dramatically changing our way 

e 

various

sea are ailable 

data based on visual observation has shown encouraging results in term of wave 

 

 

 

 

CONCLUSIONS AND RECOMMEND

 

 

Summary of Malaysian Meteorological Observation from Malaysian Meteorolo

s (MMS) and Global Wave Statistic (GWS) from British Maritime 

te

to get the information on wave data such as wave height, wave period and wind 

or use in their line of work. These sources were based on the visual 

tions from the volunteering ships, the accuracy of which sometimes 

nable. Nevertheless, be

fo

effort to collect wave data for Malaysian ocean must be made.  

of obtaining ocean wave data for engineering purposes. The comparison with th

 data sources has shown that more comprehensive data can be obtained for all 

as using satellite altimetry technique. Comparison with presently av
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height data, but when compared with in situ measurement there is a slight over 

situ and ments, as well as the differences in the measurement 

rinciples. 

This project has shown that the data provided by TOPEX/Poseidon satellite 

probab  derive wave 

eriods have been described and their implementation on a particular Malaysian sea 

ces 

similar

also wi

 

altimet

process ithm 

en sorts the data, calculates the joint probability distribution of wave height and 

period 

method

 

 study is based on MMS (1996). This is 

quivalent to120 x 120 nautical miles. With such a small grids tedious work has to be 

ture 

work, i

exampl cal Services 

uch as Condore, Phuket, Bunguran etc. can be used as basis for such division. This 

ed 

leading

 

 

estimate on wave heights. This may arise from the different regularity between in-

 satellite measure

p

 

 

can be used to derive wave periods, which can then be used to obtain joint 

ility distribution of wave heights and periods. Three methods to

p

area has been presented. The results indicate that the Hwang method produ

 trends with the local data especially when compared with the PRSS data and 

th the NDBC buoy data located in the Florida sea area.  

 

The procedure to derive Malaysian ocean wave database based on satellite 

ry was clearly described in Chapter 4. It involves designing an algorithm to 

 and analyse the data after downloading the data from internet. The algor

th

wave period and lastly tabulates it in the scatter diagram format. Note that the wave 

from satellite data for Malaysian ocean was best derived using Hwang 

.  

 

The present 2o x 2o grids used in this

e

done and data is limited due to small number of repeat visit of the satellite. For fu

t is proposed that larger grids are used to divide the Malaysian sea area. For 

e, the 13 marine regions delineated by Malaysian Meteorologi

s

can reduce the burden of work. Moreover more revisit of satellite can be obtain

 to more data for that particular area.   
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For comparison and validation purposes it is important to obtain in-situ zero

g periods for selected sea areas. These in-situ data can b

 

crossin e used in determining 

e coefficient more accurately for Davies and Gommenginger methods. With that 

fair com

tabase is also recommended for 

ture work. A number of examples on this matter have been described in Chapter 3. 

providi

applica

 

 

 

 

 

 

 

 

 

 

 

th

information a better method to derive wave period can be developed then allowing a 

parison to be made.  

 

 

A development using web-based wave da

fu

This web-based approach allows easy access to satellite-based database thus 

ng immense benefits to the maritime users and for ocean engineering 

tions. 
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APPENDIX A 
 

Method Advantages Disadvantages 
1. Wave staffs In situ meas
 accurate ways 
  
  
2. Sub-surface In situ

sensors accura
  
  
  
  
  
  
  

3. Buoy Results not inf
 proximity of s
  

4. Shipborne wave Capable recor
recorder  on deep sea du

  
  
  
  

5. Visual observation Basis of a worldwide of 
 
 
 
  

6. Wave forecasting 
 
 
 
 

7. Direct remote 
sensors (i.e 
altimetry) 

 
8. Indirect remote 

sensors (i.e SAR) 

urement-most 

 measurement-most 
te ways 

luenced by 
tructure 

ding waves 
ring a storm 

wave statistics 
 
 

Cover much wider sea 
areas and do not miss 
storms 
 
 
 
Interpretation of results is 
starightforward 
 
 
Produces images with 

y high resolution 

Need to be mounted well 
away from any sizeable 
structural members 
 
i. Data being lost before 

it detected because it 
snag with the former 
data 

ii. Cable route must 
avoid areas where 
trawlers operate or 
ships anchor 

 
Limited number of 
deployment for vast area  

 
Relation to the distribution 
of pressure on the hull and 
satisfactory theoritical 
treatment has not been 
found. 

 
The probability of wave 
height to be smaller 
because ships try to avoid 
the storm seas. 
 
Limited power of 
computers and lack of 
adequate understanding of 
wave generation process. 
 
A method to derived wave 
period is still in early 
stage. 
 
 
Greatly complicated in 
interpretation ver

 
Appendix A: Advantages and disadvantages among the wave measurement methods.  
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APPENDIX B 

 

 

 

 

Appendix B: Several method for wave measurement (Tucker, 1991) 
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APPENDIX C 
 
 

 
 
Appendix C: Example of Monthly Summary of Marine Meteorological Observation, 

1996 from MMS 
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APPENDIX D 

AM SORTWAVE  
his program will sort wave data  

based on 2*2 degree        

r,cmonth,nfile,clocation 
ta,num,stoper(20000),area(maxdata) 

axdata) 
axdata),Z(maxdata),sig(maxdata),SWH(maxdata) 

maxdata),sday(maxdata),shr(maxdata) 

(maxdata),sswh(maxdata),sarea(maxdata),k  
t1,count2,count3,count4,count5,count6,count7 

unt14 
nt15,count16,count17,count18,count19,count20,count21 

t22,count23,count24,count25,count26,count27,count28 
,count35 

nt36,count37,count38,count39,count40,count41,count42 
t43,count44,count45,count46,count47,count48,count49 

 count50,count51,count52,count53,count54,count55,count56 
t62,count63 
t69,count70 

t71,count72,count73,count74,count75,count76,count77 
8,count79,count80,count81,count82,count83,count84 

count91 
t92,count93,count94,count95,count96,count97,count98 

9,count100,count101,count102,count103,count104 
nt110 

t111,count112,count113,count114,count115,count116 
17,count118,count119,count120,count121,count122 

unt128 
t129,count130,qi130   

,coun2,coun3,coun4,coun5,coun6,coun7 
 

5,coun16,coun17,coun18,coun19,coun20,coun21 
2,coun23,coun24,coun25,coun26,coun27,coun28 

35 
,coun37,coun38,coun39,coun40,coun41,coun42 

3,coun44,coun45,coun46,coun47,coun48,coun49 
56 

7,coun58,coun59,coun60,coun61,coun62,coun63 
4,coun65,coun66,coun67,coun68,coun69,coun70 

77 
8,coun79,coun80,coun81,coun82,coun83,coun84 
5,coun86,coun87,coun88,coun89,coun90,coun91 

coun92,coun93,coun94,coun95,coun96,coun97,coun98 
un104 

coun110 
111,coun112,coun113,coun114,coun115,coun116 
117,coun118,coun119,coun120,coun121,coun122 

n128 
129,coun130,q130    
n1,counn2,counn3,counn4,counn5,counn6,counn7 

,counn14 
n15,counn16,counn17,counn18,counn19,counn20,counn21 
n22,counn23,counn24,counn25,counn26,counn27,counn28 

n34,counn35 
n36,counn37,counn38,counn39,counn40,counn41,counn42 
n43,counn44,counn45,counn46,counn47,counn48,counn49 

n55,counn56 
n57,counn58,counn59,counn60,counn61,counn62,counn63 
n64,counn65,counn66,counn67,counn68,counn69,counn70 

n76,counn77 
n78,counn79,counn80,counn81,counn82,counn83,counn84 
n85,counn86,counn87,counn88,counn89,counn90,counn91 

97,counn98 
n99,counn100,counn101,counn102,counn103,counn104 
n105,counn106,counn107,counn108,counn109,counn110 

,counn116 
n117,counn118,counn119,counn120,counn121,counn122 

 
                         
       PROGR
c     T
c     from satellite measurement 
       
      parameter (Maxdata=20000) 
      integer cyea
      integer I,nda
      integer year(maxdata),day(maxdata),hr(maxdata),minute(m
      integer Y(m
      integer syear(
      integer sminute(maxdata),sy(maxdata),sz(maxdata) 
      integer ssig
      integer coun
      integer count8,count9,count10,count11,count12,count13,co
      integer cou
      integer coun
      integer count29,count30,count31,count32,count33,count34
      integer cou
      integer coun
      integer
      integer count57,count58,count59,count60,count61,coun
      integer count64,count65,count66,count67,count68,coun
      integer coun
      integer count7
      integer count85,count86,count87,count88,count89,count90,
      integer coun
      integer count9
      integer count105,count106,count107,count108,count109,cou
      integer coun
      integer count1
      integer count123,count124,count125,count126,count127,co
      integer coun
      integer coun1
      integer coun8,coun9,coun10,coun11,coun12,coun13,coun14
      integer coun1
      integer coun2
      integer coun29,coun30,coun31,coun32,coun33,coun34,coun
      integer coun36
      integer coun4
      integer coun50,coun51,coun52,coun53,coun54,coun55,coun
      integer coun5
      integer coun6
      integer coun71,coun72,coun73,coun74,coun75,coun76,coun
      integer coun7
      integer coun8
      integer 
      integer coun99,coun100,coun101,coun102,coun103,co
      integer coun105,coun106,coun107,coun108,coun109,
      integer coun
      integer coun
      integer coun123,coun124,coun125,coun126,coun127,cou
      integer coun
      integer coun
      integer counn8,counn9,counn10,counn11,counn12,counn13
      integer coun
      integer coun
      integer counn29,counn30,counn31,counn32,counn33,coun
      integer coun
      integer coun
      integer counn50,counn51,counn52,counn53,counn54,coun
      integer coun
      integer coun
      integer counn71,counn72,counn73,counn74,counn75,coun
      integer coun
      integer coun
      integer counn92,counn93,counn94,counn95,counn96,counn
      integer coun
      integer coun
      integer counn111,counn112,counn113,counn114,counn115
      integer coun
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      integer counn123,counn124,counn125,counn126,counn127,counn128 

i2,qi3,qi4,qi5,qi6,qi7,qi8,qi9,qi10,qi11,qi12,qi13 
qi15,qi16,qi17,qi18,qi19,qi20,qi21,qi22,qi23,qi24 

5 
qi37,qi38,qi39,qi40,qi41,qi42,qi43,qi44,qi45,qi46 
qi48,qi49,qi50,qi51,qi52,qi53,qi54,qi55,qi56,qi57 

8 
qi70,qi71,qi72,qi73,qi74,qi75,qi76,qi77,qi78,qi79 
qi81,qi82,qi83,qi84,qi85,qi86,qi87,qi88,qi89,qi90 

 qi91,qi92,qi93,qi94,qi95,qi96,qi97,qi98,qi99,qi100,qi101 
9,qi110 

119,qi120 
qi122,qi123,qi124,qi125,qi126,qi127,qi128,qi129  
q3,q4,q5,q6,q7,q8,q9,q10,q11,q12,q13 

6,q27,q28,q29,q30,q31,q32,q33,q34,q35 
7,q38,q39,q40,q41,q42,q43,q44,q45,q46 

9,q60,q61,q62,q63,q64,q65,q66,q67,q68 
0,q71,q72,q73,q74,q75,q76,q77,q78,q79 

2,q93,q94,q95,q96,q97,q98,q99,q100,q101 
q104,q105,q106,q107,q108,q109,q110 

q123,q124,q125,q126,q127,q128,q129 
2,qu3,qu4,qu5,qu6,qu7,qu8,qu9,qu10,qu11,qu12,qu13 

qu24 
qu27,qu28,qu29,qu30,qu31,qu32,qu33,qu34,qu35 
qu38,qu39,qu40,qu41,qu42,qu43,qu44,qu45,qu46 

qu57 
qu60,qu61,qu62,qu63,qu64,qu65,qu66,qu67,qu68 
qu71,qu72,qu73,qu74,qu75,qu76,qu77,qu78,qu79 

qu90 
qu93,qu94,qu95,qu96,qu97,qu98,qu99,qu100,qu101 

,qu103,qu104,qu105,qu106,qu107,qu108,qu109,qu110 
9,qu120 

,qu122,qu123,qu124,qu125,qu126,qu127,qu128,qu129 
3,pi4,pi5,pi6,pi7,pi8,pi9,pi10,pi11  

,pi24,pi25,pi26,pi27,pi28,pi29,pi30,pi31 
,pi34,pi35,pi36,pi37,pi38,pi39,pi40,pi41 

,pi54,pi55,pi56,pi57,pi58,pi59,pi60,pi61 
,pi64,pi65,pi66,pi67,pi68,pi69,pi70,pi71 

,pi84,pi85,pi86,pi87,pi88,pi89,pi90,pi91 
,pi94,pi95,pi96,pi97,pi98,pi99,pi100,pi101 

02,pi103,pi104,pi105,pi106,pi107,pi108,pi109,pi110,pi111  
pi121 

9,pi130 
,p4,p5,p6,p7,p8,p9,p10,p11  
,p14,p15,p16,p17,p18,p19,p20,p21 

,p34,p35,p36,p37,p38,p39,p40,p41 
,p44,p45,p46,p47,p48,p49,p50,p51 

,p64,p65,p66,p67,p68,p69,p70,p71 
,p74,p75,p76,p77,p78,p79,p80,p81 

,p94,p95,p96,p97,p98,p99,p100,p101 
03,p104,p105,p106,p107,p108,p109,p110,p111  

1 
23,p124,p125,p126,p127,p128,p129,p130  
,pu3,pu4,pu5,pu6,pu7,pu8,pu9,pu10,pu11  

1 
23,pu24,pu25,pu26,pu27,pu28,pu29,pu30,pu31 
33,pu34,pu35,pu36,pu37,pu38,pu39,pu40,pu41 

1 
53,pu54,pu55,pu56,pu57,pu58,pu59,pu60,pu61 
63,pu64,pu65,pu66,pu67,pu68,pu69,pu70,pu71 

1 
83,pu84,pu85,pu86,pu87,pu88,pu89,pu90,pu91 
93,pu94,pu95,pu96,pu97,pu98,pu99,pu100,pu101 

,pu110,pu111  
u113,pu114,pu115,pu116,pu117,pu118,pu119,pu120,pu121 

      integer counn129,counn130,qu130 
      integer qi1,q
      integer qi14,
      integer qi25,qi26,qi27,qi28,qi29,qi30,qi31,qi32,qi33,qi34,qi3
      integer qi36,
      integer qi47,
      integer qi58,qi59,qi60,qi61,qi62,qi63,qi64,qi65,qi66,qi67,qi6
      integer qi69,
      integer qi80,
      integer
      integer qi102,qi103,qi104,qi105,qi106,qi107,qi108,qi10
      integer qi112,qi113,qi114,qi115,qi116,qi117,qi118,qi
      integer qi121,
      integer q1,q2,
      integer q14,q15,q16,q17,q18,q19,q20,q21,q22,q23,q24 
      integer q25,q2
      integer q36,q3
      integer q47,q48,q49,q50,q51,q52,q53,q54,q55,q56,q57 
      integer q58,q5
      integer q69,q7
      integer q80,q81,q82,q83,q84,q85,q86,q87,q88,q89,q90 
      integer q91,q9
      integer q102,q103,
      integer q112,q113,q114,q115,q116,q117,q118,q119,q120 
      integer q121,q122,
      integer qu1,qu
      integer qu14,qu15,qu16,qu17,qu18,qu19,qu20,qu21,qu22,qu23,
      integer qu25,qu26,
      integer qu36,qu37,
      integer qu47,qu48,qu49,qu50,qu51,qu52,qu53,qu54,qu55,qu56,
      integer qu58,qu59,
      integer qu69,qu70,
      integer qu80,qu81,qu82,qu83,qu84,qu85,qu86,qu87,qu88,qu89,
      integer qu91,qu92,
      integer qu102
      integer qu112,qu113,qu114,qu115,qu116,qu117,qu118,qu11
      integer qu121
      real pi1,pi2,pi
      real pi12,pi13,pi14,pi15,pi16,pi17,pi18,pi19,pi20,pi21 
      real pi22,pi23
      real pi32,pi33
      real pi42,pi43,pi44,pi45,pi46,pi47,pi48,pi49,pi50,pi51 
      real pi52,pi53
      real pi62,pi63
      real pi72,pi73,pi74,pi75,pi76,pi77,pi78,pi79,pi80,pi81 
      real pi82,pi83
      real pi92,pi93
      real pi1
      real pi112,pi113,pi114,pi115,pi116,pi117,pi118,pi119,pi120,
      real pi122,pi123,pi124,pi125,pi126,pi127,pi128,pi12
      real p1,p2,p3
      real p12,p13
      real p22,p23,p24,p25,p26,p27,p28,p29,p30,p31 
      real p32,p33
      real p42,p43
      real p52,p53,p54,p55,p56,p57,p58,p59,p60,p61 
      real p62,p63
      real p72,p73
      real p82,p83,p84,p85,p86,p87,p88,p89,p90,p91 
      real p92,p93
      real p102,p1
      real p112,p113,p114,p115,p116,p117,p118,p119,p120,p12
      real p122,p1
      real pu1,pu2
      real pu12,pu13,pu14,pu15,pu16,pu17,pu18,pu19,pu20,pu2
      real pu22,pu
      real pu32,pu
      real pu42,pu43,pu44,pu45,pu46,pu47,pu48,pu49,pu50,pu5
      real pu52,pu
      real pu62,pu
      real pu72,pu73,pu74,pu75,pu76,pu77,pu78,pu79,pu80,pu8
      real pu82,pu
      real pu92,pu
      real pu102,pu103,pu104,pu105,pu106,pu107,pu108,pu109
      real pu112,p
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      real pu122,pu123,pu124,pu125,pu126,pu127,pu128,pu129,pu130 

data),Ta(maxdata),Wa(maxdata),Tz1(maxdata),Mo(maxdata) 
ata),T2(maxdata),sTP1(maxdata),B(maxdata) 

onth,number,bil  
ars 

ame  
 loc 

ter*25 savefilenm,saveprodis,saveprodisi,saveprodissi 
*1 saveras,newlocation 

    

REA 
: 1-8'  

 2:1998   3:1999' 
0   5:2001   6:2002' 

ct month: 1-4'  
ANUARY-MARCH' 

RIL-JUN' 
-SEPTEMBER' 

TOBER-DECEMBER'  

Select Area to be located:1-48' 
,'  1:A1   2:A2   3:A3   4:A4   5:A5'  
,'    ' 

   8:B3   9:B4' 
1:B6  12:B7  13:B8'  

t*,'  14:C1  15:C2  16:C3  17:C4  18:C5  19:C6' 

31:D7  32:D8  33:D9  34:D10 35:D11  36:D12' 

8  45:E9  46:E10 47:E11 48:E12' 

      real sec(maxdata),ssec(maxdata),U(maxdata),su(maxdata) 
      real sTP(max
      real T1(maxd
      real sTP2(maxdata) 
      character*3 m
      character*4 ye
      character*10 filenm 
      character*3 n
      character*18
      charac
c      character
      
   
      k=1  
C     SELECTING FILES AND A
      print*,'Select year
      print*,'  1:1997  
      print*,'  4:200
      print*,'  7:2003' 
      read*,cyear   
        print*,'Sele
        print*,'  1:J
        print*,'  2:AP
        print*,'  3:JULY
        print*,'  4:OC
        read*,cmonth 
        print*,'
        print*
        print*
        print*,'  6:B1   7:B2
        print*,' 10:B5  1
        print*,'    ' 
        prin
        print*,'  20:C7  21:C8  22:C9  23:C10 24:C11' 
        print*,'    ' 
        print*,'  25:D1  26:D2  27:D3  28:D4  29:D5   30:D6'   
        print*,'  
        print*,'    ' 
        print*,'  37:E1  38:E2  39:E3  40:E4  41:E5  42:E6' 
        print*,'  43:E7  44:E
        read*,clocation 
           
       
       if (cyear.EQ.1)then  
       years='1997' 
       endif  
       if (cyear.EQ.2)then 
       years='1998' 
       endif 
       if (cyear.EQ.3)then 
       years='1999'  
       endif 
       if (cyear.EQ.4)then 
       years='2000' 
       endif 
       if (cyear.EQ.5)then  
       years='2001' 
       endif 
       if (cyear.EQ.6)then  
       years='2002' 
       endif 
       if (cyear.EQ.7)then  
       years='2003' 
       endif 
        
       if (cmonth.EQ.1)then  
       month='q01' 
       endif 
       if (cmonth.EQ.2)then 
       month='q02' 
       endif 
       if (cmonth.EQ.3)then 
       month='q03' 
       endif 
       if (cmonth.EQ.4)then 
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       month='q04' 
       endif  
        
       if (cyear.EQ.1)then 
       if(cmonth.EQ.2)then 
       nfile=76  
       bil='1' 
       elseif (cmonth.EQ.3)then 
       nfile=125 
       bil='2' 
       elseif (cmonth.EQ.4)then 
       nfile=119 
       bil='3' 
       endif 
       endif 
         if(cyear.EQ.2)then 
         if (cmonth.EQ.1)then 
         nfile=114      
         bil='4' 
         elseif (cmonth.EQ.2)then 
         nfile=87 
         bil='5' 
         elseif (cmonth.EQ.3)then 
         nfile=120 
         bil='6' 
         elseif (cmonth.EQ.4)then 
         nfile=116  
         bil='7' 
         endif  
         endif 
       if(cyear.EQ.3)then 
       if(cmonth.EQ.1)then 
       nfile=104 
       bil='8' 
       elseif(cmonth.EQ.2)then 
       nfile=119 
       bil='9' 
       elseif(cmonth.EQ.3)then 
       nfile=89 
       bil='10' 
       elseif(cmonth.EQ.4)then 
       nfile=119  
       bil='11' 
       endif 
       endif 
         if(cyear.EQ.4)then 
         if(cmonth.EQ.1)then 
         nfile=143 
         bil='12' 
         elseif(cmonth.EQ.2)then 
         nfile=127 
         bil='13' 
         elseif(cmonth.EQ.3)then 
         nfile=121 
         bil='14' 
         elseif(cmonth.EQ.4)then 
         nfile=121 
         bil='15' 
         endif 
         endif 
       if(cyear.EQ.5)then 
       if(cmonth.EQ.1)then 
       nfile=128 
       bil='16' 
       elseif(cmonth.EQ.2)then 
       nfile=144 
       bil='17' 
       elseif(cmonth.EQ.3)then 
       nfile=154 
       bil='18' 
       elseif(cmonth.EQ.4)then 
       nfile=138 
       bil='19' 
       endif 
       endif 
         if(cyear.EQ.6)then 
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         if(cmonth.EQ.1)then 
         nfile=134 
         bil='20' 
         elseif(cmonth.EQ.2)then 
         nfile=134 
         bil='21' 
         elseif(cmonth.EQ.3)then 
         nfile=115 
         bil='22' 
         elseif(cmonth.EQ.4)then 
         nfile=95 
         bil='23' 
         endif 
         endif 
       if(cyear.EQ.7)then 

                                                                                                                       

num 

filenm,status='old') 

ng the header 

ata 

   read(5,*)       

o 110 I=1,ndata 

I),y(I),Z(I),sig(I) 

I9,1x,I9,10x,I4,2x,I2,9x 

T.0.AND.Y(i).LE.2000000)then  

=1 
000000.AND.Z(i).LE.108000000)then 

.118000000.AND.Z(i).LE.120000000)then 
ea(I)= 5 

=1 

ND.Z(i).LE.102000000)then 

r(I)=1 
LE.104000000)then 

r(I)=1 

       if(cmonth.EQ.1)then 
       nfile=138 
       bil='24' 
       elseif(cmonth.EQ.2)then 
       nfile=269 
       bil='25' 
       elseif(cmonth.EQ.3)then 
       nfile=111 
       bil='26' 
       endif    
       endif 
                                  
C     READING FILENAME  
      do 1 num =1,nfile 
      write(number,10)
10    format(I3) 
      filenm = number//month//years 
      open(unit=5,file=
 
       
c   Readi
      do 100 I=1,52 
      if(I.eq.11)then 
      read(5,6)nd
6     format(29x,I5) 
      endif  
   
100   continue  
      d
      stoper(I)=0 
      area(I)=0 
      read(5,16)year(I),day(I),hr(I),minute(I),sec(
     +,SWH(I),U(I) 
16    format(I4,1x,I3,1x,I2,1x,I2,1x,f9.6,1x,
     +,f8.6) 
       
c Assinging the location name 
      if(Y(i).G
      if(Z(i).GE.102000000.AND.Z(i).LE.104000000)then 
      area(I)= 1 
      stoper(I)=1 
      elseif(Z(i).GT.104000000.AND.Z(i).LE.106000000)then  
      area(I)= 2 
      stoper(I)
      elseif(Z(i).GT.106
      area(I)= 3 
      stoper(I)=1 
      elseif(Z(i).GT.108000000.AND.Z(i).LE.110000000)then 
      area(I)= 4 
      stoper(I)=1 
      elseif(Z(i).GE
      ar
      stoper(I)
      endif 
        elseif(Y(i).GT.2000000.AND.Y(i).LE.4000000)then 
        if(Z(i).GE.100000000.A
        area(I)= 6 
        stope
        elseif(Z(i).GT.102000000.AND.Z(i).
        area(I)= 7 
        stope
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        elseif(Z(i).GT.104000000.AND.Z(i).LE.106000000)then  
 area(I)= 8 

)=1 
06000000.AND.Z(i).LE.108000000)then 

 
f(Z(i).GT.108000000.AND.Z(i).LE.110000000)then  

).GT.110000000.AND.Z(i).LE.112000000)then 
  

     stoper(I)=1 
(i).GT.112000000.AND.Z(i).LE.114000000)then 

00000.AND.Y(i).LE.6000000)then 
(Z(i).GE.96000000.AND.Z(i).LE.98000000)then 
ea(I)= 14 

=1 
00.AND.Z(i).LE.100000000)then 

 
GT.100000000.AND.Z(i).LE.102000000)then  
 
 
GT.102000000.AND.Z(i).LE.104000000)then 
 
 
GT.104000000.AND.Z(i).LE.106000000)then 

T.106000000.AND.Z(i).LE.108000000)then 

T.108000000.AND.Z(i).LE.110000000)then  

T.110000000.AND.Z(i).LE.112000000)then 

T.112000000.AND.Z(i).LE.114000000)then 

T.114000000.AND.Z(i).LE.116000000)then 

E.118000000.AND.Z(i).LE.120000000)then 

GT.6000000.AND.Y(i).LE.8000000)then 
000000.AND.Z(i).LE.98000000)then 

 
 
GT.98000000.AND.Z(i).LE.100000000)then 
 
 
GT.100000000.AND.Z(i).LE.102000000)then 
 
 
GT.102000000.AND.Z(i).LE.104000000)then 
 
 
GT.104000000.AND.Z(i).LE.106000000)then 
 
 
GT.106000000.AND.Z(i).LE.108000000)then 
 
 
GT.108000000.AND.Z(i).LE.110000000)then 
 
 

       
        stoper(I
        elseif(Z(i).GT.1
        area(I)= 9 
        stoper(I)=1
        elsei
        area(I)= 10 
        stoper(I)=1 
        elseif(Z(i
        area(I)= 11
   
        elseif(Z
        area(I)= 12 
        stoper(I)=1 
        elseif(Z(i).GE.118000000.AND.Z(i).LE.120000000)then 
        area(I)= 13 
        stoper(I)=1 
        endif 
      elseif(Y(i).GT.40
      if
      ar
      stoper(I)
      elseif(Z(i).GT.980000
      area(I)= 15 
      stoper(I)=1
      elseif(Z(i).
      area(I)= 16
      stoper(I)=1
      elseif(Z(i).
      area(I)= 17
      stoper(I)=1
      elseif(Z(i).
      area(I)= 18 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 19 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 20 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 21 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 22 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 23 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 24 
      stoper(I)=1 
      endif 
        elseif(Y(i).
        if(Z(i).GE.96
        area(I)= 25
        stoper(I)=1
        elseif(Z(i).
        area(I)= 26
        stoper(I)=1
        elseif(Z(i).
        area(I)= 27
        stoper(I)=1
        elseif(Z(i).
        area(I)= 28
        stoper(I)=1
        elseif(Z(i).
        area(I)= 29
        stoper(I)=1
        elseif(Z(i).
        area(I)= 30
        stoper(I)=1
        elseif(Z(i).
        area(I)= 31
        stoper(I)=1
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        elseif(Z(i).GT.110000000.AND.Z(i).LE.112000000)then 
 
 
GT.112000000.AND.Z(i).LE.114000000)then 
 

GT.114000000.AND.Z(i).LE.116000000)then 
 
 
GT.116000000.AND.Z(i).LE.118000000)then 
 
 
GT.118000000.AND.Z(i).LE.120000000)then 
 
 

T.8000000.AND.Y(i).LE.10000000)then 
000000.AND.Z(i).LE.98000000)then 

T.98000000.AND.Z(i).LE.100000000)then 

T.100000000.AND.Z(i).LE.102000000)then 

T.102000000.AND.Z(i).LE.104000000)then 

T.104000000.AND.Z(i).LE.106000000)then 

T.106000000.AND.Z(i).LE.108000000)then 

T.108000000.AND.Z(i).LE.110000000)then 

T.110000000.AND.Z(i).LE.112000000)then 

T.112000000.AND.Z(i).LE.114000000)then 

T.114000000.AND.Z(i).LE.116000000)then 

.116000000.AND.Z(i).LE.118000000)then 

.118000000.AND.Z(i).LE.120000000)then 

ata  
.clocation)then 
r(I) 
I) 

inute(I) 

 
(I) 

(I) 

        
5) 

        area(I)= 32
        stoper(I)=1
        elseif(Z(i).
        area(I)= 33
        stoper(I)=1 
        elseif(Z(i).
        area(I)= 34
        stoper(I)=1
        elseif(Z(i).
        area(I)= 35
        stoper(I)=1
        elseif(Z(i).
        area(I)= 36
        stoper(I)=1
        endif 
      elseif(Y(i).G
      if(Z(i).GE.96
      area(I)= 37 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 38 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 39 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 40 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 41 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 42 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 43 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 44 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 45 
      stoper(I)=1 
      elseif(Z(i).G
      area(I)= 46 
      stoper(I)=1 
      elseif(Z(i).GT
      area(I)= 47 
      stoper(I)=1 
      elseif(Z(i).GT
      area(I)= 48 
      stoper(I)=1 
      endif 
      endif 
110   continue 
 
      do 200 I=1,nd
      if (area(I).EQ
      syear(k)=yea
      sday(k)=day(
      shr(k)=hr(I) 
      sminute(k)=m
      ssec(k)=sec(I) 
      sY(k)=Y(I) 
      sZ(k)=Z(I) 
      ssig(k)=sig(I)
      sswh(k)=swh
      su(k)=U(I) 
      sarea(k)=area
      k=k+1 
      endif 
      nk=k 
200   continue     
      close (unit = 
1     continue  



  114

             
C       DISPLAY COLLECTED DATA FROM ALL FILES 

rint*,'   ' 
ny Key for ALL COLLECTED DATA:'   

  Sec      Y        Z      Sig  

   

. 2) then 

4E-106E)' 

. 4) then 

8E-110E)'   

       

 6) then 

-102E)'  

 8) then 
e = 'B3'               

 

)'   

en 

)' 

en 

en 

)' 

-6N,102E-104E)' 

 20) then 

-110E)' 

 22) then 

-114E)' 

c        p
c        print*,' Press A
c        read* 
c        print*,'  ' 
        print*,' No.  Year Day Hr  Min 
     +SWH    U     Area ' 
          do 400 i = 1,nk-1 
          if (sarea(i).eq. 1) then  
          name = 'A1'  
          loc = '(0N-2N,102E-104E)' 
          else if (sarea(i) .eq
          name = 'A2'  
          loc = '(0N-2N,10
          else if (sarea(i) .eq. 3) then 
          name = 'A3' 
          loc = '(0N-2N,106E-108E)'  
          else if (sarea(i) .eq
          name = 'A4' 
          loc = '(0N-2N,10
          else if (sarea(i) .eq. 5) then 
          name = 'A5'        
          loc = '(0N-2N,118E-120E)'           
          else if (sarea(i) .eq.
          name = 'B1'  
          loc = '(2N-4N,100E
          else if (sarea(i) .eq. 7) then 
          name = 'B2' 
          loc = '(2N-4N,102E-104E)'  
          else if (sarea(i) .eq.
          nam
          loc = '(2N-4N,104E-106E)' 
          else if (sarea(i) .eq. 9) then 
          name = 'B4'               
          loc = '(2N-4N,106E-108E)' 
          else if (sarea(i) .eq. 10) then
          name = 'B5' 
          loc = '(2N-4N,108E-110E
          else if (sarea(i) .eq. 11) then 
          name = 'B6'  
          loc = '(2N-4N,110E-112E)'   
          else if (sarea(i) .eq. 12) th
          name = 'B7'              
          loc = '(2N-4N,112E-114E
          else if (sarea(i) .eq. 13) then 
          name = 'B8'              
          loc = '(2N-4N,118E-120E)' 
          else if (sarea(i) .eq. 14) th
          name = 'C1'              
          loc = '(4N-6N,96E-98E)' 
          else if (sarea(i) .eq. 15) then 
          name = 'C2'            
          loc = '(4N-6N,98E-100E)' 
          else if (sarea(i) .eq. 16) th
          name = 'C3'             
          loc = '(4N-6N,100E-102E
          else if (sarea(i) .eq. 17) then 
          name = 'C4'              
          loc = '(4N
          else if (sarea(i) .eq. 18) then 
          name = 'C5'              
          loc = '(4N-6N,104E-106E)' 
          else if (sarea(i) .eq. 19) then 
          name = 'C6'              
          loc = '(4N-6N,106E-108E)' 
          else if (sarea(i) .eq.
          name = 'C7'              
          loc = '(4N-6N,108E
          else if (sarea(i) .eq. 21) then 
          name = 'C8'               
          loc = '(4N-6N,110E-112E)' 
          else if (sarea(i) .eq.
          name = 'C9'               
          loc = '(4N-6N,112E
          else if (sarea(i) .eq. 23) then 
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          name = 'C10'              

 24) then 

-120E)' 

 26) then 

100E)' 
f (sarea(i) .eq. 27) then 

' 

en 

)' 

en 

)' 

en 

)' 

en 
2' 

8) then 

-100E)' 

  

 40) then 

E-104E)' 

 42) then 

E-108E)' 

 44) then 

E-112E)' 

 '(8N-10N,112E-114E)'    

en 

          loc = '(4N-6N,114E-116E)' 
          else if (sarea(i) .eq.
          name = 'C11'              
          loc = '(4N-6N,118E
          else if (sarea(i) .eq. 25) then 
          name = 'D1'             
          loc = '(6N-8N,96E-98E)' 
          else if (sarea(i) .eq.
          name = 'D2'              
          loc = '(6N-8N,98E-
          else i
          name = 'D3'               
          loc = '(6N-8N,100E-102E)' 
          else if (sarea(i) .eq. 28) then 
          name = 'D4'               
          loc = '(6N-8N,102E-104E)
          else if (sarea(i) .eq. 29) then 
          name = 'D5'               
          loc = '(6N-8N,104E-106E)' 
          else if (sarea(i) .eq. 30) th
          name = 'D6'               
          loc = '(6N-8N,106E-108E
          else if (sarea(i) .eq. 31) then 
          name = 'D7'               
          loc = '(6N-8N,108E-110E)' 
          else if (sarea(i) .eq. 32) th
          name = 'D8'               
          loc = '(6N-8N,110E-112E
          else if (sarea(i) .eq. 33) then 
          name = 'D9'              
          loc = '(6N-8N,112E-114E)' 
          else if (sarea(i) .eq. 34) th
          name = 'D10'              
          loc = '(6N-8N,114E-116E
          else if (sarea(i) .eq. 35) then 
          name = 'D11'              
          loc = '(6N-8N,116E-118E)' 
          else if (sarea(i) .eq. 36) th
          name = 'D1
          loc = '(6N-8N,118E-120E)'    
          else if (sarea(i) .eq. 37) then 
          name = 'E1'              
          loc = '(8N-10N,96E-98E)' 
          else if (sarea(i) .eq. 3
          name = 'E2'               
          loc = '(8N-10N,98E
          else if (sarea(i) .eq. 39) then 
          name = 'E3'              
          loc = '(8N-10N,100E-102E)' 
          else if (sarea(i) .eq.
          name = 'E4'                
          loc = '(8N-10N,102
          else if (sarea(i) .eq. 41) then 
          name = 'E5' 
          loc = '(8N-10N,104E-106E)' 
          else if (sarea(i) .eq.
          name = 'E6' 
          loc = '(8N-10N,106
          else if (sarea(i) .eq. 43) then 
          name = 'E7' 
          loc = '(8N-10N,108E-110E)' 
          else if (sarea(i) .eq.
          name = 'E8'  
          loc = '(8N-10N,110
          else if (sarea(i) .eq. 45) then 
          name = 'E9' 
          loc =
          else if (sarea(i) .eq. 46) then 
          name = 'E10'  
          loc = '(8N-10N,114E-116E)'   
          else if (sarea(i) .eq. 47) then 
          name = 'E11'  
          loc = '(8N-10N,116E-118E)' 
          else if (sarea(i) .eq. 48) th
          name = 'E12'  
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          loc = '(8N-10N,118E-120E)' 

y(I) 
area(I),name     

,I2,2x,I2,2x,f5.2,1x,I9,1x,I9,1x,I4 

m,status='new') 

,' ',loc 
A:',nk-1 

,'/',years   
       Y        Z     sig 

     Tz(D)      Tz(G)       Tz(H)'         

6/(2*(ssig(i)*0.01)*62.65)))**0.25 
(i)/1.026)**4)**0.3 

*Ta(i))+(0.1943*Wa(i))+(-0.0188*(Ta(i))**2) 

sswh(i)*0.1)**2)**0.25 

OG10(T1(i))) 

i).LE.0)then 

**0.67)*9.8 

ec(I),sy(I) 
area(I),name,sTP(I),sTP1(I),sTP2(I) 

I9,1x,I9,1x,I4 
f10.4,2x,f10.4,2x,f10.4)   

          end if   
             
      print 19,i,syear(i),sday(i),shr(I),sminute(I),ssec(I),s
     +,sZ(I),ssig(I),sswh(I),su(I),s
400   continue 
19    format(1x,I5,1x,I4,1x,I3,1x
     +,2x,I2,3x,f7.4,3x,I2,2x,A3) 
 
c Saving data to output file 
       
c      print*,'Do you want to save the result (y/n) ?' 
c      read*, saveras  
c      if ((saveras.eq.'y').or.(saveras.eq.'Y'))then 
c      print*,'num=',bil 
c      print*,'Enter File Name Correctly'  
c      read(*,*)savefilenm  
      savefilenm='out'//name//years//month 
      open(unit=12,file=savefilen
c      read*  
      write(12,*)' COLLECTED DATA FOR AREA :',NAME
      write(12,*)'NO OF COLLECTION DAT
      write(12,*)'QUARTER/YEAR:',month
      WRITE(12,*)' No.  Year Day  Hr Min  Sec
     + SWH     U       Area     
c      read*  
      do 450 i=1,nk-1   
      Mo(i)=((sswh(i)*0.1)**2)/4.0 
      Ta(i)=(Mo(i)/(86533.3
      Wa(i)=2.56*(((sswh(i)*0.1)**2*96.04)/(su
      Tz1(i)=3.6231+(0.0754
      sTP(i)=Tz1(i)+(0.1991*Ta(i)*Wa(i)) 
450   continue   
       
c      read*  
      do 451 i=1,nk-1 
      T1(i)=((ssig(i)*0.01)*(
      if (T1(i).Lt.0.0001)then 
      sTP1(i)= 0  
      else  
      T2(i)= 0.361+(0.967*L
      sTP1(I)= 10**(T2(i)) 
      endif 
451   continue      
      
c      read*  
      do 452 i=1,nk-1 
      if (sswh(
      sTP2(i)=0  
      else  
      B(i)=(0.048*(su(i)**2/(9.8*(sswh(i)*0.1)))
      sTP2(i)=su(i)/B(i)    
      endif       
452   continue  
 
c      read* 
      do 500 i=1,nk-1  
      write(12,21)i,syear(i),sday(i),shr(I),sminute(I),ss
     +,sZ(I),ssig(I),sswh(I),su(I),s
21    format(1x,I5,1x,I4,1x,I3,1x,I2,2x,I2,2x,f5.2,1x,
     +,2x,I2,3x,f7.4,3x,I2,2x,A3,2x,
500   continue   
      close (unit=12) 
       
       
c      read*  
c      print*,'ndata=',nk-1 
      count1=0  
      count2=0 
      count3=0 
      count4=0 
      count5=0 
      count6=0 
      count7=0 
      count8=0 
      count9=0 
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      count10=0 
      count11=0 
      count12=0 
      count13=0 
      count14=0 
      count15=0 
      count16=0 
      count17=0 
      count18=0 
      count19=0 
      count20=0 
      count21=0  
      count22=0 
      count23=0 
      count24=0 
      count25=0 
      count26=0 
      count27=0 
      count28=0 
      count29=0 
      count30=0 
      count31=0 
      count32=0 
      count33=0 
      count34=0 
      count35=0 
      count36=0 
      count37=0 

unt68=0 
0 

      count38=0 
      count39=0 
      count40=0 
      count41=0 
      count42=0 
      count43=0 
      count44=0 
      count45=0 
      count46=0 
      count47=0 
      count48=0 
      count49=0 
      count50=0 
      count51=0 
      count52=0 
      count53=0 
      count54=0 
      count55=0 
      count56=0 
      count57=0 
      count58=0  
      count59=0 
      count60=0 
      count61=0 
      count62=0 
      count63=0 
      count64=0 
      count65=0 
      count66=0 
      count67=0 
      co
      count69=
      count70=0   
      count71=0  
      count72=0 
      count73=0 
      count74=0 
      count75=0 
      count76=0 
      count77=0 
      count78=0 
      count79=0 
      count80=0 
      count81=0 
      count82=0 
      count83=0 
      count84=0 
      count85=0 
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      count86=0 
      count87=0 
      count88=0 
      count89=0 
      count90=0 
      count91=0  
      count92=0 
      count93=0 
      count94=0 
      count95=0 
      count96=0 
      count97=0 
      count98=0 
      count99=0 
      count100=0 
      count101=0  
      count102=0 
      count103=0 
      count104=0 
      count105=0 
      count106=0 
      count107=0 
      count108=0 
      count109=0 
      count110=0 
      count111=0 
      count112=0 
      count113=0 
      count114=0 
      count115=0 
      count116=0 
      count117=0 
      count118=0 
      count119=0 
      count120=0 
      count121=0  
      count122=0 
      count123=0 
      count124=0 
      count125=0 
      count126=0 
      count127=0 
      count128=0 
      count129=0 
      count130=0 
       
      do 600 i=1,nk-1 
      if (sswh(i).GE.00.and.sswh(i).LT.10)then 

d.sTP(i).LT.1)then   
+1                       
E.1.and.sTP(i).LT.2)then 
+1   
E.2.and.sTP(i).LT.3)then 
+1 
E.3.and.sTP(i).LT.4)then 
+1 
E.4.and.sTP(i).LT.5)then 
+1 
E.5.and.sTP(i).LT.6)then  
+1 
E.6.and.sTP(i).LT.7)then  
+1 
E.7.and.sTP(i).LT.8)then 
+1 
E.8.and.sTP(i).LT.9)then 
+1 
E.9.and.sTP(i).LT.10)then 
10+1 
E.10.and.sTP(i).LT.11)then 
11+1 
E.11.and.sTP(i).LT.12)then 
12+1 
E.12.and.sTP(i).LT.13)then 
13+1 

wh(i).GE.10.and.sswh(i).LT.20)then 

      if (sTP(i).GE.0.an
      count1=count1
      elseif (sTP(i).G
      count2=count2
      elseif (sTP(i).G
      count3=count3
      elseif (sTP(i).G
      count4=count4
      elseif (sTP(i).G
      count5=count5
      elseif (sTP(i).G
      count6=count6
      elseif (sTP(i).G
      count7=count7
      elseif (sTP(i).G
      count8=count8
      elseif (sTP(i).G
      count9=count9
      elseif (sTP(i).G
      count10=count
      elseif (sTP(i).G
      count11=count
      elseif (sTP(i).G
      count12=count
      elseif (sTP(i).G
      count13=count
      endif  
                elseif (ss
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                if (sTP(i).GE.0.and.sTP(i).LT.1)then   
count14+1                          

.GE.1.and.sTP(i).LT.2)then 
count15+1   

.GE.2.and.sTP(i).LT.3)then 
count16+1 

.GE.3.and.sTP(i).LT.4)then 
unt17+1 
).GE.4.and.sTP(i).LT.5)then 
unt18+1 
i).GE.5.and.sTP(i).LT.6)then  
unt19+1 
i).GE.6.and.sTP(i).LT.7)then  
unt20+1 
i).GE.7.and.sTP(i).LT.8)then 
unt21+1 
i).GE.8.and.sTP(i).LT.9)then 
unt22+1 
i).GE.9.and.sTP(i).LT.10)then 
unt23+1 
i).GE.10.and.sTP(i).LT.11)then 
unt24+1 
i).GE.11.and.sTP(i).LT.12)then 
unt25+1 
i).GE.12.and.sTP(i).LT.13)then 
unt26+1 

.20.and.sswh(i).LT.30)then 
d.sTP(i).LT.1)then   
+1                          
1.and.sTP(i).LT.2)then 
+1   

.and.sTP(i).LT.3)then 
+1 
3.and.sTP(i).LT.4)then 
+1 
4.and.sTP(i).LT.5)then 

1 
(i).GE.5.and.sTP(i).LT.6)then  

nt32+1 
GE.6.and.sTP(i).LT.7)then  

nt33+1 
GE.7.and.sTP(i).LT.8)then 

nt34+1 
GE.8.and.sTP(i).LT.9)then 
t35+1 
GE.9.and.sTP(i).LT.10)then 

nt36+1 
E.10.and.sTP(i).LT.11)then 
37+1 
E.11.and.sTP(i).LT.12)then 
38+1 
E.12.and.sTP(i).LT.13)then 

h(i).GE.30.and.sswh(i).LT.40)then 
.0.and.sTP(i).LT.1)then   

count40+1                          
P(i).GE.1.and.sTP(i).LT.2)then 
count41+1   
P(i).GE.2.and.sTP(i).LT.3)then 
count42+1 
P(i).GE.3.and.sTP(i).LT.4)then 
count43+1 
P(i).GE.4.and.sTP(i).LT.5)then 
count44+1 
P(i).GE.5.and.sTP(i).LT.6)then  
count45+1 
P(i).GE.6.and.sTP(i).LT.7)then  
count46+1 
P(i).GE.7.and.sTP(i).LT.8)then 
count47+1 
P(i).GE.8.and.sTP(i).LT.9)then 
count48+1 
P(i).GE.9.and.sTP(i).LT.10)then 
count49+1 

                count14=
                elseif (sTP(i)
                count15=
                elseif (sTP(i)
                count16=
                elseif (sTP(i)
                count17=co
                elseif (sTP(i
                count18=co
                elseif (sTP(
                count19=co
                elseif (sTP(
                count20=co
                elseif (sTP(
                count21=co
                elseif (sTP(
                count22=co
                elseif (sTP(
                count23=co
                elseif (sTP(
                count24=co
                elseif (sTP(
                count25=co
                elseif (sTP(
                count26=co
                endif 
      elseif (sswh(i).GE
      if (sTP(i).GE.0.an
      count27=count27
      elseif (sTP(i).GE.
      count28=count28
      elseif (sTP(i).GE.2
      count29=count29
      elseif (sTP(i).GE.
      count30=count30
      elseif (sTP(i).GE.
      count31=count31+
      elseif (sTP
      count32=cou
      elseif (sTP(i).
      count33=cou
      elseif (sTP(i).
      count34=cou
      elseif (sTP(i).
      count35=coun
      elseif (sTP(i).
      count36=cou
      elseif (sTP(i).G
      count37=count
      elseif (sTP(i).G
      count38=count
      elseif (sTP(i).G
      count39=count39+1 
      endif   
                elseif (ssw
                if (sTP(i).GE
                count40=
                elseif (sT
                count41=
                elseif (sT
                count42=
                elseif (sT
                count43=
                elseif (sT
                count44=
                elseif (sT
                count45=
                elseif (sT
                count46=
                elseif (sT
                count47=
                elseif (sT
                count48=
                elseif (sT
                count49=
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                elseif (sTP(i).GE.10.and.sTP(i).LT.11)then 
count50+1 
P(i).GE.11.and.sTP(i).LT.12)then 
count51+1 
P(i).GE.12.and.sTP(i).LT.13)then 
count52+1 

.GE.40.and.SSWH(i).LT.50)then 
d.sTP(i).LT.1)then   

                    
E.1.and.sTP(i).LT.2)then 

E.2.and.sTP(i).LT.3)then 

E.3.and.sTP(i).LT.4)then 

E.4.and.sTP(i).LT.5)then 

E.5.and.sTP(i).LT.6)then  

E.6.and.sTP(i).LT.7)then  

E.7.and.sTP(i).LT.8)then 

E.8.and.sTP(i).LT.9)then 

E.9.and.sTP(i).LT.10)then 

E.10.and.sTP(i).LT.11)then 

E.11.and.sTP(i).LT.12)then 

E.12.and.sTP(i).LT.13)then 
5+1 

(i).GE.50.and.SSWH(i).LT.60)then 
.0.and.sTP(i).LT.1)then   

count66+1                          
.GE.1.and.sTP(i).LT.2)then 

ount67+1   
.GE.2.and.sTP(i).LT.3)then 

count68+1 
.GE.3.and.sTP(i).LT.4)then 

count69+1 
.GE.4.and.sTP(i).LT.5)then 

count70+1 
P(i).GE.5.and.sTP(i).LT.6)then  
count71+1 

.GE.6.and.sTP(i).LT.7)then  
count72+1 

.GE.7.and.sTP(i).LT.8)then 
count73+1 

.GE.8.and.sTP(i).LT.9)then 
count74+1 

.GE.9.and.sTP(i).LT.10)then 
count75+1 

.GE.10.and.sTP(i).LT.11)then 
count76+1 

.GE.11.and.sTP(i).LT.12)then 
count77+1 

.GE.12.and.sTP(i).LT.13)then 
count78+1 

GE.60.and.SSWH(i).LT.70)then 
nd.sTP(i).LT.1)then   
9+1                          
.1.and.sTP(i).LT.2)then 

0+1   
.2.and.sTP(i).LT.3)then 
+1 
.3.and.sTP(i).LT.4)then 

2+1 
.4.and.sTP(i).LT.5)then 

3+1 
.5.and.sTP(i).LT.6)then  

4+1 

                count50=
                elseif (sT
                count51=
                elseif (sT
                count52=
                endif  
      elseif (SSWH(i)
      if (sTP(i).GE.0.an
      count53=count53+1      
      elseif (sTP(i).G
      count54=count54+1   
      elseif (sTP(i).G
      count55=count55+1 
      elseif (sTP(i).G
      count56=count56+1 
      elseif (sTP(i).G
      count57=count57+1 
      elseif (sTP(i).G
      count58=count58+1 
      elseif (sTP(i).G
      count59=count59+1 
      elseif (sTP(i).G
      count60=count60+1 
      elseif (sTP(i).G
      count61=count61+1 
      elseif (sTP(i).G
      count62=count62+1 
      elseif (sTP(i).G
      count63=count63+1 
      elseif (sTP(i).G
      count64=count64+1 
      elseif (sTP(i).G
      count65=count6
      endif  
                elseif (SSWH
                if (sTP(i).GE
                count66=
                elseif (sTP(i)
                count67=c
                elseif (sTP(i)
                count68=
                elseif (sTP(i)
                count69=
                elseif (sTP(i)
                count70=
                elseif (sT
                count71=
                elseif (sTP(i)
                count72=
                elseif (sTP(i)
                count73=
                elseif (sTP(i)
                count74=
                elseif (sTP(i)
                count75=
                elseif (sTP(i)
                count76=
                elseif (sTP(i)
                count77=
                elseif (sTP(i)
                count78=
                endif  
        elseif (SSWH(i).
        if (sTP(i).GE.0.a
        count79=count7
        elseif (sTP(i).GE
        count80=count8
        elseif (sTP(i).GE
        count81=count81
        elseif (sTP(i).GE
        count82=count8
        elseif (sTP(i).GE
        count83=count8
        elseif (sTP(i).GE
        count84=count8
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        elseif (sTP(i).GE.6.and.sTP(i).LT.7)then  
+1 
7.and.sTP(i).LT.8)then 
+1 

nd.sTP(i).LT.9)then 
+1 
9.and.sTP(i).LT.10)then 
+1 
.10.and.sTP(i).LT.11)then 
+1 
.11.and.sTP(i).LT.12)then 
+1 
.12.and.sTP(i).LT.13)then 
+1 

H(i).GE.70.and.SSWH(i).LT.80)then 
.0.and.sTP(i).LT.1)then   

.1.and.sTP(i).LT.2)then 

(i).GE.4.and.sTP(i).LT.5)then 

ount102+1 
(i).GE.11.and.sTP(i).LT.12)then 
count103+1 

nd.sTP(i).LT.5)then 
unt109+1 

TP(i).GE.5.and.sTP(i).LT.6)then  
=count110+1 
P(i).GE.6.and.sTP(i).LT.7)then  
=count111+1 
P(i).GE.7.and.sTP(i).LT.8)then 
=count112+1 
P(i).GE.8.and.sTP(i).LT.9)then 
=count113+1 
P(i).GE.9.and.sTP(i).LT.10)then 
=count114+1 

(i).GE.10.and.sTP(i).LT.11)then 
count115+1 
(i).GE.11.and.sTP(i).LT.12)then 
count116+1 
(i).GE.12.and.sTP(i).LT.13)then 
count117+1 

 (SSWH(i).GE.90.and.SSWH(i).LE.100)then  
).GE.0.and.sTP(i).LT.1)then   

118=count118+1                          
 (sTP(i).GE.1.and.sTP(i).LT.2)then 
119=count119+1   

        count85=count85
        elseif (sTP(i).GE.
        count86=count86
        elseif (sTP(i).GE.8.a
        count87=count87
        elseif (sTP(i).GE.
        count88=count88
        elseif (sTP(i).GE
        count89=count89
        elseif (sTP(i).GE
        count90=count90
        elseif (sTP(i).GE
        count91=count91
        endif  
                elseif (SSW
                if (sTP(i).GE
                count92=count92+1                          
                elseif (sTP(i).GE
                count93=count93+1   
                elseif (sTP(i).GE.2.and.sTP(i).LT.3)then 
                count94=count94+1 
                elseif (sTP(i).GE.3.and.sTP(i).LT.4)then 
                count95=count95+1 
                elseif (sTP
                count96=count96+1 
                elseif (sTP(i).GE.5.and.sTP(i).LT.6)then  
                count97=count97+1 
                elseif (sTP(i).GE.6.and.sTP(i).LT.7)then  
                count98=count98+1 
                elseif (sTP(i).GE.7.and.sTP(i).LT.8)then 
                count99=count99+1 
                elseif (sTP(i).GE.8.and.sTP(i).LT.9)then 
                count100=count100+1 
                elseif (sTP(i).GE.9.and.sTP(i).LT.10)then 
                count101=count101+1 
                elseif (sTP(i).GE.10.and.sTP(i).LT.11)then 
                count102=c
                elseif (sTP
                count103=
                elseif (sTP(i).GE.12.and.sTP(i).LT.13)then 
                count104=count104+1 
                endif  
        elseif (SSWH(i).GE.80.and.SSWH(i).LT.90)then  
        if (sTP(i).GE.0.and.sTP(i).LT.1)then   
        count105=count105+1                          
        elseif (sTP(i).GE.1.and.sTP(i).LT.2)then 
        count106=count106+1   
        elseif (sTP(i).GE.2.and.sTP(i).LT.3)then 
        count107=count107+1 
        elseif (sTP(i).GE.3.and.sTP(i).LT.4)then 
        count108=count108+1 
        elseif (sTP(i).GE.4.a
        count109=co
        elseif (s
        count110
        elseif (sT
        count111
        elseif (sT
        count112
        elseif (sT
        count113
        elseif (sT
        count114
        elseif (sTP
        count115=
        elseif (sTP
        count116=
        elseif (sTP
        count117=
        endif  
                elseif
                if (sTP(i
                count
                elseif
                count
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                elseif (sTP(i).GE.2.and.sTP(i).LT.3)then 
120=count120+1 
 (sTP(i).GE.3.and.sTP(i).LT.4)then 
121=count121+1 
 (sTP(i).GE.4.and.sTP(i).LT.5)then 
122=count122+1 
 (sTP(i).GE.5.and.sTP(i).LT.6)then  
123=count123+1 
 (sTP(i).GE.6.and.sTP(i).LT.7)then  
124=count124+1 
 (sTP(i).GE.7.and.sTP(i).LT.8)then 
125=count125+1 
 (sTP(i).GE.8.and.sTP(i).LT.9)then 
126=count126+1 
 (sTP(i).GE.9.and.sTP(i).LT.10)then 
127=count127+1 
 (sTP(i).GE.10.and.sTP(i).LT.11)then 
128=count128+1 
 (sTP(i).GE.11.and.sTP(i).LT.12)then 
129=count129+1 
 (sTP(i).GE.12.and.sTP(i).LT.13)then 
130=count130+1 
  
     

 

 

0 
11 
12 
13 
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28 
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3 
44 
45 
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49 

                count
                elseif
                count
                elseif
                count
                elseif
                count
                elseif
                count
                elseif
                count
                elseif
                count
                elseif
                count
                elseif
                count
                elseif
                count
                elseif
                count
                endif
                endif
600   continue 
       
c      read*   
      qi1=count1 
      qi2=count2 
      qi3=count3 
      qi4=count4 
      qi5=count5 
      qi6=count6 
      qi7=count7 
      qi8=count8 
      qi9=count9 
      qi10=count1
      qi11=count
      qi12=count
      qi13=count
      qi14=count
      qi15=count
      qi16=count
      qi17=count
      qi18=count
      qi19=count
      qi20=count
      qi21=count
      qi22=count2
      qi23=count2
      qi24=count
      qi25=count
      qi26=count
      qi27=count
      qi28=count
      qi29=count
      qi30=count
      qi31=count
      qi32=count
      qi33=count
      qi34=count
      qi35=count
      qi36=count
      qi37=count
      qi38=count
      qi39=count
      qi40=count
      qi41=count
      qi42=count
      qi43=count4
      qi44=count
      qi45=count
      qi46=count
      qi47=count
      qi48=count
      qi49=count
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      qi50=count50 
51 

2 
 

4 
5 
6 
7 
8 
9  
0 
1 
2 
3 
4 
5  
6 
7 
8 
9 
0 
1  
2 

 
4 
5 
6 
7 
8 
9 
0 
1 
2 

i83=count83 

count112 

      qi51=count
      qi52=count5
      qi53=count53
      qi54=count5
      qi55=count5
      qi56=count5
      qi57=count5
      qi58=count5
      qi59=count5
      qi60=count6
      qi61=count6
      qi62=count6
      qi63=count6
      qi64=count6
      qi65=count6
      qi66=count6
      qi67=count6
      qi68=count6
      qi69=count6
      qi70=count7
      qi71=count7
      qi72=count7
      qi73=count73
      qi74=count7
      qi75=count7
      qi76=count7
      qi77=count7
      qi78=count7
      qi79=count7
      qi80=count8
      qi81=count8
      qi82=count8
      q
      qi84=count84 
      qi85=count85 
      qi86=count86 
      qi87=count87 
      qi88=count88 
      qi89=count89 
      qi90=count90 
      qi91=count91  
      qi92=count92 
      qi93=count93 
      qi94=count94 
      qi95=count95 
      qi96=count96 
      qi97=count97 
      qi98=count98 
      qi99=count99 
      qi100=count100 
      qi101=count101  
      qi102=count102 
      qi103=count103 
      qi104=count104 
      qi105=count105 
      qi106=count106  
      qi107=count107 
      qi108=count108 
      qi109=count109 
      qi110=count110 
      qi111=count111 
      qi112=
      qi113=count113 
      qi114=count114  
      qi115=count115 
      qi116=count116 
      qi117=count117 
      qi118=count118 
      qi119=count119 
      qi120=count120 
      qi121=count121 
      qi122=count122 
      qi123=count123 
      qi124=count124 
      qi125=count125  



  124

      qi126=count126 
      qi127=count127 
      qi128=count128 
      qi129=count129 
      qi130=count130  
      d=nk-1    
      pi1=(qi1/d)  
      pi2=(qi2/d)  
      pi3=(qi3/d) 
      pi4=(qi4/d) 
      pi5=(qi5/d) 
      pi6=(qi6/d) 
      pi7=(qi7/d)   
      pi8=(qi8/d) 
      pi9=(qi9/d) 
      pi10=(qi10/d) 
      pi11=(qi11/d) 
      pi12=(qi12/d) 
      pi13=(qi13/d) 
      pi14=(qi14/d)  
      pi15 =(qi15/d) 
      pi16 =(qi16/d) 
      pi17 =(qi17/d) 
      pi18 =(qi18/d)       
      pi19 =(qi19/d) 
      pi20 =(qi20/d) 
      pi21 =(qi21/d) 
      pi22 =(qi22/d) 
      pi23 =(qi23/d) 
      pi24 =(qi24/d) 
      pi25 =(qi25/d) 
      pi26 =(qi26/d) 
      pi27 =(qi27/d) 
      pi28 =(qi28/d) 
      pi29 =(qi29/d) 
      pi30 =(qi30/d) 
      pi31 =(qi31/d) 
      pi32 =(qi32/d) 
      pi33 =(qi33/d) 
      pi34 =(qi34/d) 
      pi35 =(qi35/d) 
      pi36 =(qi36/d) 
      pi37 =(qi37/d) 

) 

      pi38 =(qi38/d) 
      pi39 =(qi39/d) 
      pi40 =(qi40/d) 
      pi41 =(qi41/d) 
      pi42 =(qi42/d) 
      pi43 =(qi43/d) 
      pi44 =(qi44/d) 
      pi45 =(qi45/d) 
      pi46 =(qi46/d) 
      pi47 =(qi47/d) 
      pi48 =(qi48/d) 
      pi49 =(qi49/d) 
      pi50 =(qi50/d) 
      pi51 =(qi51/d) 
      pi52 =(qi52/d) 
      pi53 =(qi53/d) 
      pi54 =(qi54/d) 
      pi55 =(qi55/d) 
      pi56 =(qi56/d) 
      pi57 =(qi57/d) 
      pi58 =(qi58/d) 
      pi59 =(qi59/d) 
      pi60 =(qi60/d) 
      pi61 =(qi61/d) 
      pi62 =(qi62/d) 
      pi63 =(qi63/d) 
      pi64 =(qi64/d) 
      pi65 =(qi65/d
      pi66 =(qi66/d) 
      pi67 =(qi67/d) 
      pi68 =(qi68/d) 
      pi69 =(qi69/d) 
      pi70 =(qi70/d) 
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      pi71=(qi71/d)   
      pi72=(qi72/d)  
      pi73=(qi73/d) 
      pi74=(qi74/d) 
      pi75=(qi75/d) 
      pi76=(qi76/d) 
      pi77=(qi77/d)   
      pi78=(qi78/d) 
      pi79=(qi79/d) 
      pi80=(qi80/d) 
      pi81=(qi81/d) 
      pi82=(qi82/d) 
      pi83=(qi83/d) 
      pi84=(qi84/d)  
      pi85=(qi85/d) 
      pi86=(qi86/d) 
      pi87=(qi87/d) 
      pi88=(qi88/d) 
      pi89=(qi89/d) 
      pi90=(qi90/d) 
      pi91=(qi91/d) 
      pi92=(qi92/d) 
      pi93=(qi93/d) 

1/d) 

e' 
  

eprodis,status='new')         
 FOR AREA:',NAME,' ',loc 

R/YEAR:',month,'/',years   

-3                            
           5-6              6-7'            

4,pi15,pi16,pi17,pi18,pi19,pi20 
pi33 

0,pi41,pi42,pi43,pi44,pi45,pi46 
pi59  

6,pi67,pi68,pi69,pi70,pi71,pi72 

      pi94=(qi94/d) 
      pi95=(qi95/d) 
      pi96=(qi96/d) 
      pi97=(qi97/d) 
      pi98=(qi98/d) 
      pi99=(qi99/d) 
      pi100=(qi100/d) 
      pi101=(qi101/d)  
      pi102=(qi102/d)  
      pi103=(qi103/d) 
      pi104=(qi104/d) 
      pi105=(qi105/d) 
      pi106=(qi106/d) 
      pi107=(qi107/d)   
      pi108=(qi108/d) 
      pi109=(qi109/d) 
      pi110=(qi110/d) 
      pi111=(qi111/d) 
      pi112=(qi112/d) 
      pi113=(qi113/d) 
      pi114=(qi114/d)  
      pi115 =(qi115/d) 
      pi116 =(qi116/d) 
      pi117 =(qi117/d) 
      pi118 =(qi118/d)       
      pi119 =(qi119/d) 
      pi120 =(qi120/d) 
      pi121 =(qi12
      pi122 =(qi122/d) 
      pi123 =(qi123/d) 
      pi124 =(qi124/d) 
      pi125 =(qi125/d) 
      pi126 =(qi126/d) 
      pi127 =(qi127/d) 
      pi128 =(qi128/d) 
      pi129 =(qi129/d) 
      pi130 =(qi130/d) 
c      print*,'Enter File Name for Prodis Davies Fil
c      read(*,*)saveprodis 
      saveprodis='dav'//name//years//month 
      open(unit=18,file=sav
      write(18,*)'PROBABILITY DISTRIBUTION
      write(18,*)'QUARTE
      write(18,*)'METHOD: DAVIES et al.' 
      write(18,*)'      ' 
      write(18,*)'SWH/Tz     0-1            1-2             2
     +      3-4              4-5   
      write(18,*)'0-1m',pi1,pi2,pi3,pi4,pi5,pi6,pi7 
      write(18,*)'1-2m',pi1
      write(18,*)'2-3m',pi27,pi28,pi29,pi30,pi31,pi32,
      write(18,*)'3-4m',pi4
      write(18,*)'4-5m',pi53,pi54,pi55,pi56,pi57,pi58,
      write(18,*)'5-6m',pi6
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      write(18,*)'6-7m',pi79,pi80,pi81,pi82,pi83,pi84,pi85 
2,pi93,pi94,pi95,pi96,pi97,pi98 

,*)'8-9m',pi105,pi106,pi107,pi108,pi109,pi110,pi111 
pi124 

            8-9            9-10                                  

i10,pi11,pi12,pi13 

5,pi36,pi37,pi38,pi39 

1,pi62,pi63,pi64,pi65 

7,pi88,pi89,pi90,pi91 
4 

113,pi114,pi115,pi116,pi117 
pi130       

0 

      write(18,*)'7-8m',pi9
      write(18
      write(18,*)'9-10m',pi118,pi119,pi120,pi121,pi122,pi123,
      write(18,*)'      '   
      write(18,*)'      ' 
      write(18,*)'      ' 
      write(18,*)'SWH/Tz      7-8
     +      10-11            11-12            12-13' 
      write(18,*)'0-1m',pi8,pi9,p
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      do 601 i=1,nk-1 

.00.and.sswh(i).LT.10)then 
0.and.sTP1(i).LT.1)then   

+1                       
.1.and.sTP1(i).LT.2)then 

+1   
.2.and.sTP1(i).LT.3)then 

+1 
.GE.3.and.sTP1(i).LT.4)then 

+1 
.4.and.sTP1(i).LT.5)then 

+1 
.5.and.sTP1(i).LT.6)then  

+1 
.6.and.sTP1(i).LT.7)then  

+1 
.7.and.sTP1(i).LT.8)then 

+1 
.8.and.sTP1(i).LT.9)then 

+1 
.9.and.sTP1(i).LT.10)then 

10+1 
.10.and.sTP1(i).LT.11)then 

11+1 
.11.and.sTP1(i).LT.12)then 

12+1 
.12.and.sTP1(i).LT.13)then 

13+1 

swh(i).GE.10.and.sswh(i).LT.20)then 
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oun19+1 
1(i).GE.6.and.sTP1(i).LT.7)then  
un20+1 
1(i).GE.7.and.sTP1(i).LT.8)then 
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+1 
E.4.and.sTP1(i).LT.5)then 
1 
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n32+1 
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      coun35=coun35+1 
i).GE.9.and.sTP1(i).LT.10)then 

un36+1 
.10.and.sTP1(i).LT.11)then 

37+1 
.11.and.sTP1(i).LT.12)then 

38+1 
.GE.12.and.sTP1(i).LT.13)then 
9+1 

wh(i).GE.30.and.sswh(i).LT.40)then 
E.0.and.sTP1(i).LT.1)then   

coun40+1                          
(i).GE.1.and.sTP1(i).LT.2)then 
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(i).GE.2.and.sTP1(i).LT.3)then 
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(i).GE.6.and.sTP1(i).LT.7)then  

coun46+1 
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i).GE.40.and.SSWH(i).LT.50)then 
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3+1                          
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(i).GE.5.and.sTP1(i).LT.6)then  

coun71+1 
TP1(i).GE.6.and.sTP1(i).LT.7)then  
coun72+1 

TP1(i).GE.7.and.sTP1(i).LT.8)then 
coun73+1 

TP1(i).GE.8.and.sTP1(i).LT.9)then 
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TP1(i).GE.9.and.sTP1(i).LT.10)then 
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TP1(i).GE.10.and.sTP1(i).LT.11)then 
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TP1(i).GE.11.and.sTP1(i).LT.12)then 
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TP1(i).GE.12.and.sTP1(i).LT.13)then 
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E.60.and.SSWH(i).LT.70)then 
.and.sTP1(i).LT.1)then   

9+1                          
.1.and.sTP1(i).LT.2)then 

0+1   
.2.and.sTP1(i).LT.3)then 

+1 
.3.and.sTP1(i).LT.4)then 

2+1 
.4.and.sTP1(i).LT.5)then 

3+1 
.5.and.sTP1(i).LT.6)then  

4+1 
E.6.and.sTP1(i).LT.7)then  
+1 
E.7.and.sTP1(i).LT.8)then 
+1 

.and.sTP1(i).LT.9)then 
+1 
E.9.and.sTP1(i).LT.10)then 
+1 
E.10.and.sTP1(i).LT.11)then 

+1 
E.11.and.sTP1(i).LT.12)then 

+1 
E.12.and.sTP1(i).LT.13)then 

+1 

H(i).GE.70.and.SSWH(i).LT.80)then 
GE.0.and.sTP1(i).LT.1)then   

.and.sTP1(i).LT.2)then 

 

1(i).GE.4.and.sTP1(i).LT.5)then 

  

 

un102+1 
1(i).GE.11.and.sTP1(i).LT.12)then 
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      p27 =(q27/d) 
      p28 =(q28/d) 
      p29 =(q29/d) 
      p30 =(q30/d) 
      p31 =(q31/d) 
      p32 =(q32/d) 
      p33 =(q33/d) 
      p34 =(q34/d) 
      p35 =(q35/d) 
      p36 =(q36/d) 
      p37 =(q37/d) 
      p38 =(q38/d) 
      p39 =(q39/d) 
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      p40 =(q40/d) 
      p41 =(q41/d) 
      p42 =(q42/d) 
      p43 =(q43/d) 
      p44 =(q44/d) 
      p45 =(q45/d) 
      p46 =(q46/d) 
      p47 =(q47/d) 
      p48 =(q48/d) 
      p49 =(q49/d) 
      p50 =(q50/d) 
      p51 =(q51/d) 
      p52 =(q52/d) 
      p53 =(q53/d) 
      p54 =(q54/d) 
      p55 =(q55/d) 
      p56 =(q56/d) 
      p57 =(q57/d) 
      p58 =(q58/d) 
      p59 =(q59/d) 
      p60 =(q60/d) 
      p61 =(q61/d) 
      p62 =(q62/d) 
      p63 =(q63/d) 
      p64 =(q64/d) 
      p65 =(q65/d) 
      p66 =(q66/d) 
      p67 =(q67/d) 
      p68 =(q68/d) 
      p69 =(q69/d) 
      p70 =(q70/d) 
      p71=(q71/d)   
      p72=(q72/d)  
      p73=(q73/d) 
      p74=(q74/d) 
      p75=(q75/d) 
      p76=(q76/d) 
      p77=(q77/d)   
      p78=(q78/d) 
      p79=(q79/d) 
      p80=(q80/d) 
      p81=(q81/d) 
      p82=(q82/d) 
      p83=(q83/d) 
      p84=(q84/d)  
      p85=(q85/d) 
      p86=(q86/d) 
      p87=(q87/d) 
      p88=(q88/d) 
      p89=(q89/d) 
      p90=(q90/d) 
      p91=(q91/d) 
      p92=(q92/d) 
      p93=(q93/d) 
      p94=(q94/d) 
      p95=(q95/d) 
      p96=(q96/d) 
      p97=(q97/d) 
      p98=(q98/d) 
      p99=(q99/d) 
      p100=(q100/d) 
      p101=(q101/d)  
      p102=(q102/d)  
      p103=(q103/d) 
      p104=(q104/d) 
      p105=(q105/d) 
      p106=(q106/d) 
      p107=(q107/d)   
      p108=(q108/d) 
      p109=(q109/d) 
      p110=(q110/d) 
      p111=(q111/d) 
      p112=(q112/d) 
      p113=(q113/d) 
      p114=(q114/d)  
      p115 =(q115/d) 
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      p116 =(q116/d) 
      p117 =(q117/d) 
      p118 =(q118/d)       
      p119 =(q119/d) 
      p120 =(q120/d) 
      p121 =(q121/d) 
      p122 =(q122/d) 
      p123 =(q123/d) 
      p124 =(q124/d) 
      p125 =(q125/d) 
      p126 =(q126/d) 
      p127 =(q127/d) 
      p128 =(q128/d) 
      p129 =(q129/d) 
      p130 =(q130/d) 
c      print*,'Enter File Name for Prodis Gommen File' 
c      read(*,*)saveprodisi  
      saveprodisi='gom'//name//years//month 
      open(unit=19,file=saveprodisi,status='new')         
      write(19,*)'PROBABILITY DISTRIBUTION FOR AREA:',NAME,' ',loc 
      write(19,*)'QUARTER/YEAR:',month,'/',years 
      write(19,*)'METHOD:GOMMENGINGER et al. METHOD' 
      write(19,*)'      ' 
      write(19,*)'SWH/Tz     0-1            1-2             2-3                            
     +      3-4              4-5              5-6              6-7'            
      write(19,*)'0-1m',p1,p2,p3,p4,p5,p6,p7 
      write(19,*)'1-2m',p14,p15,p16,p17,p18,p19,p20 
      write(19,*)'2-3m',p27,p28,p29,p30,p31,p32,p33 
      write(19,*)'3-4m',p40,p41,p42,p43,p44,p45,p46 
      write(19,*)'4-5m',p53,p54,p55,p56,p57,p58,p59  
      write(19,*)'5-6m',p66,p67,p68,p69,p70,p71,p72 
      write(19,*)'6-7m',p79,p80,p81,p82,p83,p84,p85 
      write(19,*)'7-8m',p92,p93,p94,p95,p96,p97,p98 
      write(19,*)'8-9m',p105,p106,p107,p108,p109,p110,p111 
      write(19,*)'9-10m',p118,p119,p120,p121,p122,p123,p124 
      write(19,*)'      '   
      write(19,*)'      ' 
      write(19,*)'      ' 
      write(19,*)'SWH/Tz      7-8            8-9            9-10                                  
     +      10-11            11-12            12-13' 
      write(19,*)'0-1m',p8,p9,p10,p11,p12,p13 
      write(19,*)'1-2m',p21,p22,p23,p24,p25,p26     
      write(19,*)'2-3m',p34,p35,p36,p37,p38,p39 
      write(19,*)'3-4m',p47,p48,p49,p50,p51,p52 
      write(19,*)'4-5m',p60,p61,p62,p63,p64,p65 
      write(19,*)'5-6m',p73,p74,p75,p76,p77,p78 
      write(19,*)'6-7m',p86,p87,p88,p89,p90,p91 
      write(19,*)'7-8m',p99,p100,p101,p102,p103,p104 
      write(19,*)'8-9m',p112,p113,p114,p115,p116,p117 
      write(19,*)'9-10m',p125,p126,p127,p128,p129,p130       
      close (unit=19)     
       
c      read*  
      counn1=0  
      counn2=0 
      counn3=0 
      counn4=0 
      counn5=0 
      counn6=0 
      counn7=0 
      counn8=0 
      counn9=0 
      counn10=0 
      counn11=0 
      counn12=0 
      counn13=0 
      counn14=0 
      counn15=0 
      counn16=0 
      counn17=0 
      counn18=0 
      counn19=0 
      counn20=0 
      counn21=0  
      counn22=0 
      counn23=0 
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      counn24=0 
      counn25=0 
      counn26=0 
      counn27=0 
      counn28=0 
      counn29=0 
      counn30=0 
      counn31=0 
      counn32=0 
      counn33=0 
      counn34=0 
      counn35=0 
      counn36=0 
      counn37=0 
      counn38=0 
      counn39=0 
      counn40=0 
      counn41=0 
      counn42=0 
      counn43=0 
      counn44=0 
      counn45=0 
      counn46=0 
      counn47=0 
      counn48=0 
      counn49=0 
      counn50=0 
      counn51=0 
      counn52=0 
      counn53=0 
      counn54=0 
      counn55=0 
      counn56=0 
      counn57=0 
      counn58=0  
      counn59=0 
      counn60=0 
      counn61=0 
      counn62=0 
      counn63=0 
      counn64=0 
      counn65=0 
      counn66=0 
      counn67=0 
      counn68=0 
      counn69=0 
      counn70=0   
      counn71=0  
      counn72=0 
      counn73=0 
      counn74=0 
      counn75=0 
      counn76=0 
      counn77=0 
      counn78=0 
      counn79=0 
      counn80=0 
      counn81=0 
      counn82=0 
      counn83=0 
      counn84=0 
      counn85=0 
      counn86=0 
      counn87=0 
      counn88=0 
      counn89=0 
      counn90=0 
      counn91=0  
      counn92=0 
      counn93=0 
      counn94=0 
      counn95=0 
      counn96=0 
      counn97=0 
      counn98=0 
      counn99=0 
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      counn100=0 
      counn101=0  
      counn102=0 
      counn103=0 
      counn104=0 
      counn105=0 
      counn106=0 
      counn107=0 
      counn108=0 
      counn109=0 
      counn110=0 
      counn111=0 
      counn112=0 
      counn113=0 
      counn114=0 
      counn115=0 
      counn116=0 
      counn117=0 
      counn118=0 
      counn119=0 
      counn120=0 
      counn121=0  
      counn122=0 
      counn123=0 
      counn124=0 
      counn125=0 
      counn126=0 
      counn127=0 
      counn128=0 
      counn129=0 
      counn130=0 
       
      do 602 i=1,nk-1 
      if (sswh(i).GE.00.and.sswh(i).LT.10)then 
      if (sTP2(i).GE.0.and.sTP2(i).LT.1)then   
      counn1=counn1+1                       
      elseif (sTP2(i).GE.1.and.sTP2(i).LT.2)then 
      counn2=counn2+1   
      elseif (sTP2(i).GE.2.and.sTP2(i).LT.3)then 
      counn3=counn3+1 
      elseif (sTP2(i).GE.3.and.sTP2(i).LT.4)then 
      counn4=counn4+1 
      elseif (sTP2(i).GE.4.and.sTP2(i).LT.5)then 
      counn5=counn5+1 
      elseif (sTP2(i).GE.5.and.sTP2(i).LT.6)then  
      counn6=counn6+1 
      elseif (sTP2(i).GE.6.and.sTP2(i).LT.7)then  
      counn7=counn7+1 
      elseif (sTP2(i).GE.7.and.sTP2(i).LT.8)then 
      counn8=counn8+1 
      elseif (sTP2(i).GE.8.and.sTP2(i).LT.9)then 
      counn9=counn9+1 
      elseif (sTP2(i).GE.9.and.sTP2(i).LT.10)then 
      counn10=counn10+1 
      elseif (sTP2(i).GE.10.and.sTP2(i).LT.11)then 
      counn11=counn11+1 
      elseif (sTP2(i).GE.11.and.sTP2(i).LT.12)then 
      counn12=counn12+1 
      elseif (sTP2(i).GE.12.and.sTP2(i).LT.13)then 
      counn13=counn13+1 
      endif  
                elseif (sswh(i).GE.10.and.sswh(i).LT.20)then 
                if (sTP2(i).GE.0.and.sTP2(i).LT.1)then   
                counn14=counn14+1                          
                elseif (sTP2(i).GE.1.and.sTP2(i).LT.2)then 
                counn15=counn15+1   
                elseif (sTP2(i).GE.2.and.sTP2(i).LT.3)then 
                counn16=counn16+1 
                elseif (sTP2(i).GE.3.and.sTP2(i).LT.4)then 
                counn17=counn17+1 
                elseif (sTP2(i).GE.4.and.sTP2(i).LT.5)then 
                counn18=counn18+1 
                elseif (sTP2(i).GE.5.and.sTP2(i).LT.6)then  
                counn19=counn19+1 
                elseif (sTP2(i).GE.6.and.sTP2(i).LT.7)then  
                counn20=counn20+1 
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                elseif (sTP2(i).GE.7.and.sTP2(i).LT.8)then 
                counn21=counn21+1 
                elseif (sTP2(i).GE.8.and.sTP2(i).LT.9)then 
                counn22=counn22+1 
                elseif (sTP2(i).GE.9.and.sTP2(i).LT.10)then 
                counn23=counn23+1 
                elseif (sTP2(i).GE.10.and.sTP2(i).LT.11)then 
                counn24=counn24+1 
                elseif (sTP2(i).GE.11.and.sTP2(i).LT.12)then 
                counn25=counn25+1 
                elseif (sTP2(i).GE.12.and.sTP2(i).LT.13)then 
                counn26=counn26+1 
                endif 
      elseif (sswh(i).GE.20.and.sswh(i).LT.30)then 
      if (sTP2(i).GE.0.and.sTP2(i).LT.1)then   
      counn27=counn27+1                          
      elseif (sTP2(i).GE.1.and.sTP2(i).LT.2)then 
      counn28=counn28+1   
      elseif (sTP2(i).GE.2.and.sTP2(i).LT.3)then 
      counn29=counn29+1 
      elseif (sTP2(i).GE.3.and.sTP2(i).LT.4)then 
      counn30=counn30+1 
      elseif (sTP2(i).GE.4.and.sTP2(i).LT.5)then 
      counn31=counn31+1 
      elseif (sTP2(i).GE.5.and.sTP2(i).LT.6)then  
      counn32=counn32+1 
      elseif (sTP2(i).GE.6.and.sTP2(i).LT.7)then  
      counn33=counn33+1 
      elseif (sTP2(i).GE.7.and.sTP2(i).LT.8)then 
      counn34=counn34+1 
      elseif (sTP2(i).GE.8.and.sTP2(i).LT.9)then 
      counn35=counn35+1 
      elseif (sTP2(i).GE.9.and.sTP2(i).LT.10)then 
      counn36=counn36+1 
      elseif (sTP2(i).GE.10.and.sTP2(i).LT.11)then 
      counn37=counn37+1 
      elseif (sTP2(i).GE.11.and.sTP2(i).LT.12)then 
      counn38=counn38+1 
      elseif (sTP2(i).GE.12.and.sTP2(i).LT.13)then 
      counn39=counn39+1 
      endif   
                elseif (sswh(i).GE.30.and.sswh(i).LT.40)then 
                if (sTP2(i).GE.0.and.sTP2(i).LT.1)then   
                counn40=counn40+1                          
                elseif (sTP2(i).GE.1.and.sTP2(i).LT.2)then 
                counn41=counn41+1   
                elseif (sTP2(i).GE.2.and.sTP2(i).LT.3)then 
                counn42=counn42+1 
                elseif (sTP2(i).GE.3.and.sTP2(i).LT.4)then 
                counn43=counn43+1 
                elseif (sTP2(i).GE.4.and.sTP2(i).LT.5)then 
                counn44=counn44+1 
                elseif (sTP2(i).GE.5.and.sTP2(i).LT.6)then  
                counn45=counn45+1 
                elseif (sTP2(i).GE.6.and.sTP2(i).LT.7)then  
                counn46=counn46+1 
                elseif (sTP2(i).GE.7.and.sTP2(i).LT.8)then 
                counn47=counn47+1 
                elseif (sTP2(i).GE.8.and.sTP2(i).LT.9)then 
                counn48=counn48+1 
                elseif (sTP2(i).GE.9.and.sTP2(i).LT.10)then 
                counn49=counn49+1 
                elseif (sTP2(i).GE.10.and.sTP2(i).LT.11)then 
                counn50=counn50+1 
                elseif (sTP2(i).GE.11.and.sTP2(i).LT.12)then 
                counn51=counn51+1 
                elseif (sTP2(i).GE.12.and.sTP2(i).LT.13)then 
                counn52=counn52+1 
                endif  
      elseif (SSWH(i).GE.40.and.SSWH(i).LT.50)then 
      if (sTP2(i).GE.0.and.sTP2(i).LT.1)then   
      counn53=counn53+1                          
      elseif (sTP2(i).GE.1.and.sTP2(i).LT.2)then 
      counn54=counn54+1   
      elseif (sTP2(i).GE.2.and.sTP2(i).LT.3)then 
      counn55=counn55+1 
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      elseif (sTP2(i).GE.3.and.sTP2(i).LT.4)then 
      counn56=counn56+1 
      elseif (sTP2(i).GE.4.and.sTP2(i).LT.5)then 
      counn57=counn57+1 
      elseif (sTP2(i).GE.5.and.sTP2(i).LT.6)then  
      counn58=counn58+1 
      elseif (sTP2(i).GE.6.and.sTP2(i).LT.7)then  
      counn59=counn59+1 
      elseif (sTP2(i).GE.7.and.sTP2(i).LT.8)then 
      counn60=counn60+1 
      elseif (sTP2(i).GE.8.and.sTP2(i).LT.9)then 
      counn61=counn61+1 
      elseif (sTP2(i).GE.9.and.sTP2(i).LT.10)then 
      counn62=counn62+1 
      elseif (sTP2(i).GE.10.and.sTP2(i).LT.11)then 
      counn63=counn63+1 
      elseif (sTP2(i).GE.11.and.sTP2(i).LT.12)then 
      counn64=counn64+1 
      elseif (sTP2(i).GE.12.and.sTP2(i).LT.13)then 
      counn65=counn65+1 
      endif  
                elseif (SSWH(i).GE.50.and.SSWH(i).LT.60)then 
                if (sTP2(i).GE.0.and.sTP2(i).LT.1)then   
                counn66=counn66+1                          
                elseif (sTP2(i).GE.1.and.sTP2(i).LT.2)then 
                counn67=counn67+1   
                elseif (sTP2(i).GE.2.and.sTP2(i).LT.3)then 
                counn68=counn68+1 
                elseif (sTP2(i).GE.3.and.sTP2(i).LT.4)then 
                counn69=counn69+1 
                elseif (sTP2(i).GE.4.and.sTP2(i).LT.5)then 
                counn70=counn70+1 
                elseif (sTP2(i).GE.5.and.sTP2(i).LT.6)then  
                counn71=counn71+1 
                elseif (sTP2(i).GE.6.and.sTP2(i).LT.7)then  
                counn72=counn72+1 
                elseif (sTP2(i).GE.7.and.sTP2(i).LT.8)then 
                counn73=counn73+1 
                elseif (sTP2(i).GE.8.and.sTP2(i).LT.9)then 
                counn74=counn74+1 
                elseif (sTP2(i).GE.9.and.sTP2(i).LT.10)then 
                counn75=counn75+1 
                elseif (sTP2(i).GE.10.and.sTP2(i).LT.11)then 
                counn76=counn76+1 
                elseif (sTP2(i).GE.11.and.sTP2(i).LT.12)then 
                counn77=counn77+1 
                elseif (sTP2(i).GE.12.and.sTP2(i).LT.13)then 
                counn78=counn78+1 
                endif  
        elseif (SSWH(i).GE.60.and.SSWH(i).LT.70)then 
        if (sTP2(i).GE.0.and.sTP2(i).LT.1)then   
        counn79=counn79+1                          
        elseif (sTP2(i).GE.1.and.sTP2(i).LT.2)then 
        counn80=counn80+1   
        elseif (sTP2(i).GE.2.and.sTP2(i).LT.3)then 
        counn81=counn81+1 
        elseif (sTP2(i).GE.3.and.sTP2(i).LT.4)then 
        counn82=counn82+1 
        elseif (sTP2(i).GE.4.and.sTP2(i).LT.5)then 
        counn83=counn83+1 
        elseif (sTP2(i).GE.5.and.sTP2(i).LT.6)then  
        counn84=counn84+1 
        elseif (sTP2(i).GE.6.and.sTP2(i).LT.7)then  
        counn85=counn85+1 
        elseif (sTP2(i).GE.7.and.sTP2(i).LT.8)then 
        counn86=counn86+1 
        elseif (sTP2(i).GE.8.and.sTP2(i).LT.9)then 
        counn87=counn87+1 
        elseif (sTP2(i).GE.9.and.sTP2(i).LT.10)then 
        counn88=counn88+1 
        elseif (sTP2(i).GE.10.and.sTP2(i).LT.11)then 
        counn89=counn89+1 
        elseif (sTP2(i).GE.11.and.sTP2(i).LT.12)then 
        coun90=counn90+1 
        elseif (sTP2(i).GE.12.and.sTP2(i).LT.13)then 
        counn91=counn91+1 
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        endif  
                elseif (SSWH(i).GE.70.and.SSWH(i).LT.80)then 
                if (sTP2(i).GE.0.and.sTP2(i).LT.1)then   
                counn92=counn92+1                          
                elseif (sTP2(i).GE.1.and.sTP2(i).LT.2)then 
                counn93=counn93+1   
                elseif (sTP2(i).GE.2.and.sTP2(i).LT.3)then 
                counn94=counn94+1 
                elseif (sTP2(i).GE.3.and.sTP2(i).LT.4)then 
                counn95=counn95+1 
                elseif (sTP2(i).GE.4.and.sTP2(i).LT.5)then 
                counn96=counn96+1 
                elseif (sTP2(i).GE.5.and.sTP2(i).LT.6)then  
                counn97=counn97+1 
                elseif (sTP2(i).GE.6.and.sTP2(i).LT.7)then  
                counn98=counn98+1 
                elseif (sTP2(i).GE.7.and.sTP2(i).LT.8)then 
                counn99=counn99+1 
                elseif (sTP2(i).GE.8.and.sTP2(i).LT.9)then 
                counn100=counn100+1 
                elseif (sTP2(i).GE.9.and.sTP2(i).LT.10)then 
                counn101=counn101+1 
                elseif (sTP2(i).GE.10.and.sTP2(i).LT.11)then 
                counn102=counn102+1 
                elseif (sTP2(i).GE.11.and.sTP2(i).LT.12)then 
                counn103=counn103+1 
                elseif (sTP2(i).GE.12.and.sTP2(i).LT.13)then 
                counn104=counn104+1 
                endif  
        elseif (SSWH(i).GE.80.and.SSWH(i).LT.90)then  
        if (sTP2(i).GE.0.and.sTP2(i).LT.1)then   
        counn105=counn105+1                          
        elseif (sTP2(i).GE.1.and.sTP2(i).LT.2)then 
        counn106=counn106+1   
        elseif (sTP2(i).GE.2.and.sTP2(i).LT.3)then 
        counn107=counn107+1 
        elseif (sTP2(i).GE.3.and.sTP2(i).LT.4)then 
        counn108=counn108+1 
        elseif (sTP2(i).GE.4.and.sTP2(i).LT.5)then 
        counn109=counn109+1 
        elseif (sTP2(i).GE.5.and.sTP2(i).LT.6)then  
        counn110=counn110+1 
        elseif (sTP2(i).GE.6.and.sTP2(i).LT.7)then  
        counn111=counn111+1 
        elseif (sTP2(i).GE.7.and.sTP2(i).LT.8)then 
        counn112=counn112+1 
        elseif (sTP2(i).GE.8.and.sTP2(i).LT.9)then 
        counn113=counn113+1 
        elseif (sTP2(i).GE.9.and.sTP2(i).LT.10)then 
        counn114=counn114+1 
        elseif (sTP2(i).GE.10.and.sTP2(i).LT.11)then 
        counn115=counn115+1 
        elseif (sTP2(i).GE.11.and.sTP2(i).LT.12)then 
        counn116=counn116+1 
        elseif (sTP2(i).GE.12.and.sTP2(i).LT.13)then 
        counn117=counn117+1 
        endif  
                elseif (SSWH(i).GE.90.and.SSWH(i).LE.100)then  
                if (sTP2(i).GE.0.and.sTP2(i).LT.1)then   
                counn118=counn118+1                          
                elseif (sTP2(i).GE.1.and.sTP2(i).LT.2)then 
                counn119=counn119+1   
                elseif (sTP2(i).GE.2.and.sTP2(i).LT.3)then 
                counn120=counn120+1 
                elseif (sTP2(i).GE.3.and.sTP2(i).LT.4)then 
                counn121=counn121+1 
                elseif (sTP2(i).GE.4.and.sTP2(i).LT.5)then 
                counn122=counn122+1 
                elseif (sTP2(i).GE.5.and.sTP2(i).LT.6)then  
                counn123=counn123+1 
                elseif (sTP2(i).GE.6.and.sTP2(i).LT.7)then  
                counn124=counn124+1 
                elseif (sTP2(i).GE.7.and.sTP2(i).LT.8)then 
                counn125=counn125+1 
                elseif (sTP2(i).GE.8.and.sTP2(i).LT.9)then 
                counn126=counn126+1 
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                elseif (sTP2(i).GE.9.and.sTP2(i).LT.10)then 
                counn127=counn127+1 
                elseif (sTP2(i).GE.10.and.sTP2(i).LT.11)then 
                counn128=counn128+1 
                elseif (sTP2(i).GE.11.and.sTP2(i).LT.12)then 
                counn129=counn129+1 
                elseif (sTP2(i).GE.12.and.sTP2(i).LT.13)then 
                counn130=counn130+1 
                endif  
                endif     
602   continue 
       
c      read*   
      qu1=counn1  
      qu2=counn2 
      qu3=counn3 
      qu4=counn4 
      qu5=counn5 
      qu6=counn6  
      qu7=counn7 
      qu8=counn8 
      qu9=counn9 
      qu10=counn10 
      qu11=counn11 
      qu12=counn12 
      qu13=counn13 
      qu14=counn14  
      qu15=counn15 
      qu16=counn16 
      qu17=counn17 
      qu18=counn18 
      qu19=counn19 
      qu20=counn20 
      qu21=counn21 
      qu22=counn22 
      qu23=counn23 
      qu24=counn24 
      qu25=counn25  
      qu26=counn26 
      qu27=counn27 
      qu28=counn28 
      qu29=counn29 
      qu30=counn30 
      qu31=counn31 
      qu32=counn32 
      qu33=counn33 
      qu34=counn34 
      qu35=counn35 
      qu36=counn36  
      qu37=counn37 
      qu38=counn38 
      qu39=counn39 
      qu40=counn40 
      qu41=counn41 
      qu42=counn42 
      qu43=counn43 
      qu44=counn44 
      qu45=counn45 
      qu46=counn46 
      qu47=counn47 
      qu48=counn48  
      qu49=counn49 
      qu50=counn50 
      qu51=counn51 
      qu52=counn52 
      qu53=counn53 
      qu54=counn54 
      qu55=counn55 
      qu56=counn56 
      qu57=counn57 
      qu58=counn58 
      qu59=counn59  
      qu60=counn60 
      qu61=counn61 
      qu62=counn62 
      qu63=counn63 
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      qu64=counn64 
      qu65=counn65  
      qu66=counn66 
      qu67=counn67 
      qu68=counn68 
      qu69=counn69 
      qu70=counn70 
      qu71=counn71  
      qu72=counn72 
      qu73=counn73 
      qu74=counn74 
      qu75=counn75 
      qu76=counn76 
      qu77=counn77 
      qu78=counn78 
      qu79=counn79 
      qu80=counn80 
      qu81=counn81 
      qu82=counn82 
      qu83=counn83 
      qu84=counn84 
      qu85=counn85 
      qu86=counn86 
      qu87=counn87 
      qu88=counn88 
      qu89=counn89 
      qu90=counn90 
      qu91=counn91  
      qu92=counn92 
      qu93=counn93 
      qu94=counn94 
      qu95=counn95 
      qu96=counn96 
      qu97=counn97 
      qu98=counn98 
      qu99=counn99 
      qu100=counn100 
      qu101=counn101  
      qu102=counn102 
      qu103=counn103 
      qu104=counn104 
      qu105=counn105 
      qu106=counn106  
      qu107=counn107 
      qu108=counn108 
      qu109=counn109 
      qu110=counn110 
      qu111=counn111 
      qu112=counn112 
      qu113=counn113 
      qu114=counn114  
      qu115=counn115 
      qu116=counn116 
      qu117=counn117 
      qu118=counn118 
      qu119=counn119 
      qu120=counn120 
      qu121=counn121 
      qu122=counn122 
      qu123=counn123 
      qu124=counn124 
      qu125=counn125  
      qu126=counn126 
      qu127=counn127 
      qu128=counn128 
      qu129=counn129 
      qu130=counn130  
      d=nk-1     
      pu1=(qu1/d)  
      pu2=(qu2/d)  
      pu3=(qu3/d) 
      pu4=(qu4/d) 
      pu5=(qu5/d) 
      pu6=(qu6/d) 
      pu7=(qu7/d)   
      pu8=(qu8/d) 
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      pu9=(qu9/d) 
      pu10=(qu10/d) 
      pu11=(qu11/d) 
      pu12=(qu12/d) 
      pu13=(qu13/d) 
      pu14=(qu14/d)  
      pu15 =(qu15/d) 
      pu16 =(qu16/d) 
      pu17 =(qu17/d) 
      pu18 =(qu18/d)       
      pu19 =(qu19/d) 
      pu20 =(qu20/d) 
      pu21 =(qu21/d) 
      pu22 =(qu22/d) 
      pu23 =(qu23/d) 
      pu24 =(qu24/d) 
      pu25 =(qu25/d) 
      pu26 =(qu26/d) 
      pu27 =(qu27/d) 
      pu28 =(qu28/d) 
      pu29 =(qu29/d) 
      pu30 =(qu30/d) 
      pu31 =(qu31/d) 
      pu32 =(qu32/d) 
      pu33 =(qu33/d) 
      pu34 =(qu34/d) 
      pu35 =(qu35/d) 
      pu36 =(qu36/d) 
      pu37 =(qu37/d) 
      pu38 =(qu38/d) 
      pu39 =(qu39/d) 
      pu40 =(qu40/d) 
      pu41 =(qu41/d) 
      pu42 =(qu42/d) 
      pu43 =(qu43/d) 
      pu44 =(qu44/d) 
      pu45 =(qu45/d) 
      pu46 =(qu46/d) 
      pu47 =(qu47/d) 
      pu48 =(qu48/d) 
      pu49 =(qu49/d) 
      pu50 =(qu50/d) 
      pu51 =(qu51/d) 
      pu52 =(qu52/d) 
      pu53 =(qu53/d) 
      pu54 =(qu54/d) 
      pu55 =(qu55/d) 
      pu56 =(qu56/d) 
      pu57 =(qu57/d) 
      pu58 =(qu58/d) 
      pu59 =(qu59/d) 
      pu60 =(qu60/d) 
      pu61 =(qu61/d) 
      pu62 =(qu62/d) 
      pu63 =(qu63/d) 
      pu64 =(qu64/d) 
      pu65 =(qu65/d) 
      pu66 =(qu66/d) 
      pu67 =(qu67/d) 
      pu68 =(qu68/d) 
      pu69 =(qu69/d) 
      pu70 =(qu70/d) 
      pu71=(qu71/d)   
      pu72=(qu72/d)  
      pu73=(qu73/d) 
      pu74=(qu74/d) 
      pu75=(qu75/d) 
      pu76=(qu76/d) 
      pu77=(qu77/d)   
      pu78=(qu78/d) 
      pu79=(qu79/d) 
      pu80=(qu80/d) 
      pu81=(qu81/d) 
      pu82=(qu82/d) 
      pu83=(qu83/d) 
      pu84=(qu84/d)  
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      pu85=(qu85/d) 
      pu86=(qu86/d) 
      pu87=(qu87/d) 
      pu88=(qu88/d) 
      pu89=(qu89/d) 
      pu90=(qu90/d) 
      pu91=(qu91/d) 
      pu92=(qu92/d) 
      pu93=(qu93/d) 
      pu94=(qu94/d) 
      pu95=(qu95/d) 
      pu96=(qu96/d) 
      pu97=(qu97/d) 
      pu98=(qu98/d) 
      pu99=(qu99/d) 
      pu100=(qu100/d) 
      pu101=(qu101/d)  
      pu102=(qu102/d)  
      pu103=(qu103/d) 
      pu104=(qu104/d) 
      pu105=(qu105/d) 
      pu106=(qu106/d) 
      pu107=(qu107/d)   
      pu108=(qu108/d) 
      pu109=(qu109/d) 
      pu110=(qu110/d) 
      pu111=(qu111/d) 
      pu112=(qu112/d) 
      pu113=(qu113/d) 
      pu114=(qu114/d)  
      pu115 =(qu115/d) 
      pu116 =(qu116/d) 
      pu117 =(qu117/d) 
      pu118 =(qu118/d)       
      pu119 =(qu119/d) 
      pu120 =(qu120/d) 
      pu121 =(qu121/d) 
      pu122 =(qu122/d) 
      pu123 =(qu123/d) 
      pu124 =(qu124/d) 
      pu125 =(qu125/d) 
      pu126 =(qu126/d) 
      pu127 =(qu127/d) 
      pu128 =(qu128/d) 
      pu129 =(qu129/d) 
      pu130 =(qu130/d) 
c      print*,'Enter File Name for Prodis Hwang File' 
c      read(*,*)saveprodissi   
      saveprodissi='hwa'//name//years//month 
      open(unit=20,file=saveprodissi,status='new')         
      write(20,*)'PROBABILITY DISTRIBUTION FOR AREA:',NAME,' ',loc 
      write(20,*)'QUARTER/YEAR:',month,'/',years 
      write(20,*)'METHOD:HWANG et al. METHOD' 
      write(20,*)'      ' 
      write(20,*)'SWH/Tz     0-1            1-2             2-3                            
     +      3-4              4-5              5-6              6-7'            
      write(20,*)'0-1m',pu1,pu2,pu3,pu4,pu5,pu6,pu7 
      write(20,*)'1-2m',pu14,pu15,pu16,pu17,pu18,pu19,pu20 
      write(20,*)'2-3m',pu27,pu28,pu29,pu30,pu31,pu32,pu33 
      write(20,*)'3-4m',pu40,pu41,pu42,pu43,pu44,pu45,pu46 
      write(20,*)'4-5m',pu53,pu54,pu55,pu56,pu57,pu58,pu59  
      write(20,*)'5-6m',pu66,pu67,pu68,pu69,pu70,pu71,pu72 
      write(20,*)'6-7m',pu79,pu80,pu81,pu82,pu83,pu84,pu85 
      write(20,*)'7-8m',pu92,pu93,pu94,pu95,pu96,pu97,pu98 
      write(20,*)'8-9m',pu105,pu106,pu107,pu108,pu109,pu110,pu111 
      write(20,*)'9-10m',pu118,pu119,pu120,pu121,pu122,pu123,pu124 
      write(20,*)'      '   
      write(20,*)'      ' 
      write(20,*)'      ' 
      write(20,*)'SWH/Tz      7-8            8-9            9-10                                  
     +      10-11            11-12            12-13' 
      write(20,*)'0-1m',pu8,pu9,pu10,pu11,pu12,pu13 
      write(20,*)'1-2m',pu21,pu22,pu23,pu24,pu25,pu26     
      write(20,*)'2-3m',pu34,pu35,pu36,pu37,pu38,pu39 
      write(20,*)'3-4m',pu47,pu48,pu49,pu50,pu51,pu52 
      write(20,*)'4-5m',pu60,pu61,pu62,pu63,pu64,pu65 
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      write(20,*)'5-6m',pu73,pu74,pu75,pu76,pu77,pu78 
      write(20,*)'6-7m',pu86,pu87,pu88,pu89,pu90,pu91 
      write(20,*)'7-8m',pu99,pu100,pu101,pu102,pu103,pu104 
      write(20,*)'8-9m',pu112,pu113,pu114,pu115,pu116,pu117 
      write(20,*)'9-10m',pu125,pu126,pu127,pu128,pu129,pu130       
      close (unit=20)   
c      endif       
c Changing to other area 
c      print*,'Change to new location? (y/n)' 
c      read*,newlocation 
c      if (newlocation.eq.'Y'.or.newlocation.eq.'y')then 
c      go to 1000 
c      endif 
        END 
 
 

Appendix D: Program code to automate the procedures 
 




