TURTLE HEARING CLASSIFICATION FOR TURTLE EXCLUDER DEVICES DESIGN

ANTON YUDHANA

UNIVERSITI TEKNOLOGI MALAYSIA

TURTLE HEARING CLASSIFICATION FOR TURTLE EXCLUDER DEVICES DESIGN

ANTON YUDHANA

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > FEBRUARY 2011

To my beloved mother, father, wife, and children

ACKNOWLEDGEMENT

Alhamdulillah. I praise and glorify be only to Allah SWT the Almighty, the Most Beneficent, and the Most Merciful, whose blessings and guidance have helped me to be able to finish this thesis. In particular, I wish to express my sincere appreciation to my supervisor, Associate Professor Dr. Jafri Din for encouragement, guidance, critics, advices, motivation, and friendship. Without his support and interest, this thesis would not have been the same as presented here.

I am also indebted to Ministry of National Education (Depdiknas) Indonesia and Ministry of Science, Technology, and Innovation (MOSTI) Malaysia for their financial support during the term of this study. Many thanks to my colleague Mr. Sunardi, Mr.Reza Firsandaya Malik, Lam Hok Yin, Mr. Tole Sutikno, Mrs. Lina Handayani, and Mr. Ditto Prihadi. Also full thanks to Mr. Ahmad Syahril Mohd Nawi for their supports. Thanks to Turtle and Marine Ecosystem Center (TUMEC) Terengganu Malaysia for providing research infrastructure for facilities, researchers, and staff, especially Syed Abdullah and YM Raja Bidin Raja Hassan, I am grateful for their warm hospitality and for taking the time to share with me their knowledge of the turtles of Malaysia. Mr. Jamil and TUMEC staffs are thanked for assisting ABR measurements. Gratefully acknowledge to Department of Electrical Engineering Universitas Ahmad Dahlan (UAD) Yogyakarta Indonesia for the opportunity to pursue Ph.D. program at UTM. This thesis will not be completed without their full encouragement and support as a solid team.

My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members, especially my beloved mother Sri Kusnani. Finally, specially thanks to my wife Erny Yuliati, my children: Enas Zakiya Yudhana, Enaya Zahira Yudhana, and Elmas Zubair Yudhana for their encouragement and praying of every time is my power finishing this research.

ABSTRACT

The process of reducing the accidental capture and subsequent mortalities of sea turtles in regional captured fisheries through the use of Turtle Excluder Device (TED) has been extremely important. The objectives of this study is to determine the hearing ability for Green Turtle (Chelonia Midas), identify the green turtle and fish behavior on various sound exposures, and determine the specification of TED using underwater sound technique. Auditory Brainstem Response system is used to identify the hearing threshold of the turtle. The measurements were performed at Turtle and Marine Ecosystem Center (TUMEC) Terengganu, Perak, and Melaka Malaysia. It was conducted at a turtle tank by employing click and tone stimulus. Turtle ages of 2 years, 5 years, 9 years, and 30 years were deployed. The measured data were analyzed in time and frequency domains. It is found that the green turtle has a hearing ability in the range of 50 Hz to 1200 Hz. The results showed that turtle hearing sensitivity is about 300 Hz to 500 Hz. Also, the measurement of ambient noise in the life habitat has been conducted. The measurements were divided into 3 different distances from the sea shore: 200 m, 400 m, and 800 m and within 3 different sea depth: 2 m, 5 m, and 10 m for each point, respectively. The frequency and maximum magnitude of ambient noise are found to increase as the depth increased. Finally, the behavior of the turtle and fish towards the emitted sound has been observed. A group of signals that dispel turtles have been determined. The types of signals are Low and High Frequency Modulation, white noise, and sinusoidal signal. These signals do not give any respond to the fish. Therefore, this information is very useful in the development of TED using sound.

ABSTRAK

Proses mengurangkan kejadian penyu terperangkap dan kematian penyu dalam industri perikanan dengan menggunakan Turtle Excluder Device (TED) adalah sangat penting. Objektif kajian ini adalah untuk mengenalpasti kelakuan penyu hijau (*Chelonia Midas*) kepada bunyi yang dipancarkan, menentukan kelakuan penyu hijau dan ikan dalam menerima pelbagai bunyi, serta menentukan spesifikasi TED menggunakan teknik bunyi bawah laut. Sistem ABR (Auditori Brainstem Response) digunakan untuk mengenalpasti batas pendengaran penyu. Pengukuran dilakukan di Turtle and Marine Ecosystem Center (TUMEC) Terengganu, Perak, dan Melaka Malaysia. Pengukuran telah dijalankan dalam tangki penyu menggunakan stimulus klik dan tone. Usia penyu yang digunakan adalah 2, 5, 9, dan 30 tahun. Data terukur telah dianalisa dalam domain masa dan frekuensi. Kemampuan pendengaran penyu hijau telah dikenal pasti pada julat frekuensi dari 50 Hz ke 1200 Hz. Hasil menunjukkan bahawa pendengaran penyu paling sensitif adalah pada julat 300 Hz ke 500 Hz. Pengukuran aras hingar di laut telah pun dilakukan. Pengukuran dilakukan pada tiga jarak yang berbeza iatu, 200 m, 400 m, dan 800 m daripada pantai dengan 3 perbezaan kedalaman pada masing-masing titik pengukuran iaitu, 2 m, 5 m, dan 10 m. Frekuensi dan magnitud maksimum daripada aras hingar didapati meningkat dengan peningkatan kedalaman. Akhirnya, perilaku penyu dan ikan terhadap bunyi yang dipancarkan telah pun diperhatikan. Kumpulan bunyi yang boleh menghalau penyu telahpun dikenal pasti. Jenis bunyi tersebut adalah modulasi frekuensi rendah tinggi, noise putih, dan isyarat sinusoidal. Isyarat bunyi ini tidak memberikan sebarang kesan pada ikan. Oleh kerana itu, informasi ini sangat berguna bagi perancangan TED menggunakan bunyi.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABREVIATIONS	XV
	LIST OF SYMBOLS	xvii
	LIST OF APPENDICES	xviii
1	INTRODUCTION	1
	1.1 Research Background	1
	1.2 Problem Statement	2
	1.3 Objectives	3
	1.4 Research Scope	3
	1.5 Outline	3
2	LITERATURE REVIEW	5
	2.1 Introduction	
	2.2 Types of Sea Turtle	5
	2.2.1 Green Turtle Morphology	9
	2.2.2 Evolutionary Trends and Conservation	9
	2.2.3 Green Turtles Distribution in Malaysia	10

2.3 Underwater Acoustic Units of Measurement	13
2.4 The decibel Scale in Underwater Acoustics	14
2.5 Turtle Auditory System	17
2.6 Turtle and Fish Hearing Threshold	20
2.7 Turtle Excluder Devices (TED)	25
2.8 Long Line and Gill Net	28
2.9 Sound Classification	31
2.10 Fast Fourier Transform (FFT) Algorithm	33
2.11 FFT Application on Spectral Analysis	34
2.12 Summary	35
RESEARCH METHODOLOGY	36
3.1 Introduction	36
3.2 Design of Study	36
3.3 Research Materials and Life Specimens	37
3.3.1. Research Tank	37
3.3.2. Green Turtle	40
3.3.3. Targeted Fish	42
3.3.4. SmartEp Software	43
3.3.5. Hydrophone for Recording Underwater	45
sound	
3.3.6. Sound Generator	46
3.3.7. Underwater Speaker	48
3.3.8. Sound Recorder Software	49
3.3.9. Matlab Software	50
3.4 Measurements Procedures	50
3.4.1 Types of Measurement	50
3.4.2 ABR Response Measurement	50
3.4.3 Seawater Quality Measurement in Life	52
Habitat	
3.4.4 Seawater Quality Measurement in the	53
Research Tank	
3.4.5 Sound Profile Measurement	54

3

3.4.6	5 Turtle and Fish Response Towards Sound	55
3.5 Spect	tral Analysis of The ABR Waveforms and	56
Soun	d Profile	
3.5.1	ABR Waveforms Data Extraction	56
3.5.2	2 Sound Calibration Method	58
3.5.3	3 Sound Profile Data Extraction	58
3.5.4	Program Implementation and Analysis	60
3.6 Sum	nary	61
RESULT	S AND DISCUSSIONS	62
4.1 Intro	oduction	62
4.2 Turt	le Auditory Brainstem Response	62
4.2.1	Turtle Age 2 years	64
4.2.2	2 Turtle Age 5 years	67
4.2.3	3 Turtle Age 9 Years	69
4.2.4	Turtle Age 30 Years	71
4.3 Seav	vater Profile	77
4.3.1	Life Habitat Water Quality	77
4.3.2	2 Portable Instrument	78
4.3.3	Fixed Instrument	79
4.4 Sour	nd Profile	81
4.4.1	Seawater Sound Profile	81
4.4.2	2 Research Tank Sound Profile	83
4.5 Sour	nd Characterization	85
4.5.1	LFM Sound Profile	85
4.5.2	. Sinusoidal Sound Profile	86
4.5.3	. White Noise Sound Profile	88
4.6 Turtl	e and Fish Response	90
4.6.1	Turtle Response	90
4.6.2	2 Fish Response	91
4.7. Prob	lem Encountered	91
4.8. Key	Contributions	92
4.9. Sum	mary	92

4

5	CONCLUSIONS AND FUTURE WORKS	93
	5.1 Conclusion	93
	5.2 Future Works	94

REFERENCES

95

Appendices A – F3	100-137

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Sound speed in some medium	14
2.2	The hearing ranges of fish	20
3.1	Hydrophone C304 Technical specification	45
3.2	Underwater Speaker Lubell 3400 Technical Specification	48
4.1	Turtle's morphology in ABR measurement	61
4.2	ABR setup for green turtles ages 2 years	62
4.3	ABR response green turtles ages 2 years	64
4.4	Water quality recorded by using portable meter in life habitat	76
4.5	Water quality recorded by using portable meter in the tank	76
4.6	Water quality recorded by using automatic meter (Half Day)	77
4.7	Water quality recorded by using automatic meter (Two days)	78
4.8	Water quality recorded by using automatic meter (Three days)	79
4.9	Seawater sound profile in the life habitat	80
4.10	Seawater sound profile in the research tank	82
4.11	Frequency and magnitude of LFM sound profile	84
4.12	Frequency and magnitude of Sinusoidal Sound profile	85
4.13	Frequency and magnitude White Noise Sound profile	87

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Green turtle (chelonia midas)	5
2.2	The hawksbill turtle	6
2.3	The leatherback turtle	7
2.4	Lipas turtle	7
2.5	Sites of green turtle for hatchling in Malaysia Peninsula.	10
2.6	Maps of east Malaysia for egg and hatchling	11
2.7	The post breeding migration of three C.midas Female	
	(a,b,and C) and one C.midas (D) release from Ma'Daerah	12
	Turtle Sanctuary Terengganu Malaysia	
2.8	ABR waveforms	17
2.9	Diagrammatic representation of a Turtle Excluder Device	25
	fitted to a trawl	23
2.9	Senangin II, research vessel, equipped with trawl net	28
2.11	Trawl net at senangin II	29
2.12	Trawl operation at Senangin II	29
2.13	Diver filming TED	30
3.1	The main site of research	36
3.2	Primary research tank with square shape	37
3.3	The second tank with round shape	37
3.4	The third tank with square shape	38
3.5	Research tank arrangement	38
3.6	Tank in cleaning	39
3.7	The species of research in the main tank	40
3.8	The green turtle places in stable condition	40

3.9	The weight measurement of turtle	41
3.10	The fish in the second tank	42
3.11	SmartEp main screen	43
3.12	Hydrophone C304	44
3.13	Generated sound software	46
3.14	Speaker type Lubell 3400	47
3.15	Sound recorder using edit audio software	48
3.16	Green turtle in ABR measurement	50
3.17	Green turtle was stationed by jacket for ABR measurement	51
3.18	Quality of Seawater measurement in life habitat	52
3.19	Quality of Seawater measurement in tank	53
3.20	Sound profile in the research tank	54
3.21	Acquired ABR data analysis flow	56
3.22	Reference sound analysis software	57
3.23	Monitored signal of water in tank profile	58
3.24	Extracted monitored signal in the tank	58
3.25	Acquired sound profile analysis	59
4.1	Green turtle morphology	61
4.2	ABR signal spectral of green turtle ages of 2 years	63
4.3	Turtle ages of 2 years hearing sensitivity	65
4.4	ABR signal spectral of green turtle ages of 5 years	66
4.5	Turtle ages of 5 years hearing sensitivity	67
4.6	ABR signal spectral of green turtle ages of 9 years	68
4.7	Turtle ages of 9 years hearing sensitivity	69
4.8	ABR signal spectral of green turtle ages of 30 years	70
4.9	Turtle ages of 30 years hearing sensitivity	70
4.10	Minimum frequencies of turtle's hearing	72
4.11	Maximum frequencies of turtle hearing	72
4.12	Green turtle's hearing bandwidth	73
4.13	Green turtle's hearing range	74
4.14	Hearing ranges constellation	75
4.15	Noise floor in the life habitat(distance=200m,depth=2m)	79
4.16	Research tank sound profile	81

4.17	LFM sound profile	83
4.18	Sinusoidal sound profile	85
4.19	White noise sound profile	86

LIST OF ABBREVIATIONS

ABR	-	Auditory Brainstem Response
AEP	-	Auditory evoked potentials
ANSI	-	American National Standard for Institute
ASCII	-	American Standard Code for Information Interchange
ASSR	-	Auditory Steady State Response
AULS	-	Autonomous Underwater Listening Station
CWT	-	Complex Wavelet Transform
dBnHL	-	dB scale relative to normal hearing level
DO	-	Dissolved Oxygen
EEG	-	Electro EnchepaloGraph
EFR	-	envelope following response
EFR	-	envelope following response
FFT	-	Fast Fourier Transform
hh	-	Hour
IHS	-	Intelligent Hearing System
L	-	length
LFM	-	Low Frequency Modulation
mm	-	Minute
MRTF	-	modulation rate transfer function
NMFS	-	National Marine Fisheries Service
NN	-	neural network
NOAA	-	National Oceanic and Atmospheric Administration
NPF	-	Northern Prawn Fishery
PTT	-	push to talk
RMS	-	Root Mean Square

RMSE	-	The Root Mean Squared Error
Sal	-	Salinity
sd	-	Stimulus Duration
SEAFDEC	-	South East Asian Fisheries Development Center
SNR	-	signal to noise ratio
SpCond	-	Sound propagation Conductivity
SPL	-	Sound Pressure Level
SS	-	Second
SSE	-	The Sum of Squares due to Error
Std	-	Standard Deviation
STFT	-	Short Time Fourier Transform
STFT	-	short time Fourier Transform
Т	-	tall
TED	-	Turtle Excluder Devices
Temp	-	Temperature
TUMEC	-	Turtle and Marine Ecosystem Center
UTM	-	Universiti Teknologi Malaysia
W	-	width
WN	-	White Noise

LIST OF SYMBOLS

μ	-	micro
W	-	watt
m^2	-	meter square
ms	-	mili second
re	-	relative
Pa	-	Pascal
L	-	liter
mg	-	mili gram
С	-	celcius
d	-	depth
°C	-	degree celcius
Ω	-	ohm
Vdc	-	volt direct current
(Lx WxT)	-	LenghtxWidthxTall

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	List of Author's Publication	100
В	Source Code	101
C1	First measurement Procedure	107
C2	Second measurement Procedure	108
C3	Third measurement Procedure	109
C4	Fourth measurement Procedure	110
C5	Fifth measurement Procedure	111
C6	Sixth measurement Procedure	112
C7	Seventh measurement Procedure	113
C8	Eight measurement Procedure	114
D1	ABR and sound profile recording	115
D2	ABR System Setup and resulted data	116
D3	ABR spectral in smartEp	122
E1	Sound Profile in Life Habitat (distance=100m)	124
E2	Sound Profile in Life Habitat (distance=200m)	125
E3	Sound Profile in Life Habitat (distance=400m)	127
E4	Sound Profile in Life Habitat (distance=800m)	129
E5	Noise Floor in the life habitat (distance=200m)	131
E6	Noise Floor in the life habitat (distance=400m)	132
E7	Noise Floor in the life habitat (distance=800m)	133
E8	Peak of Magnitude for Life Habitat Noise Floor	134
F1	Sound Characterization Measurement	135
F2	Turtle response towards sound	136
F3	Fish response towards sound	137

CHAPTER 1

INTRODUCTION

1.1 Research Background

Sea turtles are important marine animals, not only under CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora) agreement but also traditional living resources in the ASEAN region. Most of the ASEAN member countries have established national programs on the conservation and enhancement of sea turtles. However, information on research, conservation and enhancement of these animals in the region is rather fragmented.

Fisheries (Prohibition of Fishing) Regulations 1990 is released by Fisheries Department Malaysia prohibits unsustainable fishing practices gill net (pukat hanyut) for catching stingray or skates fish (ikan pari) at zone A or coastal marine (5 mile from coast line) of the sea. One reason for this prohibition is the incidental captured of the turtle in the net. Turtle and stingray have the same habitat and when the turtle landed to reproduce and feed into the beach they would died in drawn out caused by catch in the net. The number of landed turtle in Malaysia decrease every year. (http://turtlemalaysia.gov.my/ancaman.html). Eckert (1999) reported that green turtle (*Chelonia mydas*) is classified as endangered species, while the hawksbill turtle (*Eretmochelys imbricata*) and the leatherback-turtle (*Dermochelys coriacea*) are classified as critically endangered.

Fisheries Regulation 1990 was aimed to prevent turtle extinction when this regulation had caused stingray fish production got decrease. The stingray fish is quite popular in Malaysia and it is in line with the food industry variety. The demand of this fish is increase in Malaysia. Recreational and sport fishing stingray is also point of interest for tourism industry in Malaysia. The other benefit, its skin had commercial values in exotic leather wear and very rare to found any of the stingray skin wallets in Malaysia.

Meanwhile, the usage of gill net by fisheries had been monitored by local authority because of many fisheries still used it in illegal fishing. The Turtle and Marine Ecosystem Center (TUMEC) has been reported that in 2006 under Fisheries Department they had confiscated more 20 gill nets in the inspection in Terengganu reported by (http://web10.bernama.com/maritime/news). Fishermen still used the gill net in the zone A that has much stingray population there. Plenty of fishes had been collected, but incidentals capture of sea turtles in fishing gear is another major problem. One interesting point to note is that hook and long lines do not seem to be catching turtles within Malaysian territorial waters, although they are known to take turtles in offshore areas. It is clear that prohibition is not really effective.

1.2 Problem Statements

The process of reducing the incidental capture and subsequent mortalities of sea turtles in regional shrimp fisheries through the use of TED (Turtle Excluder Device) has been extremely important. This is the considering to global significance of Southeast Asia's turtle populations and the importance of shrimp's fisheries to regional economies and fishing communities. Furthermore, little is known of sea turtles' auditory behavior. Thus, the study on turtle's hearing especially green turtle is needed.

1.3 Objectives

The main purpose of this research is proposed Turtle Excluder Devices (TED) using Sound technique. The proposed TED designed begin by conducted some basic objectives of research step. The following objectives are:

- To determine the hearing ability for green turtle.
- To identify the green turtle behavior on various sound exposures.
- To determine the specification of TED using underwater sound technique.

1.4 Research Scope

In order to achieve the research objectives, the following scopes will be covered:

- Measurement of turtle hearing threshold using Auditory Brainstem Response (ABR) System.
- Measurement of underwater sound profile.
- Green turtle ABR data analysis.
- Investigation of sound profile in sea water.
- Measurement of the green turtle behavior on specific sound exposures.

1.5 Outline

The thesis is divided into five chapters. Following is an introductory chapter that defines the importance of sea turtles, the aimed of fisheries regulations 1990, and the usage of gill net by fisheries. Then the problem statements, objective, research scope and thesis outline are given.

Chapter 2 begins by discussed on the types of sea turtles with green turtle morphology, evolutionary trends and conservation and green turtle distribution in Malaysia. Then, in the following section are discussed on underwater acoustic units of measurement, the decibel scale in underwater acoustics, turtle auditory system, turtle and fish hearing threshold, TED, long line and gill net, sound classification, Fast Fourier Transform (FFT) algorithm. Finally, FFT application on spectral analysis is discussed.

Chapter 3 presents the research methodology. This chapter begins by discuss design of study, research materials and life specimens, measurements procedures, spectral analysis of the ABR waveforms and sound profile.

Chapter 4 presents the results and discussion. The results consist of turtle auditory brainstem response, seawater profile, sound profile, sound characterization, turtle and fish response, and problem encountered. Finally, the contributions of the research are given.

Chapter 5 presents the conclusion and future works. Simulated and measured results are compared. The experimental verification process is explained with numerical analysis given. The key contributions in this thesis are highlighted. Finally, some recommendations on further work as well as a concluding statement are given.