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PERFORMANCE INVESTIGATION OF ENERGY TRANSPORT 

MEDIA AS INFLUENCED BY CROP BASED PROPERTIES 



ABSTRACT 

 

 

 

Todays concern of protecting the environment has encouraged the research and the 

use of environmental friendly products. This project initiates the experimental investigation 

of using palm based oil as hydraulic fluid. This research was aimed at obtaining a better 

understanding of short term performance and long term durability of palm based oil working 

as hydraulic fluid. A vane pump test rig was designed and built. The instantaneous data were 

recorded in a computer using an analog-to-digital data acquisition system. The rig was 

integrated with LabVIEW software version 6.1. Among the data stored are reservoir and 

return line temperatures, suction and delivery pressures, instantaneous flow rate, total flow, 

total running time and torque. Test rig performance running on palm oil was determined and 

monitored. In order to predict the oil performance in the test rig operation, bench tests were 

also conducted in evaluating the thermal and rheological performance of the oil. The bench 

tests gave useful insight to the performance of the actual test rig. Some improvement of the 

oil was made and tested on the hydraulic test rig. The results indicate that ageing process was 

significantly improved by the additived oil. The investigation also indicates that flow slip, 

viscous friction, and coulomb friction coefficients were affected by oil and hydraulic 

component conditions. Non-Newtonian behavior of the oil had been analyzed using five 

rheological models. It was found that Cross and Carreau rheological models provided best 

correlation coefficient (R2 > 0.999) to the oil under investigation. The palm oil had relatively 

strong shear thinning behavior with flow behavior index (n) lower than 0.8 compared to 

mineral hydraulic oil (n>0.9). However this effect was less pronounced at high temperatures. 

Modified power law and generalized models were proposed to study variation of Newtonian 

level of the oil with temperature and shear rate. Thermal stability of the oils was also 

investigated using thermogravimetry analysis (TGA). Based on thermodynamic activation 

energy (Ea), onset temperature and acid value, the recommended treat level for F10 additive 

is between 1.5% to 2% (wt/wt) while for L135 additive is 1.5% (wt/wt). In the aspect of 

tribology, more than 60% wear occurred during the first 500 hours of operation. In general, 

the results show that the additived palm oil is comparable if not better than the commercial 

biodegradable hydraulic fluid that is derived from rapeseed oil. 
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ABSTRAK 

 

 

 

 Keperihatinan untuk menjaga alam sekitar telah menggalakkan penyelidikan dan 

penggunaan bahan mesra alam. Projek ini mengetuai penyelidikan penggunaan minyak asas 

sawit sebagai bendalir hidraulik. Projek ini bermatlamat untuk mendapatkan pemahaman 

prestasi jangka pendek dan ketahanan jangka panjang minyak asas sawit bekerja sebagai 

bendalir hidraulik. Rig pengujian pam ram telah direka dan dibina. Data semasa disimpan 

dalam komputer menerusi sistem perolehan data analog-ke-digital. Rig dilengkapkan dengan 

perisian LabVIEW versi 6.1. Di antara data yang disimpan adalah suhu takungan dan talian 

kembali, tekanan sedutan dan hantaran, kadar alir semasa, jumlah masa operasi dan daya 

kilas. Prestasi rig menggunakan minyak sawit ditentukan dan diawasi. Untuk menjangkakan 

prestasi minyak dalam rig ujian, ujian meja dijalankan untuk menilai prestasi terma dan 

reologi minyak. Pengujian ini memberikan maklumat berguna terhadap prestasi dalam rig 

sebenar. Pembaikan ke atas minyak telah dibuat dan diuji dalam rig ujian hidraulik. 

Keputusan menunjukkan bahawa kadar penuaan banyak diperbaiki oleh minyak beraditif. 

Kajian ini juga menunjukkan bahawa pekali gelincir aliran, geseran likat dan geseran 

coulomb dipengaruhi oleh keadaan minyak dan komponen hidraulik.  Kelakuan tak-

Newtonian minyak telah dianalisakan menggunakan lima model reologi. Model reologi 

Cross dan Carreau telah didapati memberikan pekali perkaitan terbaik (R2>0.999) kepada 

minyak yang dikaji. Minyak sawit mempunyai kelakuan penipisan tegasan yang agak ketara 

dengan indeks kelakuan aliran (n) kurang dari 0.8 berbanding dengan minyak hidraulik 

mineral (n>0.9). Bagaimanapun, kesan ini kurang nyata pada suhu tinggi. Model hukum 

kuasa terubahsuai dan umum telah dicadangkan untuk mengkaji perubahan tahap Newtonian 

minyak terhadap suhu dan terikan ricih. Kestabilan terma minyak juga dikaji menggunakan 

analisa termogravimetri (TGA). Berdasarkan tenaga aktiviti termodinamik (Ea), suhu onset 

dan tahap acid, kadar campuran yang dicadangkan bagi aditif F10 adalah di antara 1.5% ke 

2.0% (berat/berat), dan untuk aditif L135 adalah 1.5% (berat/berat). Dari aspek tribologi, 

lebih dari 60% kehausan berlaku semasa 500 jam pertama operasi. Secara umum, keputusan 

menunjukkan minyak sawit beraditif adalah setara, jika tidak lebih baik, dari bendalir 

hidraulik boleh biorosot komersial yang dihasilkan dari minyak biji sesawi. 
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CHAPTER 1 

 
 
 

INTRODUCTION 

 
 
 
1.1 Introduction 

 

Plant or vegetable based hydraulic fluid represents breakthrough and 

interesting technology and products in the aspect of being biodegradable, 

environmental friendly and fire resistance. Several European and American based 

crop oils have been researched and converted to commercial hydraulic fluid. The 

challenge now is to investigate another potential plant oil that is also a main source 

of oils and fats: Palm Oil. Even several vegetable based oils have been used as 

hydraulic fluid, but not much is reported on the performance of hydraulic system 

when this type of oil is used. Thus this project investigates and evaluates the palm oil 

as hydraulic fluid in actual test rig and bench tests. 

 

 

1.2 Background of Research 

 

The usage of environmentally benign product as lubricants and hydraulic 

fluid has many advantages. Some of the positive points are high biodegradability, 

non-toxic to living organism and non-pollutant to water, soil and air. The good 

choice for benign raw material is vegetable oil. This base material is derived from 

renewable resource. Vegetable oils were already considered as potential industrial 

fluid as early as 1900s. The early use of vegetable as industrial component includes 

coolant in power capacitors and electrical transformers in 1990s. However the use 

was merely experimental than commercial (Oommen and Claiborne, 1999). The 

interest to use this type of oils decreases due to several disadvantages in industrial 



 2

applications such as oxidative and thermal stability. Furthermore, these oils have less 

economic advantages since the price is at least twice as much as petroleum based oil. 

Thus later these oils were used mainly as foodstuff. 

 

Due to increase in environmental awareness lately, research in converting 

vegetable based oil into non-food application has revived. The research includes the 

potential use of this base oil as hydraulic fluid, surfactants, solvents, drilling fluid, 

transmission fluid and lubricants. The base oil can also be converted to oleochemical 

product before being tested in engine or industrial machines (Demirbas, 2002; 

Antolinm et al., 2002; Demirbas, 2003; Rao and Mohan, 2003; da Silva et al., 2003). 

Vegetable or plant oil is considered the most likely candidate for a fully 

biodegradable hydraulic fluid. Plant oil is a natural resource available in abundance. 

It is a good power transmission media, lubricating agent and corrosion protection 

agent. 

 

The hydraulic fluid is always considered as a major component in a hydraulic 

system. The fluid can be regarded as the system blood, an element that connects the 

whole parts together. The main functions of hydraulic fluid are transmitting power 

efficiently, lubricating moving parts and absorbing, transporting and transferring heat 

from heat source back to reservoir or heat exchanger. 

 

As there are growing concerns in some regions over the use of mineral-based 

hydraulic oils in several types of hydraulic systems, the vegetable oil-based hydraulic 

oils serve as the alternative solution to the environmental problems caused by the 

mineral-based oils (Kassfeldt and Dave, 1997). From the viewpoint of natural 

environmental requirement, the vegetable oil is non-toxic and environmental benign. 

Other reasons for their contribution in future hydraulic fluid are:  

 

i. Vegetable oil is of renewable resource, plentiful in supply and relatively low 

cost. 

ii. The oil is non-toxic and biodegradable. 

iii. The oil has good lubricating performance (Ohno et al., 1997). 

iv. No significant adverse effects on unit performance characteristics (Cheng et 

al., 1994). 
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v. Inherently high viscosity index. 

 

However, it is well known that vegetable oils have poor low-temperature 

fluidity and rapid oxidation at elevated temperatures. Besides, vegetable oils are 

limited to their naturally inherent viscosity (dynamic viscosity at 40ºC is around 30 

to 45 cP depending on oil type) (Cheng et al., 1994). Some other disadvantages of 

the vegetable-based hydraulic oils are: 

 

i. Unmodified or non-additive oil cannot provide adequate long-term 

performance. 

ii. Low oxidation resistance especially at elevated temperatures.  

iii. More expensive than conventional mineral oil for those with capable of 

meeting required temperature and oxidation performance. 

iv. Cause excessive swelling of nitrite rubbers (NBR), which are generally used 

in hydraulic system (Ohkawa, 1979). This especially occurs due to high 

acidic value when the oil is oxidized.  

 

Due to several natural advantages and disadvantages, continuous efforts are 

being made to further investigate and improve the vegetable based fluid (Honary, 

1996; Krzan and Vizintin, 2003). Most of the vegetable oils studied are canola, soy, 

sunflower and crambe oils. No technical report has been published on the use of 

palm oil as hydraulic fluid. However, several reports have been made on the use of 

palm based materials such as biodiesel and lubricant (Masjuki and Maleque, 1996b, 

1997; Masjuki et al., 1999; Maleque et al., 2000; Yunus et al., 2003; Yaacob, 2004). 
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1.3 Objectives 

 

The major objectives of this work were to investigate the thermal and 

rheological properties of palm oil as hydraulic fluid. The work includes:  

 

i) To design and set up an integrated laboratory scale hydraulic test rig which 

can measure hydraulic performance in addition to wear performance of pump. 

ii) To test and analyze thermal performance and rheological behavior of palm 

based oils, in bench tests and when used in the built hydraulic system. 

iii) To determine suitable additives to be incorporated into palm oil for 

improving its thermal oxidative performance. 

iv) To identify and propose suitable mathematical rheological models for the oil 

under investigation.  

v) To investigate the influence of fluid properties on major hydraulic 

components. 

 

 

1.4 Scope and Limitation 

 

 The study is subjected to the following scopes and limitations: 

 

i) The performance investigation for bench test was limited to thermal and 

rheological performance. These two areas are interrelated. The thermal 

stability will affect the rheological performance.  

ii) The crop oil under study was limited to palm oil. Other oil data and results 

were also be used for comparison purposes. 

iii) The work includes the design, fabrication, instrumentation, system 

improvement, data collection and data analysis.  
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iv) The performance investigations are limited to bench tests and hydraulic test 

rig test, where the former has to be conducted prior to the latter test. Several 

standard tests were performed at some accredited testing institutions.  

 

In the present study the palm oil supply was obtained from a refinery in Pasir 

Gudang, Johor. Otherwise stated, the oil was obtained from local retailer. In the 

bench test, several heating temperatures were used. Commercial and basic additives 

were tested. Seven types of oils were evaluated in low temperature and pressure 

hydraulic test.  

 

 

1.5 Significance and Contribution of Work 

 

The major contributions of this work can be summarized as follows: 

 

i. A suitable test rig to evaluate palm based hydraulic fluid has been designed, 

fabricated and set-up. The test rig as stipulated in BS and ASTM standards 

can only measure wear performance. The rig built in this study incorporated 

novel instrumentation and data acquisition system. Thus using this rig not 

only wear performance can be evaluated but also hydraulic performance. 

ii. Various rheological models have been used for representing rheological 

properties of various oils. However, no such report has been made for palm 

oil. In this study two best models were identified to represent palm oil 

rheological properties. The widely used power law model was found to be 

less accurate to represent palm oil rheological properties. A modified 

rheological model was proposed to study the effect temperature on flow 

behavior. A generalized rheological model which can include the effect of 

both temperature and shear rate was also proposed.  

iii. Thermal study of palm oil blends was compared and evaluated by several 

means. Additives to improve palm oil thermal stability have been optimized.  

iv. Extensive experimental results from the hydraulic system prototype were 

obtained, analyzed and presented. Variation of flow and friction coefficients 

with several operating conditions was observed. Wear on hydraulic 

components was studied. 
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1.6 Work Flow Chart 

 

Figure 1.1 summarizes the work flow of the research study.  Initially, various 

hydraulic models were produced. Then the work proceed with the test rig detailed 

design and fabrication. Parallel to the test rig development, different grades of palm 

oils were evaluated in bench tests. The purpose of the bench tests is to predict the 

palm oil performance when used in hydraulic system. 

 

 

1.7 Thesis Outline 

 

This thesis contains five chapters. The first chapter contains a general 

introduction and background of the thesis. Objective, scope and importance of work 

are outlined. The rest of the chapters are described below.  

 

Chapter 2 starts by quoting several researches work in hydraulic fluid, 

lubricant and related areas. It then provides the review of literature of the thermal-

oxidation, rheological and hydraulic study performed by past researchers. Important 

theoretical background is included in this chapter. This chapter discusses the theory 

of viscosity and rheology. Viscosity and rheological models are provided.  

 

Chapter 3 presents the research methodology and describes the equipment 

used in this study. Development and important features of hydraulic test rig are 

described. This chapter also includes computer programs used in analyzing the data.  

 

Chapter 4 presents the bench and hydraulic test rig data. This includes the 

basic properties of palm oil blends, rheological and thermal performances obtained 

from both bench tests and hydraulic test rig, and test rig performances when palm 

oils were used in continuous and intermittent operation. It then analyzes and 

discusses all the results obtained.  

 

Finally, Chapter 5 is the concluding chapter. This chapter summarizes and 

concludes the research that has been carried out in this study. Future work is 

suggested at the end of this chapter. 
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CHAPTER 2 

 
 
 

LITERATURE AND THEORETICAL BACKGROUND 

 
 
 
2.1 Introduction 

 

Due to problems of petroleum based fluid such as toxicity, water and land 

pollutant, fire risk, non-biodegradability and limited resource there is a unique 

opportunity to produce new environmental acceptable lubricants derived from natural 

ester like vegetable oils. It is reported that world production of 17 major oils and fat 

are over 100 billion tones and out of this 79% are from vegetable oils (Hamm and 

Hamilton, 2000).  

 

 Research, development and application of vegetable based oil in industrial 

and automotive sectors are rapidly increasing. The attractive part of vegetable oils is 

they are natural, non-toxic, biodegradable, relatively non-polluting and derived from 

renewable raw material (Wilson, 1998).  During the last decade due to strict 

government and environmental regulations, there has been a constant demand for 

environmentally friendly lubricants (Rhee, 1996). Most of lubricants originate from 

petroleum stock, which is toxic to environment and difficult to dispose. Vegetable 

oils are preferred over synthetic and mineral based fluids because they are renewable 

resources and cheaper. Vegetable oils with high oleic content are considered to be 

potential candidates to substitute conventional mineral oil based lubricating oils and 

synthetic esters (Randles and Wright, 1992; Asadauskas et al., 1996).  

 

Most of the properties of vegetable oils are similar to commercial mineral 

hydraulic fluids. However, according to Randles and Wright (1992) and Battersby et 

al. (1998), vegetable oils as lubricants are preferred because they are biodegradable 
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and non-toxic, unlike mineral based oil. Basically vegetable oils have lower volatility 

than mineral oil (low evaporation and high flash point), higher bulk modulus (stiff 

hydraulic system), better fire resistance and better additives solvency (Wilson, 1998). 

Vegetable oils have very low volatility due to the high molecular weight of the 

triacylcerol molecule. In addition, vegetable oils have high solubilizing power for 

polar contaminants and additive molecules (Adhvaryu et al., 2005). 

 

Vegetable oils when used as industrial or automotive applications show 

excellent lubricity.  It has better inherent lubricity (good boundary lubricating 

properties), higher viscosity index (relatively small change in viscosity with 

temperature) compared to petroleum oil (Sivasankaran et al., 1988).  These 

advantages are mainly due to the polar ester structure and high molecular weight in 

comparison to all non-polar petroleum derive hydrocarbon. Polar ester groups are 

able to adhere to metal surfaces, and therefore, possess good boundary lubrication 

properties (Bisht et al., 1993). 

 

Nevertheless, vegetable oils have been slow to gain wide acceptance in 

engineering application, mainly it is because of their variable quality, higher 

production cost when compare to mineral oils and significant performance limitation. 

It has low thermal and oxidative stability (Asadauskas et al., 1996) and thus has 

limited resistance to oxidation in storage and in service. The low hydrolytic stability 

renders the oil to hydrolysis susceptibility in the presence of water to produce 

corrosive acidic breakdown products. The oil also has poor low temperature behavior 

and high pour point and has some problem with component compatibility, tendency 

to clog filters, poor resistance to foaming, causing swelling and softening of seals 

(Wilson, 1998).  

 

Polar oxy compounds produced during oxidation process result in insoluble 

deposits and increases in oil acidity and viscosity. The presence of ester functionality 

renders the vegetable oil to further hydrolytic breakdown (Rhodes et al., 1995). 

Ohkawa et al. (1995) shows that aged vegetable oils have poor corrosion protection.  

 

Due to the above weaknesses, only small portion of vegetable oil is converted 

into lubricant. According to Sraj et al. (2000), only 2% of vegetable oil is used for 
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energy production and transportation in today market while mineral based oil has 

83% share. The balance is synthetic based lubricant. However, the prognosis for the 

next ten years foresees that hydraulic fluids based on vegetable oils could reach 

about 8% of market share.  

 

 

2.2 Research in Related Areas 

 

Large amount of money and great effort have been put on investigating the 

use of vegetable oil-diesel blends and vegetable oil esters as biofuel (Ziejewski and 

Kaufman, 1983; Mittelbach and Trillhart, 1988; Hermmerlein et al., 1991; Altin et 

al., 2001; Kalam and Masjuki, 2002). Much of the work involves esterification of the 

oil while others involve in testing the fuel in engines. Other efforts are involved in 

vegetable based-lubricant and hydraulic fluid. 

 

Stoffa, J.V. (1995) has patented functional fluids from vegetable oil 

triglyceride. The base oil comprises of genetically modified sunflower, rapeseed, 

lesquerella or meadowform oil. However, Gapinski et al. (1994) and Becker and 

Knorr (1996) pointed out that vegetable oils have poor oxidative stability. This is 

primarily due to the presence of bis allylic protons. The vegetable oils are also 

susceptible to radical attack and subsequently undergo oxidative degradation to form 

polar oxy compounds.  

 

Joint research work between University of Delaware, University of Illinois 

and DuPont Company has developed a high oleic soybean oil-based hydraulic fluid 

(Glancey et al, 1996). The research suggests that the development of competitive 

vegetable oil-based industrial products should involve a combination approach of 

additives as well as alterations of fatty acid composition via genetic modifications. 

Several additives should be used to enhance oxidative stability and anti-wear 

characteristics. 

 

According to Carnes (2004), North American Caterpillar has teamed up with 

Agricultural Research Services National Center developing and testing several new 
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fluids such as biolubricant, hydraulic fluid and other industrial applications derived 

from vegetable oils including soybean, corn and sunflower. 

 

 

2.2.1 Lubricants 

 

The main and general function of a lubricant is to lubricate moving parts in 

order to reduce friction and wear. In general, lubricants can be categorized as liquid, 

semisolid and solid lubricant. Majority of the lubricants fall under liquid category, 

either oil based or water based (Booser, 1994). Bearing, hydraulic and engine oils are 

examples of liquid lubricants. Synthetic lubricant researchers, Yao (1997) used 

sodium acetylacetonate while Huang et al. (2000) used sulfurone-benzothiazole 

methyl ester as their synthetic additives. However synthetic lubricants are expensive 

and have high toxicity (Adhvaryu, 2005). At present majority of the liquid lubricants 

are petroleum based. However, special machines require special lubricants. For 

example if the machine has high external leakage or come into contact with food or 

drinking water source, the machine requires high degree of biodegradable lubricant. 

 

According to Glaeser et al. (1992), the most worthy liquid lubricant is the 

engine oil. This is due to the regular change of the oil as recommended by the vehicle 

manufacturer. If wear occurs due to improper lubrication, such as in automotive 

industry, the cost can be estimated to be more than $40 billion annually. Due to this 

factor, research in engine oil is tremendous (Godfrey, 1991; Tomita et al., 1995; 

Bartz, 1998; Gautam et al., 1999; Priest and Taylor, 2000; Cerny et al., 2001; Weller 

and Perez, 2001). There is increasing interest to investigate biodegradable and 

environmentally friendly engine oils (Sivasankaran et al., 1988). Basic research 

involves studying tribological aspects of this lubricant.  

 

Recently there is increasing interest to investigate and produce synthetic 

lubricant from epoxidized vegetable oil. Adhvaryu et al. (2005) come up with 

synthetic approach for chemical modification of vegetable oils to improve their 

thermo-oxidative and low-temperature stability. The bio-fluids from this chemical 

modification offer great potential for the development of industrial fluid such as 

hydraulic fluid and engine oil. 
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Great interest in engine oil research is also available in Malaysia. Most of the 

work done was by Masjuki et al.. The main interest is in palm based lubricants 

(Masjuki and Maleque, 1996b; Masjuki et al., 1999; Maleque et al., 2000). The 

research on using palm based lubricant was also conducted by Castrol at Paddington, 

United Kingdom (Surina, 1995). An European patent has been produced based on 

this research. The company produces motorcycle 2T oil but the research is not made 

known to others. Researchers in Universiti Putra Malaysia have produced lubricants 

that can reduce wear in engine up to 15% (Yaacob, 2004).  

 

 

2.2.2 Hydraulic Fluid 

 

Hydraulic fluid can be regarded as the ‘blood’ for hydraulic systems. As the 

blood in human body, the fluid travels to all parts in hydraulic systems. The 

functions of hydraulic fluid can be outlined as follows (Busch and Baske, 1993): 

 

• As media for power transmission (power transfer efficiency) 

• Lubricates the moving parts (lubricity) 

• Work as cooling media (heat capacity) 

• Transport of contaminants (compatibility, stability) 

 

However, contrary to human blood, the fluid degrades with time. The 

degradation is accelerated due to a number of factors. Thus the fluid performance for 

the above four functions decreases. The performance decrease depends on types of 

hydraulic fluid. So it is a challenge for power hydraulic researcher and oil producer 

to formulate new and better hydraulic fluid to meet more stringent regulation and 

demanding usage. At present there are several types of hydraulic fluid used in 

hydraulic systems. The most widely used is petroleum-based fluid which cater 

around 80% of the consumption (Pinches and Ashby, 1989). Petroleum is 

nonrenewable resource. For instance, with the current findings, Malaysia oil reserve 

can last for another 20 years. Thus the consumption rate of the oil should be reduced 

and alternatives to the petroleum based oil must be searched. 
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 It has been estimated that European Economic Community (EEC) countries 

are producing approximately 400 million liters of hydraulic fluid a year. This fluid at 

the end of its operational life time has to be disposed. This mineral based oil when 

exposed can pose serious potential damage to the environment. It is worth to stress 

that the additives used in present lubricant not only pose danger to the environment 

but also poisonous if the oil leaks out from system and gets into our water drinking 

systems. Improper disposal, even if it is incidental, may be the source of large 

penalties or even litigations. 

 

 Van der Waal and Kenbeek (1993) point out that there is a need for the 

hydraulic fluid supplier and user to think of a new hydraulic fluid that is less 

hazardous to the environment. Considerable effort has been made in turning 

vegetable oils into potential hydraulic fluid. Different researchers research different 

crops as hydraulic fluid.  Lazzeri et al. (1997) studied the use of crambe oil as 

hydraulic oil and quenchant. Honary (1998) studied soybean oil in several bench 

tests and hydraulic systems. Willing (2001) dealt with several plant oils, fats and 

tallow. 

 

In Finland, researchers at Institute of Hydraulics, Tempere University of 

Technology studied the use of vegetable oil as hydraulic fluid using two units of 

hydraulic system (Lappalainen and Jokinen, 1984). Other institutions are Lulea 

University of Sweden (Kassfeldt and Dave, 1997) and Technische Universitat 

Hamburg, Germany (Feldmann and Kessler (1998)). The most common vegetable 

oils that have been researched for hydraulic fluid are canola oil or rapeseed oil, 

soybean oil and high oleic sunflower oil. Brief results of the researches are cited 

respectively in corresponding papers. The advantage of vegetable oil over water 

based fluid as hydraulic fluid is that the vegetable oil has similar viscosity as mineral 

oil. Researchers in Engineering Department of Maine studied the use of animal oil as 

hydraulic fluid (Christensen and Bimbo, 1996). 
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2.3 Oil Thermal Oxidation  

 

Thermal oxidation is the major concern that limits the use of vegetable oils as 

lubricating fluid. Thermal oxidation leads to polymerisation and degradation. 

Polymerisation increases the viscosity that reduces the functionality of lubricating 

fluids. Further degradation leads to breakdown products that are volatile, corrosive 

and diminish the structure and properties of the lubricant. Several alternatives are 

available to improve the vegetable oil thermal oxidation stability: genetic 

modification, chemical processing and use of additives (Kodali, 2002). 

 

Additives were used to retard the degradation of thermal degradation (Yao, 

1997; El-Qurashi and Ali, 1997). Some additives interfere with free radicals by a 

chain breaking mechanism during initiation or propagation stage of oxidation. 

Butylated hydroxyanisole (BHA), butylated hydroxyl toluene (BHT) and tertiary 

butyl hydroquinone (TBHQ) are the examples of this additive type. Thus the 

presence of additive in oil can improve or lengthen the oil life time. 

 

The factors that affect the lubricant stability are oxygen, contamination with 

water and corrosive acids, which limit the useful life of lubricant. Besides that, 

oxidation is also accelerated by increasing the exposed temperature. All lubricating 

oils react with oxygen in air, eventually forming acids or sludge products. These 

products could cause surface corrosion or blocking of component clearance 

(Maleque et al., 2000).  

 

Oxidation process is the most important reaction of oils resulting in increased 

acidity, corrosion, viscosity and volatility when used as lubricant based oils. 

Oxidative stability depends on the presence of unsaturated fatty acids in the 

triacyglycerol molecule due to the double bond (C=C) in fatty acids (Adhvaryu et al, 

2000). For example, the lower the unsaturation the better the oxidative stability, but 

with higher pour point. 

 

Reaction of the double bond includes hydrogen abstraction, addition reaction, 

fragmentation, rearrangement, disproportionate reaction and polymerisation. 

Unsaturated fatty acyl chains react with molecular oxygen to form free radical that 
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lead to polymerisation and fragmentation. The rate of oxidation depends on the 

degree of unsaturation of fatty acyl chain as shown in Figure 2.1. 

 

Oil oxidation can occur in three stages which includes initiation, propagation 

and termination (Figure 2.2). Hydroperoxides are primary products of oxidation. Due 

to their unstable nature, the hydroperoxides will break down and produce free 

radicals, aldehydes, ketones and alcohols (Adhvaryu et al., 1999; Erhan and 

Asadauskas, 2000; Adhvaryu and Erhan, 2002; Sharma and Stipanovic, 2003; 

Gomez-Rico et al., 2003; Rehman et al., 2004). At this point decomposition 

compounds can undergo further oxidation to produce carboxylic acids or they may 

polymerize. When the carboxylic acid is produced, the acid number of the oil is 

increased (Figure 2.3). Thus one of the tests that can be used to study the oil 

condition after heating is the total acid number test. If the oil polymerize, then 

viscosity test can be used to check the oil deterioration condition. 
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Figure 2.1: Fatty acids – rate of oxidation (Kodali, 2002). 
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Figure 2.2: Initiation, propagation and termination of triglycerides oxidation process 
(Solomons and Fryhle, 2000). 
 
 
 
 
 
 

 

Initiation : RH    →  R • + H • 

 

Propagation : R • + O2  →  ROO•   (fast reaction) 

   RO2 • + RH   → ROOH + R•  (rate-determining step) 

ROOH  → RO• + • OH 

RO•  + RH  → ROH + R• 

• OH + RH → OH2 + R• 

 

Termination : ROO • + ROO •  → O2 + ROOR 

   ROO • + R •  → ROOR 

   R • + R •  → R –R  
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         A fat or oil     Glycerol            Fatty acids 

Figure 2.3: The hydrolysis of oil produces glycerols and fatty acids (Solomons and 
Fryhle, 2000). 
 

 

2.3.1  Oil Thermal Degradation Tests in Oil and Fat Industries 

 

Oil will oxidize when exposed to various environmental conditions, 

especially heat and air. The oxidative product can influence further oil degradation 

process (catalyze the process).  Thus the oxidation status of the oil has to be 

monitored or checked. In oil and fat industries, there are several methods to 

determine the oil condition and to determine the oil thermal and oxidative stability. 

 

The methods used to determine the rate at which the oxidation process 

advances are related to the measurement of the concentration of primary and 

secondary oxidation products. Rate of oxygen consumed during this process also can 

be used as an indicator for oxidation level. Some of the indicators that can be used to 

determine rate of oxidation are PV which measures hydroperoxide concentration and 

TAN which measures acid level. Among other tests are Schall oven, active oxygen 

method (AOM), oxidative stability indeed (OSI), thermal gravimetric analysis (TGA) 

and differential scanning calorimetry (DSC).  
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2.3.1.1 Schaal Oven Test 

 

This test measures the oil stability both physically and chemically. 100g oil 

sample is sealed in a bottle and placed in a dry compartment at 65oC. The sample is 

monitored periodically. The induction time is indicated by first sign of rancid odor 

and PV increase. This method is labor intensive and time consuming. 

 

 

2.3.1.2 Active Oxygen Method (AOM) 

 

This method measures the oil stability in terms of time (in hour) required for 

a sample to reach a predetermined peroxide value (PV 100 meq/kg) under specific 

condition. 5 g oil sample is bubbled with dried air at a flow rate of 140 ml/min at a 

temperature of 96.7oC. Similar to Schaal oven test, the progress of oxidation is 

monitored periodically in terms of PV.  

 

 

2.3.1.3 Oil Stability Instrument (OSI) 

 

Rancimat method is a widely used method in evaluating oxidative stability of 

vegetable oil. Induction time is the indicator for oil oxidative stability. OSI is an 

improved version of Rancimat method. This method measures the conductivity in 

deionized water as it increases due to the absorption of volatile acids and the 

decomposed products of oil oxidation. Increasing conductivity is an indication of 

peroxide breakdown that occurs at the same time as peroxide value increases (AOCS, 

1993). 

 

Tan et al. (2002) had studied the comparative between the differential 

scanning calorimetry (DSC) and oxidative stability index (OSI) methods to 

determine the oxidative study of twelve different edible oils. The OSI instrument 

temperature was set at 110°C while the DSC was set at four different temperatures 

(110, 120, 130, 140 ºC) and air was passed through the sample enclosure at 50 

ml/min. The samples used were 5.0 + 0.5 mg. They conclude that DSC provides a 

convenient way to determine the oxidative stability of various edible oils. 
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Besides that, Tan and Che Man (1999, 2002) also used the DSC to monitor 

the oxidation of heated oils. The DSC method was based on the cooling thermogram 

of oil samples at a scanning rate of 1ºC/min from –30 to –85ºC. Besides DSC method 

the deterioration of heated oils was also quantified by other chemical methods. They 

were total polar compounds, iodine value, free fatty acids, anisidine value, peroxide 

value and ratio of linoleic acid/palmitic acid (C18:2/C16:0). They conclude that there 

is good correlation between the DSC method an other standard chemical methods. 

This result is as same as the literature studied by Tan et al. (2002) in their research 

on the effects of microwave heating on the quality characteristic and thermal 

properties of RBD palm olein. 

 

Kinetic parameter can be determined by using TGA and DSC curves. 

Adhvaryu et al. (2000) studied the oxidative stability of vegetable oils derived from 

genetically modified vegetable oils using pressure DSC and found that the 

complexity of vegetable oil oxidation was primary due to the involvement of 

different structural parameter in the fatty acid chain. Statistical methods developed 

on the start and onset temperature and kinetic parameter like activation energy (Ea) 

can be used as predictive tools for quick assessment of vegetable oil oxidation. 

 

 

2.3.2  ASTM Oil Thermal Oxidation Tests 

 

ASTM, BS, IP and DIN have established several standard methods in 

assessing oil performance. Different tests were designed to evaluate particular 

performance parameter. The most relevant testing standards in evaluating hydraulic 

fluid and lubricating oils according to ASTM are: 

 

• Oxidation characteristics of inhibited mineral oils - ASTM D943.  
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• Thermal stability of hydraulic oils - ASTM D2070. 

• Thermal stability of hydraulic fluids - ASTM D2160. 

• Hydrolytic stability of hydraulic fluids - ASTM D2619. 

• Oxidation characteristics of extreme pressure lubrication oils - ASTM D2893. 

• Oxidation stability of steam turbine oils by rotating bomb (RBOT) - ASTM 

D2272. 

• Oxidation stability of distillate fuel oil/inhibited mineral oils - ASTM D2274. 

• Oxidation stability of gasoline automotive engine oils by thin-film oxygen 

uptake (TFOUT) - ASTM D4742. 

• Corrosiveness and oxidation stability of hydraulic oils - ASTM D4636. 

• Determination of the ageing behaviour of steam turbine oils and hydraulic 

oils (TOST) - ASTM D4310. 

• Preliminary examination of hydraulic fluid - ASTM D2271. 

• Indicating wear characteristics of petroleum and non-petroleum hydraulic 

fluids in a constant volume vane pump - ASTM D2882. 

 

Table 2.1 summarizes and compares some of the standard methods mentioned 

above. The suggested heating temperature, heating time, sample amount and 

experimental condition are compared. This comparison was the basis for the 

condition made in this study.  

 

Only few of these standard methods have established correlations to actual or 

field test results. ASTM D943 is the most standard referred by hydraulic fluid 

manufacturer. 
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Table 2.1:  ASTM standards concerning oil stability test 

Test code Heating 
temperature 

(oC) 

Heating 
time  

(hour) 

Sample 
volume  

(ml) 

Note 

ASTM D943 95 1000 - Water, Fe and Cu as 
catalyst 
Indicator: time to TAN 2   
                 mg KOH/g 

ASTM D2070 135 168 200 Convection oven 
Cu and iron as catalyst 
Indicator: weight of 

sludge 
ASTM D2160 260-316 6 20 Glass container 

No catalyst 
Indicator: visual, TAN,    
                 viscosity 

ASTM D2619 93 48 75g Oven 
Indicator: viscosity and   
                 TAN change 

ASTM D2893 95 312 300 Tube container 
No catalyst 
Indicator: precipitation,  
                viscosity 
Dry air 10 l/hr 

ASTM D2272 150 Time to 
reach 

pressure 
drop 

50 Oil bath 
No catalyst 
Indicator: pressure drop 
Oxygen at 90 psi 

ASTM D2274 95 16 350 Heating bath or hot plate 
Oxygen bubble at 3 l/hr 
Indicator: insolubles 
                 filtered 

ASTM D2271 70 1000 18 liter Pressure 70 bar 
Pump speed 1200 rpm 
Indicator: cam ring and  
                vane weight loss

ASTM D2882 65.6 100 11.4 liter Pressure 140 bar 
Pump speed 1200 rpm 
Indicator: cam ring and  
               vane weight loss 

 
 
 
2.3.3 TGA Activation Energy 

 

Thermogravimetric data is used in characterizing the oil as well as in 

investigating the thermodynamics and kinetics of the reaction and transitions that 
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results from the application to oil samples. Currently several methods were available 

in the literature that can be used to calculate kinetic parameters (Jaber and Probert, 

2000).  

 

The rate of conversion, dx/dt, for the oil conversion is expressed by  

 =
dt
dx k f(x) = k(1-x)n              2.1 

 

where n is the order of reaction, k is constant and x is the extend of conversion or 

fractional weight loss and is given by 

 x = 
∞−

−
ww
ww

o

to  

where wo, wt, w∞ are the original, current and final weights (mg), respectively. For  n 

= 1, Equation 2.1 is simplified to  

 =
dt
dx  k(1-x) . 

For the non-isothermal case, the above equation can be further modified to 

.
dT
dx

=
dt
dT  k(1-x)              2.2 

where 
dt
dT is the heating rate B.  

 

According to Arrhenius relationship, the reaction rate constant k in Equation 2.2 can 

be expressed as  

 k = A exp (-Ea/RT)              2.3 

 

 

2.4  Theory of Viscosity and Rheology 

 

Viscosity is an important parameter for fluid rheology. This fundamental 

knowledge and data are vital to study the performance of palm oil in hydraulic 

system or can be the guide for designing future palm based oil lubricant. Sufficient 

viscosity is required to provide proper lubrication to moving parts in hydraulic 

system such as in pump, actuators and valves. Too high viscosity will reduce 
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mechanical efficiency while too low viscosity will reduce volumetric efficiency of 

hydraulic system. In other words, improper lubrication can affect system 

performance and reliability.  

 

Variation of physical properties with temperature can affect the heat and 

power transfer considerably. For liquids, temperature dependence viscosity is of 

major importance (Kreith and Bohn, 1993). In this study it would be expected that 

the effect of lubrication would affect the pump and system overall efficiency. 

According to Thoma and Wilson theory (discussed in Section 2.71 and 2.7.2), the 

volumetric efficiency is directly related to oil viscosity. Since some hydraulic system 

is operating in wide range of temperature, the effect of temperature on oil viscosity 

will be studied first. 

 

Viscosity is the measure of fluid resistance to flow. It is one of the 

rheological parameters that describe the flow properties of some transport fluids such 

as bio oils. Bio oil is the oil derived from animal or vegetable and known also as 

agriculturally derived products (Goodrum et al., 2003). The viscosity is related to the 

energy dissipated during flow primarily due to sliding activities in pipes and 

expansion and contraction at control valves, pumps and actuators. 

 

Viscosity is defined as the ratio of shear stress and shear rate in a fluid. For a 

Newtonian fluid, shear stress τ is related to shear rate du/dy and apparent or dynamic 

viscosity,  

τ = µ du/dy               2.4 

 

Oil viscosity is an important parameter that influences hydrodynamic and 

elastohydrodynamic lubrication in hydraulic system. The oil viscosity will affect the 

shearing level in components that have relative motions and all restriction in a 

hydraulic system. Based on viscosity behavior, the oil can be categorized either 

Newtonian or non-Newtonian fluid. If the viscosity of the oil decreases with 

increasing shear rate, it is categorized as non-Newtonian (Goodrum et al., 2003). The 

non-Newtonian behavior is common in oils and some polymers (Munson et al., 

2002).  
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2.4.1  Viscosity Temperature Dependency  

 

The effect of temperature on the viscosity of palm oil must be known as in 

most hydraulic system the oil will be subjected to a range of temperatures. The 

relationship between viscosity and hydraulic performance is given by Equations 

2.38b and 2.39b.The effect will be more significant if the hydraulic system uses a 

low viscosity index fluid. In this section, the common relationships between 

temperature and viscosity are presented. The symbols and units used may differ and 

best be referred in corresponding references. 

 

Published viscosities at different temperatures, have limited value when 

viscosities are needed at temperatures other than those published ones (Fisher, 1998). 

Beside published data, equations are needed to represent the experimental data.  

 

Several estimation methods have been proposed to represent the temperature 

effect on the oil viscosity at atmospheric pressure. Most of the methods are empirical 

in nature as no fundamental theory exists for the transport phenomena of oils. 

Among the famous viscosity-temperature law is the Vogel-Fulcher relationship 

(Cameron, 1981; Coy, 1998) 

  µ =  µo  exp [B/(T-T∞ )]             2.5 

where µo (mPa.s) and B (K) are the fluid constants, T (K) is the oil absolute 

temperature and T∞ (K) is the temperature at which viscosity would become infinite.  

 

 For most liquids at temperatures below the normal boiling point, the plot of ln 

µ  versus 1/T or ln µ  versus ln T is approximately linear (Noureddini et al., 1992). 

One of the proposed equations is Arrhenius type relation (Igwe, 2004):  

 RT
a

Ae
E

=µ                2.6 

where µ is the dynamic viscosity (mPa s), A is a pre-exponential constant or known 

also as Arrhenius factor, R is a constant (8.314 J mol-1K-1), T is the absolute 

temperature (K) and  Ea is the activity or viscous activation energy (J/mol). This 

equation can be linearized into the following forms: 
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RT
Aln ln aE

+=µ  .              2.7 

 

The Arrhenius relationship has been used by many recent researchers (Vlad 

and Oprea, 2001; Barreto et al., 2003; Perez-Alonso et al., 2004; Ahmed et al., 2004) 

to describe the temperature dependency of rheological parameters. Equation 2.4 is in 

equivalent to the following Andrade’s equation, where ln A= A1 and Ea/R=B,  

T
BAln 1 +=µ .              2.8 

 

 This Andrade’s equation can be further modified from a first-order to higher-

order polynomial in 1/T to give a better accuracy:  

.........   
T
E

T
D

T
C

T
BAln 432 +++++=µ            2.9 

where A, B, C, D, E… are the liquid specific parameters.  

 

Equation 2.8 (Andrade equation) is similar to Vogel equation (2.10).  Several 

researchers use Vogel type equation to describe the effect of temperature on oil 

rheology (Coy, 1998). Vogel’s equation has been further modified by Noureddini et 

al. (1992) and Coy (1998) to the term as shown below: 

T)(C
BAln 

1 +
+=µ               2.10 

where C1 is a constant. Other logarithmic equation to correlate viscosity with 

temperature was used by Cameron (Cameron, 1981): 

 2
12 TDTC

T
BA log +++=µ              2.11 

where C2 and D1 are constants. The above relations (Equations 2.7 - 2.10) show that 

most of the proposed models suggest the logarithm of viscosity is inversely 

proportional to the absolute temperature of the fluid. On the other hand, McCabe et 

al. (2001) and other researchers use Walther equation to describe the viscosity-

temperature dependence of lubricants:  

 log (log µ  + c) = A + B log T            2.12
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where A, B and c are Walther equation’s constants. The Walther model is a two 

parameter correlation that is used widely for lubricating oils of moderate operating 

viscosity. The required properties are viscosities at two temperatures, normally at 40 

and 100oC. The variation of viscosity over temperature range of most mineral oils 

can be represented by a straight line using Walther equation. However this model 

cannot predict the viscosity data for several oils such as polymer-blended and 

synthetic oils.  

 

Viscosity behavior is similar to a “rate-controlled process”. It shows the same 

temperature dependence as other processes (such as reaction rate process). Thus 

Arrhenius dependence on temperature (Equation 2.6) can be used to determine 

viscous activation energy. The Ea, viscosity activation energy, is a characteristic of a 

flow and indicates the amount of energy necessary to move the fluid. 

 

This Arrhenius type equation is used to be applied to Newtonian fluids only. 

However nowadays this Arrhenius equation has been widely used to explain 

rheological property dependence on temperature over limited temperature range.  

 

 

2.4.2  Newtonian and non-Newtonian Fluid  

 

Fluid is defined as a substance that does not resist shear. It will keep on 

flowing or changing shape if shear or force is applied. Fluid consists of liquid and 

gas (Figure 2.4). Liquid can be categorized as viscous fluid and inviscid fluid. 

Inviscid means that the liquid does not pose viscosity or no internal friction. Viscous 

liquid falls either Newtonian or non-Newtonian. By definition Newtonian fluid is the 

fluid of which shear stress is proportional to shear rate (Figure 2.5), as indicated in 

Equation 2.4. According to the Newton’s law of viscosity, the diagram relating shear 

stress and shear rate of a Newtonian is a straight line through the origin. The slope of 

this line is equal to the viscosity of the fluid. The flow index (n), the indication of 

Newtonian level, for this type of fluid is unity. 

 

Most of the fluids used in industry are non-Newtonian fluid and do not follow 

Newtonian equation (Equation 2.4). They are included in pseudoplastic, bingham, 
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dilatant, rheopectic or thixotropic categories. Irrespective of categories the viscosity 

of each fluid is a function of pressure, temperature, shear, base material, type and 

composition of mixture (Dexheimer et al., 2001) but the temperature plays the most 

important role. In general, viscosity of oil decreases with increasing operating 

temperature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

Figure 2.4: Fluid classification. 
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Figure 2.5: Variation of shear stress with shear rate. 
 

 

2.5  Rheology Study of Palm Oil and Mineral Oil 

 

This project investigates the transport performance of vegetable oil in 

hydraulic system. Since the ‘crude’ palm oil is still in monograde form, variation of 

oil with temperature and shear is crucial to be investigated. In this project, it was 

found that the palm oil used behaves as non-Newtonian material in low shear region.  

 

In order to understand the influence of fluid property on hydraulic system 

performance, it is necessary to understand the fluid rheology. The chemical and 

mechanical properties of intermolecular interaction have to be well studied and 

understood. Some basic property studies of palm oil and its relation to the design of 

process equipment had been studied (Morad, 1995). It is well known that pressurized 

lubricant rheology at certain shear rates has a major influence on power loss. This 

power loss occurs at contacts of pumps, valves and pipings.  

 

The use of rheology to evaluate the performance characteristics of lubricating 

oil is nothing new. However, the use of rheology for plant or vegetable oil analysis is 
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scarcely found in the literature. The study of the dependence of η on γ of vegetable 

oil was scarce except by Goodrum et al. (2003). This is due to their low viscosity. 

Most of the time, for the purpose of simplicity, the vegetable oil was assumed to be 

Newtonian.  

 

Since no investigation is available to relate palm oil or other vegetable oil 

viscosity with power law and other models, this study pioneers the investigation of 

palm oil non-Newtonian behavior, even though the Newtonian approximation can be 

justified for many applications.  

 

In order to understand and control the hydraulic system performance, this 

research investigates of how the viscometric property changes under different shear 

rates and temperatures.  In real application, movement of fluid will involve heat 

generation and stress to both fluid hydraulic system components. Thus rheological 

study is necessary to investigate the fluid behaviors at various operating conditions.  

 

 

2.5.1  Viscosity Shear Dependency - Rheological Modeling  

 

All fluids for which the shear stress-shear rate curve is not linear through the 

origin (Figure 2.5) at a given temperature and pressure are said to be non-Newtonian. 

The viscous properties of fluids without a yield stress are described by curves type. If 

the shear stress increases less than in proportion to the shear rate, the fluid is called 

pseudoplastic or shear thinning. On the other hand, if the shear stress increases more 

than in proportion to the shear rate then it is a dilatant or shear thickening fluid. The 

simplest model for Newtonian, pseudoplastic or dilatant fluid is power law model.  

 

 Sometimes more than one model may be necessary to present the rheological 

data. To this date there are several models, which mostly empirical formula, that 

describe the viscosity of fluid with shear. Some of the relationships are valid only for 

certain applications since they can be used for a limited range of shear rate. 

Furthermore, model parameters are affected by other state variables, such as 

composition and temperature.  

 



 

 

31

2.5.2  Ostwald de-Waele Model 

 

The pioneer model for shear dependence of viscosity is the famous Ostwald-

de Waele model which was proposed in 1925. This model is known better as Power 

Law model. It is used extensively in handling most engineering applications (Bair 

and Qureshi, 2003; Li and Zhang, 2003). It is used to describe both shear-thickening 

and shear-thinning fluids. This model has only two parameters, n and k. Basic 

relationship of power law,  

τ = k µ n               2.13 

where n is the power law index or flow behavior index. n is a dimensionless 

exponent and reflects the closeness to Newtonian flow. k is the consistency index 

(Pa.sn) and τ is the shear stress at a shear rate of 1.0 s-1. In this work, the power law 

index and consistency index are obtained using a computer program. The computer 

program, Statistical non-Linear Fit of Mathematica 4.2 provides statistically best 

values of k and n.  

Combining Equations 2.13 and 2.4, the power law can be written in terms of 

absolute viscosity (µ) and shear rate (γ) 

µ = k γn/γ.               2.14 

Thus it can be shown that, taken the ratio of shear stress to rate of strain, an 

expression for the absolute viscosity can be shown as 

 µ  = k γn-1               2.15 

According to Equation 2.15, the viscosity decreases with increasing of shear 

rate for n<1 (shear thinning fluids) and increases with increasing shear rate for n>1 

(shear thickening fluids). The equation for power law can be linearized into the 

following forms (ln or log): 

log µ = log k +  (n-1)log γ              2.16 

 

The disadvantage of power law model is that it does not explain the low shear 

and high shear rate viscosity constant. Several researchers such as Sharman et al. 

(1978), Chauvetaau (1982) and Bewersdorff and Singh (1988) improved the 
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Ostwald-de Waele power law model to suit aqueous, polymer and gum material 

applications.  

 

 

2.5.3  Cross Model  

 

Two famous model functions that relate viscosity of non-Newtonian fluid and 

shear are given by Cross model and Carreau model. In general, the Cross model is 

widely used in Europe while the Carreau model in North America (Rao, 1999). In 

general, the relationship between absolute viscosity and shear rate can be shown as, 

 µ = µ∞ + (µo -µ∞ ) f(γ)               2.17 

 

According to Cross model, the relationship between absolute viscosity and 

shear rate can be shown as, 

( )mγα1 c

γ,γo,
γ,

+

−
+= ∞

∞

µµ
µµ              2.18a 

where 

 µ∞,γ - limiting viscosity at infinite shear rate (Pa.s) 

 µo,γ  - limiting viscosity at zero shear rate (Pa.s) 

 m - exponent (dimensionless) 

 αc – Cross consistency index (dimensionless) 

 

Cross model has been used widely to describe the shear thinning of non-

Newtonian fluid in a number of scientific publications (Sharman et al., 1978; 

Cuvelier and Launay, 1984; Vlad and Oprea, 2001; Gonzalez-Reyes et al., 2003) and 

have been found suitable to model several polymers and solutions. However it is 

found that no study has been done to relate Cross model or any of the above 

relationships in palm oil or plant oil rheological analysis. Some researchers, such as 

Gonzalez-Reyes et al., (2003), use simplified Cross model in their analysis. The 

simplified Cross model can be shown as 

 

µ = µo  / k1 (γ)m              2.18b 

where k1 is constant. 
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2.5.4  Carreau Model  

 

The most common function used for Carreau model has the following form: 

 f(γ) = 1 / [1 + (λcγ)2] (1-n)/2.             2.19 

Applying this Careau function to the general form (Equation 2.17), the relationship 

becomes 

 µ = µ∞ + (µo -µ∞ ) / [1 + (λcγ)2] (1-n)/2 .            2.20a 

 

This equation has been applied by Chauveteau (1982), Bewersforff and Singh 

(1988) and Tam and Tiu (1989) and has been found suitable to model their samples. 

The equation is sometimes written in the following form, 

( )[ ]N2
c

γ,γo,
γ,

γλ1+

−
+= ∞

∞

µµ
µµ             2.20b 

where 

 µ∞,γ - limiting viscosity at infinite shear rate (Pa.s) 

 µo,γ - limiting viscosity at zero shear rate (Pa.s) 

 N, n - exponent (dimensionless) 

 λc  – Carreau consistency index (dimensionless) 

 N = (1-n)/2. 

 

 

2.5.5  Herschel-Bulkley Model  

 

Herschel-Bulkley model is different from power law model since in addition 

to two parameters of n and k, this model also introduces yield stress parameter. So it 

is a three-parameter rheological model. It is therefore suitable for fluids having a 

significant yield stress, or the yield stress is measurable. The yield stress the yield at 

zero shear rate. According to Figure 2.5, plastic and Bingham materials have some 

measurable value of yield stress. Writing in term of viscometric parameters, the 

model can be written as  

µ = kH γ Hn -1 + µ∞,γ .                  2.21a 

 

Many researchers relate the term yield stresses to shear stress,  
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 τ - τo = kH (γ) Hn                                   2.21b  

where τ is shear stress (Pa), τo is the yield stress,  γ is the shear rate (s-1), nH is the 

Herschel-Bulkley flow behavior index and kH is the Herschel-Bulkley consistency 

index. It is more useful for viscoplastic fluid (Figure 2.5). 

 

 

2.5.6  Other Models 

 

There are other rheological models available in the literature to suit different 

applications as in Table 2.2. These models are not very famous. Thus they are not 

applied in this work. 

 

Table 2.2: Other rheological models 

Model Mathematical relationship 

Meter-Bird µ = µ∞ + (µo -µ∞ ) / (τ/τm)(1-n)/ n   

Chang-Ollis µ = µ (1 + k γ) n -1 

Sisko µ = µo + k(1/ γ)m 

Ellis 1/ µ = (1/ µo) + K (τ)(1- n )/ n  

 

 

2.5.7 Generalized Viscosity Model for Waxy Oil 

 

 Al-Zahrani and Al-Fariss (1998) have proposed an empirical general model 

for the viscosity of waxy oils. The model describes the non-Newtonian behavior of 

the oils in the following form:  

 
WD

T
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1
n
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γ
B ++
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⎜
⎝
⎛ +

=µ             2.22a 

where µ is the viscosity, γ is the shear rate, T is the temperature, W is the wax 

percentage and A, B, C and D are the model parameters. 

 

A nonlinear regression analysis was used to determine the model parameters. 

The proposed viscosity model yields was found to fit the experimental data well as 
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demonstrated by a high coefficient of correlation 97.5% (Al-Zahrani and Al-Fariss, 

1998). If wax concentration was not taken into account, Equation 2.27a can be 

reduced to  

D
T
Cn

1
n

e1
A

Aγ
γ
B +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ +

=µ .            2.22b 

 

 

2.6  Viscosity of Oil Mixtures 

 

Theories suggested that viscosity and relative viscosity of oil and polymeric 

blends depend on the base material. Some models such as Rouse model (Daivis et 

al., 2003) suggest that viscosity is a linear function of relative volume fraction, while 

other models suggest that the viscosity is a linear function of relative weight fraction.  

 

In order to determine the viscosity of blends, some researchers suggested that 

physical and chemical properties of blended oil to be measured. From these physical 

and chemical properties, the viscosity of the blend can be determined. For example 

Toro-Vazquez and Infante-Guerrero (1993) suggested saponification value and 

iodine value of the mixture to be measured. Based on these values, the dynamic 

viscosity of the mixture at particular temperature can be calculated using the 

following mathematical relationship 

   

ln µ = -4.8 + 2526 / T + (SV / T)2 – IV2 x10-5            2.23 

 

where T, SV and IV are temperature, saponification and iodine value of the blend. 

 

This method is not straight forward. Few measurements have to be made. It is 

of interest (more convenient) if the blended viscosity can be calculated based on 

viscosities of the base oils. Follows are some expressions used by previous 

researchers and proposed models to predict the viscosity of blended oils: 
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Dow (1935, 1956)  

Dow used simple expression to predict viscosity of mixture of liquid A and B. Using 

xA and xB to represent wt% of A and B, respectively :  

 µAB 1/3 = xA* µA
1/3 + xB * µB

1/3              2.24 

 

Goodrum and Eiteman (1996) 

Goodrum and Eiteman (1996) proposed a model to calculate the viscosity of mixture 

as follows 

 µAB 1/2 = xA * µA
1/2 + xB * µB

1/2              2.25 

 

He has tested the model for low molecular weight triglycerides blended with diesel.  

 

Lederer Equation (Kokal and Sayegh, 1993) 

ln µAB = (xA)/ (xA+ S* xB)ln µA  

+ (S* xB)/ (xA + S* xB)ln µB             2.26 

 

where S is the correction factor. Lederer equation is used to predict viscosity values 

for mineral oils and their constitutive fractions.  

 

Rahmes and Nelson (1948) 

Rahmes and Nelson (1948) used viscosity reciprocal to expressed the viscosity of 

mixture 

 (µAB)-1 = (xA)* µA
-1 + (xB)* µB

-1              2.27 

 

 

2.7 Flow and Torque Models for Pump 

 

Theoretically, there are two major losses involve in the test rig study. They 

are flow loss and torque loss, which are outlined in Section 2.7.1 and 2.7.2, 

respectively. The losses will result in volumetric and mechanical inefficiencies, 

respectively.  
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2.7.1 Flow Mathematical Models 

 

Theoretical pump flow rate, Qt, is determined by the pump speed, Wp, and size, Dp 

(Pinches and Ashby, 1989), 

 

ppt WDQ = .                 2.28 

 

When the pump rotates, the velocity induces the flow from the low pressure 

side to high pressure side. The rotation of the rotor will not affect the internal 

leakage. Only the pressure induced flow that causes the fluid to flow from high 

pressure side to the low pressure side of the vane pocket. Most of flow losses is due 

to leakage, either internal or external. The major factors that influence both leakages 

are pressure and viscosity. The higher the pressure the higher is the leakage. On the 

other hand, the flow leakage will be greater for lower viscosity fluid (Dong et al., 

2001):  

 

µ
α pP

Q
l

.                2.29 

 

Another flow loss is due to compressibility, RQ . This loss occurs when the 

system operates at high pressure. Because of these losses, the actual flow that returns 

to the reservoir is always less that the ideal flow. Combining Equations 2.28, 2.29 

and RQ term gives actual flow rate, Qa, as;  

 

=
a

Q tQ  - 
l

Q  - RQ .              2.30a 

 

After taking into account the correct dimension, leakage flow rate can be 

written as 
πµ2

pp
s

PD
C . Thus the actual flow rate that flows through the system can be 

written as 

R
pp

spp Q
PD

CWDQ
a

−−=
πµ2

.             2.30b 
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Other flow models produced by Wilson (1946), Schlosser (1969), Thoma 

(1969), Zarotti and Nevegna (1981), Dorey (1988), and Huhtala (1996) are shown in 

Table 2.3. Thoma neglected compressibility effect in his model. Other researchers 

introduced compressibility factor at different positions in their flow models.  

 

Table 2.3: Flow models produced by respective researchers 

Researcher Flow model 
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2.7.2  Torque Mathematical Models 

 

The torque required to drive the hydraulic mover (pump) depends on the 

pump size and the pump pressure. The theoretical torque, Tt, is given by (Pinches and 

Ashby, 1989), 

π2
pp

t

PD
T = .               2.31 

However, the actual torque to drive the system is higher than the theoretical 

due to torque loss. Torque loss is the result of friction, either viscous or coulomb.  

Viscous or speed dependent torque, Tv, is proportional to speed and to fluid viscosity 

but is independent of load, 

ppvv WDCT µ= .              2.32 

 

Coulomb friction torque, Tc, is proportional to pressure, 
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π2
pp

cc

PD
CT =                2.33 

 

where Cv and Cc are viscous and coulomb friction coefficients, respectively. Thus the 

actual torque, Ta, can be written as the summation of the theoretical torque and all the 

torque loss, 

  

=aT tT   + cT + vT               2.34 

 

ppv
pp

c
pp

a WDC
PD

C
PD

T µ
ππ

++=
22

 .           2.35 

 

The Cv and Cc coefficients in Equation 2.35 can vary with pressure, 

temperature, shear rate and surface finish. Due to stiction of the oil, the coefficient of 

friction increases sharply at very low speed. This can be understood also in term of 

oil rheology.  

 

Other torque models are shown in Table 2.4.  

 

Table 2.4: Torque models produced by respective researchers 

Researcher Torque model 
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2.8 System Efficiency 

 

High system efficiency is of primary importance for any system. The total 

system efficiency can be determined from the products of individual efficiencies. 

The overall system efficiency of the test rig under study depends on two main 

efficiencies i.e., volumetric and mechanical efficiencies. These efficiencies can be 

determined by measuring flow and torque loss values. 

 

 

2.8.1 Power 

 

The input power for a hydraulic system is defined as the product of torque 

required to drive a hydraulic pump with the pump speed, 

ppinput WTH =  .              2.36  

This input power is known also as shaft power.  On the other hand, the output power 

is the fluid power. The output power is calculated as 

QPH poutput = .                2.37  

 

 

2.8.2  Volumetric Efficiency 

 

The flow through hydraulic component especially a pump, can be categorized 

as main flow and the leakage flow, as already described in Section 2.7.1. The main 

flow is extremely complex. It is neither steady nor uniform. This can be due to the 

motion of vane and non-uniform hydraulic flow path. However the nature of the 

leakage flow is relatively simple. It can be treated as a laminar flow in a narrow 

passage. There are two types of leakage flow in a narrow passage, pressure induced 

(Poiseuille) and velocity induced (Couette) flow.  

 

The volumetric efficiency is the ratio of the actual flow rate to the ideal flow 

rate. Dividing Equation 2.30b with the ideal flow term (Equation 2.28), the 

volumetric efficiency can be written as  
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pp

a
vp WD

Q
=η                2.38a 

or 

pp

R

p

p
svp WD

Q
W

P
C −−=

πµ
η

2
1  .            2.38b 

 

It should be noted that the second term of Equation 2.38b is the losses due to 

leakages and the last term is due to the compressibility effect.  

 

 

2.8.3  Mechanical Efficiency 

 

Mechanical efficiency and mechanical losses are due to viscous friction and 

coulomb friction. The mechanical efficiency is defined as the ideal torque divided by 

the actual torque: 

a

pp
mp T

PD
=η .               2.39a 

Taking into account all the torque losses explained in Section 2.7.2, mechanical 

efficiency can be expressed as  

pv
p

c
p

p
mp

WCPCP
P

µππ

η
++

=

22

 .            2.39b 

 

The viscous and coulomb friction coefficients in Equation 2.39b can vary with 

pressure, temperature, shear rate and surface finish.  

 

 

2.8.4 Overall Efficiency 

 

The overall efficiency of the pump is the ratio of output power to the input 

power at a given flow rate for a given shaft speed. In all cases, the output power is 

simply the fluid power. The input and output powers are calculated as in Equations 

2.36 and 2.37, respectively. 
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The overall efficiency could also be considered as the ratio of the actual 

performance to an ideal performance that would have been achieved. From the 

definition of this efficiency, the overall efficiency can be written as (Pinches and 

Ashby, 1989), 

 

pp

pp
op WT

PQ
=η .               2.40 

 

 



 
 
 
 
 

CHAPTER 3 

 
 
 

MATERIAL, EQUIPMENT, TEST RIG AND METHOD 

 
 
 
3.1 Introduction 

 

The aim of this research is to investigate performance of palm based oils 

when used as hydraulic fluid. Prior to the testing in the real hydraulic test rig, the oil 

performance was investigated in ‘simulated’ bench tests. The simulation results 

(rheological work and thermal tests) then can be compared with the real results from 

hydraulic test rig. In this chapter the test fluids, apparatus and methods used are 

described. This is followed by description of hydraulic test rig set up.  

 

 

3.2 Test Fluids and Additives 

 

3.2.1  Test Fluids 

 

The proposed test oil for this research was the refined bleached and 

deodorized (RBD) palm oil. Several types of vegetable oils were also used in the 

beginning of the research as comparison. To complete the research objective, 

commercial vegetable based hydraulic fluid, mineral based hydraulic fluid and palm 

oil methyl ester (POME) were also tested. The rheological and thermal stabilities of 

the oils were investigated to determine the best candidate for further study. Several 

grades of RBD palm oils were obtained from refineries in Johor and local retailers.  

 

The fatty acid composition for RBD palm oil is shown in Table 3.1. The palm 

oil has large amount of palmitic and oleic acids. The high content of palmitic acid in 
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palm oil compared to pure corn or rapeseed oils results in the palm oil being more 

oxidatively stable than corn or rapeseed oils. Fatty acid composition of commercial 

vegetable based hydraulic fluid is also shown in Table 3.1. 

 

For the mineral oil, a commercial hydraulic fluid (Shell Tellus) was used. 

Commercial vegetable based hydraulic fluid was imported from the United States. 

The basic oil properties for both commercial mineral and vegetable based hydraulic 

fluid are shown in Table 3.2.  

 

 

3.2.2  Additives  

 

Among the additives used in this study were Ciba L135, L74, L06, F10 and 

Lubrizol 7652. Lubrizol 7652 additive was found effective to work as antioxidant in 

vegetable oils (Adhvaryu and Erhan, 2002). Details of the Ciba L135, L06 and F10 

additives are shown in Figure 3.1. This study also used some other additives for 

comparison purposes, which the author specifically noted in Results and Discussion 

section. 
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Table 3.1: Fatty acid composition of RBD palm and vegetable based hydraulic oils 
used 
Common 

name 

Systematic name Symbol % of total 

weight 

(RBD palm 

oil) 

% of total 

weight 

(Superolein 

palm oil) 

% of total  

weight 

(Vege. hyd.  

oil)  

      

Saturated 

acids 

     

  Lauric n-Dodecanoic C12:0 0.4 0.5 0.0 

  Myristic n-Tetradecanoic C14:0 1.0 1.2 1.3 

  Palmitic n-Hexadecanoic C16:0 38.3 34.8 4.0 

  Stearic n-Octadecanoic C18:0 4.0 3.3 2.2 

  Arachidic n-Eicosanoic C20:0 0.7 0.5 - 

      

Mono-

unsaturated 

acids 

     

  Palmitoleic n-Hexadec-9-

enoic 

C16:1 0.4 0.4 0.3 

  Oleic n-Octadec-9-

enoic 

C18:1 43.1 45.5 60.7 

  Gadoleic n-Eicos-9-enoic C20:1 0.1 - 1.6 

      

Poly-

unsaturated 

acids 

     

  Linoleic n-Octadec-9, 12-

dienoic 

C18:2 11.6 13.8 18.9 

  Linolenic n-Octadec-9, 12, 

15-trienoic 

C18:3 0.2 0.1 0.0 

Others  C20-C22 - - 11.8 
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Table 3.2: Properties of commercial mineral and vegetable based hydraulic fluid 
used 
Properties Standard method   

Type  Mineral Vegetable 

Grade  HM 100 VG 46 

Flash point (oC) ASTM D92  228 220 

Pour point (oC) ASTM D97 -24 -28 

Total acid number (mg KOH/g) ASTM D664 0.64 1.05 

Density (kg/m3) ASTM D1298 885 922 

Kinematic viscosity at 40oC (cSt) ASTM D2196 106 37 

Kinematic viscosity at 100oC (cSt) ASTM D2196 11.4 8.4 

Viscosity index ASTM D2270 93 213 

 

 

 
 

a) Ciba Irganox L135 b) Ciba Irganox L06 
 

 
c) Ciba Irgalube F10 

Figure 3.1: Molecular structure of additives used. 

 

 POME was obtained from a local oleochemical company. The POME 

properties are as in Table 3.3. 
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Table 3.3: Basic properties of POME 

  Properties Standard method Value 

Total acid number (mg KOH/g) ASTM D664 0.2167 

Iodine value (cg I2/g) AOCS Cd 1b 59.6 

Kinematic viscosity at 40oC (cSt) ASTM D2196 7.02 

Kinematic viscosity at 100oC (cSt) ASTM D2196 3.42 

 

 

3.2.3  Blending Preparation 

 

The blending ratios for palm oil - mineral and palm oil - POME blends are 

shown in Table 3.4. Different percentage levels of commercial additives were 

blended to the RBD palm oil for bench test (Table 3.5). The samples were blended 

according to these ratios and mixed thoroughly in beaker using magnetic stirrer on 

hot plate at 40oC for one hour before being subjected to continuous heating. 

Vigorous stirring was made in order to make sure homogeneous mixture was 

obtained. 

 

Table 3.4: Palm oil – mineral and palm oil - POME blending ratio 

Notation 

 

RBD palm 

oil (%wt/wt) 

Mineral oil 

(%wt/wt) 

Notation 

 

RBD palm 

oil (%wt/wt) 

POME 

(%wt/wt) 

100P0M 100 0 100P0ME 100 0 

75P25M 75 25 80P20ME 80 20 

50P50M 50 50 60P40ME 60 40 

25P75M 25 75 40P60ME 40 60 

0P100M 0 100 20P80ME 20 80 

   0P100ME 0 100 
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Table 3.5: Percentage level of additives to RBD 

   Percentage   

Additives   (%wt/wt)   

L74 0.0 0.5 1.0 1.5 2.0 

L06 0.0 0.1 0.5 2.0 4.0 

Lubrizol 7652 0.0 3.0 4.0 5.0 6.0 

L135 0.0 0.2 0.6 0.8 1.5 

F10 0.0 0.5 1.0 1.5 2.0 

 

 

3.3 Apparatus and Experimental Set-up 

 

 Before the oil was tested in hydraulic system, it was tested in bench tests. The 

purpose of the bench tests was to predict the oil condition when it was exposed to 

heat in hydraulic system. 

 

 

3.3.1 Heating Facilities 

 

250 ml oil sample contained in Erlenmeyer flask was heated either in electric 

oven or oil bath. Temperature of 95ºC was used for the initial simulation tests. Other 

temperatures (55, 70 and 135ºC) were also used for selected good additives. These 

temperatures were selected based on standard methods mentioned in Sections 2.3.1 

and 2.3.2 and to simulate the running temperatures in hydraulic test rig. To study the 

effect of aeration, compressed air was supplied by a compressor and the flow rate 

was controlled by flow control valves. The oils were sampled out at sampling period 

as mentioned in respective sections in Chapter 4. The samples were then subjected to 

several property tests such as in Sections 3.3.2 – 3.3.5.  
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3.3.2 Thermogravimetric Analyzer (TGA) 

 

Thermogravimetric measurements were performed using Perkin-Elmer Pyris 

6 TGA at a heating rates of 5 and 10 ºC/min. Samples of approximately 15 mg were 

heated from 50ºC to 500ºC in pure nitrogen flow of 20 ml/min. This TGA test 

involves weight change as the oil was heated. The weight loss data of the sample was 

logged using the in-situ computer. 

 

 

3.3.3 Fourier Transform Infrared (FTIR) Spectroscopy 

 

Infrared spectroscopic (IR) studies were performed using Perkin Elmer FTIR 

System Spectrum GX. Small amount of oil sample was deposited on a round KBr 

cell. Prior to that N-hexane solution was used for cell cleaning. The oil layer was 

scanned for wavelength from 4000 to 400 cm-1. Number of scan for each sample was 

16 times. The spectra obtained were used to observe the structural bond and 

functional groups of samples. The chemical structural of organic molecules was 

analyzed qualitatively and quantitatively. 

 

 

3.3.4 Total Acid Number Analysis 

 

 This analysis is applicable to crude and refined vegetables, marine fats and 

oils, and various products derived from them (Eisentrager et al., 2002). The acid 

value number (TAN) is the milligrams of potassium hydroxide (KOH) necessary to 

neutralize the free acids in 1 gram of sample. About 3 ml of sample was weighed into 

a 250 ml Erlenmeyer flask. Then 25 ml of diethyl ether, 25 ml of ethanol analar and 

1 ml of phenolphthalein indicator solution 1% were added into the sample. The 

sample was shaken gently for 10 minutes until the entire solution was well mixed. 

The solution was then titrated with KOH 0.05M. It was swirled vigorously at the end 

point, but by avoiding dissolving carbon dioxide (CO2) in the solvent. The end point 

was considered definite if the color change persists for 15 seconds. The amount of 

KOH used was recorded. The calculation for the acid value is as follow (ASTM 

D974): 
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The acid number, mg KOH / g oil =  (A-B) x N x 56.1     3.1 

                                                                      W           

where,  A  = ml KOH used in titration 

  B  = ml KOH used in titrating the blank 

  N  = normality of KOH (0.05) 

  W = weight of sample (g) 

 

 

3.3.5 Iodine Value 

 

 The iodine value was determined according to AOCS Cd 1b-87 method. The 

method involves similar procedure as TAN determination except for the chemicals 

used.  

 

 

3.4  Rheological Measuring Instrument 

 

3.4.1  Rheological Measurement 

 

In conducting viscometric or rheology measurement, great care was made to 

ensure the flow between the spindle and carousel chamber was fully developed 

laminar flow and the oil properties did not change with time (steady flow). A 

thermosel was used to ensure that the temperature of the test sample was maintained 

uniformly.  

 

The Newtonian and non-Newtonian behavior of oil samples was investigated. 

Several data was obtained at different spindle speeds. The equipment used in this 

experiment is of concentric cylinder type. Thus suitable shear stress and shear rate 

terms had to be derived.  

 

Appendix A shows the derivation of shear rate and shear stress for the 

cylindrical viscometer used in this study. The derivation of the shear rate expression 

required solution of the continuity and momentum equations with the application of 
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boundary conditions. There is no pressure gradient in the θ direction (direction of 

rotation – Equation 1 of Appendix A). The derived expression shows that 

geometrical measurements play important role in determining shear rate. Using the 

derived expression, the shear stress and shear rate were determined from viscometric 

values and dimensions of the test geometry.  

 

 

3.4.2 Brookfield Viscometer (model DV-I+) and Measurement Procedure  

 

The viscosity measurement was carried out using Brookfield viscometer 

model DV-I+. The rotational viscometer is constructed from two concentric 

cylinders. The OD of inner cylinder is 17.48 mm and the ID of the outer cylinder 

is19.06 mm. The height of the outer cylinder is 35.53 mm. 

 

Sample of 8 ml was placed in a carousel. The measurement was carried out 

using spindle SP-18 with a concentric cylinder. The spindle was attached to the 

motor above via a rigid connecting wire. Then the spindle was lowered to the 

indicated point for measurement purposes. Shear rate was calculated using Equation 

11 of Appendix B or by the following simplified relationship: 

 

 γ = 1.318 x N         3.2 

where N is the spindle speed (rpm). 

 

The viscosity of the samples was measured in triplicate at particular shear 

rates with spindle speed ranging from 3 rpm to 100 rpm (ten discrete shear rates 

altogether: 3.9, 6.6, 7.9, 13.2, 15.8, 26.3, 39.5, 65.8, 79.0, 131.6 s-1).  

 

In order to achieve the consistency of the measurement readings, 

measurement was recorded ninety seconds after rotating of the spindle. The 

temperature was increased by means of Brookfield thermosel from 30oC to 100oC 

with 10oC increment. After each temperature increment, the filled sample chamber 

and spindle were temperature-equilibrated for 10 minutes. The measurement was 

made only after this duration in order to make sure that steady state heat transfer 

could be achieved. In order to ensure reproducibility was good, the test was 
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duplicated for each temperature setting. Then the average values were used. When 

the two results show significant difference, another run was made. Small differences 

sometimes noticed at low shear rate. At this rate, it was observed that the outer 

spindle surface sometimes touched the inner surface of sample chamber. 

 

 

3.5 Hydraulic Test Facility 

 

The main objective of this investigation was the development of an 

experimental facility for testing of hydraulic fluid and the efficiencies of the system 

when palm based oil was used as hydraulic fluid. Then the rheological and thermal 

test results from bench tests could be compared. 

 

The main objective of the study is to produce model, design, fabricate and 

instrumented a hydraulic test rig that can evaluate the palm oil performance in real 

running condition. In other words, the design and development of the test rig is the 

heart of this research work. Two identical units of hydraulic test rig were built in 

Fluid Mechanics laboratory, KUSTEM for this purpose. Two identical units were 

built in order to directly compare the performance of hydraulic system running on 

palm oil and commercial hydraulic oil. The following sections describe the 

development of the test rig, starting with the development of models, engineering 

drawings and the novel design features of the test rig. The data acquisition comprised 

of hardware and software was used to collect and manipulate the required data. High 

speed PC logger was possible with the use of ADAM hardware and the LabVIEW 

from the National Instruments. Industrial sensors were used in this project. 

 

 

3.5.1 Design of Hydraulic Test Rig 

 

Several models were produced during hydraulic modeling work (Wan Nik et 

al., 2003b). The best model was selected based on the design criteria and 

specifications. The design procedures for the design of hydraulic test rig are as 

follows: 
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1. The pump type and size were determined based on rheological properties of 

the test oil. 

2. The prime mover power was determined. 

3. The control valve type and size was selected. 

4. Other miscellaneous components such as reservoirs, piping, filter and cooling 

system were selected. 

5. The overall system cost was calculated. 

 

This procedure was repeated several times until the best system was obtained. 

Assistance from component suppliers and experienced fabricators was sought 

through out the study. This is to ensure cost effectiveness, since any subsequent 

modification would require hardware changes and could result in cost constraint.  

 

 

3.5.2 Design Consideration and Specification 

 

The fluid operating temperature of 70oC was selected based on ASTM D2271 

recommendation. However different operating temperatures were also possible to 

evaluate the dependence of performance on temperature and oil viscosity. Overload 

temperature can be set to protect the test facility components.  

 

Pressure of 210 bar was selected to reflect the maximum practical pressure of 

several hydraulic systems these days. The selected test pressure is higher than those 

specified in ASTM D2271 and ASTM D2882 standards.  

 

 

3.5.3 Hydraulic System Layout 

 

Figures 3.2 and 3.3 show the final hydraulic system model and layout, 

respectively. Round reservoir is located at the corner edge of the 1m x 1.5m base. 

The inlet pipe starts from this reservoir. A manually operated shutoff valve is located 

10 cm from the reservoir. The purpose of this shuttle valve is to block the fluid 

especially during the pump dismantlement. Vane pump is located underneath the 
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electrical motor. Pressure control was used to control the pressure in the main line. 

Several transducers were used to measure flow parameters.  

 

 
a – cooling solenod valve; b – cooler; c – hydraulic reservoir 

d – safety filter; e – 3 phase electrical motor; f – pump 
g – flowmeter; h – pressure relief valve;  
i – directional control valve; j – actuator 

 
Figure 3.2: Final test rig model. 
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3.5.4 Mechanical Component Description 

 

3.5.4.1 Hydraulic Pump 

 

Since the pump is the most expensive component and the most affected by 

the palm based hydraulic fluid, this section gives some overview of the pump used in 

this project. Hydraulic pump used in this project can be classified as positive 

displacement type. The hydraulic pump is the source of hydraulic power. The pump 

converts mechanical energy received from the electric motor to fluid flow and 

pressure. It operates by forcing a certain volume of fluid from the suction side to the 

discharge side of the pump.  

 

 
Figure 3.4: Illustration of the vane pump. 

 

Figure 3.4 shows the exploded view of the vane pump used. The figure shows 

the position of rotor, vane, side plate and cam ring. The pump shaft is coupled to the 

motor shaft located on the upper side. This pump, being a positive displacement 

pump, is suitable for high pressure applications and fluid of relatively high viscosity.  
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3.5.4.2 Pump and Motor Assembly 

 

The pump and motor are mounted along a vertical axis to facilitate alignment. 

Strong support was fabricated for safety reason. Figure 3.5 shows photograph of 

pump-motor assembly.  

 
Figure 3.5: Photograph of pump-motor assembly. 

 

 

3.5.5 Electrical Components 

 

3.5.5.1 Electric Motor  

 

The prime mover of the hydraulic test rig is a 4 pole AC electric motor which 

is controlled by an inverter. The motor is of three phase type with 5.5 kW power. It is 

FOCUS brand 3VZ 132S 4 series. The maximum speed is 1500 rpm, frequency 50 
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Hz with current supply of 10.8A and 415V. Table 3.6 shows the relationship between 

the motor speed in rpm and Hz. Standard operating temperature is up to 40°C. It is 

equipped with IP 55 protection. Electrical circuit diagram for motor and cooling 

system is shown in Figure 3.6. 

 

Table 3.6: Relationship between the motor speed in rpm and Hz 

rpm 1440 1350 1290 1200 1140 1050 900 840 750 600 

Hz 48 45 43 40 38 35 30 28 25 20 

 

 
Figure 3.6: Motor and solenoid valve circuit drawing. 

 

 

3.5.5.2 Watt Tronic 55H3 Frequency Inverter 

 

Details of the inverter are as follow:  

Type: FUWTG0055H3 

Input: 50/60Hz +-5% 

Output: 3X 0-380/460V 
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0.1 – 400 Hz 

9.9kVA, 5.5kW, 13A 

 

 

3.5.6 Sensors and Transducers 

 

3.5.6.1 Pressure 

 

The pressure transducer that measures upstream and downstream pipe 

pressure was purchased from Keller Instrument. The transducer working pressure is 

from 0 bar to 250 bar. The accuracy is +- 0.25%. The transducer works on current 

principle. The output signal is 4-20 mA which corresponds to 0-250 bar. Each 

pressure transducer is connected to individual power supply (Figure 3.7a). The 

supply current for this transducer is 8-28 VDC. After about 2000 hours running, 

missing signal problem occurred. The problem was overcome by installing a flexible 

adapter. As shown in Figure 3.7b, the pressure sensor was screwed into a mounting 

adapter, which in turn is fastened to pressure port.  

 

 
Figure 3.7a: Individual power supply for pressure transducer. 
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Figure 3.7b: Pressure transducer installation via flexible adapter. 

 

 

3.5.6.2 Thermocouple 

 

The reservoir temperature was measured using K type thermocouple. The 

thermocouple reading was used as active input to energize or deenergize the 

operation of solenoid valve. The solenoid valve in turn connects or disconnects 

cooling water to the heat exchanger. The second thermocouple located in the return 

pipe acts as indicator for heat generation in the system.  

 

 

3.5.7 Calibration Method 

 

Flowmeter, pressure sensors, thermocouples and strain gauge were calibrated 

to verify their measurements. Thermocouple and pressure sensor were calibrated 

both offsite and in-situ.  

 

 

3.5.7.1 Flow rate 

 

Calibration of flowmeter is necessary since it will affect the volumetric 

performance. In calibrating the flowmeter, the rig was run at zero loading for several 

speeds (rpm). The flowmeter was calibrated by capturing oil reentering the hydraulic 

reservoir using jug and beakers. Stop watch was used to indicate the amount of time 
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required to fill certain volume. The actual volume divide with time required was 

taken as actual flow rate (lit/min).  

 

 

3.5.7.2 Torque  

 

The torque calibration was made when the rig was in idle condition. Two 

deadweights of 20 kg each were used. Torque loading was applied at 0.18m from 

shaft center (measured at motor casing). Gravitational force was taken into account. 

0, 20 and 40 kgf loading was applied. With a certain loading, corresponding mA 

reading was recorded.  

 

 

3.5.7.3 Temperature 

 

A digital thermometer was used to calibrate the thermocouples. The 

thermocouples and thermometer give the same temperature reading in hot water and 

atmospheric air.  

 

 

3.5.7.4 Pressure  

 

The pressure sensor and gauge calibration was performed by putting known 

weights on the dead-weight tester platform. Pressure gauge reading was made. The 

dead weight pressure calculation was made by dividing the dead load with the 

platform area. It was found that this calculated pressure was linear with the pressure 

gauge reading. For the in-situ calibration, the rig was run at constant speed of 40 Hz. 

Certain pressures were applied using pressure relief valve. Corresponding mV was 

obtained. Test was repeated at several pressures from 20 to 150 bar. 
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3.5.8 Data Acquisition System 

 

Data acquisition system is shown in Figures 3.8a and 3.8b. The signal 

acquired by each transducer was transmitted through respective ADAM conditioner 

units (through RS485 data interface cable) before being transmitted to PC through 

RS232 cable.  

 

The analog data were converted to digital data using this ADAM acquisition 

hardware. When the data was transmitted to the PC, the LabVIEW software, with the 

conditioned set by the built programs, conditioned and saved the data in basic Excel 

text file. The number of samples and the sampling rate could be adjusted according 

to the author’s requirement. A Pentium III–550MHz computer with 64Mb SDRAM 

6.4GB hard disk was used in the PC logger system.  

 

 
 
 

Figure 3.8a: Architecture of data acquisition system. 
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Figure 3.8b: Layout of data acquisition system. 

 
 

3.5.8.1 Basis for Software Selection 

 

LabVIEW is an excellent choice of software programs for data acquisition 

(Well and Travis, 1997). LabVIEW is graphical programming software that is 

produced by National Instrument. The software uses numerical techniques to solve 

problems. The fascinating feature of the software is that its ability to write the 

language code in a flow chart manner. There are many programs, which are called 

VIs, which can be used for a particular process.  

 

LabVIEW was the choice for this project due to its visual representation and 

user friendly. On computer screen it shows visual depictions of input and output 

parameters. There are add-on toolkits which can be used to represent detailed 

graphics of a process. The LabVIEW has the ability to perform actual data 

acquisition as required in this project. In addition the software also can be used to 

simulate a process and redisplay the process using the stored data. 
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3.5.8.2 LabVIEW  

 

LabVIEW Full Development Systems for Windows version 6.1 was used as 

the software for the data acquisition system. It is a very powerful and provides 

almost unlimited flexibility. However, it is quite complex and a reasonably long 

learning time was spent to become proficient with it.  

 

Debugging of the software was conducted using LabVIEW’s execution 

highlighting feature. Execution highlighting displays the code execution in a very 

slow mode, allowing the author to see the data flow and the value of the variables in 

the software.  

 

The software was used to acquire data, process data and present the results. It 

handled not only analogue but also digital I/O. It was decided that the digital control 

would also be implemented using LabVIEW. Thus the software was also used to run 

the motor and to activate the cooling solenoid valve. The software is not only flexible 

but also compatible with all National Instruments and most ADAM hardware. Thus 

not much problem was encountered in acquiring complex data with hydraulic system 

continuous running. 

 

For transient data, the data acquisition system failed to capture data less than 

3 seconds interval. This is due to bottlenecking at the 4520 ADAM hardware. For the 

steady state data, the data acquisition system collected data at prespecified time 

interval and converted the voltages to engineering parameters with correct units. The 

built programs then calculated the volumetric and mechanical efficiencies. The data 

was then formatted and saved in a spreadsheet for later use. The data was exported 

and further manipulation was performed in Microsoft Excel. Besides, the system also 

plots real-time graphs for immediate analysis.  

 

 

3.5.8.3 Program Algorithm  

 

i. Open communication port 

ii.  Initialize data array 
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iii. Create data file with detailed time information 

iv. Read data T,P,Q, L  

v. ON/Off pump 

vi. Confirm step iv logic min/max allowable data 

vii. Calculate performance, etc 

viii. Check and calculate total Q 

ix. Alert Tmax, blinking for safety 

x. Export parameter values to array  

xi. Make needed variables visible/hide 

xii. Exit – close serial communication 

 

 

3.5.8.4 LabVIEW Programming 

 

Figure 3.9a shows LabVIEW front panel outlook and its respective block 

diagram (Figure 3.9b) before entering this hydraulic program. It gave 3.5 seconds for 

user to decide either to really enter this program or not. Figure 3.10a show display 

front panel using ‘main menu2.vi’. This panel gives choice to the user either to: 

• get some information related to the system,  

• set the system safety features,  

• run the system or  

• exit from the system. 

The block diagram in Figure 3.10b uses WHILE loop for the user to decide either to 

stay with ‘main menu2.vi’ or to exit.   
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Figure 3.9a: LabVIEW front panel outlook. 

 

 
Figure 3.9b. LabVIEW front panel program (block diagram). 
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Figure 3.10a: Front panel of ‘main menu2.vi’ 

 
 

 
Figure 3.10b: Condition program of ‘main menu2.vi’ 
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Figure 3.11: WHILE loop to acquire flow data. 

 

 
Figure 3.12: Acquiring temperature values from port no. 31. 

 

 
Figure 3.13: Case structure loop to calculate pump speed. 
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Figure 3.14: Program to calculate pump theoretical flow rate. 

 

 
Figures 3.15: Program to calculate pump mechanical efficiency. 

 

Figure 3.11 shows a WHILE loop so that hydraulic flow parameters can be 

acquired and monitored. The data is acquired until the EXIT button is pressed. 

Within the while loop, a case structure loop contains five operations. Figure 3.12 

shows how the sub VI commands the computer to read data from port #31, in this 

case, temperature values. Similar sub VIs were developed for acquiring flow rate, 

torque and pressure data.  The case structure also contains condition for the pump to 

be ON or OFF. 

 

Figure 3.13 shows a case structure loop which contains two operations. Each 

operation calculates pump speed for each rig, given the Hz reading. As given in the 

inverter manual, maximum motor speed is 1499 rpm which corresponds to 50 Hz. 

Thus, in converting frequency reading to rotational speed, ratio of 1499/50 was used 

as multiplication factor to motor frequency input at the control panel. Figures 3.14 

and 3.15 depict of how pump theoretical flow rate and mechanical efficiency were 

calculated automatically in this project.  

 

With the aid of many tools the author was able to formulate the equations, 

mathematical operators, loops and built-in subroutines. The main program for 

running the hydraulic system is integrated in Graph2.vi (Appendix B). 
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3.5.9 Running of Hydraulic System  

 

The procedure started with switch ON power supply and activation of data 

acquisition system. Using Advantech software, the communication port was searched 

and identified. When the respective addresses for pump and cooler activation, 

pressure, temperature, flow rate and load cell were identified, then the LabVIEW 

program was activated.  

 

When all the PC work was done, manual check at the test rig was made. 

Shutoff valve was opened, peculiar sign (such as leakage) was observed and setting 

of loading valve was checked. Cooling system was checked. When everything was in 

good condition, the hydraulic system was ready to be operated.  

 

PUMP icon was clicked and the pump was running. The speed of the pump 

was adjusted manually. So does the system pressure. System pressure was increased 

to the desired operating pressure by rotating the knob at the loading valve. When the 

system operation was judged satisfactory, all the operational data was saved via the 

computer data acquisition system in the local hard disk for further analysis. Before 

the accomplishment of the ‘Graph2.vi’ program, the data was recorded manually.  

 

Sections 3.5.9.1 and 3.5.9.2 outline the hydraulic test procedures. Detailed 

test procedures and conditions are specifically noted in Sections 4.7 – 4.9. 

 

 

3.5.9.1 Static Endurance Test 

 

Static endurance test involves heating and shearing the palm oil in hydraulic 

test rig at particular temperature and load. Two phases of endurance tests were 

performed. The earlier phase involved circulating the oil at minimum loading and the 

oil temperature was maintained at 55oC. The rig was run continuously at 600 rpm 

and minimal pressure. The total investigation period was 600 hours. Palm oil, with 

and without additives were used. The additives used were F10 (1.5% and 2.0%) and 

L135 (1.5%). Commercial rapeseed hydraulic oil was used as comparison. The 
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rheological and thermal test results are presented and discussed in Sections 4.4.1 and 

4.6, respectively.  

 

The latter phase involves operating the system at 70 bar, 1200 rpm and 

maintaining the oil temperature at 70oC. The rig was run about 14 hours a day. Palm 

oil without additive was used in this test. Total flow and running hours were recorded 

manually and automatically by the LabVIEW. At about every 100 hour, 30 ml oil 

sample was retrieved from the rig for TGA, IR, TAN, IV and rheological tests as 

explained in Sections 3.3.2, 3.3.3, 3.3.4, 3.3.5 and 3.4.2, respectively. 

 

 

3.5.9.2 Performance Test 

  

During the high pressure (70 bar) operation phase, system performance test 

was performed at every 100 hour interval. The test conditions were: 

 

Temperature: 30oC to 70oC 

Pump speed: 600 rpm to 1440 rpm 

Pressure: 0 bar to 210 bar. 

 

At any particular test, only one parameter was varied. Basic performance and 

system efficiencies when running on palm oil with out additive are presented and 

discussed in Sections 4.7 – 4.9, respectively. 

 

 

3.6 Data Collection and Analysis 

 

3.6.1 TGA Activation energy determination  

 

 The thermogravimetric data from TGA test was used to determine rate of 

conversion. Using Excel Spreadsheet, plots of ln[(1/(1-x)(dx/dT)] versus 1/T and ln [-

ln(1-x)] versus 1/T were produced to determine activation energy based on direct 

Arhenius method (Equation 2 of Appendix C) and integration method (Equation 3 of 

Appendix C). 
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3.6.2 Determination of Order 

 

Lately a number of researchers study the kinetic order of their samples 

(Gomez-Rico et al., 2003; Vuthaluru, 2004; Li and Yue, 2004) but none of the report 

shows the effect of aging on sample kinetic order. In this study a technique based on 

the Arrhenius equation, used by Mansaray and Ghaly (1999), was utilized to 

determine the kinetic parameters from typical curves of TGA data over an entire 

temperature range in a continuous manner. For the purpose of n order determination, 

the linearized form of the Arrhenius equation was used. Then multiple linear 

regressions were applied. The multiple regression analysis was done using Minitab 

statistical software. The simplified form of the linearized rate equation is as follows: 

 

y = B + Cx + Dz               3.3 

 

The parameters y, x, B, C and D in Equation 3.3 are defined as follows: 

y = ln{[-1/( wo- w∞)][dw/dT]}           

x = 1/(RT) 

z = ln[(wt- w∞)/( wo - w∞)] 

B = ln A 

C = –Ea  

D = n 

 

 

3.6.3 Determination of Rheological Properties  

 

3.6.3.1 Mathematica Program for Andrade Constants  

 

Oil viscosity is a function of temperature. In addition, viscosity is also a 

function of shear rate and so the values of the four parameters (A, B, C and D) in 

Equation 2.9 change with shear rate. Therefore, program made using Mathematica 

software has to make sure these parameters were to be determined at constant shear 

rate for a range of temperature.  
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 Program #D1 of Appendix D shows the Mathematica 4.2 program to 

determine the Andrade constants. The polynomial curve-fitting program was applied 

to each oil samples at eight different shear rates. The temperature range represented 

the range of temperature used, where the modified Andrade’s equation was fitted into 

the experimental data. Regression correlation (R2) and mean square error (MSE) 

were also calculated to determine the appropriateness of the fitted data. MSE stands 

for the mean of how much of the data spread unaccounted for by equation. The MSE 

and R2 equations are based on predicted and experimental values as shown below: 

 

( )
data ofnumber 
ηη

MSE
2

exppred∑ −
=               3.4 

 

( )
( )∑

∑
−

−
−= 2

expave

2
exppred2

ηη

ηη
1R               3.5 

 

 

3.6.3.2 Mathematica Programs for Rheological Models 

 

Some rheological parameters were obtained using Microsoft Excel. Some 

models could not be solved using the Excel. In order to determine the equation 

constants, nonlinear fit programs were made for Ostwald de-Waele, proposed 

modified power law, Cross, Carreau, Herschel-Bulkley and Casson models. Sample 

of the programs are included in Appendix D. 

 

In general, the following steps were performed in the Mathematica programs: 

 

• Experimental data, title, x-label, y-label were input and the required equation 

was set. 

• The experimental data was transposed to matrix form. 

• The non-linear regression package was loaded. 

• Non-linear regression was performed and ANOVA table was produced. 

• Experimental data and best fitted curve were plotted. 

• The mean square error and coefficient of determination were calculated. 
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• The best-fitted equation constants were produced 

 
 

3.6.4  Dimensionless Parameter 

 

In many hydraulic models dealing with efficiencies, the parameters viscosity, 

speed and pressure seem to play important roles (Section 2.8). For this reason, it is of 

great interest to relate the efficiencies with these parameters. In fluid mechanics 

study, a technique which has proven very useful in reducing to a minimum number 

of experiments required is known as dimensional analysis (Massey, 1997). 

 

Thus, in this study parameters viscosity, speed and pressure were lumped 

together, with the effect of units were taken into account. Volumetric, mechanical 

and overall efficiencies of the hydraulic system as function of dimensionless 

parameters were calculated and the relationship between efficiencies and 

dimensionless parameters were studied.  

 

Information extracted from the resultant figures can help researchers to 

determine various efficiencies given important parameters such as oil viscosity or 

temperature, pump speed and operating pressure. This method can save the 

researchers’ time in determining the system efficiencies and parameter coefficients.  

 

 



 

 
 

 
 

Figure 3.3a: Front view of test rig latest layout. 



 

 
Figure 3.3b: Top view of test rig latest layout. 

 



 
 
 
 
 
 
 

CHAPTER 4 

 
 
 

RESULTS AND DISCUSSION 

 
 
 
4.1 Introduction 

 

In this chapter, all test results will be presented and discussed. In Section 4.2 

basic rheological properties of oils are presented. This includes the effect of 

temperature, shear rates and blends. Section 4.3 discusses the effect of blends with 

mineral oil, aging time, aging temperature and aeration on rheological properties of 

palm oil when the oil was exposed to heat in bench test. Section 4.4 studies the 

rheological properties of palm oil when it was used in the built hydraulic test rig.  

 

Section 4.5 presents the thermal performance of palm oils in bench tests. The 

performances of blended oils are compared. Section 4.6 presents the thermal 

performance of palm oils when it was operated in hydraulic test rig at 55oC and 

minimum load. Sections 4.7 – 4.10 discuss performance of hydraulic system from 

various aspects. The results are based on hydraulic test rig running intermittently using 

unadditived palm oil. 

 

 

4.2 Effect of Blending on Viscometric Properties and Rheological Behavior of 

Oils 

 

4.2.1  RBD Palm Oil and Shell Tellus 100 

 

Figure 4.1 shows the variation of dynamic viscosity with temperature when 

100% RBD palm oil was sheared at speed of 60 rpm. Figure 4.2 shows the effect of 

changing viscometer rotational speed ranging from 3 to 100 rpm in measuring viscosity 
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of RBD palm oil. It was noticed that different viscosity values were obtained when 

different spindle speeds were used. 
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Figure 4.1: Dynamic viscosity of RBD palm oil at 60 rpm. 

 

Figure 4.3 shows the variation of dynamic viscosity of Tellus100 with increasing 

temperature. Comparing with Figure 4.2., the variation of dynamic viscosity with 

temperature of Shell Tellus is larger. Another observation was that, effect of changing 

the viscometer speed was not very significant.  

 

In order to study variation of viscosity of RBD palm oil at particular shear rate, 

Figure 4.4 was plotted. The figure shows the variation of dynamic viscosity with shear 

rate ranging from 30oC to 100oC for RBD palm oil. The apparent viscosity was found to 

decrease by approximately 250% with the increase in temperature from 40oC to 100oC 

at 60s-1. All lines show that viscosity decreases with increasing shear rate until around   

40s-1, indicating a shear thinning behavior (as mentioned in Section 2.4). 
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Figure 4.2: Viscosity as a function of temperature at constant shear rate of RBD palm 
oil. 
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Figure 4.3: Viscosity as a function of temperature at constant shear rate of Shell 
Tellus 100.  
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Figure 4.4: Flow diagram of RBD palm oil. 

 

Figure 4.5 shows the variation of dynamic viscosity with shear rate ranging from 

around 30oC to 100oC for Shell Tellus. The deviation of viscosity with shear rate is not 

that significant compared to RBD palm oil. This might be attributed to the refined 

material of the Shell Tellus. Similar phenomena can also be seen from Figure 4.3.  
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Figure 4.5: Flow diagram of Shell Tellus 100.  

4.2.2  Superolein Palm Oil  
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Figure 4.6 shows variation of palm superolein viscosity with temperature when it 

was measured at different spindle speeds. There was no significant viscosity difference 

when it was measured at different speeds.  

 

Figure 4.7 shows the variation of superolein with shear rate. The main difference 

between this oil with RBD type (Figure 4.4) is that viscosity of superolein does not 

change much with shear rate. The result shows that this oil has better Newtonian 

characteristics compared to RBD type. The result also may indicate that the more 

refined the oil, with less impurity and less saturated fatty acid, the higher Newtonian 

level. 
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Figure 4.6: Flow diagram of superolein palm oil. 
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Figure 4.7: Dynamic viscosity for pure superolein with temperature and shear rate range 
of 31.2 - 100oC and 3.9 - 131.6s-1, respectively. 
 

Figure 4.8 shows the relationship of shear stress and shear rate for superolein oil 

sample tested from 31.2oC to 100oC. Shear stress and shear rate were calculated using 

Equations 9 and 11 of Appendix B, respectively. Linear relationship between shear 

stress and shear rate was found for this sample (Figure 4.8). This result supports the 

result in Figures 4.6 and 4.7 that the more refined the palm oil, the better the Newtonian 

level. Interestingly, the correlation coefficients for all temperatures are above 0.998.  
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Figure 4.8: Plot of shear stress versus rate of shear for superolein. 

 

 

4.2.3 Effect of Blend on Rheological Properties  

 

Figure 4.9 presents the flow curves of RBD palm - mineral oils at the various 

blending ratio measured at 40oC. The figure shows that the palm oil sample and the 

blends behave as shear thinning fluid. The viscosity is high (82 cP) at low shear rate (3.9 

s-1). As the shear rate increases, the viscosity decreases until reaching a steady value.  It 

means that the oil poses non-Newtonian behavior at low shear rate. The apparent 

viscosity is seen to be reasonably insensitive above shear rate of 26.3 s-1. This means 

that the oil approaches Newtonian behavior as shear rate increases above this value. The 

non-Newtonian behavior of this plant oil might be attributed to the dissolved molecules 

(foreign molecules), mixed with the base oil molecules. According to the oil fatty acid 

composition, the oil is consisted of 44.4% saturated and 55.4% unsaturated fatty acid 

composition. The interaction between the small molecular sizes of the saturated fatty 

acid with the larger unsaturated molecules might give rise to the non-Newtonian oil 

structure.  
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Figure 4.9: Flow curves of RBD palm - mineral oil blends at 40oC. 

 

In short it can be said that the shear thinning effect is more obvious for palm oil 

compared to mineral oil. If this oil is further refined, reducing the amount of saturated 

fatty acid, the oil might approach Newtonian behavior.  

 

This decrease viscosity phenomenon was not very significant for the mineral oil 

sample. The oil shows more Newtonian behavior. The oil with Newtonian behavior is 

preferred since the oil poses consistent internal resistance irrespective of shear rate. For 

the blended samples, their Newtonian behavior is very much improved when the mineral 

oil was introduced except for the 75P25M sample. Interestingly, the 50P50M sample is 

slightly better in terms of viscosity compared to 25P75M sample. The 50P50M 

curvature is less than 25P75M. This shows that this 50P50M blend behaves most 

Newtonian behavior compared to other samples including pure mineral oil. During the 

experiment, no separation of the two oils was noticed.  

 



 

 

84

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140

Shear Rate (s-1)

V
is

co
si

ty
 (c

P)

100P0M
75P25M
50P50M
25P75M
0P100M

 
Figure 4.10: Flow curves of RBD palm - mineral oil blends at 100oC. 

 

Figure 4.10 shows the effect of shear rate of oils viscosity at 100oC. Similar 

pattern was observed as in Figure 4.9, except the viscosity of oil samples at high shear 

rate is quite close together compared to significant difference for 40oC case.  

 

Shear thinning effect was observed for all samples as shear rate increases. 

However, comparing Figure 4.9 and Figure 4.10, it was observed that the shear thinning 

effect was less obvious for high temperature sample where the apparent viscosity is less 

dependent on shear rate. This statement is true for all palm, mineral and the blended 

samples. Investigation on bitumen (Ukwuoma and Ademodi, 1999) also shows that 

bitumen became more Newtonian in the higher temperature region.   

 

The decreased value of viscosity with increasing shear rate, either at 40oC or 

100oC, might also be due to rearrangement of oil molecular structure that decrease the 

value of flow resistance with increasing shear rate. The non-Newtonian behavior at 

lower shear rate is the property of pseudoplastic material. Due to limited capability at 

very high shear rate, it is not possible to measure the viscosity greater than     131.6 s-1.  

However, it is expected that the viscosity value is maintained at this value. 
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4.2.4 Effect of Temperature and Blending on Flow Behavior  

 

In order to better understand the pseudoplastic level of the samples, several 

rheological models as discussed in Section 2.6 were applied. Empirical constants were 

calculated. For Ostwald de-Waele model flow index, n, consistency coefficient, k, and 

correlation coefficient, R2, were calculated using Excel 2000 and Mathematica 4.2 

(Appendix D). Using the least square regression analysis, not only R2, mean square error 

was also calculated.  

 

Figure 4.11 shows log of viscosity versus log shear rate for RBD palm oil at 40, 

60, 80, 100oC. Equation 2.16 was used to determine rheological parameters using 

Microsoft Excel. From the best fit line, n and k values were calculated. 

 

Table 4.1 shows that n value at 40oC for 100% palm oil and Tellus samples are 

0.7820 and 0.9626, respectively. The value less than unity shows that the oils exhibit 

pseudoplastic behavior. The higher value for Shell Tellus sample shows that Shell 

Tellus is more Newtonian than palm oil. Graphically, the n value is reflected by 

significant curve and horizontal straight lines in Figures 4.4 and 4.5, respectively.  

 

In general Table 4.1 shows that with increasing of the mineral oil content, the 

value of the flow behavior index approaches to unity. This indicates that the level of the 

Newtonian increases with addition of mineral oil. The 50P50M blend has the highest n 

values. This shows that the maximum Newtonian level (least pseudoplasticity) occurs 

for 50% palm and 50% mineral blend. Again the value of n reflects directly the 

curvature of viscosity-shear rate in Figures 4.9 and 4.10. The highest n value of 50P50M 

blend (0.9689) was reflected by the smallest curvature while the lowest n value of 

100P0M (0.7820) was corresponded to the largest upward viscosity slope (Figure 4.9).  
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Figure 4.11: Plot of viscosity - shear rate in log form.  

 
In general, from Table 4.1 consistency coefficient, k, for 75P25M, 50P50M, 

25P75M and 0P100M samples for 100oC is lower than that of 40oC. This reflects the 

dependency of consistency index on temperature which influenced the oil viscosity. 

Decrease in consistency index with increasing temperature is also found in other 

samples (Hernandez et al., 1995; Goodrum et al., 2003).  

 
Figure 4.12 shows experimental data and best flow curves produced using 

Mathematica 4.2 for RBD palm oil at 40, 60, 80, 100oC. The nonlinear program 

calculated and output the value of n and k. The rheological properties together with the 

R2 are shown in Table 4.2. The value of n decreases with the increase in temperature. 

This observation was also reported by Kaur et al. (2002) who studied rheology of 

molasses. 
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(a) (b) 

(c) (d) 
Figure 4.12: Experimental data and Ostwald de-Waele plot as output by  Mathematica 
4.2. 

 
Comparing the correlation coefficients for data analyzed using Excel 2000 and 

Mathematica 4.2 for Ostwald de-Waele model, the latter gives better correlation 

compared to the former. This shows that analysis using dedicated Mathematica software 

can yield better accuracy compared to normal processing software. Variation of R2 with 

temperature for Ostwald de-Waele model is shown in Figures 4.13a and 4.13b. The R2 

in Figure 4.13b is slightly higher than in Figure 4.13a.  
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Figure 4.13: Variation of R2 and MSE using (a) Excel 2000 and (b) Mathematica 4.2. 
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The next model attempted was the Simplified Cross model (Equation 2.18b). 

Using this form of simplified Cross model, the analysis cannot be performed using 

Excel 2000. In order to used Excel, Cross models had been simplified and linearized 

into the following form 

 

log (µ/µo) = log (1/k1) + m [log (1/γ)]            4.1 

 

Cross model of the Equation 2.18b form was also solved using Mathematica 

(Program #D3, Appendix D). Empirical constants for Simplified Cross, using both 

Excel 2000 and Mathematica 4.2 were summarized in Tables 4.3 and 4.4, respectively. 

Similar pattern is shown between m result for simplified Cross and n result for power 

law. This might be due to simplified Cross model which has the same form as the Power 

Law model. Since m=1-n, the result is basically reversed. Improved correlation 

coefficients were observed when the simplified Cross model was analyzed using 

Mathematica compared to Excel (Table 4.4 compared to Table 4.3).  

 

Rheological properties of RBD palm oil, Tellus 100 and their blends were also 

analyzed using full Cross model (Equation 2.18a) and the linearized form of full Cross 

model, which are presented in Tables 4.5 and 4.6, respectively. Full Cross model gives 

better R2 than Power Law and simplified Cross model indicates that full Cross model 

better fits the oils rheological data. Better fit of Cross model may be attributed to four 

additional parameters in the model compared to Power Law model which has only two 

parameters, n and k.  

 

 

4.2.5 Modified Power Law Model 

 

By comparing Figures 4.9 and 4.10, it is clear that shear thinning is more 

prominent for 40oC than 100oC case. The same observation was made for palm 

superolein (Figure 4.7). It can be concluded that the oils are more Newtonian at high 

temperature compared to low temperature. Thus it is expected that the flow index will 

increase with temperature. However Ostwald de-Waele model yields reducing flow 

index with increasing temperature (Tables 4.1 and 4.2). Contradiction between flow 

index of Ostwald de-Waele model and graphical flow curve pattern was observed. Thus 
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this model is not suitable to be used to visualize Newtonian level at different 

temperatures.  

 

 In order to better visualize the Newtonian level of the fluid at different 

temperatures, a modified power law model is proposed     

 1, Kγηη −=− mn              4.2 

where  

00.01η,η rpm 100 −=  

 

The flow and consistency indices of this model were calculated using Program 

#D4 (Appendix D). The new flow behavior index and consistency coefficient were 

calculated and are shown in Table 4.7. As temperature increases, nm increases while km 

decreases. Similar results are reported for some other plant oils (Wan Nik et al., 2004). 

 

 

4.2.6 Andrade Constants 

 

 Figure 4.14 shows the graphical output of Program #A1 (Appendix A). Beside the 

best-fit curve, the program also calculated the Andrade constants and statistical results of 

the analysis. The results of RBD palm, superolein, Shell Tellus 100 and RBD palm – 

Shell Tellus 100 blends are summarized in Tables 4.8a to 4.8f. 
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Figure 4.14: Best-fit curve for Andrade equation produced by Mathematica software. 
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Table 4.1: Ostwald de-Waele using Excel 2000 (Equation 2.16) 

100% RBD Palm Oil         
Temp.           
(oC) n - 1 log k n k R2 
40 -0.2180 -1.0749 0.7820 0.0842 0.7341 
60 -0.3474 -1.0825 0.6526 0.0827 0.8635 
80 -0.4676 -1.0583 0.5324 0.0874 0.9363 

100 -0.5408 -1.0608 0.4592 0.0869 0.9639 

        
75% RBD Palm Oil and 25% Tellus 100  

Temp.           
(oC)  n - 1 log k n k R2 
40 -0.0954 -1.2166 0.9046 0.0607 0.7646 
60 -0.1864 -1.3409 0.8136 0.0456 0.8422 
80 -0.2645 -1.4209 0.7355 0.0379 0.9268 

100 -0.3377 -1.4625 0.6623 0.0345 0.9618 

            
50% RBD Palm Oil and 50% Tellus 100     

Temp.           
(oC) n - 1 log k n k R2 
40 -0.0311 -1.2453 0.9689 0.0568 0.7695 
60 -0.0534 -1.5271 0.9466 0.0297 0.8363 
80 -0.0803 -1.7333 0.9197 0.0185 0.9414 

100 -0.0934 -1.9105 0.9066 0.0123 0.9722 

            
25% RBD Palm Oil and 75% Tellus 100     

Temp.           
(oC) n - 1 log k n k R2 
40 -0.0454 -1.1241 0.9546 0.0751 0.7616 
60 -0.0859 -1.3955 0.9141 0.0402 0.7596 
80 -0.1385 -1.5737 0.8615 0.0267 0.9252 

100 -0.1591 -1.7471 0.8409 0.0179 0.9700 

            
100% Tellus 100         

Temp.           
(oC) n - 1 log k n k R2 
40 -0.0374 -0.9878 0.9626 0.1028 0.6964 
60 -0.0881 -1.2985 0.9119 0.0503 0.7774 
80 -0.1442 -1.4944 0.8558 0.0320 0.8623 

100 -0.1819 -1.6605 0.8181 0.0219 0.9449 
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Table 4.2: Ostwald de-Waele using Mathematica 4.2 (Equation 2.15) 

100% RBD Palm Oil   
Temp.       
(oC) k n R2 
40 0.1021 0.7123 0.7516 

60 0.1116 0.5413 0.9192 
80 0.1238 0.3946 0.9649 

100 0.1081 0.3742 0.9872 

        
75% RBD Palm Oil and 25% Tellus 100   

Temp.       
(oC) k n R2 
40 0.0625 0.8946 0.7742 
60 0.0506 0.7783 0.8582 
80 0.0425 0.6949 0.9475 

100 0.0386 0.6213 0.9786 

        
50% RBD Palm Oil and 50% Tellus 100   

Temp.       
(oC) k n R2 
40 0.0570 0.9680 0.7753 

60 0.0300 0.9441 0.8424 
80 0.0186 0.9169 0.9471 

100 0.0124 0.9046 0.9765 

        
25% RBD Palm Oil and 75% Tellus 100   

Temp.       
(oC) k n R2 
40 0.0755 0.9529 0.7679 
60 0.0413 0.9054 0.7752 
80 0.0274 0.8524 0.9386 

100 0.0180 0.8401 0.9715 

        
100% Tellus 100     

Temp.       
(oC) k n R2 
40 0.1032 0.9612 0.7031 

60 0.0515 0.9038 0.7800 
80 0.0337 0.8389 0.8818 

100 0.0227 0.8044 0.9603 
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Table 4.3: Simplified Cross model using Excel 2000 (Equation 4.1) 

100% RBD Palm Oil 
Temp.         
(oC) m log (1/k1) k1 R2 
40 0.2180 -0.1683 1.4733 0.7341 
60 0.3474 -0.0220 1.0520 0.8635 
80 0.4676 0.0072 0.9836 0.9363 

100 0.5408 0.1468 0.7132 0.9639 

          
75% RBD Palm Oil and 25% Tellus 100   

Temp.         
(oC) m log (1/k1) k1 R2 
40 0.0954 -0.0800 1.2023 0.7646 

60 0.1864 -0.1043 1.2715 0.8422 
80 0.2645 -0.0229 1.0541 0.9268 

100 0.3377 0.0190 0.9572 0.9618 

          
50% RBD Palm Oil and 50% Tellus 100   

Temp.         
(oC) m log (1/k1) k1 R2 
40 0.0311 -0.0234 1.0554 0.7695 
60 0.0534 -0.0322 1.0770 0.8363 
80 0.0803 -0.0121 1.0283 0.9414 

100 0.0934 0.0103 0.9766 0.9722 

          
25% RBD Palm Oil and 75% Tellus 100   

Temp.         
(oC) m log (1/k1) k1 R2 
40 0.0454 -0.0272 1.0646 0.7616 

60 0.0859 -0.0582 1.1434 0.7596 
80 0.1385 0.0113 0.9743 0.9252 

100 0.1591 0.0488 0.8937 0.9700 

          
100% Tellus 100       

Temp.         
(oC) m log (1/k1) k1 R2 
40 0.0374 -0.0370 1.0889 0.6964 
60 0.0881 -0.0767 1.1932 0.7774 
80 0.1442 -0.0507 1.1238 0.8623 

100 0.1819 -0.0029 1.0067 0.9449 
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Table 4.4: Simplified Cross model using Mathematica 4.2 (Equation 2.18b) 

100% RBD Palm Oil   
Temp.       
(oC) k1 m R2 
40 1.2148 0.2877 0.7516 
60 0.7794 0.4587 0.9192 
80 0.6948 0.6055 0.9649 

100 0.5737 0.6258 0.9872 

        
75% RBD Palm Oil and 25% Tellus 100  

Temp.       
(oC) k1 m R2 
40 1.1675 0.1054 0.7742 

60 1.1459 0.2217 0.8582 
80 0.9403 0.3051 0.9475 

100 0.8556 0.3787 0.9786 

        
50% RBD Palm Oil and 50% Tellus 100  

Temp.       
(oC) k1 m R2 
40 1.0528 0.0320 0.7753 
60 1.0684 0.0559 0.8424 
80 1.0197 0.0831 0.9471 

100 0.9713 0.0954 0.9765 

        
25% RBD Palm Oil and 75% Tellus 100  

Temp.       
(oC) k1 m R2 
40 1.0600 0.0471 0.7679 

60 1.1128 0.0946 0.7752 
80 0.9478 0.1476 0.9386 

100 0.8913 0.1599 0.9715 

        
100% Tellus 100     

Temp.       
(oC) k1 m R2 
40 1.0850 0.0388 0.7031 
60 1.1649 0.0962 0.7800 
80 1.0680 0.1612 0.8818 

100 0.9672 0.1956 0.9603 
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Table 4.5: Full Cross model using Mathematica 4.2 (Equation 2.18a) 

100% RBD Palm Oil 
Temp.       
(oC) αc m R2 
40 0.2508 2.4683 0.9936 
60 0.1772 1.9073 0.9968 
80 0.2021 1.6938 0.9922 

100 0.1516 1.6293 0.9986 

        
75% RBD Palm Oil and 25% Tellus 100 

Temp.       
(oC) αc m R2 
40 0.2354 2.0828 0.9982 

60 0.2187 1.4021 0.9778 
80 0.1786 1.4980 0.9972 

100 0.1678 1.2912 0.9973 

        
50% RBD Palm Oil and 50% Tellus 100 

Temp.       
(oC) αc m R2 
40 0.2172 1.4472 0.9506 
60 0.1821 1.5180 0.9922 
80 0.1272 1.0821 0.9904 

100 0.1029 1.1449 0.9745 

        
25% RBD Palm Oil and 75% Tellus 100 

Temp.       
(oC) αc m R2 
40 0.2375 1.9626 0.9652 

60 0.1931 1.9402 0.9849 
80 0.1155 1.3899 0.9917 

100 0.0772 1.1517 0.9887 

        
100% Tellus 100     

Temp.       
(oC) αc m R2 
40 0.2673 2.6047 0.9945 
60 0.2353 1.7591 0.9806 
80 0.1808 1.5631 0.9947 

100 0.1348 1.1575 0.9931 
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Table 4.6: Linearized Full Cross model using Mathematica 4.2 

100% RBD Palm Oil 
Temp.       
(oC) αc m R2 
40 1.6840 0.9682 0.9576 
60 0.8957 0.8982 0.9770 
80 0.2354 1.3735 0.9873 

100 0.0809 1.4119 0.9969 

        
75% RBD Palm Oil and 25% Tellus 100 

Temp.       
(oC) αc m R2 
40 2.0308 0.9236 0.9147 

60 1.2938 0.5937 0.8968 
80 0.0280 1.7441 0.9983 

100 0.3377 0.9668 0.9798 

        
50% RBD Palm Oil and 50% Tellus 100 

Temp.       
(oC) αc m R2 
40 1.1319 0.5609 0.8359 
60 1.2736 0.6699 0.8648 
80 0.3819 0.7275 0.9518 

100 0.0759 1.2214 0.9766 

        
25% RBD Palm Oil and 75% Tellus 100 

Temp.       
(oC) αc m R2 
40 0.8486 0.8279 0.9487 

60 2.1422 0.7200 0.8780 
80 0.4760 0.7538 0.9084 

100 0.1699 0.8639 0.9558 

        
100% Tellus 100     

Temp.       
(oC) αc m R2 
40 1.5969 0.9628 0.9363 
60 0.9104 0.8085 0.9799 
80 0.7053 0.8742 0.9683 

100 0.4151 0.7470 0.9616 
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Table 4.7: 100% RBD using modified power law model 

Temp.         
(oC) nm k R2 MSE 
40 0.1529 0.1627 0.8928 2.06298x10-6 

60 0.3096 0.1385 0.9607 8.37305x10-6 

80 0.3475 0.1304 0.9697 6.17831x10-6 

100 0.4397 0.1029 0.9811 2.93832x10-6 
 
 

Table 4.8a: Predicted parameters and statistics for 100% Shell Tellus 100 
Constants for  modified Andrade's equation rpm A B C D R2 MSE Temp. 

Range (oC) 
3 -7.4495000E+01 7.6183500E+04 -2.5775338E+07 3.0303613E+09 9.9963E-01 1.8103E-04 31.6 - 100 
6 -6.0453300E+01 6.5512100E+04 -2.3493202E+07 2.9281249E+09 9.9987E-01 6.9534E-05 31.6 - 100 

12 2.2643500E+01 -1.9698200E+04 5.3965705E+06 -3.1482066E+08 9.9989E-01 7.1483E-05 31.6 - 100 
20 1.0010600E+01 -8.7840100E+03 2.2571457E+06 -1.4172891E+07 9.9998E-01 1.1447E-05 31.6 - 100 
50 -1.5854900E+00 1.5772300E+03 -8.2964900E+05 2.9247091E+08 9.9999E-01 3.8165E-06 50 - 100 

 
 

Table 4.8b: Predicted parameters and statistics for 100% RBD palm oil 
Constants for  modified Andrade's equation rpm A B C D R2 MSE Temp. 

Range (oC) 
3 1.7150000E+00 -1.3128700E+03 1.3551165E+06 -2.1360291E+08 9.8014E-01 9.2330E-04 30 - 100 
6 -4.7809400E+01 5.2959600E+04 -1.8475848E+07 2.1806846E+09 9.9163E-01 4.4151E-04 30 - 100 

12 -3.1614000E+01 3.7924000E+04 -1.4230426E+07 1.8215816E+09 9.9921E-01 1.0958E-04 30 - 100 
20 -3.9010000E+01 4.4283600E+04 -1.6241299E+07 2.0526377E+09 9.9900E-01 2.3252E-04 30 - 100 
50 3.4403900E+01 -3.2989300E+04 1.0486322E+07 -9.9443427E+08 9.9952E-01 1.7373E-04 30 - 100 

100 -7.4996800E-01 1.3221400E+03 -7.2792000E+05 2.3240576E+08 1.0000E+00 5.1692E-07 50 - 100 
 
Table 4.8c: Predicted parameters and statistics for 25% Shell Tellus 100 - 75% RBD 
palm oil 

Constants for  modified Andrade's equation rpm A B C D R2 MSE Temp. 
Range (oC) 

3 -5.7308400E+00 7.7820000E+03 -2.6713924E+06 3.7539203E+08 9.9813E-01 2.7713E-04 30 - 100 
6 -3.8299100E+01 4.2068900E+04 -1.4824249E+07 1.8123726E+09 9.9984E-01 3.0645E-05 30 - 100 

12 -6.9724100E+00 1.1386100E+04 -5.0610978E+06 7.9857520E+08 9.9997E-01 8.5608E-06 30 - 100 
20 9.6599100E+00 -6.8472500E+03 1.3823984E+06 5.7226746E+07 9.9995E-01 1.9105E-05 30 - 100 
50 -6.1964300E+00 6.5233300E+03 -2.3854204E+06 4.1258707E+08 9.9979E-01 6.4617E-05 40 - 100 

100 -6.5804000E+00 6.7063900E+03 -2.4279210E+06 4.2019155E+08 9.9999E-01 2.5518E-06 50 - 100 
 
Table 4.8d: Predicted parameters and statistics for 50% Shell Tellus 100 - 50% RBD 
palm oil 

Constants for  modified Andrade's equation rpm A B C D R2 MSE Temp. 
Range (oC) 

3 6.0097600E+00 -5.9604700E+03 1.9677699E+06 -9.2438740E+07 9.9946E-01 2.3629E-04 30.9 - 100 
6 -2.6839300E+01 2.7362600E+04 -9.3078070E+06 1.1775410E+09 9.9997E-01 1.3794E-05 30.9 - 100 

12 -1.9027200E+01 2.0512700E+04 -7.3968804E+06 1.0098363E+09 9.9992E-01 3.6540E-05 30.9 - 100 
20 2.5828700E+00 -1.7137000E+03 1.5246500E+05 1.6171789E+08 1.0000E+00 3.9686E-07 30.9 - 100 
50 3.0042200E+00 -3.2763600E+03 9.9878400E+05 3.6965484E+07 9.9999E-01 5.3506E-06 40 - 100 

100 -4.3214000E+01 4.5333800E+04 -1.6056342E+07 2.0326998E+09 1.0000E+00 3.5587E-07 60 - 100 
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Table 4.8e: Predicted parameters and statistics for 75% Shell Tellus 100 - 25% RBD 
palm oil 

Constants for  modified Andrade's equation rpm A B C D R2 MSE Temp. 
Range (oC) 

3 -1.0652300E+02 1.0654900E+05 -3.5297612E+07 4.0078471E+09 9.9946E-01 2.3180E-04 30.2 - 100 
6 -7.4884800E+01 7.7940200E+04 -2.6887482E+07 3.2052295E+09 9.9979E-01 9.4723E-05 30.2 - 100 

12 -5.6451200E-01 4.0513700E+03 -2.5729939E+06 5.5397555E+08 9.9985E-01 7.6487E-05 30.2 - 100 
20 9.6904600E+00 -7.5855100E+03 1.6740698E+06 5.0137814E+07 9.9986E-01 8.0803E-05 30.2 - 100 
50 -3.2411200E+01 3.3856800E+04 -1.2004074E+07 1.5633198E+09 9.9997E-01 8.4451E-06 50 - 100 

100 -7.7146600E+01 8.0812200E+04 -2.8463014E+07 3.4893666E+09 1.0000E+00 1.5002E-08 60 - 100 
 

Table 8f: Predicted parameters and statistics for 100% superolein 
Constants for modified Andrade's equation rpm A B C D R2 MSE Temp. 

Range (oC) 
3 -6.8882095E+01 6.5964943E+04 -2.1067938E+07 2.3562967E+09 9.9948E-01 2.3871E-04 30 - 100 
6 -1.7742505E+01 1.6596177E+04 -5.2287638E+06 6.6638674E+08 9.9947E-01 2.2704E-04 30 - 100 

12 1.9310498E+00 -3.1718527E+03 1.3539813E+06 -6.0932989E+07 9.9994E-01 2.7505E-05 30 - 100 
20 4.5919705E+00 -5.2514356E+03 1.8699028E+06 -1.0042377E+08 9.9998E-01 7.9494E-06 30 - 100 
50 6.1754045E-02 -7.5177016E+02 3.8492238E+05 6.2175483E+07 9.9999E-01 4.3477E-06 30 - 100 

100 -2.0471859E+01 2.0668035E+04 -7.0509280E+06 9.2112773E+08 9.9999E-01 2.4935E-06 50 - 100 
 
  

As shown from Tables 4.8a to 4.8f, the polynomial curve-fitting software was 

applied to each oil samples at 6 different shear rates. The temperature range was 

representing the range of temperature, where the modified Andrade’s equation was 

fitted into the experimental data.  

 

  The experiment has proven that the behavior of Shell Tellus 100, RBD palm, 

superolein and their blends exhibited more linear viscosity-shear rate relationship 

(Newtonian behavior) at high temperature (100oC) which indicates that the shear rate 

has less effect on viscosity and the viscosity of the oils depend heavily on the changes of 

temperature. However, at low temperature (30oC) the shear rate has a larger effect on 

changes of viscosity of all the oils being investigated. Noticeable curve was seen at low 

shear rate region on viscosity-shear rate graph. Shear rate contributes to the changes of 

viscosity of the oils, but this effect was less pronounced for pure Shell Tellus 100 and 

pure superolein when compared to pure RBD palm oil.    

 

  From the results of regression tabulated in Tables 4.8a - 4.8f the lowest 

coefficient of determination and the highest mean square error are 0.98014 and 

9.2330x10-4, respectively. As a rule of thumb, a good fit accounts for at least 99 percent 

of the data variation, where this value corresponds to R2 ≥ 0.99000 (Palm, 2001). 

Overall, there was only one reading of coefficient of determination less than 0.99000, 
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which was happened at 3 rpm for 100% RBD palm oil. The variation of R2 and MSE 

is shown in Figures 4.15a and 4.15b, respectively. Therefore, by referring to these 

coefficients of determination and mean square error values, a concrete statement can 

be made that superolein, RBD palm oil and their blends with Shell Tellus 100 were 

very well fitted to the modified Andrade’s equation. 
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Figure 4.15a: R2 for Andrade equation using Mathematica 4.2. 
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Figure 4.15b: MSE for Andrade equation using Mathematica 4.2. 
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4.2.7 Effect of Blending on Viscosity, Viscosity Index and Density  

 

Previous studies (Adhvaryu et al., 2000; Wan Nik et al., 2002, 2003a) show 

that vegetable oil is not oxidatively stable. Using unadditive or unformulated 

vegetable oil, the oil can deteriorate after short time. When deterioration occurs, the 

oil is changed at shorter interval. Some user may blend or top-up the oil with other 

oil types of different viscosity grades. 

 

When the oil was changed or top-up, the oil properties would change. 

Important oil properties such as viscosity and density would also change. These 

changes would have significant effect on system performance. Because of the above 

reasons, it is of importance to determine the viscosity and density of oil mixtures. 

There is no direct relation between oil viscosity and oil oxidative stability.  

 

Figure 4.16 shows the viscosity relationship of RBD palm oil with the 

percentage addition of Shell Tellus 100 when the viscosity was measured at 50oC and 

spindle speed of 50 rpm. The relationship between viscosity and percentage of Tellus 

can be written as  

η = 0.0028%2 + 0.0021% + 26.709            4.3 

 

The viscosity does not increase linearly with amount of Shell Tellus added 

but with the above relationship. This interesting observation is further studied in this 

section and theoretical relationships in Section 2.6 are used.  

 

Figure 4.17 shows the effect of blending Shell Tellus and RBD palm oil at 

shear rate of 50 rpm for temperatures from 30oC up to 100oC. For case study, 

kinematic viscosities at 50oC were used to predict the viscosity of the blends. 
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Figure 4.16: Viscosity variation of palm with the addition of Shell Tellus. 
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Figure 4.17: Effect of blending on viscosity – temperature variation (at shear rate of 
50 rpm). 
 
  

 Section 2.6 discusses several models to predict viscosity of mixtures. Based 

on these models, another three models are proposed to predict the viscosity of 

mixtures. 

 

Model 1: 

µAB = µA * xA + µB * xB             4.4 

 or in general, 

 µAB = Σ µi x i 

  where x i  is the wt% of individual element 
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Model 2: 

 µAB = µA
xA + µB

xB               4.5 

 or making this into general equation, 

 ηAB = Σ ηi
 xi. 

 

Model 3: 

 µAB = µA
xA * µB

xB               4.6 

 or making this into general equation, 

 µAB = Πµi
 xi. 

 

The proposed Model 1 was based on mixing type rule used in lubricating oil 

blends (Diaz et al., 1996). The proposed Model 2 and 3 were based on Arrhenius 

form of relationship.  

 

Tables 4.9 – 4.11 shows the comparison of experimental and predicted 

dynamic viscosity, kinematic viscosity and viscosity index of oil blends. S in ninth 

column is the factor in Equation 2.26 to be determined by trial and error. With the 

dynamic viscosities of RBD and Shell Tellus 100 at 26.3 cP, 55.6 cP respectively, 

Table 4.9 shows that Lederer equation is the best model to predict the dynamic 

viscosity of mixture. Very small error percentage suggests that the accuracy is high 

and this model is very suited to predict the dynamic viscosity of the blends. The next 

best model to predict the dynamic viscosity of the palm and mineral blends are 

Rahmes model, Model 3, Dow model, Goodrum model and Model 1. Model 2 is not 

suitable to predict the dynamic viscosity of mixtures.  

 

Even though Lederer equation gives the least error in predicting the mixture 

viscosity, the troublesome is that the correction factor S has to be determined by trial 

and error. This suggests that experimental work still needed to be conducted in the 

case where different blending ratios or different oils types are used. 
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The work in using different models to predict properties of oil mixtures was 

extended to kinematic viscosity (Table 4.10). Same ranking was observed as in Table 

4.9. However the accuracy of the models was different. Rahmes model in predicting 

kinematic viscosity results in better accuracy compared to predicting dynamic 

viscosity.  

 

Based on the smaller error results in Table 4.10 compared to Table 4.9, this 

study suggest that when using Rahmes model in predicting the viscosity of the 

blends, kinematic viscosity is better to be used compared to dynamic viscosity. On 

the other hand, when using Model 3 in predicting mixture viscosity, it is better to 

deal with dynamic viscosity. Dow and Goodrum model results also suggest that 

dynamic viscosity is to be used, instead of kinematic viscosity. 

 

Viscosity index (VI) was calculated according to ASTM D2271. Figure 4.18 

shows the variation of VI of blend when Shell Tellus was blended with RBD palm 

oil. The viscosity index for the Shell Tellus is 93. The viscosity index for the Tellus 

increases linearly with the addition of RBD palm oil. 

 

The models were also used to predict viscosity index of the oil blends. The 

results are shown in Table 4.11. Similar to the dynamic and kinematic viscosity 

results, Lederer equation can give the least error, but after some effort in 

manipulating the correction factor. Based on the results, next best models are Dow, 

Model 3, Goodrum and Model 1. 

 

Surprisingly, Rahmes model gives significant error. This might be due to 

unlinearity of the model while Figure 4.18 shows that the viscosity index of the 

blends is linear with respect to blending ratio. On the other hand, Dow, Model 3, 

Goodrum and Model 1 predict the viscosity index better compared to Rahmes model.  
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Figure 4.18: Variation of viscosity index with weight fraction of palm oil. 

 

Figures 4.19 and 4.20 show the variation of specific gravity, as measured 

using a hydrometer and pycnometers, of RBD palm, Shell Tellus and their blends.  

Figure 4.19 shows that the specific gravity for all oils is linearly decreasing with 

temperature. In another aspect, Figure 4.20 shows that the specific gravity for Shell 

Tellus increases linearly with the addition of RBD palm oil for all temperature cases. 
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Figure 4.19: Variation of specific gravity of blends with temperature. 
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Figure 4.20: Variation of specific gravity of RBD palm, Shell Tellus and their 
blends. 

 
Specific gravity refers to ratio of oil density to water density. This means that 

density of oils under study is linearly decreasing and increasing with temperature and 

RBD palm blending ratio, respectively. This is similar to viscosity index versus 

blending ratio relationship. Thus simulation work using the above models was not 

performed on density. It is expected that the best and worse models to simulate 

density would be similar to that of viscosity index. 

 

 

4.3 Rheological Performance from Bench Tests 

 

4.3.1  Effect of Aging Time on Rheological Properties of Palm – Mineral 

Blends 

 

Figure 4.21 shows the changes of oil dynamic viscosity with heating time for 

palm oil and its blends with mineral oil when heated at 95oC in bench test. 

Considerable viscosity change occurred to the pure palm oil, while very minimal 

change occurred to the Shell Tellus 100. Intermediate effect was observed for the 

blends. Interesting phenomena was observed between 0 hour and 48 hour. Slight 

viscosity decrease was observed at 48 hours. Some oil structure change might occur 

to the oil components that results in reduced viscosity. Similar result was observed to 

the palm oil ran in hydraulic system at 70 bar and 70oC (Section 4.4.2). 
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Figure 4.21: Changes of palm – mineral blends viscosity with heating time. 

 

Figure 4.22 shows the flow diagram of palm oil at 48, 96, 192 and 288 hours. 

The figure suggests that the oil samples are becoming more Newtonian as heating 

progresses. In order to confirm this observation, the flow properties for selected 

sample and sampling hour were calculated. Flow property of RBD palm oil when 

heated at 95oC for 48, 96 and 192 hours, as analyzed by Ostwald de-Waele model is 

presented in Table 4.12. Almost all cases, flow index decreases consistently with 

increasing temperature, except n192 for 70oC is higher than for 60oC. The decrease in 

n with the increase of temperature is similar to result of Tables 4.1 and 4.2. It is 

expected that n should be closer to unity as temperature increases. However the 

opposite results were obtained using Ostwald de-Waele model. This model may not 

suitable to be used to visualize Newtonian level at different temperatures. 
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Figure 4.22: Flow diagram of palm oil at different heating time in bench test. 
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Table 4.12: Flow index of RBD palm at n48, n96 and n192 using Ostwald de-Waele 
model 

Temperature   
Flow 
index   

oC n48 n96 n192 
40 0.6880 0.7706 0.9703 
50 0.6537 0.7096 0.9652 
60 0.5663 0.6153 0.9550 
70 0.4834 0.5208 0.9559 
80 0.4452 0.4603 0.9507 
90 0.4068 0.4248 0.9490 

100 0.3636 0.4045 0.9373 
 

It was expected that when the oil damaged, the Newtonian level decreases. 

Interestingly, results in Table 4.12 show the reverse. The flow index increases with 

heating time (n192 > n96 > n48), applied to all temperatures. This confirms the 

observation seen in Figure 4.22. The Newtonian level increases with heating period. 

The explanation to this phenomenon might be in the aspect of triglyceride molecular 

chains. As the oil was heated, the chain broke. With the short chain condition, the oil 

internal resistance remains low even at low shear rate. 

 

Table 4.13: Consistency index of RBD palm at 192 and 408 hour using Ostwald de-
Waele model  

  192 hour   408 hour  
Temp. (oC) k R2 MSE k R2 MSE 

40 0.0485 0.7841 4.5153x10-7 0.0665 0.8100 1.0081x10-6 
60 0.0262 0.8657 1.9683x10-7 0.0358 0.7954 1.0076x10-6 
80 0.0155 0.8497 9.0787x10-9 0.0232 0.9074 3.1382x10-7 

100 0.0102 0.9686 8.0016x10-9 0.0156 0.9722 5.0082x10-8 

 

Table 4.13 shows the consistency index for 192 and 408 hour cases. For each 

temperature, the k value for 408 hour case is higher than the 208 hour case. This is 

due to increase in viscosity with aging period, since k is the viscosity related 

constant. The high R2 and low MSE at higher temperature indicates that the data 

fitted better for the Ostwald de-Waele model at higher temperatures. 
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4.3.2  Effect of Aeration Level on Rheological Properties  

 
This bench test was conducted mainly in order to study the effect of aeration 

in hydraulic reservoir. When hydraulic oil returns to the reservoir, bubbling and 

aeration occurs (Figure 4.23). The severity depends on the oil flow rate and breather 

condition.  Figure 4.24 shows the effect of aeration on viscosity level of the palm oil 

in a bench test at 95oC. The oil was heated up to 400 hours. The oil viscosity was 

measured every 100 hours. The viscosity ratio is the ratio of current viscosity to the 

initial viscosity. Without aeration (A), the viscosity increased at almost constant rate. 

The figure shows that when the aeration was introduced the viscosity level 

exponentially increased with heating time. Doubling the aeration rate increased the 

viscosity level much further. In other words, with the presence of aeration, oil 

degradation rate increases.  

 
Figure 4.23: Bubbling and aeration in hydraulic system. 
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Figure 4.24: Effect of aeration on viscosity at 95oC: A – without aeration; B – 15 
ml/min aeration; C – 30 ml/min aeration. 

 
 

This bench result has significant importance on the oil condition when it is 

operated in real hydraulic system. Beside aeration in hydraulic reservoir as 

mentioned above, in real operation the oil passes several hydraulic components 
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where mixing the oil with air trapped in the system is possible. When the oil enters a 

hydraulic reservoir from a long piping system, it is allowed to rest and mixed with 

the contained air in the reservoir. According to this bench result, the resultant is the 

increased viscosity after prolong use. The increased viscosity is then sucked by the 

pump. If the pump starts from rest, i.e., running from low rpm, the pseudoplastic 

behavior of this increased viscosity oil can cause significant problems. In term of 

pump power, significant input pump is required to run the pump or will reduce 

mechanical and overall efficiencies. Often cavitation can occur, although a pump 

could cope with the sheared oil. Cavitation can take place when there is not enough 

oil in suction chamber. The pump might be unable to initiate flow of oil if the oil has 

been rested for some time and significant viscosity increase occurs. Based on the 

results from this bench test, it is expected that the oxidation of oil in real hydraulic 

system will be much severe compared to the pure heating condition in bench test 

(Section 4.3.1).  

 

 

4.3.3  Effect Aging of Oil due to Temperatures on Viscosity  

 

Figure 4.25 shows the bench test results of viscosity variation with heating 

temperatures. Temperature of 55oC was used since the normal operating temperature 

of well-conditioned hydraulic system is 35-55oC. In the bench test, the increase in 

viscosity was minimal when heated statically at 55oC. The 70oC environment was 

used since the recommended temperature for evaluating hydraulic fluid is 70oC. 

Minimal viscosity increase was also observed when heated at temperature of 70oC.  

 

The 95oC and 135oC test temperatures were used since there are testing 

standards use these temperatures as the testing condition in evaluating functional 

fluids (Section 2.3.2). Significant viscosity increased occurred when the palm oil was 

heated at 95oC. The rate doubled when the heating temperature of 135oC was used. It 

can be summarized that, based on heating temperature only, the normal grade of 

palm oil can be used without significant viscosity increase if run up to 70oC (no other 

degrading factors involved. 
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Figure 4.25: Effect aging of oil due to temperatures on viscosity. 

 

 

4.3.4  Effect of Aging on Viscous Activation Energy  

 

Table 4.14 shows the variation of viscous activation energy with heating time 

when it was heated at 135oC. The viscous activation energy and Arrhenius factor 

were calculated as Equation 2.3. Activation energy (Ea) could be treated as potential 

energy barrier in that molecules of the oil require achieving this energy before it 

could flow freely in the applied shear rate direction and Arrhenius factor (A) relates 

to the viscosity of oil. The results show that as viscometer spindle speed increases, 

the activation energy increases while the Arrhenius factor decreases. It can be seen 

also that as heating time progresses, the activation energy increases. This is due to 

the increased energy required to move the oil molecules. 
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Table 4.14: Activation energy of RBD palm oil after heating at 135 °C 

(a) after 96 hours  
  rpm Ea A R2   
  3 7895.6 3.3380 0.9915   
  5 12663.1 0.4833 0.9933   
  6 13322.4 0.3352 0.9762   
  12 18143.6 0.0435 0.9669   
  20 20487.4 0.0160 0.9776   
  50 23550.2 0.0047 0.9888   
  60 23990.1 0.0038 0.9990   
  100 24402.4 0.0032 0.9986   
        

(b) after 384 hours  
  rpm Ea A R2   
  3 21118.4 0.0260 0.9990   
  5 21855.8 0.0176 0.9944   
  6 31255.7 0.0109 0.9953   
  12 24743.3 0.0050 0.9937   
  20 26833.4 0.0022 0.9967   
  50 26841.8 0.0020 0.9996   
  60 26897.5 0.0020 0.9999   
  100 26929.9 0.0019 1.0000   
        

(c) after 864 hours  
  rpm Ea A R2   
  3 27349.7 0.0059 0.9832   
  5 28452.2 0.0037 0.9897   
  6 30021.9 0.0020 0.9943   
  12 31203.3 0.0012 0.9960   
  20 31211.6 0.0012 0.9968   
  50 31367.1 0.0011 1.0000   
  60 31342.1 0.0011 1.0000   
  100 N/A N/A N/A   
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4.4 Rheological Performance from Hydraulic Test Rig 

 

4.4.1  Continuous Operation 

 

Effect of aging time and heat when palm oil was subjected to aging process in 

hydraulic test rig running continuously at 55oC, 600 rpm and minimum load is shown 

in Figure 4.26. The figure shows the variation of viscosity with temperature when 

tested at different shear rates. Due to thermal degradation and oxidation, the viscosity 

at 600 hours is always higher than of 288 hours and 96 hours, irrespective of shear 

rates applied. 

 

Testing at 3 rpm indicates higher viscosity compared to other speeds, similar 

to results in Section 4.3 (bench test). This viscosity increase can have significant 

impact on hydraulic system performance especially during starting where low rpm is 

involved. Besides being dependent on pressure and speed, the performance of 

hydraulic test rig is significantly affected by viscosity property (results discussed in 

Section 4.8). 



 

 

114

 

 3 rpm

30

40

50

60

70

80

30 50 70 90 110
Temperature (0C)

V
is

co
si

ty
 (c

P
)

96 hours

288 hours

600 hours

 6 rpm

20

30

40

50

60

70

30 50 70 90 110
Temperature (0C)

V
is

co
si

ty
 (c

P
)

96 hours

288 hours

600 hours

 

 60 rpm

0

10

20

30

40

50

60

30 50 70 90 110

Temperature (0C)

V
is

co
si

ty
 (c

P
)

96 hours 
288 hours
600 hours

 100 rpm

0

10

20

30

60 70 80 90 100
Temperature (0C)

V
is

co
si

ty
 (c

P
)

96 hours
288 hours
600 hours

Figure 4.26: Viscosity versus temperature for palm oil without additive at different 
running time and spindle speeds. 

 

Similar pattern was observed from the oil flow curves (Figure 4.27). The 

results show that palm oil experienced significant viscosity increase when used 

without additive in the hydraulic system. All samples show pseudoplastic behavior at 

all temperatures. 
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Figure 4.27: Flow curve for palm oil without additive at different running time. 

 
 

Figure 4.28 compares the effect of additive on viscosity level. As already  

explained in previous figures, the viscosity of the oil increased with running time. At 

96 hours, the effect of additive is not very clear. At 288 hours, the F10 and L135 

additives managed to reduce the oil viscosity to a certain level. The ability of 

additive to prevent the oil viscosity from increasing was very clear based on 600 

hour results. The inhibited oil was very much increase in term of viscosity. The 

effect of additive type and percentage used was not very significant. The possible 

reason is that these additives are antioxidant, not viscosity improver. However these 

additives managed to suppress the viscosity increase by reducing the oil oxidation 

rate (acidic value of oils is discussed in Section 4.6.1).  
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Figure 4.28: Effect of additives on viscosity at (a) 96, (b) 288 and (c) 600 hours. 

 
 

Figure 4.29 compares the viscosity of RBD palm oil (PO) and commercial 

rapeseed based hydraulic oil (RO). The two oils have similar viscometric property 



 

 

117

level, even after operated up to 600 hours. It is worth to remember that the 

commercial RO might have been fortified with several types of additives. 

Surprisingly the viscometric property of the PO was not much different from that of 

RO. Based on higher mono-unsaturated acids (C18:1) of RO compared to PO, RO 

should be more thermally stable than PO. The drawback of RO maybe due to high 

polyunsaturated acids (Table 3.1). 
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Figure 4.29: Viscosity comparison between palm oil and commercial rapeseed oil. 

 

Figure 4.30 plots the viscosity versus shear rate in log form for the palm oil at 

96 hours operation at viscometric properties of 40oC and 100oC. From the best fitted 

line, the slope and the intercept were noted. The values were used to determine the 

oil rheological properties according to Ostwald de-Waele model.  
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Figure 4.30: Determination of rheological parameters according to Ostwald de-
Waele model. 
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Table 4.15 shows the calculated flow behavior index for oil samples at 96 

hours running. At 96 hours, the palm oil was always more Newtonian than rapeseed 

oil. As in previous sections, when analyzed using Ostwald de-Waele model, the flow 

behavior index decreases with viscometric temperatures. 

 

Table 4.15: Flow behavior index at 96 hours according Ostwald de-Waele model 

Temp(0C) PO PO+1.5F10PO+2F10PO+1.5L135 RO 
40 0.8595 0.8635 0.8710 0.8565 0.8534 
60 0.7251 0.7290 0.7516 0.7236 0.7213 
80 0.6017 0.6047 0.6114 0.6100 0.5954 
100 0.5100 0.5087 0.5096 0.5123 0.5075 

  

Figure 4.31 shows the effect of test rig running time and additive on the oil 

flow behavior index. It compares the n values at viscometric temperature of 40oC for 

inhibited and additived oil when it was aged at 96, 288 and 600 hours. The result 

shows that the n increases with ageing time.  Flow index becomes closer to unity 

suggest that the oil samples become more Newtonian. Interestingly, this is similar to 

test results from bench test (Section 4.3.1) but contradicted with the result of oil 

running 15 hours a day at higher pressure (Section 4.4.2).  
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Figure 4.31: Variation of flow index for different oils at three running time. 

 
 

The increase occurs to all palm and rapeseed oil samples. However the 

amount of increase depends on the oil sample. The result shows a large increase of n 

for inhibited palm oil. This suggests that this inhibited oil had gone significant 

molecular structural change during heating in the hydraulic system, thus modify 
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significantly its flow behavior. Similar observation was made by Shenoy (2002) 

where many asphalt materials experienced increased flow index when aged in 

Rolling Thin Film Test. 

 

The results in the figure also suggest that the increase in n was suppressed 

with the presence of the additive. The presence of additive has protected the oil from 

degradation and thus reduced the structural change as suggested by less n change. 

Effect of different additive type, of same concentration (1.5% F10 and 1.5%L135), 

on the value of n was not significant. 

 

 In order to confirm that the n increases with running time, palm and rapeseed 

oil samples were analyzed for other viscometric temperatures (60, 80, 100oC). Table 

4.16 shows that in general for palm oil n increases with running time. The same goes 

for rapeseed oil. Based on n value, it can be said that rapeseed oil is always slightly 

more pseudoplastic compared to palm oil (nrapeseed < npalm). 

 

Table 4.16: Changes of n with running time for (a) palm and (b) rapeseed oils 

 Running time(hour) 
Temp(0C) 96 288 600 

40 0.8595 0.8705 0.8988 
60 0.7251 0.7348 0.7926 
80 0.5936 0.6017 0.6545 
100 0.4912 0.5100 0.5362  

 Running time (hour) 
Temp(0C) 96 288 600 

40 0.8534 0.8657 0.8702 
60 0.7213 0.7273 0.8035 
80 0.5785 0.5954 0.6675 
100 0.5042 0.5075 0.5447  

(a) (b) 
 
Based on the above results, it was confirmed that the flow behavior index 

increases with running time. The reason is not very clear. The hypothesis that can be 

made is that, when the oil is heated over time, the long triglycerides chains of the 

vegetable oils become broken. The break down of the chain results in short chains, 

thus less resistance exists at low shear rate. This can be understood when considering 

commercial mineral hydraulic fluid which has shorter hydrocarbon chain. Due to 

short carbon chain, Shell Tellus 100 behaves Newtonian like. 

 

Table 4.17 compares the consistency index with running time for palm oil 

added with additive F10 with concentration of 1.5%. Consistency index for each 

temperature was calculated. The table shows that for each temperature case, except 
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for 40oC of 288 hour case, the consistency index increases with heating time. This 

can be another indication that the viscosity value increases with heating time. 

 

Table 4.17: Consistency index for palm oil blended with 1.5% F10 

 96 hour 288 hour 600 hour 
Temp(oC) k R2 k R2 k R2 

40 0.0642 0.8756 0.0686 0.8524 0.0677 0.8185 
60 0.0627 0.9070 0.0648 0.9241 0.0677 0.9035 
80 0.0659 0.9390 0.0895 0.9587 0.0906 0.9622 
100 0.0714 0.9688 0.0912 0.9793 0.0912 0.9785 

 
 

Figure 4.32 shows the linearity of viscosity in natural logarithmic form with 

temperature reciprocal of unadditived palm oil at 96 hours at two different spindle 

speeds. From the best fit line, the slope and the intercept were noted. The slope of the 

plot is equal to Ea/R of Equation 2.4 from which activation energy, Ea, was 

evaluated. The values of Ea and A are given in Table 4.18.  
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Figure 4.32: Determination of activation energy and Arrhenius factor for (a) 20 rpm 
and (b) 60 rpm cases. 

 

Table 4.18: Activation energy and Arrhenius factor for different spindle speeds 

rpm  Ea/R  Ea lnA A 
3 650.2 5406.3 1.9808 7.2485 
5 1124.8 9352.1 0.3549 1.4260 
12 1716.6 14272.6 -1.8103 0.1636 
20 2181.8 18140.5 -3.3685 0.0344 
50 2854.5 23733.7 -5.5248 0.0039 
60 2910.3 24197.6 -5.7046 0.0033 
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It is observed that the value of activation energy increases with spindle speed. 

In another words, the activation energy increases with shear rate. It reveals the 

relationship between shear rate and energy of the oil. The shear rate was actually 

acting as an input of energy, which continuously supplied to given oil under shear. 

Eventually oil that was subjected to high shear rate would obtain high activation 

energy. 

 

 Table 4.18 also shows that as the shear rate increased, the Arrhenius factor 

decreased. This is directly due to the energy supplied by shear was actually used to 

free the oil molecules from attraction force between adjacent molecules. 

 

 

4.4.2  15 Hours Intermittent Operation 

 

After the palm oil was thermally and sheared degraded in hydraulic test rig at 

70oC and 70 bar for about 15 hours a day, the rheological property change of oil were 

analyzed and evaluated. The total running hour was 920 hour. The oil did not exhibit 

time-dependency during shearing at 3.9 - 131.6 s-1.   Figure 4.33 shows the variation 

of viscosity versus temperature at 65.8 s-1 and 3.9 s-1 for 100 hour sample. Similar 

increased viscosity was also observed as in continuous operation case (Section 4.4.1) 

and bench tests (Section 4.3). The increased viscosity at low shear rate would render 

low mechanical performance to hydraulic test rig during starting.  
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Figure 4.33: Viscosity versus temperature of PO from test rig at two shear rates. 

 

Figure 4.34 shows the flow curves for 0, 100, 300, 400, 500 and 600 hour 

samples. The figure shows that the viscosity constantly increases from 0 to 100, 300, 

400, 500 and 600 hours. As operating hour increases, less and less viscometric values 

were available for high shear rates and at lower temperature (eg. 40oC). This is due to 

increased viscosity which resulted in higher torque to rotate spindle. All samples 

behaved as pseudoplastic fluid with different degrees.  

 

In order to perform a qualitative comparison of oil properties, various 

rheological models as discussed in Section 2.5 were used. They were empirical 

Ostwald de-Waele, proposed modified power law, Cross, Carreau and Herschel-

Bulkley using programs made in Mathematica 4.2. Best fit model was suggested 

based on the basis of standard errors (R2 and MSE).  
 



 

 

123

 

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140
Shear Rate (s-1)

V
is

co
si

ty
 (c

P
)

40 ºC

50 ºC

60 ºC

70 ºC

80 ºC

100 ºC

 

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140
Shear Rate (s-1)

V
is

co
si

ty
 (c

P
)

40 ºC

50 ºC

60 ºC

70 ºC

80 ºC

100 ºC

(a) 0 hour (b) 100 hour 

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140
Shear Rate (s-1)

V
is

co
si

ty
 (c

P
)

40 ºC

50 ºC

60 ºC

70 ºC

80 ºC

100 ºC

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140
Shear Rate (s-1)

V
is

co
si

ty
 (c

P
)

40 ºC

50 ºC

60 ºC

70 ºC

80 ºC

100 ºC

 
(c) 300 hour (d) 400 hour 

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140
Shear Rate (s-1)

V
is

co
si

ty
 (c

P
)

40 ºC

50 ºC

60 ºC

70 ºC

80 ºC

100 ºC

 

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140
Shear Rate (s-1)

V
is

co
si

ty
 (c

P
)

40 ºC

50 ºC

60 ºC

70 ºC

80 ºC

100 ºC

(e) 500 hour (f) 600 hour 
Figure 4.34: Flow curves for palm oil samples at different operating hours.  
 

Figure 4.35 shows variation of experimental dynamic viscosity at 60oC with 

shear rate for oil at 200 hour running.  With an enlarged y-axis scale, a sharp 

viscosity drop from above 0.07 Pa.s to below 0.055 Pa.s can be observed. This 

corresponds to a strong shear thinning behavior of the oil. A strong fatty acid chain 

might have broken down under an applied shear field.  

 

The simulated plots using proposed modified power law, Cross, Carreau and 

Herschel-Bulkley models are also shown. Among the four models, Cross and 
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Carreau were very well fitted to the experimental data with the correlation coefficient 

of 0.9999. It was followed by Herschel-Bulkley and modified power law with 0.9996 

and 0.9572, respectively. Plot of Ostwald de-Waele is not shown in Figure 4.35 since 

the R2 is less than 0.9. Similar results were also obtained for basic palm oil data, 

where Cross model always gives higher R2 compared to Ostwald de-Waele model 

(Results in Table 4.2 versus Table 4.5).  
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Figure 4.35: Variation of viscosity of experimental and predicted data. 

 
 
From the results of multiple non-linear regressions, the variation of 

consistency index and flow behavior was of main interest. Figure 4.36 shows the 

variation of n with increasing temperature for 100, 300 and 400 hour cases as 

determined by Ostwald de-Waele model.  
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Figure 4.36: Variation of n with increasing temperature as determined by Ostwald 
de-Waele model. 

 

The figure shows that as running time increases the flow index decreases. The 

decrease in flow index indicates that the oil is becoming more pseudoplastic. The 

non-Newtonian behavior of the oil increases. This might be due to crosslinking or 

bridging of the oil molecular structure. The relationship between flow index and 

temperature for 100, 300 and 400 cases can be fitted to Equation 4.7a-c:  

n100 = -0.0015T + 0.9600             4.7a 

n300 = -0.0064T + 1.1256              4.7b 

n400 = -0.0087T – 1.1711             4.7c 

 

The correlation coefficients for 100, 300 and 400 hour cases are 0.6962, 

0.9923 and 0.9931, respectively. Interestingly as running time increases the R2 

increases, indicating better linearity.  

 

The contradiction of n trend between this test and test discussed in Section 

4.4.1 (Table 4.16) might be due to experimental condition. In Section 4.4.1 test, the 

thermal (55oC) and shear condition (less than 15 bar) is less severe than the test in 

Section 4.4.2. Another difference is that the test in Section 4.4.2 imposed 15 hours 

heating and 9 hours cooling periods and sometimes subjected the oil to higher 

pressures (up to 210 bar). The harsher environment might polymerize the oil. 

Another possibility is that the short chains produced during the heating and shearing 



 

 

126

processes (Section 4.4.2) might entangle again to produce some other form of long 

chain molecular structure, which is related to polymerization process. 

 

Figure 4.37 shows the decrease in consistency index with temperature which 

is similar to the results discussed in Section 4.3 and 4.4.1. It is also commonly 

reported by other researchers on plant oil blends (Ma and Barbosa-Canovas, 1995; 

Maskan and Gogus, 2000). Consistency index increases with ageing time indicates 

that the oil is becoming more viscous, thus giving greater resistance to flow. The 

changes in flow and consistency indices compares well with Figure 4.34. 
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Figure 4.37: Variation of k with increasing temperature as determined by Ostwald 
de-Waele model. 

 

Table 4.19 shows the rheological properties of the oil samples at 100 hour as 

analyzed using Cross model. This table contains the viscometric properties at zero 

shear rate (ηo,γ),  and at infinite shear rates (η∞,γ), Cross flow index (m), and Cross 

consistency index (αc). This model suitably explains the experimental data. It is 

better than the previous Ostwald de-Waele model. The correlation coefficient values 

range from 0.9973 to 0.9999 while the MSE is very small with the highest value is 

3.79 x 10-8.  



 

 

127

Table 4.19: Rheological properties of 100 hour oil according to Cross Model 

Temp. ηo,γ η∞,γ m αc R2 MSE 
oC         
40 0.0632057 0.0467564 2.61513 0.188207 0.9995 8.02028E-09 
50 0.0529472 0.0320863 2.25081 0.185931 0.9999 2.21194E-09 
60 0.0430132 0.0231841 2.20878 0.1545265 0.9992 2.10837E-08 

70 0.0363001 0.0171546 1.48370 0.2102287 0.9973 3.79035E-08 
 

Table 4.20 shows the rheological properties of the oil as analyzed using 

Carreau model. η∞,γ, λc and N values were obtained direct from the Mathematica 

output. In the case of 300 hour oil, the R2 values were greater than 0.994 and MSE 

were less than 2.5x10-8. 

 

Table 4.20: Rheological properties of 300 hour oil according to Carreau model 

Temp. ηo,γ η∞,γ λc N R2 MSE 
oC             
50 0.0543177 0.0320968 0.175959 1.18913 0.9999 2.81303E-09 
60 0.0440769 0.0231688 0.150992 1.11882 0.9991 2.39700E-08 
70 0.0334655 0.0170886 0.232812 0.65798 0.9975 3.41799E-08 

100 0.2584383 0.0079533 0.365101 0.36039 0.9947 2.44421E-08 
 

 

Table 4.21 shows the rheological properties of oil sample at 100 hour 

according to Herschel-Bulkley model. Based on R2 and MSE values, it is clear that 

Herschel-Bulkley is not as good as Cross and Carreau models to be applied to palm 

oil samples. 

   

Table 4.21: Rheological properties according to Herschel-Bulkley model 

Temp. KH nH η∞,γ R2 MSE 
oC x10-3   x10-3     
40 78.7245 -0.3828 46.3858 0.9917 1.34039E-05 
50 73.6612 -0.1681 31.3982 0.9947 1.32065E-05 
60 60.9375 0.0445 21.9408 0.9908 2.66574E-05 
70 37.3066 0.1596 16.4307 0.9945 7.63939E-06 

100 18.7327 0.2792 7.9533 0.9947 2.44408E-07 

 

 In overall, the extremity viscosities (η∞,γ and ηo,γ) were determined through 

Herschel-Bulkley, Cross and Carreau models. Most of the zero-shear rate viscosity 

(ηo,γ) estimated by Cross was greater than Carreau and value estimated by Carreau 

was greater than Herschel-Bulkley. Not much different of the infinite-shear rate 
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viscosity (η∞,γ) estimated by different models were observed and therefore the result 

of η∞,γ  was considered acceptable. The η∞,γ was found decreased as the temperature 

increased, which suggests that less friction was encountered as the temperature 

increased. 

 

 In summary, Figure 4.38 shows the flow diagram for all oil samples taken 

from the hydraulic test rig and as measured at 60oC. The flow diagram clearly depicts 

the viscosity change throughout the rig operation. The overall increased oil viscosity 

is due to the oxidation and build up sludge. Prolong usage of the oil at high 

temperature eventually degraded the palm oil.   
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Figure 4.38: Flow diagram for all oil samples from hydraulic test rig running at 60oC, 
70 bar and 15 hours a day. 

 

 

4.4.3 Proposed Generalized Rheological Model 

 

Rheological data for oils under study have been applied to rheological model 

proposed by Al-Zahrani and Al-Fariss (1998). Parameter constants of this empirical 

model were calculated using Mathematica 4.1 program. Statistical analysis to 

determine the suitability of the model was performed.  
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Based on observation of palm oil data pattern and Arrhenius type relation, the 

author proposed the following model for the palm oil under study.  
γT mn

γ
11

T
11100aη ⎟⎟

⎠
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+⎟
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⎞
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⎝
⎛ ++=             4.8 

 

where a, nT and mγ are constants. This model has only 3 constants to be determined 

compared to Al-Zahrani and Al-Fariss’s model which has 4 constants. The non-linear 

regression analysis was used to determine the model parameters a, nT and mγ 

(Appendix D – Program #D5). Using the contants output by the Mathematica 

program, the predicted viscosity value as determined by the above model was 

calculated using Excel spreadsheet (Appendix E). The R2 and MSE were calculated 

using Equations 3.4 and 3.5, respectively.  

 

The fittings to Al-Zahrani and Al-Fariss’s and proposed generalized models 

were applied to several palm oil data sets (both bench test and hydraulic test). Based 

on higher coefficient correlation and lower mean square error, the proposed model 

was found to fit the experimental data better than Al-Zahrani and Al-Fariss’s model. 

For the data set as shown in Appendix E, the R2 and MSE for proposed model and 

Al-Zahrani and Al-Fariss’s model are 0.9646, 8.2158x10-6, 0.9175 and 1.9133x10-5, 

respectively.  

 

The proposed model includes the dependency of viscosity on shear rate and 

temperature in one expression. Graphically, for the data used in Appendix E, this 

dependency is shown as in Figure 4.39. Figure 4.40 shows the closeness of viscosity 

data predicted by the proposed model and Al-Zahrani and Al-Fariss’s model to the 

actual experimental data. The closeness of ‘proposed’ points to the 45o line (Figure 

4.40) shows the good fit of proposed model to the experimental data. 
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Figure 4.39: Graphical variation of viscosity with shear rate and temperature. 
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Figure 4.40: Comparison between measured and predicted viscosities according to 
the proposed model and Al-Zahrani and Al-Fariss’s model. 
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4.5 Thermal Performance of Blended RBD Palm Oil in Bench Tests 

 

The purpose of the bench test in this chapter was to forecast the oil condition 

when it was exposed to heat in hydraulic system. The good oil blends for further 

study are primarily based on TAN and viscosity values.  

 

 

4.5.1 RBD Palm - POME Blend 

 

Many researchers in biodiesel field blend ester to their diesel. For instance 

Masjuki and Maleque (1996b) used POME in their engine. In another application 

Yunus et al. (2003a) had transesterified POME into environmentally acceptable 

lubricant. Other lubricant researchers also studied the use of vegetable ester (Erhan 

and Asadauskas, 2000; Adhvaryu and Erhan, 2002). In this investigation the thermal 

stability of palm oil blended with POME when heated up to 792 hours has been 

investigated. The palm-POME blends were attempted in order to investigate if the 

POME can improve the thermal stability of the palm oil. 

 

Figure 4.41 shows the increase of TAN for palm oil, POME and their blends 

when heated in an electric oven at 95oC. The result shows that POME is less stable 

thermally compared to palm oil. The TAN values indicated that in the early stages of 

oil oxidation, the rate of reaction was very slow. It is obviously known that the rate 

of this process at this stage is dependent on the amount of free radical produced in 

the reaction environment. As the heating process continues, a higher rate increase of 

TAN was detected. This was due to the rapid formation of hydroperoxide and 

hydroperoxide products such as aldehyde, ketone and peracid with short alcohol 

chains (mentioned in Section 2.3).  

 

The results show that the more the amount of POME added to palm oil, the 

higher the acid generation during the heating process. Figure 4.42 shows the 

percentage TAN increase for all blends at 792 hours. The y-axis is the percentage 

increase, taking the TAN increase of pure palm oil as 100%. Based on percentage 

increase of TAN of the used sample, TAN increased exponentially with the amount 

of POME used. It can be concluded that the ability of the blends to contribute to the 
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TAN depends on the percentage of the methyl ester in the oil samples because the 

structure of methyl ester is shorter than the palm oil and thus, it is easier to oxidize in 

a shorter period of exposure. Thus it was not recommended to include POME into 

the oil for hydraulic test rig testing.  
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Figure 4.41: Variation of TAN for palm oil - POME blends. 
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Figure 4.42: Percentage increase of TAN for palm - POME blends. 

 

Table 4.22 shows the summary of IV of palm oil, methyl ester and the blends. 

An iodine value analysis shows the decrease of the double bond in the oil samples 
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after 792 hours of heating. For example the IV of palm oil before heating process 

was 59.63 cg I2/g but after 792 hours of heating the IV of palm oil decreased to 46.38 

cg I2/g. During heating, thermal energy was supplied to excite the atoms in the 

bonding molecules. After a certain stage, the atoms had enough energy to break the 

double bond in the chain. Mostly this mechanism occurred in the unsaturated parts. 

The result is that the saturated structure was formed. Beside this, reaction of the 

hydrogen allylic in the oil during oxidation formed a diperoxide, which caused the 

decrease of the double bond in the oil samples (Yeshajahu and Clifton, 1994). The 

decrease in IV amount for 100P0ME, 80P20ME, 60P40ME, 40P60ME, 20P80ME 

and 0P100ME is 13.25, 13.87, 14.38, 17.32, 18.13 and 17.82 cg I2/g, respectively. In 

general, the higher the POME content the larger the decrease of IV. This shows that 

the blend will be less thermally stable when more POME was added to the palm oil. 

This result complements the acid value result in Figures 4.41 and 4.42.  

 

Table 4.22: Summary of the IV for palm oil, methyl ester and oil blends 

Oil Samples Iodine Value (cg I2/g) 

 0 hour 792 hours 

100P0ME 59.63 46.38 

80P20ME 58.57 44.70 

60P40ME 56.63 42.25 

40P60ME 56.05 38.73 

20P80ME 55.69 37.56 

0P100ME 51.70 33.88 
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4.5.2 RBD Palm - Mineral Blend 

 

Two bench tests using palm - mineral (Shell Tellus) oil blend were conducted 

at 95oC. The first test was conducted in an electric oven and the second test 

conducted in an oil bath. The TAN result for the former test is shown in Figure 4.43 

and the latter is shown in Figure 4.44. 

 

0

2

4

6

8

10

12

14

16

0 200 400 600 800
Heating Time (hour)

TA
N

 (m
g 

K
O

H
/g

)

100P0M
75P25M
50P50M
25P75M
0P100M

  
Figure 4.43:  Variation of TAN for palm – Shell Tellus blends – in oven. 
 

In the early stage of heating (up to 300 hours), only a small increase of TAN 

occurred. Significant increase in TAN occurred after 300 hours especially to pure 

palm oil. The increase in TAN was closely related to thermal and oxidative 

degradation of the oils. During the oxidation process, an active oxygen or a radical 

attacks the oil double bonds to form hydroperoxide (Kodali, 2002). As already been 

mentioned and shown in Section 2.3 and Figure 2.1, respectively, the rate of 

degradation depends on the amount of olein (C18:1), linoleic (C18:2) and linolenic 

(C18:3). The significant increase in instability is due to the high content of 
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polyunsaturated acid of the palm oil (Table 3.1). For blended sample, the sample that 

has higher content of the mineral oil has lower TAN increase.  

 

Similar result was obtained when the oil was heated in open oil bath at 95oC 

(Figure 4.44). Oil bath should better simulate the hydraulic system built since the oil 

in hydraulic reservoir is in contact with atmospheric air. Shell Tellus is different 

from palm oil in which Shell Tellus is hydrocarbon base (CH3(CH2)x CH3) whereas 

palm is ester base. Shell Tellus oil did not experience much degradation since the 

mineral oil consists of liquid polymer like structures which can withstand high 

temperature condition (Lehrle et al., 2002). The presence of additives in the oil also 

protected the oil from severe oxidation (Strochkova et al., 1999). The change in 

chemical structure of the palm and mineral oil was also reflected by the IR spectra 

(Figure 4.45). Relatively unchanged in the IR spectra of mineral oil (Figure 4.45b) 

indicates that the mineral oil undergone less deterioration compared to palm oil 

which has noticeable IR change (Figure 4.45a). 
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Figure 4.44: Variation of TAN for palm – Shell Tellus blends – in oil bath. 

  

Even though blending with mineral Shell Tellus yields much improved thermal 

oxidative stability, it was decided not to use palm oil – Shell Tellus blends in 

hydraulic test rig. Blending palm oil with Shell Tellus will diminish the benign 



 

 

136

properties of plant oil and will introduce the negative effects as pointed out in 

Sections 2.1 and 2.2. 
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(b) 
Figure 4.45: IR spectra for (a) palm oil and (b) mineral oil before and after 800 hour 
heating.  
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4.5.3 RBD Palm - Additives Blend 

 

Figure 4.46 shows the increase of TAN of palm oil when it was blended with 

L74 additive. Based on the TAN result, it was decided that the palm oil - L74 blends 

were not worth to proceed since the acid value was high for the first 700 hours. The 

additived oil only became advantage after 700 hours. Only then the acid value was 

already very high. 
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Figure 4.46: Variation of TAN for palm - L74 blends. 

 

Figure 4.47 shows the increase of TAN of palm oil when it was blended with 

L06 additive. The result shows that 0.1 and 0.5% additive L06 did not much improve 

the TAN of the blends. 2% and 4% additive level managed to improve the TAN to 

1.9 and 1.6 mg KOH/g, respectively. Based on recommendation and practical use of 

additive level, 4% is considered high amount. Thus it was not recommended to use 

this additive at 4% or higher.  
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Figure 4.47: Variation of TAN for palm - L06 blends. 

  

Figure 4.48 shows the increase of TAN of palm oil when it was blended with 

Lubrizol 7652 additive. For the first 500 hours, there was no advantage of using this 

additive. The additive used only managed to show its advantage only after 600 hours. 

However, the acid value already high. Furthermore, amount of additive used in this 

study was already high.  
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Figure 4.48:  Variation of TAN for palm - Lubrizol7652 blends. 

 
 
Very small percentages of L135 additive were used in these blends (Figure 

4.49). It was proposed to use this type of additive, of this amount or higher, for 
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consecutive tests since the bench test results as depicted in Figure 4.49 show that 

1.5% L135 managed drastically reduced the TAN to 2 mg KOH/g. 
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Figure 4.49: Variation of TAN for palm - L135 blends. 

  

Small percentages of F10 additive were used in the blends (Figure 4.50). F10 

additive managed drastically reduced the TAN below 2 mg KOH/g. Based on small 

TAN increase, it was proposed to use this additive for hydraulic and other tests. 
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Figure 4.50: Variation of TAN for palm - F10 blends. 
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Beside the chemical properties, the color of the oil samples was also 

monitored. There were changes to all samples after 800 hours of heating. For palm 

oil, the color of the oil becomes clearer. This is due to the decomposition of natural 

carotene found in the oil. For palm oil blended with additive L135, the color of the 

oil tends to be clearer (Figures 4.51a and 4.51b). When higher amount of L135 

additives were used, the palm oil color was preserved better. For other blends the 

color becomes darker. For palm - Lubrizol 7652 blends, the color of the oil changes 

to reddish brown (Figures 4.52a and 4.52b).   

 

 
 

Figure 4.51a: Appearance of palm oil with additive L135; from left: 0.2%L135, 
0.6%L135, 0.8%L135 and 1.5%L135 (0 hour). 

 
 

 
 

Figure 4.51b: Appearance of palm oil with additive L135; from left: 0.2%L135, 
0.6%L135, 0.8%L135 and 1.5%L135 (800 hour). 
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Figure 4.52a: Appearance of palm oil with additive Lubrizol 7652; from left: 
0.5%Lubrizol 7562, 1.5 %Lubrizol 7652, 2.0%Lubrizol 7562 and 3.0%Lubrizol 
7652 (0 hour). 

 
 
 

 
 

Figure 4.52b: Appearance of palm oil with additive Lubrizol 7652; from left: 
0.5%Lubrizol 7562, 1.5 %Lubrizol 7652, 2.0%Lubrizol 7562 and 3.0%Lubrizol 
7652 (800 hour). 
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4.6 Thermal Performance of Palm and Commercial Hydraulic Oils in Actual 

Hydraulic Test Rig 

 

Oil circulated in the built hydraulic system was heated due to friction at the 

pump, loading valve and 418 cm length piping (as explained in Section 3.5.9.1). The 

friction gave rise to temperature of 55oC or more. Excess heat was taken away by 

cooling system, so as to maintain the oil in the hydraulic reservoir at 55oC at all 

times. The rig was operated continuously for 600 hours. 

 

 

4.6.1 Total Acid Number 

 

About 8 ml of oil sample was taken at 0, 50, 100, 200, 300, 400, 450, 500, 

550 and 600 hours. Figure 4.53 shows the increase of TAN with test rig operation 

time. Similar patterns were observed as in bench tests (Section 4.5.3). Additived 

palm oils (PO+1.5%F10, PO+2.0%F10 and PO+1.5%L135) managed to keep the 

TAN low. After 200 hours, unadditived palm oil could not maintain its TAN and 

shot up to 12.6 mg KOH/g at 600 hours. Strangely, commercial rapeseed oil also 

could not maintain its TAN and reached 8.5 mg KOH/g at 600 hours. 
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Figure 4.53: TAN variation of oil samples with test rig running time. 
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4.6.2 TGA Thermogram 

 

Before the oil was introduced into the hydraulic system and at the end of test 

period (600 hour), the oils samples were characterized and quantified using TGA 

method. Kinetics of palm oil samples was studied non-isothermally under conditions 

of sample temperature increasing at the rate of 5 oC/min. Figure 4.54 shows the 

temperature scan of pure palm oil sample in nitrogen atmospheric heating. It shows 

the decomposition and weight loss of oil samples and derivative weight (DTG) with 

the corresponding temperature. It reveals that the thermal degradation of the oil 

occurred in a single-step reaction. Other samples also gave similar TG-DTG curves. 

 

 
 

Figure 4.54: TGA thermogram of palm oil. 
 
The oil thermogram as shown in Figure 4.54 consists of three phases. During 

the first phase, only minimal weight change was observed during this induction 

period. The thermogram shows that 1% weight loss of the pure palm oil sample in 

the inert atmosphere occurs around 279oC. 46 minutes was taken before it changes to 

second phase.  Rapid weight change was observed during the second phase. 

Maximum degradation rate temperature occurs at 381oC, where the rate of weight 

decrease increases to the maximum up to this point. Slower weight decrease was 

observed over this temperature. The curve flattering at 466oC shows that there was 
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no further conversion occurred. The differential weight loss (DTG) curve shows a 

clear evidence for the three degradation steps. The TG curves and the negative first 

derivative of the oil decomposition suggest that the overall process occurs in first 

order kinetics.  

 

 

4.6.3 Onset and Degrading Temperatures 

 

Onset temperatures (Ton) can be used to indicate the resistance of the oil to 

thermal degradation. It is determined by extrapolating the horizontal baseline at 1% 

degradation. The intercept of this line with the tangent of downward portion of the 

weight curve is defined as onset temperature.   

 

Table 4.23 shows the detailed temperatures for the point of 1% weight loss, 

onset temperature, offset and final temperatures. The onset temperature for the fresh 

unadditived palm oil is significantly lower than the additived palm oils. This shows 

that these types of additive and percentages well protected the oil from oxidation. 

Hindered phenol is among the earliest oxidation inhibitor packages suggested in 

history. In this case the author used L135, a phenolic anti oxidant. It works as free 

radical scavengers. However, the onset of oil with L135 additive is lower than the oil 

with F10 additive. The onset temperatures for palm and rapeseed of aged cases are 

very similar while for additived palm oils are slightly higher.  

 

Surprisingly the T1 for rapeseed oil both fresh and aged samples were 

significantly low. This may indicate the presence of small amount of volatile 

components in the oil. The T1 of A600 sample was greatly reduced compared to A0. 

This may indicate that volatile components were produced during the ageing process. 

 

Comparing the 0 and 600 hour values, it can be seen that Ton values for all 

fresh samples were 2-16oC higher than the aged oil. This is as expected. Degraded oil 

may have higher volatile components that lead to earlier decomposition. Naturally, 

the higher the degradation product, the lower the onset temperature. Similar result 

occurs for polyfilms that were degraded for several weeks (Pezzin and Duek, 2002).  
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Table 4.23: The 1% weight loss, onset, offset and final temperatures for different 
samples at 0 and 600 hours  

Sample 
Id. 

Additive 
type and 
amount 

Temperature 
at 1% weight 
loss T1 (oC) 

Onset 
temperature 

Ton (oC) 

Offset 
temperature 

Toff (oC) 

Final  
temperature 

Tf (oC) 
A0 PO, no 

additive 
278.80 347.57 426.55 465.92 

B0 1.5% F10 215.09 384.48 435.84 469.85 
C0 2% F10 266.56 384.64 430.98 464.78 
D0 1.5% 

L135 
244.505 375.99 433.00 466.50 

E0 RO 176.22 376.47 436.28 473.29 
A600 PO, no 

additive 
134.23 331.94 434.02 465.04 

B600 1.5% F10 224.87 377.78 433.77 460.59 
C600 2% F10 242.81 375.84 435.90 462.56 
D600 1.5% 

L135 
258.46 373.51 436.35 466.54 

E600 RO 49.575 363.03 443.12 478.22 
 

 

4.6.4  Oil Conversion and Decomposition Rate 

 

Figure 4.55 shows the extend of conversion of fresh and aged palm oil at 

corresponding temperatures. Significant difference of the conversion curve for fresh 

and aged palm oil exists. The aged oil starts to paralyze at lower temperature than the 

fresh oil. This corresponds to lower T1 and Ton as discussed in the Section 4.6.3. 

Another reason might be due to water content vaporization. The aged oil has 1758 

ppm water content when measured according to ASTM D4377. Fresh oil has only 

994 ppm of water. At elevated temperatures also the aged oil has higher fractional 

weight loss. This is due to pyrolysis of volatile secondary product that was produced 

during the 600 hour ageing period. 
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Figure 4.55: Conversion of palm oil with temperature. 

 
 

Similar pyrolysis pattern was observed for the rapeseed oil. This shows that 

this oil degraded to similar degree as inhibited palm oil. Other complementary tests 

(TAN and IV) and kinetic order number analysis show that the palm and rapeseed oil 

had been worsely degraded, while the introduction of additive has greatly improved 

the degradation rate. Conversion pattern of palm + 2%F10 blend oil is shown in 

Figure 4.56. The fractional weight loss of aged oil has a close track to the fresh oil. 

Conversion pattern of palm + 1.5%F10 oil and palm + 1.5%L135 oil is similar to that 

of palm + 2%F10 blend oil. The similar tracks for 0 and 600 hour palm oils with 

additives show that the oils were not much degraded compared to inhibited palm oil 

and rapeseed hydraulic oil. The results obtained for stable and unstable oils indicate 

that the fractional weight loss versus reaction temperatures for new and used oil can 

also be used to indicate the oil degradation condition. 
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Figure 4.56: Conversion of palm oil + 2% F10 additive with temperature. 

 
 
 
4.6.5  Activation Energy 

 

Thermogravimetric analysis using direct Arrhenius plot method has been 

used by numerous researchers. Equation 2 of Appendix C was used to determine the 

activation energy of oil samples by direct Arrhenius plot method. In order to 

calculate dx/dT, conversion and temperature differences were calculated for each 

temperature. The value of x and dx/dT was calculated using Excel spreadsheet. 

Finally the plot of ln [(1/(1-x)(dx/dT)] versus 1/T for oil decomposition was made. 

 

Figure 4.57 presents Arrhenius plot of the oil sample that was used to 

calculate the kinetic parameters such as activation energy and preexoponential or 

frequency factor. The figure shows a linear relationship of ln [(1/(1-x)(dx/dT)] versus 

1/T . Other samples also have similar linear relationship.  This result again indicates 

that the oil conversion reaction can be treated as a first order reaction. Thus the 

kinetic parameter constants at increasing temperature were determined from the 

graph slope with high accuracy. 
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Figure 4.57: Arrhenius plot for palm oil sampled at 600 hour. 

 

With the linear regressed of the abscissa and ordinate parameters, the slope 

and intercepts in the figure line indicate the values of the activation energy, Ea, and 

frequency factor, A, respectively. For this sample, the energy of the activation and 

the frequency factor were computed to be 138.57 kJ/mol and 7.80x109 min-1, 

respectively. 

 

The apparent activation energy of 0 hour palm oil was about 180 kJ/mol, 

while the activation energy for the blended samples was increased by 23 up to 34 

kJ/mol (Table 4.24). Based on activation energy of fresh oil, the F10 additive is 

better than L135. The influence of same amount of F10 and L135 additives increases 

the activation energy by 27 and 24 kJ/mol, respectively. Increasing the F10 additive 

amount from 1.5% to 2% increases the activation energy from 207.77 to 214.07 

kJ/mol.  

 

The frequency factor has similar form as activation energy. Frequency factor 

for palm oil is the smallest while palm + 2%F10 has the highest frequency factor. 

Thus it can be said that additive amount also has some effect on frequency factor. 

Increasing the additive amount from 1.5% to 2% increases the frequency factor to 

4.55x1015 from 1.39x1015 min-1. 
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Table 4.24a:  Kinetic parameter for palm with and without additives at 0 hour 

Sample Id. Sample size  
(mg) 

Activation 
energy (kJ/mol) 

Frequency 
factor (min-1)  

Average 
decomposition 
rate (%/min) 

A0 14.880 180.56 5.48E+12 6.596339 
B0 15.539 207.77 1.39E+15 6.710903 
C0 14.733 214.07 4.55E+15 6.86378 
D0 14.903 203.47 6.85E+14 6.237263 
E0 14.581 154.22 8.96E+12 5.701796 

 
Table 4.24b:  Kinetic parameter for palm with and without additives at 600 hours 

Sample Id. Sample size  
(mg) 

Activation 
energy 
(kJ/mol) 

Frequency 
factor (min-1)  

Average 
decomposition 
rate (%/min) 

A600 14.609 138.57 7.80E+09 4.32757 
B600 14.675 195.94 1.90E+14 5.97951 
C600 15.947 192.32 9.46E+13 5.94236 
D600 15.793 188.14 4.61E+13 5.80407 
E600 14.338 132.39 1.93E+09 4.06740 

 
 

In order to ensure sample temperature uniformity, approximately same 

sample size (15 mg) was used in the experiment. This is to reduce the result error. It 

is expected that onset, 1% weight loss and final temperatures to decrease or increase 

if smaller or larger sample size was used, respectively. Larger sample size means 

smaller surface exposure per sample volume. This will make decomposition process 

slower.   

 

Column 5 of Table 4.24 shows the decomposition rate of samples at 0 and 

600 hour. Decomposition rate of palm oils were higher than rapeseed hydraulic oil, 

both for 0 and 600 hour samples. This may suggest that palm oil structure is less 

complex than the rapeseed oil.  

 

When the oils were degraded for 600 hours, the decomposition rate reduced. 

Reduced decomposition rate suggests that the sample is more difficult to be 

decomposed, which further suggests that the oil was becoming more complex. The 

increased difficulty in decomposition could be relate also to the increased oil 

viscosity as discussed in Section 4.4.1. Thus based on decomposition rate, the oils 
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seem becoming more complex after heated. However this result contradicts with the 

kinetic order result.  

 

Table 4.25 compares the activation energy calculated using direct Arrhenius 

method and integral method (Equations 2 and 3 of Appendix C, respectively). Except 

for the palm and rapeseed oils at 0 hour, the activation energies for all samples 

calculated using direct Arrhenius method are larger than the integral method. The 

activation energy values for aged samples are always smaller compared to fresh 

sample. This is also true for integral methods. As can be seen from the table, almost 

all correlation coefficients by direct Arrhenius and integral methods were close to 

unity.  

 
Table 4.25: Activation energy calculated by Integral and Direct Arrhenius methods 

Sample Integral Correlation 
coefficient 

Direct 
Arrhenius 

Correlation 
coefficient 

A 0 hour 188.85 0.9989 180.56 0.9979 
A 600 hours 105.34 0.9792 138.57 0.9954 

B 0 hour 188.85 0.9980 207.77 0.9849 
B 600 hours 158.74 0.9910 195.94 0.9973 

C 0 hour 191.83 0.9971 214.07 0.9822 
C 600 hours 173.09 0.9960 192.32 0.9954 

D 0 hour 203.47 0.9783 203.47 0.9783 
D 600 hour 154.52 0.9907 188.14 0.9940 

E 0 hour 161.65 0.9908 154.22 0.9205 
E 600 hours 108.20 0.9934 132.39 0.9264 

 

 

4.6.6 Kinetic Order 

 

The reaction order for the oil sample was calculated using Equation 3.3 where 

n = (y – B – Cx)/z. The result is shown in the form of bar chart in Figure 4.58. For the 

palm oil samples, with or without additives, fresh or aged samples the apparent order 

of reactions n were in the range of 0.852 to 1.46. However, for the commercial 

rapeseed hydraulic oil the order for the fresh and aged sample were 1.92, 1.72, 

respectively. The high order number of the rapeseed oil may be due to complex 

formulation of the oil. This corresponds to low decomposition rate as shown in Table 

4.24. A high coefficient of correlation (R2 > 0.99) was obtained for all oil samples.  
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It was found that the order decreased with heating time for all samples. This 

suggests that the rate of decomposition decreases with ageing. Also it is noticed that 

the order increases slightly with additive, the more the additive the higher the order. 

Interestingly, the order reduction for palm oil without additive (A) is almost double 

than the sample with additive. This observation further suggests that the palm oil 

without additive had undergone significant physical or chemical change. With the 

presence of additive, less changes occurred which is indicated by less order change. 

Indirectly the results show that the additive protected the palm oil. Not only the 

additive type, but additive amount also affects the order reduction. Higher amount of 

additive (oil C compared to oil B) reduces the order reduction. 
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Figure 4.58: Kinetic order for all samples. 

 

 The kinetic study performed in this investigation helped the author for 

making quick assessment of comparative oil thermal degradation. Similar trends of 

onset temperature, conversion pattern and order number was observed. Similar 

finding was also reported by Adhvaryu et al. (2000) but without order number and 

conversion pattern results. 

 

 

4.6.7 Iodine Value 

 

Iodine value (IV) measures the number of double bonds or unsaturation level 

of fats and oils. Figure 4.59 shows that the IV for the palm oil before being degraded 
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in hydraulic sample as 59 cg I2/g. Similar IV was reported by Noh et al. (2002). 

However after 600 hours of heating and shearing, the IV of the palm oil without 

additive decreased to 43 cg I2/g. This iodine value analysis indicates the decrease in 

the double bond of the oil sample after 600 hours operation. The C=C double bond 

was damaged due to thermal oxidation. The heating and shearing process in the 

hydraulic system provided energy to excite the molecules. At a certain stage, the 

molecules had enough energy to break the bond in the chain. Mostly this happened to 

the unsaturated parts, which will then enable the saturated structure to form. 

 

Commercial rapeseed at 0 hour had high IV. This is due to the high mono-

unsaturated (63%) and polyunsaturated (28.4%) acids, compared to palm oil which 

had only 43.6% mono-unsaturated and 11.8% polyunsaturated acid components. 

However, rapeseed oil also had undergone significant IV reduction after being heated 

in the hydraulic system. This is due to its high unsaturation level which prones to 

oxidation.  
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Figure 4.59: Comparison of iodine values of fresh and aged oils. 

 

 

4.6.8 Infrared Spectroscopic Analysis  

 

The main functional groups of palm oil such as carbonyl, unsaturated and 

saturated hydrocarbon were determined by the infrared analysis (IR). The oil samples 

at 0 hour and lower hour of operation show a narrow weak band around 3472 cm-1. 

This band is usually assigned to the overtone of the glyceride ester carbonyl 
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adsorption. As the thermal oxidation process advances, the band becomes wider. 

This is due to the increase of the concentration of hydroperoxide group in oil. 

According to Guillen and Cabo (2002), degraded oil experienced the expansion of 

the O-H stretching region, which is in the wavenumber region of 3200-3700 cm-1.  

 

Other major changes can be observed from the infrared spectroscopic 

analysis towards the thermal oxidative test to palm oil. There is an expansion of the 

overtone region for C=O stretching caused by the increasing hydroperoxide structure 

after ageing process, decreasing intensity of C=C and absorption band for aldehyde 

and ketone C=O stretching vibration shifting to the lower wavenumber.  

 

Every functional group of palm oil was represented by different frequency as 

shown in Table 4.26. For example, absorption bands at 3005 cm-1 is the C−H 

stretching from H−C=C structure, peaks from 2950 cm-1 to 2850 cm-1 are C−H 

stretching from CH2 and CH3 and 1236.89 cm-1 is C−O stretching from carbon sp2 

(Solomons and Fryhle, 2000). 

 

Expansion region for C=O overtone is caused by the increasing 

hydroperoxide structure after ageing process. Theoretically, oxidation at allylic 

hydrogen atom can form hydroperoxide O−O−H easily. Then, the hydroperoxide 

structure were oxidised again to form aldehyde, ketone, alcohol and acid.  

 

There is a decreasing intensity for C=C stretching at 3005 cm-1. This is 

because the atoms attached to the C=C had changed from hydrogen to other 

functional groups such as carbonyl, alkyl, and hydroxyl after ageing process. As the 

result, the intensity of the C=C stretching decreases and peak for C=C becomes 

shorter and weaker as shown in the Figure 4.60. 

 

The aldehyde and ketone C=O stretching vibration shift to a lower 

wavenumber. Absorption band for C=O stretching at 1746.48 cm-1 had shifted to 

1745.97 cm-1. The frequency of a given stretching vibration in an IR spectrum can be 

related to two factors. These are the masses of the bonded atoms and the relative 

stiffness of the bond (Solomons and Fryhle, 2000). It is well observed that the 
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reduced mass attached to the C=O increase, then value of the wavenumber must 

decrease. In this case, the molecule weight attached to C=O increased after process 

ageing becomes a branch complex molecule which yield the lower wavenumber. 
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Figure 4.60: Infrared spectra for palm oil (a) at 0 hour and (b) after 600 hours of 
operation. 
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Table 4.26:  Vibrational frequency and the assign of functional group for palm oil (0 

hour and 600 hour) 

Vibrational Frequency (cm-1) 
Functional Group 

0 hour 600 hours 
 

- 3472.08 Overtone C=O str and O−O−H str 
3005.94 - C−H str from H−C=C 
2925.47 2925.61 C−H str from CH2 and CH3 
2855.05 2855.11 C−H str from CH2 and CH3 
1746.48 1745.97 C=O str 
1462.71 1462.96 CH2 and CH3 deformation 
1377.13 1377.32 CH3 umbrella bending (symmetric bending)  
1236.89 - C−O str from Csp2 
1163.76 1164.35 C−O str 
1117.57 1116.81 C−O str from Csp3 
722.35 722.78 C-H O.O.p. (Out of Plane) bending from 

(−HC=CH−) 
 

 

4.7  Basic Performance of Hydraulic System 

 

This section will discuss the basic hydraulic test rig performance with respect 

to various running parameters. Only one parameter was varied at one time. The result 

of this section is based on unadditived palm oil used in the hydraulic test rig. Except 

for specific tests, the rig was run continuously for 15 hours a day at 70 bar and 70oC. 

 

 

4.7.1  System Discharge 

 

In this experiment, the system discharge (oil reentering reservoir) 

characteristic was investigated. The experiment was conducted at 70oC and oil 

viscosity of 0.015 Pa.s. The pump was operated at 10 different speeds. The actual 

flow rate coming out from the return line was measured using measuring cylinder 

and stop watch. The flow meter was recalibrated with the calculated flow rate.  

 

Figure 4.61 shows the effect of motor speed on the vane pump discharge. As 

the speed increases, the discharge also increases. Similar result was obtained by 
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Ranganathan et al. (2004) but with smaller discharge even conducted at higher 

speed. This is due to the small size of gerotor pump used in Ranganatahan’s study.  

The relationship between the discharge and the speed is nearly linear. As 

expected, the reduced discharge is observed for 150 bar operation compared to 35 

bar operation. At lower speed operation the discharge difference is larger compare 

with at high speed (∆Q600 > ∆Q1400). For instance at 600, 840, 900, 1050, 1200, 1350 

and 1440 rpm the discharge are 2.401, 2.394, 2.381, 2.232, 2.187, 2.150, and 2.035 

l/min, respectively. The difference can be explained in the aspect of force imbalance 

between centrifugal and pressure force acting on pump vane. At low speed, the 

centrifugal force acting on the vane is low and pressure force pushes the vane further 

into the rotor slot (Figure 4.62). As the result, the amount of net swept is low. This 

effect is more for the higher pressure operation, thus suppress the discharge.  
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Figure 4.61: Discharge versus motor speed.  

 

 

a – rotor 
 
b – vane 
 
c – cam ring 
 
d – high pressure chamber 
 
e – low pressure chamber 
 
Fc – centrifugal force 
 
Fp – pressure force 
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Figure 4.62: Schematic diagram showing centrifugal and pressure forces acting on 
vane. 
 

4.7.2 Flow Rate - Pressure Relationship 

 

Flow rate - pressure relationship when the pumping system running at 1440 

rpm is shown in Figure 4.63. The system lost 8.6 l/min when the system pressure was 

increased from 30 to 200 bar. The result from this study shows a linear reduction of 

flow rate with pressure, with correlation coefficient of higher than 99% between flow 

rate and pressure. This contradicts with the normal curving down of flow rate due to 

increase in upstream pressure (Pinches and Ashby, 1989).  
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Figure 4.63: Flow rate – pressure relationship when motor running at 1440 rpm. 

 

 

4.7.3  Torque Losses 

 

Figure 4.64 shows variation of torque required to run the pump. The system 

was operated at 1050 rpm against 50 bar load. The rig was started at ambient 

temperature of 30oC and the system was stopped when the reservoir temperature 

reached about 70oC. 

 

The data was recorded automatically using LabVIEW software every for 90 

seconds. The total observation time was 130 minutes. It was observed that the high 
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value of torque was recorded at the starting condition. This is related to rheological 

property of the oil as presented in Sections 4.2 and 4.3. At 30 - 40oC, the oil internal 

resistance is about 50 to 30 cP. The high internal resistance gave rise to high torque 

to transport the fluid. As the oil and the system got heated, the torque required to run 

the system reduces.  The torque reduction pattern is similar to oil viscosity reduction 

pattern shown in Section 4.2.1. 

 

This phenomenon can also be attributed to thermal properties of the fluid and 

the hydraulic components. At starting, the pump produced low shear rate. As already 

discussed earlier (rheological section), palm oil behaves non-Newtonianally at low 

shear rate. As shown in Figure 4.2, at low shear rate the viscosity is high, thus 

creating high flow resistance. 

 

Comparing rheological and thermal factors, the more significant influence is 

the thermal property of the oil. Thicker oil gives rise to large shear stress. To 

overcome this stress, motor had to apply higher torque to run the pump. However, 

after 70 minutes, the oil becomes relatively thin. The oil could flow more easily and 

posed less stress for the pump to rotate. Hence the torque was low after 70 minutes.  
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Figure 4.64: Torque versus heating time. 

 

 

4.7.4 Variation of Torque Loss with Speed 
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Figure 4.65 shows the variation of torque loss (Tl) with motor speed from 20 

Hz to 48 Hz at 50, 75, 175 and 200 bar condition. It was observed that the torque loss 

did not vary much with speed at low pressure environment (50 and 75 bar). 

However, noticeable torque loss occurred at higher pressures. The higher the 

pressure, the higher the torque loss. This is inline with Equation 2.33 and the models 

indicated in Table 2.4. The higher torque loss is due to the increase in coulomb 

friction. Coulomb or load dependent friction is proportional to load (Dupont, 1992), 

in this case pressure.  
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Figure 4.65: Variation of torque loss with speed. 

 

Decrease of torque loss with increase in speed is not inline with Equation 

2.32 and models shown in Table 2.4. However, McCandlish (1984) obtained similar 

result pattern when he used gear pump with the result of author’s work. Extended 

work performed shows that the torque loss decrease with increase in speed is due to 

the variation of viscous coefficient, Cv. Cv value decreases from 428699 to 232854 

and from 949668 to 541752 for test temperature of 40oC and 50oC cases, respectively 

(Table 4.35).  
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4.7.5  Variation of Torque Loss with Pressure 
 

In order to investigate the influence of pressure on torque loss, the rig was run 

against several pressure conditions (0 to 200 bar). Figure 4.69 shows that the effect 

of pressure is quite significant above 120 bar. It can be seen that above 120 bar at the 

speed of 900 and 1200 rpm the torque loss is less at higher speed case. This result 

complements the result discussed in Section 4.7.4. 
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Figure 4.66: Torque loss versus pressure. 

 
 

The result from this study compares well with the result of McCandlish 

(1984). In this study, the crossover points occur at 18 and 120 bar pressure while for 

McCandlish result the crossover point occur at 160 bar. This might be due to 

different pumps used in the study. This study used vane pump while the McCandlish 

referred case is the gear pump. The loss is non-linear increasing rapidly with 

pressure. The effect of pressure however is related to speed. Higher stiction friction 

was observed for lower speed case.  
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4.8 System Efficiency 
 
 
4.8.1  Input Power versus Temperature 
 

This test investigated the effect of temperature on the input power. The 

system was operated at constant speed of 1440 rpm and 50 bar pressure from 35oC 

up to 75oC with 5oC increment. Then test was repeated with 1200 speed at the same 

pressure (for 1200 rpm case, only up to 70oC).  

 

The input power to drive the hydraulic system was calculated as Equation 

2.36. Figure 4.67 shows that the power required to operate the system is decreasing 

with operating temperature. This is due to rheological palm oil behavior as discussed 

in Sections 4.2 – 4.4. As expected, the power required to operate the system at higher 

speed requires higher power. This results from an increase of mass flow rate.   
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Figure 4.67: Input power versus temperature. 

 

 

4.8.2  Volumetric Efficiency versus Discharge Pressure 

 

The volumetric efficiency of the hydraulic test rig when operating at different 

speeds is shown in Figure 4.68. The system was operated against discharge pressure 

of  0 bar to 200 bar. The volumetric efficiency is defined as the actual flow rate oil 

flowing through the return line to the reservoir divided by amount of oil that should 
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flow as calculated by pump speed and pump size. The volumetric efficiency was 

calculated as in Equation 2.38a. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 50 100 150 200 250
Pressure (bar)

V
ol

um
et

ric
 E

ffi
ci

en
cy

1440 rpm

1350 rpm

1290 rpm

840 rpm

750 rpm

600 rpm

 
Figure 4.68: Volumetric efficiency versus discharge pressure. 

 

The figure shows that the volumetric efficiency of the system running at 

speed of 1440, 1350, 1290, 840, 750 and 600 rpm decreases almost linearly with 

increasing pressure. The volumetric efficiency decreases with pressure due to the 

existence of back pressure at pump outlet. The volumetric efficiency of 1440 rpm at 

minimal load is 99% and at load of 200 bar is about 73%. About same volumetric 

efficiency was achieved for other speeds at low pressure.  

 

However, as plotted in Figure 4.68, for low pressure operation the efficiency 

was reduced with reducing speed (840, 750, 600 rpm). At 600 rpm, the efficiency 

decreased from 98% to 26%. This means that volumetric efficiency decreased at 

higher rate with the reduction of speed. Furthermore, there was unstable result at 

high pressures for low speed operation. This is due to system capability to flow the 

oil against high system loading. Back pressure might result in reduced flow rate. For 

600 rpm operation, the rig was unable to withstand the high load, and stalled at 150 

bar.  
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The reduced efficiency at increasing pressure means that there is increased 

leakage and compressibility effect. It was observed that the external leakage is 

minimal even if at elevated pressures. Thus it is expected that the reduced efficiency 

is due to internal leakage across the pump outlet and inlet. The difference in 

volumetric efficiency at 200 bar between 1440 and 840 rpm cases is about 41%.  

 

There are several factors that influence volumetric efficiency. They are 

internal leakage between vane and cam ring and leakage at the side plate. High 

pressure operation results in high temperature working condition which influences 

the oil viscosity. The loss in viscosity will further increase the internal and external 

leakage.  

 

 

4.8.3  Mechanical Efficiency versus Discharge Pressure 

 

Theoretically, mechanical efficiency is dependent on torque required to run 

the pump. In turn this torque depends on loading pressure and oil viscosity. The 

effect of pressure on mechanical efficiency is illustrated in Figure 4.69. It is clear 

that for all speeds mechanical efficiency increases drastically with pressure from the 

start of operation. This increase continues until pressure around 100 bar. After this 

point mechanical efficiency becomes stable at the range of 80 to 90%. Slight 

decrease was observed at high pressure region (180 – 200 bar).  

 

The set temperature in this test was 70oC. This means that the solenoid valve 

energized at this temperature and tap water flowed into shell and tube exchanger. 

Certain amount of heat was absorbed by cooling water. However, for higher 

pressures, a lot of heat was generated. Amount of heat generated was higher than 

amount of heat taken out from hydraulic system. Thus the oil temperature increased 

slightly, meaning that the oil viscosity decreased. This would reduce friction 

generated, and thus reduce the torque required to run the pump. 
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Figure 4.69: Mechanical efficiency versus discharge pressure. 

 

 

4.8.4  Volumetric Efficiency versus Speed 

 

Variation of volumetric efficiency of the hydraulic test rig when operating at 

different speeds is shown in Figure 4.70. Unlike Section 4.8.2, the speed in Section 

4.8.4 was varying continuously from 1440 rpm (48 Hz) down to 600 rpm (20 Hz). 

The experiment was repeated for different discharge pressures of 35 bar to 200 bar. 

The figure shows that as the pump speed increases, the volumetric efficiency 

increases with high rate initially before reducing its rate. A similar phenomenon was 

observed by Sadashivappa et.al. (1996). 
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Figure 4.70: Volumetric efficiency versus speed. 

 

The low volumetric efficiency at low speed can be attributed to centrifugal 

force also. Low speed creates low centrifugal force. Low centrifugal force produces 

low sealing effect at the cam ring. This will induce internal leakage from high 

pressure chamber to the low pressure chamber. 

 

When the speed was increased, high sealing effect increased the volumetric 

efficiency. Increasing loading pressure resulted in higher pressure force. The 

imbalance between the pressure force and the centrifugal force pushed the vane back 

to the rotor slot slightly. This reduced the amount of oil swept. Thus the volumetric 

efficiency was suppressed. 

 

It was observed from the figure that there is slight perturbation occurs at 

around 38 Hz. This corresponds to strange observation when running around this 

speed. Noticeable sound was heard from the pipe and flow control valve. When the 

flow meter cover was opened, it could be seen that the flow was not very smooth 

(Figure 4.71). This phenomenon might be attributed to the natural frequencies of the 

system. Every mechanical parts or machine has its own natural frequency. When the 
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machine is attenuated at its natural frequency (in this case speed and pressure) the 

system vibrates or produces disturbed flow. 

 

  
(a) (b) 

Figure 4.71: Flow condition in pipe (a) normal flow and (b) disturbed flow. 

 

 

4.8.5  Mechanical Efficiency versus Speed 

 

The test was conducted at various motor speeds at 3 bar and the mechanical 

efficiency was noted. Then the test was repeated by 20, 30, 40, 50, 75, 100, 125, 150, 

175 and 200 bar cases. The mechanical efficiency of 3 bar case was around 15%. The 

efficiency jumped to 50% when the pressure was increased to 20 bar. Less and less 

increase in efficiency was observed when the pressure was further increased up to 

200 bar. 

 

According to Equation 2.39b, mechanical efficiency should decrease with 

increasing speed. However, based on Figure 4.72, not much can be deduced 

concerning variation of mechanical efficiency with speed. The result in Figure 4.72 

suggests that mechanical efficiency is independent of speed. To determine the reason 

for the insensitivity of mechanical efficiency, dimensionless parameters were 

investigated and the results are discussed in Section 4.9.  
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Figure 4.72: Mechanical efficiency versus speed. 

 

 

4.8.6  Mechanical Efficiency versus Running Temperature 

 

In hydraulic test rig experiment, there would be high volume fraction of 

dispersed gas bubble presence in the hydraulic tank and hydraulic fluid itself. This 

would be worse for low temperature case. Thus the presence of this gas bubble, plus 

the low operating temperature during starting, it is expected that the oil would further 

deviate from Newtonian behavior. Thus more stress would occur, and more torque is 

required to run the hydraulic system during starting. Finally this non-Newtonian 

behavior would result in reduced mechanical efficiency, especially at low 

temperature.  

 

To observe this phenomenon a test was conducted. The result is depicted in 

Figure 4.73 where mechanical efficiency was monitored at 90 minutes interval from 

room temperature of temperature of 35oC to around 70oC with cooling system was 

disable. The motor was run at 1200 rpm with loading pressure of 70 bar. Data was 

captured and computed automatically using the built program. As running time 

increases, the oil temperature increases. Thus the running time can be translated to 

oil temperature. The result shows that under this operating condition, the relationship 
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between mechanical efficiency and operating temperature can be in the form of 

polynomial equation: 

 

ηm = -3x10-5T2 + 0.008T + 0.419. 
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Figure 4.73: Mechanical efficiency versus temperature. 

 

 

4.8.7  Effect of Oil Ageing on System Performance 

 

Throughout the endurance test for 900 hours at 70 bar and 70oC continuously 

15 hours a day, thermal heat and friction force were generated during the operation, 

hence degrading the oil in a rate proportional to time. The degradation process 

mainly affected the oil viscosity, making it more viscous, and density, making it 

denser. In addition to that, formation of sludge might cause some blockage and 

additional resistance to flow.  

 

 Figures 4.74 and 4.75 show the variation of mechanical efficiency with 

ageing of the palm based hydraulic fluid when it was investigated with respect to 

pressure and speed, respectively. The figures suggest that the mechanical efficiency 
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drops with the oil ageing. This is due to the increase in the palm oil internal 

resistance. 
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Figure 4.74: Mechanical efficiency against pressure at respective interval of time. 
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Figure 4.75: Mechanical efficiency against speed at respective interval of time. 

 

 On the other hand, Figures 4.76 and 4.77 show that volumetric efficiency 

increased over time. The rate of efficiency drop with pressure reduces when the oil 

has aged (at higher operation hour). The increase in volumetric efficiency with 

ageing period is due to the increased viscosity of the oil as discussed in Section 4.4.2. 
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Thicker oil results in less flow loss due to leakage. These results are inline with the 

viscosity and rheology theories as mentioned in Section 2.4. 
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Figure 4.76: Volumetric efficiency against pressure at respective interval of time. 
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Figure 4.77: Volumetric efficiency against speed at respective interval of time. 

 

Oil ageing was analyzed using IR. Figure 4.78 shows the infrared spectra of 

oil sampled at 0, 100, 400 and 900 hours. The infrared spectra obtained shows that 

the palm oil undergone degradation after being sheared at 70 bar and 70oC. Important 

observation from this figure is that the peak area at 3473 cm-1 increases as the oil 



 

 

171

degraded from 0 hour to 900 hour. Similar results were obtained by Sraj and Vizintin 

(2000) who analyzed oil sample from laboratory hydraulic systems and dredger, and 

they found that the oxidation products only slightly influenced the physical 

properties of the oil.  

 

According to Guillen and Gabo (2000), the frequency of C-H stretching 

(C=C-H) at around 3006 cm-1 of oxidized oil slowly shifted toward smaller 

wavenumber. The spectra shows that C-H stretching shifted from 3005.89 cm-1 (0 

hour) to 3004.69 cm-1 (900 hour).  
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Figure 4.78: Infrared spectra of oil from test rig running intermittently at 70 bar 70oC 
sampled at (a) 0, (b) 100, (c) 400 and (d) 900 hour. 
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4.8.8 Modeling Study  

 

4.8.8.1 Comparison of Experimental and Predicted Performance 

 

The data was acquired and the results were calculated manually (Sections 

4.8.8.1 and 4.8.8.2). Then performance of hydraulic test rig was evaluated manually. 

Thus, unlike Sections 4.7 and 4.8.1-4.8.7, only limited data is available in Section 

4.8.8. Figure 4.79 shows the result of volumetric efficiency versus pressure. The 

reduction in volumetric efficiency is not at constant rate. The efficiency decreases at 

low rate in low pressure region, then at higher rate at higher pressure region. Similar 

pattern was also reported by Cheng et al. (1994) who studied performance of 

biodegradable hydraulic fluid using Rexroth piston pump system. Unlike the result in 

Sections 4.8.1-4.8.7, the larger drop in volumetric efficiency when pressure is 

increased (Figure 4.79) can be attributed to the compressibility of the fluid. The 

reduction in volumetric efficiency with increase in pressure is in accordance to 

Equation 2.38b. In-depth study in Section 4.9 does not show the increase in flow slip 

coefficient with increase in pressure. Thus, according to Equation 2.38b, the large 

volumetric efficiency drop is possibly due to compressibility effect which is 

influenced by the oil compressibility and foaming properties. 
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Figure 4.79: Volumetric efficiency versus pressure - experimental data. 
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Flow slip coefficient, Cs, was calculated for each pressure case using 

Equation 2.38b. Compressibility effect was neglected. Table 4.27 shows the value for 

Cs for 1500 rpm case as modeled by Equation 2.38b. The value for Cs obtained from 

the slope of Figure 4.79 is also shown. 

 

Table 4.27: Data for Equation 2.38b model (1500 rpm case) 

Pressure (Pa) 
ηvp 

Actual 
ηvp  

Predicted Diff. Cs (i)* 
Cs 

(slope)** 
3.5x106 98.4 98.4 0.0 8.45x10-9 3.43x10-9 
7.1x106 97.5 97.4 0.1 6.60x10-9 5.52x10-9 
1.4x107 95.1 93.9 1.2 6.46x10-9 8.01x10-9 
2.1x107 91.2 87.6 3.6 7.74x10-9 1.09x10-8 

 

* Cs (i) was calculated from Equation 2.38b model for each respective pressure. 

** Cs (slope) was obtained through the slope measured at each pressure point.  

µ @ 70ºC = 0.012 Pa.s 
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Figure 4.80: Actual and predicted volumetric efficiency modeled using Equation 
2.38b.  

 

Using the calculated Cs as 8.45x10-9, the volumetric efficiency was 

recalculated for 1500 rpm operation. Actual and predicted efficiencies are plotted on 

the same graph from 3.5x106  to 21.0x106 Pa. Figure 4.80 shows the actual and 
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predicted volumetric efficiency when running the system at 1500 rpm. The predicted 

volumetric efficiency agrees well with the real data at 35 bar. However, as the 

pressure increases, the deviation becomes larger. The predicted efficiency is always 

lower than the experimental efficiency. This study shows that the slip coefficient 

varies with pressure. If the low pressure data is used to simulate higher pressure 

conditions, some errors will be introduced.  

 

The second attempt was to use Schlosser's model (Table 4.28).  Based on 

actual volumetric efficiency, flow slip and turbulent slip coefficients of Schlosser's 

model were determined. Pump speed and oil viscosity as in the previous case were 

considered. Values calculated using simultaneous equation based on data (a) and (b) 

of Table 4.28 are: 

Flow slip coefficient, Cs = 2.12x10-9 

Turbulent slip coefficient, Cst = 6.58x10-5. 

 
Table 4.28: Data for and result from Schlosser's model 

Data 
Pressure 

(Pa) 
ηvp 

Actual 
ηvp 

Predicted Diff. 
a 3.5x106 98.4 98.4 0.0 
b 7.1x106 97.5 97.5 0.0 
c 1.4x107 95.1 96.0 -0.9 
d 2.1x107 91.2 94.7 -3.5 

 
 

Using the calculated slip and turbulent slip coefficients, the predicted 

volumetric efficiencies for case c and d were calculated and plotted in Figure 4.81. 

Unlike the result in Figure 4.80, the predicted volumetric efficiency calculated using 

Schlosser's model yield almost a linear relationship between volumetric efficiency 

and pressure. The predicted efficiency is always greater than the experimental 

efficiency. This model yields the same volumetric efficiency for the two lowest 

pressure cases. In addition to that, this model also yields lower error for higher 

pressure cases.  
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Figure 4.81: Actual and predicted volumetric efficiency modeled using Schlosser's 
model. 
 

The next effort was to model the mechanical efficiency. Equation 2.39b was 

used to calculate friction coefficients. Using these coefficients, predicted mechanical 

efficiency for other pressures was calculated. Table 4.29 compares the predicted and 

calculated mechanical efficiencies for 1200 rpm case.  

 

Table 4.29: Data for calculating predicted mechanical efficiency (1200 rpm case) 

Pressure (Pa) Actual mech. eff. Predicted mech. eff. 
3.5x106 78.5 78.5 
7.1x106 83.8 83.8 
1.4x107 85.8 86.4 
2.1x107 85.4 87.4 

 

Based on 35 bar and 70 bar cases, it was calculated that the Cc and Cv 

(Equation 2.39b) were found to be 6.02 and 2.98x105, respectively. The model and 

actual mechanical efficiencies were plotted as in Figure 4.82. Using the Cc and Cv of 

6.02 and 2.98x105, respectively, the predicted mechanical efficiency was calculated 

for 600, 800, 1000, 1300 and 1500 rpm cases. The results are tabulated in Table 4.30. 
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Figure 4.82: Actual and predicted mechanical efficiency modeled by Equation 2.39b.  
 
 

Table 4.30: Predicted mechanical efficiency for different speed cases 

Pressure (Pa) 600 rpm 800 rpm 1000 rpm 1300 rpm 1500 rpm 
3.5x106 83.5 78.5 78.5 78.5 78.5 
7.1x106 86.4 83.8 83.8 83.8 83.8 
1.4x107 98.4 85.8 85.8 85.8 85.8 
2.1x107 88.4 85.4 85.4 85.4 85.4 

 

 

4.8.8.2 Constant and Variable Coefficient Linear Models 

   

  Basically the discussion in this modeling section is based on discrete testing 

result. In discrete testing, flow rate from four maximum and minimum pressure and 

speed combinations were measured. This minimum test data was used in determining 

predicted flow slip coefficient and system performance when the hydraulic system 

had undergone several hundred hours of operation.  

 

Table 4.31 shows flow rate measured at four different conditions from 

discrete test. As expected the flow rate for 1440 rpm was higher than of 750 rpm. For 

the same speed, flow rate for higher pressure case was reduced. Predicted flow slip 
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coefficient was then calculated based on constant coefficient linear model and 

variable coefficient linear model as proposed by McCandlish and Dorey (1984). 

 

Table 4.31: Speed, pressure and flow rate from discrete test 

Test Speed 
(rpm) 

Pressure 
(bar) 

Flow rate 
(m3/s) 

A 1440 35 1.83x10-4 
B 1440 200 1.37x10-4 
C 750 35 8.22x10-5 
D 750 200 2.04x10-5 

 
 

(QA - QB) 
CsAB  = 

(PB - PA) 
 

(µ/D) 
  = 3.244x10-8   
    

(QC - QD) 
CsCD = 

(PD - PC) 
(µ/D) 

 = 4.413x10-8   
    

CsAB + CsCD  
Cs = 

2  
 = 3.828x10-8   

 
From the above analysis, based on ratio of flow difference and pressure 

difference between 200 and 35 bar cases, flow slip coefficient at high and low speed 

were calculated as 3.244x10-8 and 4.413x10-8, respectively. The average slip 

coefficient for all four cases was calculated as 3.828x10-8. 

 

Based on slip coefficients already calculated using constant coefficient linear 

model, slip coefficients for other speeds were calculated by means of variable 

coefficient linear model. Linear interpolation was performed to determine flow 

coefficients at 1200 rpm and 900 rpm operation. The coefficient was calculated as a 

function of speed by: 

 
 

( w  – w A) 
Csω = CsAB + (CsCD - CsAB) 

( w C - w A) 
 
where w  is the speed of interest and w A and w B are the speeds for test A and B, 

respectively (Table 4.31). From the above analysis, the interpolation step yields the 
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slip coefficient for 1200 rpm and 900 rpm cases as 3.651x10-8 and 4.159x10-8, 

respectively.  

 

Table 4.32 shows the comparison of predicted slip coefficients obtained using 

combination of constant coefficient linear model and variable coefficient linear 

model with actual slip coefficients obtained from test rig. The values were quite 

close to each other for 1439, 1200 and 900 rpm cases. This shows that the models fit 

to the actual experimental data. For the 600 rpm case, the error is 5.4%. This can be 

attributed to the smaller speed range when the constant coefficient linear model was 

performed. Furthermore, the variable coefficient model assumed a linear relationship 

between the slip coefficient and speed, while in the actual case it was found that the 

slip coefficient decreases at increasing rate with speed. 

  

Table 4.32: Comparison between predicted and actual slip coefficients for four 
different speeds 

Speed 
(rpm) 

Predicted 
coefficient 

Experimental 
coefficient 

 Cs (x 10-7) Cs (x 10-7) 
1440 0.3244 0.3204 
1200 0.3651 0.3698 
900 0.4159 0.4139 
600 0.4667 0.4428 

 
Using the experimental flow slip coefficient for 1440 rpm 70oC case as 

0.3204x10-7, the volumetric efficiency for ageing operation was predicted. The 

viscosity of 0.024 and 0.030 Pa.s were used to simulate the performance for 200 and 

400 hour cases, respectively. The predicted variation of volumetric efficiency with 

pressure for both cases is shown in Figure 4.83. 

 

From Figure 4.83, it is clearly shown that the actual performance is less than 

the predicted ones. The reduced efficiencies for aged condition indicate that the slip 

coefficient has increased with test rig operation time (as shown in Section 4.9.5). 

Theoretically the flow slip coefficient is related to internal and external leakage. 

However, there was no external leakage detected throughout the experiment. As 

discussed in Section 4.10.1, it was found out that the sliding action between vane and 

cam ring in the pump resulted in vane weight loss at a rate of 0.0462 mg/100 hour 

operation.  The weight loss indicates the existence of wear. Even the weight loss was 
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very small, it can contribute to some internal leakage since the system was operated at 

1440 rpm. The efficiency for 400 hour is higher than 200 hour due to the increased in 

viscosity (Equation 2.38b).  
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Figure 4.83: Variation of predicted and experimental volumetric efficiency with 
pressure. 
 

 

4.9 Dimensionless Parameter Study 

 

In many of the hydraulic models dealing with efficiencies, the parameters 

viscosity, speed and pressure play important role (Section 2.8). For this reason, it is 

of great interest to show the efficiencies with respect to these parameters. In Fluid 

Mechanic study, a technique which has proven very useful in reducing to a minimum 

number of experiments required is known as dimensional analysis (Massey, 1997). 

 

Thus in this study parameters viscosity, speed and pressure were lumped 

together, with the effect of units were taken into account. Volumetric, mechanical 

and overall efficiencies of the hydraulic system as function of dimensionless 

parameters were calculated and the relationship between efficiencies and 

dimensionless parameters were studied.  
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Information extracted from the resultant figures in Appendix F is used to 

determine various coefficients given important parameters such as oil viscosity or 

temperature, pump speed and operating pressure. On the other hand, efficiencies can 

be determined if the coefficients are known. This method can minimize the time in 

determining the system efficiencies or parameter coefficients.  

 

The hydraulic system was operated at 1200 rpm and the circulated palm oil 

temperature was maintained at 40oC with the help of a heat exchanger. Pressure was 

increased from 35 bar to 200 bar. Volumetric, mechanical and overall efficiencies 

were calculated. Viscosity, speed and pressure were grouped together to yield a 

dimensionless parameter. The calculated result with respect to pressure is tabled in 

Table 4.33 and plotted in Figure 4.84. 

 

In another test, the system was operated at 75 bar and the oil temperature was 

maintained at 40oC. The varying operating condition was the pump speed. The pump 

speed was increased from 600 to 1440 rpm. Detailed information was tabled in Table 

4.34 and plotted in Figure 4.85. Comparing Figure 4.84 and Figure 4.85, a slight 

variation of efficiency pattern was observed. Similar tests were conducted with some 

parameters maintained while other parameters changing. 

 

Table 4.33: Efficiencies and dimensionless parameter running at 1200 rpm and 
varying pressures 

Speed (Hz) Pressure 
(bar) 

Volumetric 
Eff. 

Mechanical 
Eff. 

Overall 
Eff. 

µWp/Pp 
x10-7 

35 0.968 0.664 0.655 13.28 
50 0.945 0.761 0.733 9.30 
75 0.914 0.777 0.725 6.20 
100 0.893 0.803 0.731 4.65 
125 0.870 0.790 0.701 3.72 
150 0.846 0.857 0.739 3.10 
175 0.821 0.844 0.706 2.66 

40 

200 0.800 0.845 0.689 2.32 
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Figure 4.84: Efficiencies and dimensionless parameter running at 1200 rpm, 40oC 
and varying pressures. 

 

Table 4.34: Efficiencies and dimensionless parameter running at 75 bar and varying 
speeds 

Pressure 
(bar) 

Speed  
(rpm) 

Volumetric 
Eff. 

Mechanical 
Eff. 

Overall 
Eff. 

µWp/Pp 
x10-7 

1440 0.936 0.795 0.759 7.44 
1350 0.929 0.781 0.739 6.97 
1290 0.921 0.797 0.748 6.66 
1200 0.914 0.777 0.725 6.20 
1140 0.905 0.752 0.694 5.89 
1050 0.896 0.752 0.687 5.42 
900 0.865 0.794 0.701 4.65 
840 0.854 0.764 0.666 4.34 
750 0.834 0.792 0.674 3.87 

75 

600 0.779 0.777 0.617 3.10 
 

Dimensionless Parameter (µWp/Pp), x10-7 



 

 

182

0.5

0.6

0.7

0.8

0.9

1.0

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Dimensionless Parameter (uW /P ), x10-7

E
ffi

ci
en

cy

Volumetric Efficiency

Overall Eff iciency

Mechanical Eff iciency

 
 
Figure 4.85: Efficiencies and dimensionless parameter running at 75 bar, 40oC and 
varying speeds. 
 

 

4.9.1  Flow Slip Coefficient 

 
 
Volumetric efficiency as shown in Equation 2.38b can be written as Equation 

4.9 when the compressibility effect is ignored, 

p

p
svp W

P
C

πµ
η

2
1−= .               4.9 

This equation is analogous to y=mx +C equation. If vpη  is proportional to 

p

p

W
P

πµ2
, then the slope represents the sC .  

 
A test at 75 bar with varying speeds was conducted at palm oil temperature of 

40oC, 50oC and 60oC. Then volumetric efficiency versus dimensionless parameter 

Pp/µWp was plotted (Figure 4.86). The graph shows that the volumetric efficiency 

varies linearly with the dimensionless parameter with different sloping for different 

temperature cases. Based on Equation 4.9, the slip coefficients were obtained. The 

Dimensionless Parameter (µWp/Pp), x10-7 
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Css for 40oC, 50oC and 60oC cases were calculated as 0.8359x10-8, 0.6533x10-8 and 

0.6144x10-8, respectively.  

 

The experiment was then repeated at same running speed but varying 

pressure. Volumetric efficiency versus dimensionless parameter Pp/µWp was plotted 

as in Figure 4.87. From the slopes, the Css for 40oC, 50oC and 60oC cases were 

0.4628x10-8, 0.4104x10-8 and 0.3938x10-8, respectively. Based on these two cases, it 

can be concluded that the slip coefficient for the test rig is decreasing with increasing 

temperature. The comparison shows that the influence of speed is greater than the 

influence of pressure on slip coefficient change. This supports the results in Sections 

4.8.2 and 4.8.4. 
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Figure 4.86: Volumetric efficiency versus dimensionless parameter – constant 
pressure. 
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Figure 4.87: Volumetric efficiency versus dimensionless parameter – constant speed. 

 

 

4.9.2  Coulomb Friction Coefficient 

 

Dividing both numerator and denumerator of Equation 2.39b by pressure 

term and change to convenient units, Equation 2.39b can be written as  

 

ηmp   =               1             .             4.10 
            1 + Cc + CvµWp/Pp 

 

Graph of mechanical efficiency versus dimensionless parameter µWp/Pp was 

plotted as in Figure 4.88 for 1200 rpm and 60oC case.  

Dimensionless Parameter (Pp /µWp), x108 
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Figure 4.88: Mechanical efficiency versus dimensionless parameter – 1200 rpm and 
60oC. 
 

When the dimensionless parameter reduces to zero, the value for mechanical 

efficiency is 85.3%. Referring to Equation 4.10, dimensionless parameter reduces to 

zero means that 

c
mp C+

=
1

1η .               4.11 

 

Equating this reduced equation to value 0.853, the coulomb friction 

coefficient is calculated as 0.1723. This result compares well with the result of the 

gear pump of McCandlish (1984). This coulomb or load dependent friction is 

proportional to load.  

 

 

4.9.3  Viscous Friction Coefficient 

 

Equation 2.39b can also be written as  

Dimensionless Parameter (µWp/Pp), x10-7 
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p

pvcp

mp P
WCPCP µ

η
++

=
1 .             4.12

                  

Dividing the numerator and denumerator with pressure term, it can be simplified as 

 ppvc
mp

PWCC /)1(1 µ
η

++= .             4.13

            

The viscous coefficient can be obtained from the slope of 1/ηmp versus 

µWp/Pp graph. In order to determine the viscous friction coefficient, a test was 

conducted at 40oC. Speed of the pump was maintained at 1440 rpm. Pressure was 

varied from 35 bar to 210 bar. Actual torque was recorded and theoretical torque was 

calculated. Then the test was determined for 1200, 900 and 600 rpm cases.  

 

From graph in Figure 4.89 and referring to Equation 4.13, the viscous friction 

coefficient for 1440, 1200, 900 and 600 rpm cases was determined as 2.37x105, 

2.73x105, 3.21x105 and 3.47x105, respectively. The Cv as conducted on gear pump at 

1500 rpm was 2.05x105 (McCandlish, 1984).   
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Figure 4.89: Determination of viscous coefficient. 
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4.9.4  Dimensionless Parameter Study for 100 hour case 

 

 Extensive tests were conducted to investigate of how the hydraulic system 

built performs after it was running on palm oil for 100 hours. Sections 4.9.1 – 4.9.3 

show an example of how flow slip, coulomb and viscous friction coefficients were 

determined. Appendix F provides some of the graphs used in determining the 

coefficients. The results for 100 hour case are summarized in Table 4.35. The table 

depicts the effect of various operating conditions of hydraulic system running on 

palm oil on the flow slip, coulomb friction and viscous friction coefficients.  

 

 Based on results presented in the Table 4.35 it can be deduced and 

summarized that: 

a. As the temperature increases, flow slip coefficient increases.  

b. There is no clear relationship can be made between coulomb friction 

coefficient and temperature. 

c. As pressure increases, flow slip coefficient decreases. 

d. As speed decreases, viscous friction coefficient increases. 

e. As speed increases, coulomb friction decreases. 

 

 Running the system at 1200 rpm and the test conducted at various increasing 

temperature (Table 4.35a) results in increasing slip coefficient (summary a). This can 

be easily explained by viscometric property of the palm oil. When temperature 

increases, viscosity decreases (discussed in Section 4.2). This will induce more fluid 

slippage through hydraulic component cleavage. If the hydraulic system uses 

petroleum based oil, the slip coefficient will increase at higher rate due to its lower 

viscosity index.  

 

 From observation d above, it can be said that viscous friction coefficient is a 

speed-dependent parameter. Thus viscous friction is affected by fluid rheology and 

speed of fluid flow. However, pressure effect on viscous friction is not very clear. It 

is expected that there is indirect interrelation effect of pressure, fluid rheology and 

speed. 
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Table 4.35: Summary of coefficient values for 100 hour interval 

a)  At constant speed 1200 rpm      f) At constant pressure 75 bar  

Temperature (ºC) 
Cs 

X10-8 Cc Cv 
Temperature 

(ºC) 
Cs 

X10-8 Cc Cv 
40 0.4628 0.1457 264812 40 0.8359 0.1213   
50 0.4104 0.1119 713792 50 0.6533 0.2064 249131
60 0.3938 0.1723 361866 60 0.6144 0.1755   
70 0.3698 0.1660 156152 70 0.6966 0.3755   
        

b) At temperature 40ºC   g) At temperature 40ºC   

Speed (rpm) 
Cs 

X10-8 Cc Cv Pressure (bar) 
Cs 

X10-8 Cc Cv 
1440 0.4743 0.0839 232854 35 1.3997 0.0129 82282 
1200 0.4628 0.1457 264812 75 0.8359 0.1213   
900 0.4425 0.1545 323887 125 0.6964 0.1659   
600 0.4276 0.2291 428699 200 0.5666 0.2341   

        
c) At temperature 50ºC   h) At temperature 50ºC   

Speed (rpm) 
Cs 

X10-8 Cc Cv Pressure (bar) 
Cs 

X10-8 Cc Cv 
1440 0.4153 0.1091 541752 35 0.9333 0.4286 162543
1200 0.4104 0.1119 713792 75 0.6533 0.2064 249131
900 0.4034 0.1700 724889 125 0.6136 0.2968   
600 0.4882 0.2614 949668 200 0.5930 0.2599   

        
d) At temperature 60ºC   i) At temperature 60ºC   

Speed (rpm) 
Cs 

X10-8 Cc Cv Pressure (bar) 
Cs 

X10-8 Cc Cv 
1440 0.3735 0.1220 245602 35 0.7874 0.9161   
1200 0.3938 0.1723 361866 75 0.6144 0.1755   
900 0.4038 0.1686 269161 125 0.5579 0.2989   
600 0.4991 0.3151   200 0.5373 0.0398   

        
e) At temperature 70ºC   j) At temperature 70ºC   

Speed (rpm) 
Cs 

X10-8 Cc Cv Pressure (bar) 
Cs 

X10-8 Cc Cv 
1440 0.3204 0.1464 388460 35 0.7968 0.0570 359651
1200 0.3698 0.1660 156152 75 0.6966 0.3765   
900 0.4139 0.1823 70086 125 0.6480     
600 0.4428 0.2557   200 0.6117 0.7123   

 

  

There is a contradict observation between result in Table 4.35b and 4.35e. 

Flow slip coefficient decreases in case of running the system at various speeds while 

maintaining the palm oil temperature at 40oC. On the other hand, the table shows that 

the flow slip coefficient constantly decreases as the test was conducted at increasing 
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speed while maintaining palm oil temperature at 70oC. Based on literature report, no 

other researcher has studied this aspect. This experimental results show that 

temperature has significant influence on flow slip coefficient. This maybe due to the 

fact that temperature affects the oil viscosity and also expansion of metal. Both the 

viscosity and metal expansion affect the leakage flow. 

 

 

4.9.5 Effect of Ageing Time on Flow and Friction Coefficients 

 

Table 4.36 summarizes the coefficient values determined when the hydraulic 

system had been operating on palm oil for 100, 200, 300, 400 and 900 hour. The 

detailed information can be obtained from Appendix F. 

 

Table 4.36: Summary of coefficients values against operating hour 
Duration (hour) 100 200 300 400 900 
Temperature 70ºC      

Slip Coefficient, Cs 
Speed (Hz)      

48 0.3204 0.4308 0.4889 0.4009 0.5527 
40 0.3698 0.4373 0.4379 0.4451 0.5073 
30 0.4139 0.4453 0.4365 0.4502 0.5186 
20 0.4428 0.5357 0.5449 0.5750 0.5490 

Pressure (bar)      
35 (30) 0.7968 0.9941 0.9220 1.3258 1.5911 
75 (50) 0.6966 0.7103 0.6293 0.7337 1.2075 

125 (100) 0.6480 0.6453 0.6410 0.7433 0.8616 
200 (150) 0.6117 0.6242 0.6502 0.7490 0.7497 

      
Friction Coefficient, Cc 

Pressure (bar)      
35 (30) 0.0421 0.2410 0.2423 0.5270 0.4938 
75 (50) 0.1824 0.1833 0.1795 0.2949 0.3590 

125 (100) 0.1483 0.1830 0.2307 0.2669 0.2495 
200 (150) 0.3553 0.2988 0.2710 0.3035 0.3172 

      
Viscous Coefficient, Cv 

Speed (Hz)      
48 284910 195724 239357 416755 289161 
40 180441 167536 254147 457057 329483 
30 - 366838 231882 509958 384121 
20 - 101063 211802 726828 435348 

* Pressure in bracket only applicable to 900 hour sample. 
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Figure 4.90 shows the variation of flow slip coefficient as calculated from 

100, 200, 300, 400, 900 hour of 1200 rpm and 70oC data.  The figure shows that the 

coefficient increases with test rig running time, or as palm oil degrades. The increase 

of flow slip coefficient can be attributed to the wear and clearances of hydraulic 

component, which is studied in Section 4.10. On the other hand, coulomb friction 

and viscous friction coefficient show fluctuated values over time.  
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Figure 4.90: Variation of flow slip coefficient with test rig running time. 

 

 A check on the variation of flow slip coefficient with oil viscosity was made. 

As in bench test, the oil viscosity in hydraulic test rig also increased with test rig 

running time. Figure 4.91 indicates that as viscosity increases, flow slip coefficient 

also increases. Theoretically there is no direct relation between viscosity and flow 

slip coefficient (Equation 2.38b). However, as test rig running time increases 

viscosity also increases. One of the factors that influence the viscosity increase is the 

increase in contaminants level. This contaminants level can affect the components 

wear which in turn influence the flow slip coefficient. 
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Figure 4.91: Variation of flow slip coefficient with oil viscosity. 

  

 

4.10 Hydraulic Components Wear 

 

The effect of lubricating capability of the palm oil was evaluated by 

considering the wear of moving and stationery components. In this study the 

concentration was on the vane pump which is the heart of hydraulic system. Prior to 

installation into hydraulic test rig, the pump was dismantled. The pump was again 

dismantled at 500 hours and at the end of operation period (900 hour). Figure 4.92 

shows the picture of the dismantled pump at 900 hour.  
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Figure 4.92: Appearance of vane pump dismantled at 900 hour. 

 

The vane pump mechanical structures consist of a rotor with passages for the 

vanes to slide in and out. The rotor, which contains radial slots, is splined to the drive 

shaft and rotates inside a cam ring. Each slot contains a vane designed to mate with 

the surface of the cam ring as the rotor turns. The main pump components 

investigated was vane, cam ring, rotor and side bushing.  The wear of the 

components was based on the weight loss, appearance of component surface and 

surface roughness. 

 

 

4.10.1 Weight Loss 

 

Throughout the pump operation, friction and collision between metal 

compartments and decrement in lubrication resulted in metal cavitation wear and 

erosion wear, especially on the vanes, cam ring, bushings and rotor. Sliding actions 

produced by two surfaces in relative motion are prime reason for critical wear areas. 

Referring to Figure 4.92, these types of interfaces in the vane pump are as follow: 

 

• The contact between the vane tips and the cam ring. 

• The contact between the vanes and rotor. 

• The contact between the vanes, rotor and side bushings. 
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Weight loss of 12 vanes is shown in Figure 4.93. Under the operating 

condition of 500 hours, the vanes had been sliding against harder material, cam ring, 

for about 5650 km (the peripheral distance has been converted to equivalent linear 

distance). At high rotational speed of 1200 rpm, centrifugal force forces the vane 

towards cam ring. At high pressure chamber, the two materials maybe separated by a 

thin layer of palm oil. On the other hand, at suction chamber the vane may be 

rubbing hard on the inside of cam ring surface. As a result 0.12% of the vane had 

been worn. Another 0.01% wear occur during 500 - 900 hour. 

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

500 900

Operation Time (hour)

W
ei

gh
t L

os
s 

(%
)

Vane

Rotor

 
Figure 4.93: Weight loss of vane and rotor. 

 

Surprisingly the rotor also experienced significant wear (Figure 4.93). 

However the amount of wear of rotor was less than that of vane. The wear might 

occur at the sliding surface with side bushings. The wear might also occur at the slots 

where the vane moving in and out.  

 

 Figure 4.94 shows the percentage weight loss of cam ring and bushing. 

Normally the major weight loss occurred at a vane pump are vane and cam ring. 

However, in this study the weight loss of cam ring was minimal. About 0.012% 

weight loss occurred during 0 - 500 hour period and further 0.003% loss occurred 

during 500 - 900 hour period. The figure also shows the percentage weight loss of 

bushing. Only about 0.004% weight loss occurred during 0 - 500 hours and no 

further weight loss measured during 500 - 900 hours operation. 
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Figure 4.94: Weight loss of cam ring and bushing. 

 

 For the weight loss profile for vane, cam ring and rotor it is observed that 

most of the wear occurred during 0 - 500 hour period compared to 500 - 900 hour 

period. Thus it can be said that most of the wear occurred during running in period 

during the first several hundred hours. The highest loss occur to the vanes which 

slide against cam ring at equivalent sliding speed of up to 3.2 ms-1. The wear may be 

attributed to impurities and increased viscosity of the palm oil. 

 

 

4.10.2  Components Appearance 

 

Figures 4.95a and 4.95b shows the pictures of side bushing, before and after 

the operation, respectively. In general, the components were still in good condition. 

Visually, there was no significant wear observed on the components. Good close-up 

shows slight erosion wear.  
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Figure 4.95a: Side bushing of a new pump. 

 

Figure 4.95b: Side bushing of used pump (900 hours). 
  

 

4.10.3 SEM Micrographs 

 

Philip XL40 SEM was used to obtain metal micrographs. Figure 4.96 shows 

the vane part under examination. Several micrographs were taken at vane tip. Figures 

4.97a -4.97d show the micrograph of vane tip after 900 hours. Figure 4.97a shows 

the edge of vane tip (magnification 110x). The pitting was not observed at this 

location at 0 and 500 hour operation. This micrograph indicates that cavitation might 

have occurred during 500 – 900 hour operation.  

Observed wear erosion 
caused by vane contacts with 
the side bushing. 

Smooth surface of a new side 
bushing. 
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Figure 4.96: Vane configuration under study. 
 

(a) (b) 

(c) (d) 

Figure 4.97: Micrograph of vane tip (900 hours). 

 

During one-quarter revolution of rotor rotation, the volume increases between 

the rotor and cam ring (Figure 4.98: from position a  b). The resulting volume 

expansion causes a reduction of pressure. This is the suction process, which causes 

fluid to flow through the inlet port and fill the void. When the palm oil becomes 

back / top 

front / bottom 

tip 

trailing 
edge 

leading 
edge 
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thicker (as presented in Section 4.4.2), the oil flow rate to fill this void decreases, 

drops the chamber pressure. The trailing edge of the vane experienced the worst 

pressure drop. This induces the cavitation to occur. Figure 4.97a shows that pittings 

are more severe in the trailing edge compared to leading edge. 

 

As the rotor rotates through the second quarter revolution (Figure 4.98: 

section c  d), the surface of the cam ring pushes the vanes back into their slots and 

the trapped volume is reduced. This positively ejects the trapped fluid through the 

discharge port. In this process positive pressure exists in the chamber and thus 

cavitation does not occur. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.98: Movement and rotation of vane and rotor in cam ring. 

 

Figures 4.97b – 4.97d show the micrographs of vane tip at middle parts with 

different magnifications. No pitting sign was observed even after 500 times 

magnification. Figures 4.99a and 4.99b show the appearances of vane top at 0 hour 

and 900 hour, respectively. With the same magnification, wear lines were observed 

at 900 hours. Beside the wear lines, no peculiar sign was observed.  

delivery 

volume 
increase 

suction 
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(a) (b) 

Figure 4.99: Appearances of vane top at (a) 0 hour and (b) 900 hour. 

 

 

4.10.4 Surface Roughness 

 

Taylor Hobson Form Talysurf 6 was used to measure metal surface 

roughness. Figure 4.100 shows the example of roughness profile of vane tip. Table 

4.37 shows the surface roughness summary of the internal surface of cam ring. For 

the analysis purposes the investigated surface was divided into sections A, B, C, D, 

E, F, G and H (Notation is as in Figure 4.98). The surface roughness of each section 

at 0, 500 and 900 hours are shown. For each surface, the surface roughness decreased 

with running hour. The surface roughness between 500 – 0 hour period was 

compared to 900 - 500 hour. Interestingly, the results show that the highest 

percentage of smoothing occurs at sections D and H.  
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Figure 4.100: Roughness profile of vane tip 

 

Further studies show that sections D and H are the initial suction sections (not 

F and B as initial thought). The onset of suction process seems to pose severe wear. 

Referring to Figure 4.100, section D may not be exposed to suction port yet. 

However the chamber volume opening has occurred. This might creates sudden 

pressure drop. Negative pressure in the outer section while high centrifugal force 

from the core might result in tremendous wear.  

 

Least surface roughness change occurred at section F (B and C being equal). 

At section F the oil chamber volume starts to decrease. Referring to Figure 4.98, the 

delivery port has not yet opened. Thus the pressure in F and G sections build up. The 

pressure force pushes the vane inward and thus less vane-to-cam ring contact occurs 

here.  

 

Table 4.38 also shows that the change of surface roughness of vane. Tip of 

the vane experienced more surface roughness than the flat surface of the top and 

bottom. The table compares the surface roughness of vane surfaces (notation is as in 

Figure 4.98). 
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Tables 4.37 and 4.38 also show that more surface roughness change occurred 

during 0 - 500 hour period compared to 500 - 900 hour period. Percentage of 

smoothing indicates the percentage of surface roughness change during 0 - 500 hour 

compared to the overall surface roughness change during 0 – 900 hour. These surface 

roughness results complement the weight loss results discussed in Section 4.10.1. 

 

Table 4.37: Surface roughness of the internal surface of cam ring 

Running       Sections         
hour A B C D E F G H 
0 0.134 0.119 0.099 0.136 0.142 0.106 0.110 0.135 
500 0.087 0.085 0.081 0.094 0.089 0.088 0.089 0.090 
900 0.067 0.068 0.072 0.088 0.068 0.077 0.083 0.088 
∆500-0 0.047 0.034 0.018 0.042 0.053 0.018 0.021 0.045 
∆900-0 0.067 0.051 0.027 0.048 0.074 0.029 0.027 0.047 
% 
smoothing 0.701 0.667 0.667 0.875 0.716 0.621 0.778 0.957 
 

 

Table 4.38: Surface roughness of the vane 

   Sections   
Running 
hour vane tip vane bottom vane top 
0 0.108 0.070 0.062 
500 0.077 0.055 0.051 
900 0.061 0.046 0.046 
∆500-0 0.031 0.015 0.011 
∆900-0 0.047 0.024 0.016 
% 
smoothing 0.660 0.625 0.688 

 

 

 

 



 
 
 
 
 

CHAPTER 5 

 
 
 

CONCLUSIONS AND RECOMMENDATIONS 

 
 
 

5.1 Introduction 

  

The aim of the project was to investigate the feasibility of using palm oil as 

energy transport media in hydraulic system. The objectives of the study as mentioned 

in Chapter 1 have been achieved. 

 

Performance of palm based oil as hydraulic fluid was investigated, both in 

bench tests and in the built hydraulic test rig. In the initial part of the study a novel 

hydraulic test rig was developed and built. Parallel to the hydraulic system 

development, palm based oil was formulated and tested in bench test.  

 

The bench test condition was set to follow closely international standard test 

criteria and simulating hydraulic system environment. For this reason the test is 

labeled as ‘simulated bench test’.  

 

The experimental work consisted of two major parts: bench test and actual 

hydraulic test. In the bench test, thermal stability of palm oil and its blends was 

evaluated. The purpose of the bench test was to predict the oil performance when it 

was used in hydraulic system. The best palm oil blends were then tested in the built 

hydraulic test rig (Section 4.6). The test temperature was set 55oC to simulate the 

maximum practical operating temperature. The thermal and rheological 

performances of the blends were investigated in thorough.  
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The performance of hydraulic system when running on palm oil with out 

additive was then performed at 70 bar and elevated temperature of 70oC.  Variations 

of torque and flow losses, mechanical and volumetric efficiencies with a number of 

operating conditions were studied. Simple dimensional analysis study was used in 

determining flow slip, viscous and coulomb friction coefficients. Attempt to relate 

these performances and parameters to wear of components and ageing of palm oil 

were made.   

 

 Beside the experimental work performed, the analysis has been made in three 

major areas as follows: 

 

i. Lubricating capability of the oils was evaluated based on the oils 

rheological properties. For most of the oils, flow diagrams were established. Several 

rheological models were used and relevant flow parameters were determined.  

 

 ii. Thermal stability of the oil was evaluated mainly on acid content. In the 

aspect of thermal kinetics, onset temperature and activation energy were determined.  

 

 iii. Power transmission capability was based on volumetric and mechanical 

efficiencies. Effect of ageing of palm oil on the performance was investigated. The 

changes of flow slip, viscous and coulomb friction coefficients were observed. 

 

 

5.2 Summarizing Conclusions 

 

i. The built hydraulic test rig was successfully in evaluating the thermal 

stability of palm based oils and determining the hydraulic system performance when 

palm oil was used as hydraulic fluid. The built test rig has additional capability than 

the system used in ASTM D2882 and BS281 since the built test rig is capable of 

determining hydraulic performances. 

 

ii. In most cases rheological, TAN, IV and TGA thermogram analysis yield 

similar outcome related to changes of oil properties when the oil was degraded either 

in bench test or hydraulic system test. This shows that the bench test is very relevant 
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in predicting the oil performance in the hydraulic system. However the exception is 

that the flow behavior index increases with test period for bench test and hydraulic 

test running continuously, while the index decreases when the hydraulic test running 

intermittently at 70 bar and 70oC (harsher condition). 

 

iii. Basic RBD palm oil is not suitable to be used as hydraulic fluid. 

Significance acid content (more than 2 mg KOH/g) was accumulated in both bench 

and hydraulic system test due to thermal-oxidation factor. The acid content can be 

detrimental to hydraulic components especially hydraulic seal. 

 

iv. Good additives to be blended with palm oil have been determined from 

both bench test and hydraulic test (continuous running at 55oC). It was found out that 

F10 and L135 additives, both from Ciba Geigy International USA, far surpass other 

additives. The recommended treat level for F10 additive is between 1.5% to 2.0%, 

while for L135% is 1.5%. Higher usage of additive level may not be economical. 

 

v. Rheological properties of palm oil can be best represented by Cross and 

Carreau models. This is followed by Herschel-Bulkley, modified power law and 

Ostwald de-Waele models. This is applied to new palm oil samples and also aged 

samples after being used in hydraulic test rig. 

 

vi. After the hydraulic test rig was ran for 900 hours, the volumetric 

efficiency increases for about 27% when operated at 200 bar due to the increase in 

palm oil viscosity. On the other hand, the mechanical efficiency drops to about 10%.  

However, for real application use, detrimental effects due to the aged oil should be 

considered. In the aspect of tribology, more than 60% wear occurred during the first 

500 hours of operation where the vanes experienced the most severe wear.  

 

 

5.3 Recommendations for Future Work 

 

This project is believed to be the first in investigating the use of palm based oil as 

hydraulic fluid. Thus there is a large spectrum of areas that can be further explored. 

The following work is suggested: 
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i. Locally, palm oil has been transesterified into trimethylolpropane by 

researchers in Universiti Putra Malaysia. The product from those 

researchers can be tested in the built test rig. The thermal performance of 

this product can be compared to the thermal performance of the best 

blends determined in this study.  

 

ii. The test of two palm oil blends and Shell Tellus oil at 70oC and 70 bar 

was halted due test rig problems. One of the problems was due to the 

pump malfunction. It is recommended that the Yuken pump used in this 

study to be changed to Vickers 104C pump.  

 

iii. It is recommended that the data acquisition of the test rig be improved in 

order that transient test can be performed. Bottlenecking of signals at 

ADAM 4520 should be avoided by using better ADAM module or by 

providing separate controls for rig no. 1 and rig no. 2. Another option is to 

use multiple channel cards.  

 

iv. Since the palm oils under studied show fast increase in acid level, it is 

suggested that corrosion study should be performed. Compatibility of 

hydraulic components especially hydraulic seal with the used oil should 

also be checked. 

 

v. For comparison, the performance of mineral oil running at 70 bar, 70oC 

and with the same running period should be performed. Palm oil with 

identified additive is to be used in the hydraulic test rig. It is 

recommended to use 1.5% L135 and 1.5% F10 additives. High 

temperature and high pressure condition should be applied. Then direct 

performance comparison can be evaluated. 
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Project title : Performance Investigation of Energy Transport Media as Influenced by 
Crop Based Properties. 

Project leader: Prof Dr Farid Nasir Ani 

Tel: 607-5534650       Fax: 607-5566159 

 
B. Summary for the MPKSN Report (for publication in the Annual MPKSN Report, please summarise 

the project objectives, significant results achieved, research approach and team structure) 
 

May 96                       End of Project Report 

Project Objectives 
  
 The objectives of this project are to design and build suitable mechanical test rig for oil 
performance evaluation. It is also included in the objectives to determine power transmission, 
corrosion protection, lubrication, mechanical and volumetric performance of the oil. Performance 
comparison between this environmentally adapted oil and conventional mineral oil will be made. On 
other side, the project conducted too study mechanical and chemical properties of local crops. Base oil 
stability will be evaluated. Finally, the objective is to improve the oil properties through additives
formulation. 
 
Significant results achieved:  
 
1. Hydraulic test rig with DAS and online feedback contol system. 
2. Data of palm oil hydraulic fluid. 
 
The research approach was carried by following steps: 

 
1. Literature search. 
2. Screening of vegetable oil.  Physical properties tests. 
3. Chemical testing and analysis. 
4. Improvement of oil properties. 
5. Hydraulic system design and fabrication. 
6. Operational oil performance. 
7. Theoretical/Computer Modelling Validation. 
8. Conduct profit analysis.  
9. Field testing 
10. Analysis of data/results. 
11. Preparation of reports/publication of research findings. 

 
The project team structure:- 
 

1. Professor Farid Nasir Bin Hj. Ani  
2. Wan Mohd Nursani Wan Nik. 
3. Prof. Dr. Hamdan Suhaimi. 
4. Assoc. Prof. Dr. Mustaffa Nawawi, Science Fac, UTM 
5. Wan Hasamudin Wan Ghani, MPOB 
6. Yahaya b. Abdul Ghani, PRSS 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. Objectives achievement 
 

• Original project objectives (Please state the specific project objectives as described in Section ll of 
the Application Form). 

 
1. To design and build suitable mechanical test rig for oil performance evaluation. 
2. To determine power transmission, corrosion protection, lubrication, mechanical and volumetric performance of 

the oil. Performance comparison between this environmentally adapted oil and conventional mineral oil will be 
made. 

3. To study mechanical and chemical properties of local crops. Base oil stability will be evaluated. 
4. To improve the oil properties through additives formulation. 

 
 

• Objectives Achieved (Please state the extent to which the project objectives were achieved) 
 
  
1. To design and build suitable mechanical test rig for oil performance evaluation. 
2. To determine power transmission, corrosion protection, lubrication, mechanical and volumetric performance of 

the oil. Performance comparison between this environmentally adapted oil and conventional mineral oil will be 
made. 

3. To study mechanical and chemical properties of local crops. Base oil stability will be evaluated. 
4. To improve the oil properties through additives formulation. 

 
 

• Objectives not achieved (Please identify the objectives that were not achieved and give reasons) 
 

-nil- 
 

 
 
D. Technology Transfer/Commercialisation Approach (Please describe the approach planned to 

transfer/commercialise the results of the project) 
 

1. Local oil, lubricant producers - Research findings will help them to produce product 
or improve their current products. Knowledge will be disseminated through 
seminar/conference and advisory services.  

2. MPOB - By working together with this research institution, this research is 
complementing the work done by the MPOB scientist. 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E. Benefits of the Project (Please identify the actual benefits arising from the project as defined in Section lll of 
the Application Form. For examples of outputs, organisational outcomes and sectoral/national impacts, please refer 
to Section lll of the Guidelines for the Application of R&D Funding under IRPA) 

 
• Outputs of the project and potential beneficiaries (Please describe as specifically as possible 

the outputs achieved and provide an assessment of their significance to users) 
 

1. Comprehensive information on performance of the improved product. 
2. Mechanical efficiencies of machineries using the studied local crops. 
3. Formulations of industrial products using local crop oil. 
4. Comparative data between local crop and crops used in USA and Europe 
 

• Organisational Outcomes (Please describe as specifically as possible the organisational benefits 
arising from the project and provide an assessment of their significance) 

 
1. PhD degrees -1  
2. Research staff with specialization in energy transport fluid 
3. Improved laboratory facilities                

 
• National Impacts (If known at this point in time, please describes specifically as possible the potential 

sectoral/national benefits arising from the project and provide an assessment of their significance) 
 

1. PhD degrees -1 
2. Research staff with specialization in energy transport fluid 
3. Improved laboratory facilities 
4. Closed collaboration between UTM, KUT, UM, PRSS and MPOB. 
5. Linkages with research institutes and universities in USA, UK and other parts 

of Europe. 
6. Improvement in environment- use/modification of environmentally friendly 

product 
7. Improvement in health - use of nontoxic fluid 
8. Improvement in safety - use of high flash point energy transport media 
9. Farmers in Agro-based sectors such as palm and coconut will gain economic 

benefits from sale of the crops. Increase in use/sale of local based crop. 
10. Improvement in job opportunities for the cultivation, harvesting and 

processing of crop oil. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F. Assessment of project structure 
 

• Project Team (Please provide an assessment of how the project team performed and highlight any 
significant departures from plan in either structure or actual man-days utilised) 

 
The project team performed successfully with the objectives of the project. 

      
 
 
 
• Collaborations (Please describe the nature of collaborations with other research organisations and/or 

industry) 
 

Collaborations with other research organizations such as MPOB, UPM and UM etc. 
were good in the sense that they giving advices and analyzing of samples. 

      
 
 
 
 

G. Assessment of Research Approach (Please highlight the main steps actually performed and indicate 
any major departure from the planned approach or any major difficulty encountered) 
 
 
The main steps actually performed as planned. 
 
 
 
 
 
 
 
 

 
H. Assessment of the Project Schedule (Please make any relevant comment regarding the actual duration 

of the project and highlight any significant variation from plan) 
 
 
               The actual duration of the project was as planned with insignificant variation from plan. 
 



 
 
 
 
 

I. Assessment of Project Costs (Please comment on the appropriateness of the original budget and 
highlight any major departure from the planned budget) 

 
 
Major departure from the planned budget are in J- series ie. paying of research officers.  
 
 
 
 
 
 
 
 
 
 
 
 

J. Additional Project Funding Obtained (In case of involvement of other funding sources, please 
indicate the source and total funding provided) 
 
 
No other funding sources. 
 
 
 
 
 
 
 
 
 

 
K. Other Remarks (Please include any other comment which you feel is relevant for the evaluation of this 

project) 
 
 

The project achieved it objectives, producing a doctorate officer, a test rig and data 
regarding the use of palm oil as hydraulic fluids.  

 
 
 
 
 
 
 
 
 
 
 
 

Date :       Signature : 
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APPENDIX  A 

  
 
 
 
Derivation of shear rate, shear stress, torque and viscosity terms 
 
 
  Referring to Figure A1 below, assuming that the oil flows in a steady pattern 

and in steady state condition in annular passage between disposable chamber and 

spindle, equation of motion in the tangent direction can be reduced to (Bird et al., 2001): 

   ( )⎟
⎠
⎞

⎜
⎝
⎛= θxv

dx
d

xdx
d 10 .     1 

 
 
 
                                                                                                                   Rc 
                                                                                                   Rb 
 
                                                      Disposable 
                                                        Chamber                                                            L 
 
                                                                   Spindle 
 
 
 
 

Figure A1:  Schematic of coaxial viscometer. 
 

Solving Equation 1,  
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Taking the boundary conditions and assuming no slip condition, velocity of oil sample is  
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at moving spindle is bwR  and at stagnant disposable chamber is zero: 
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Solving the above equations,  
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The velocity at any point in the oil sample can be shown as  
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Shear stress for Newtonian fluids in the cylinder (cylinder type disposable chamber) 

coordinates can be shown as below (Bird et al., 2001): 
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With second term goes to zero, shear stress can be shown as below: 

 

 

 

 

 

 

 

 

 

 

 

 

Thus shear stress can be shown as 
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Since shear stress-shear rate from basic fluid mechanics can be shown as  

   Shear stress = viscosity x shear rate    10 
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Combining Equations 10, 11 and 12, 
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where 
  

c1, c2 = constants 

m = %/100 x 673.7 

L  = 3.553 cm 

Rb = 0.874 cm 

Rc = 0.953 cm 

w = 2π/60 x rpm 

π  = 22/7 
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APPENDIX B 

 

 

 

Pictures during development of hydraulic test rig:  

 

Figure B1: Basic loose components 

Figure B2: Fabrication of hydraulic power pack 

 

Figure B3: Fabrication of hydraulic reservoir 

Figure B4: Electrical control 

 

Figure B5: Complete hydraulic test rig 

Figure B6: PC control of the test rig 

 

 

Overall LabVIEW program for running the test rig: 

 

 LabVIEW program (Graph2.vi) 
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Figure B1: Basic loose components. 

 

 
Figure B2: Fabrication of hydraulic power pack. 
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Figure B3: Fabrication of hydraulic reservoir. 

 

 
Figure B4: Electrical control. 
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Figure B5: Complete hydraulic test rig. 

 

 
Figure B6: PC control of the test rig. 
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APPENDIX C 

 
 
 
 
Activation energy relationship 
 

Substituting Equation 2.3 into Equation 2.2 yields 

 =
dT
dx  

B
A exp (

RT
Ea− ) (1-x) .              1 

 

In this study, two models were used to evaluate the kinetic parameters of the oil 

samples. By direct Arrhenius plot method for the non-isothermal kinetic parameters 

with constant heating rate (B = dT/dt), Equation 1 was rearranged to 
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B
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Ea .            2 

 

The plot ln[(1/(1-x)(dx/dT)] versus 1/T should give a straight line with slope 

–Ea/R gives the activation energy Ea. 

 

The integration method determines the overall reaction from conversion versus 

temperature curves. Rearranging, integrating and using a natural logarithm, Equation 1 

yields 
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The plot ln [-ln(1-x)] versus 1/T should yield a straight line with slope –Ea/R, 

where the activation energy Ea can be calculated. 



 

 

 
 
 
 

234
 

 

 

APPENDIX D 

 

 

 

Mathematica programs: 
 
Program #D1: Determination of Andrade constants 

Program #D2: Oswald de-Waele model 

Program #D3: Cross model 

Program #D4: Proposed modified Power Law model 

Program #D5: 3-dimensional model 
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APPENDIX E 

 

 

 

Determination of R2 and MSE for Al-Zahrani and Al-Fariss’s and proposed 

generalized rheological models.  
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APPENDIX F 

 

Loss coefficients values 
Loss Coefficients Value for 100 hour. 

 
At temperature 40 ºC (µ = 0.037 Pa.s)      

Speed (Hz) Cs (x 10-7) Cc Cv Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.4743 0.0834 237147 35 1.3977 0.3668 96854 
40 0.4628 0.1147 273446 75 0.8359 0.3004 -27217 
30 0.4425 0.1221 321413 125 0.6964 0.2560 -111242 
20 0.4276 0.1826 347342 200 0.5666 0.2761 -400207 

        
At temperature 50 ºC (µ = 0.026 Pa.s)      

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.4153 0.0770 550830 35 0.9333 0.5609 161433 
40 0.4104 0.1102 701356 75 0.6533 0.2905 224780 
30 0.4034 0.1142 737035 125 0.6136 0.2859 -98660 
20 0.4882 0.1683 924179 200 0.5930 0.2783 -386402 

        
At temperature 60 ºC (µ = 0.019 Pa.s)      

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.3735 0.1015 252119 35 0.7874 0.5208 -268237 
40 0.3938 0.1359 346915 75 0.6144 0.3124 -306173 
30 0.4038 0.1360 332500 125 0.5579 0.2542 -414827 
20 0.4991 0.1692 624812 200 0.5373 0.2748 -824920 

        
At temperature 70 ºC (µ = 0.015 Pa.s)      

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.3204 0.0982 284910 35 0.7968 0.0421 362620 
40 0.3698 0.1469 180441 75 0.6966 0.1824 -115388 
30 0.4139 0.1907 -111763 125 0.6480 0.1483 -25704 
20 0.4428 0.2006 -117805 200 0.6117 0.3553 -2000000 
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Volumetric Efficiency vs p/uw at 40 ºC (speed)
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Volumetric Efficiency vs p/uw at 50 ºC (speed)
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Volumetric Efficiency vs p/uw at 60 ºC (speed)
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Volumetric Efficiency vs p/uw at 70 ºC (speed)
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Loss Coefficients Value for 200 Hour. 
 

At temperature 40 ºC (µ = 0.067 Pa.s)     

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.6289 0.0705 222856 35 2.2030 0.4749 80451 
40 0.5910 0.1085 241415 75 1.3172 0.3114 50962 
30 0.5418 0.1250 259498 125 0.9708 0.2054 84403 
20 0.5823 0.1294 386151 200 0.8186 0.1965 3595 

        
At temperature 50 ºC (µ = 0.045 Pa.s)     

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.5203 0.0758 277940 35 1.5208 0.5813 7361.8 
40 0.5163 0.1147 271735 75 0.8892 0.2960 25652 
30 0.5205 0.1618 175249 125 0.7795 0.2396 -25158 
20 0.5312 0.2028 225454 200 0.6527 0.2340 -192989 

        
At temperature 60 ºC (µ = 0.032 Pa.s)     

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.4845 0.0602 348712 35 1.2410 0.5583 -2791.1 
40 0.4947 0.1040 380467 75 0.7690 0.2830 45786 
30 0.4825 0.1099 513100 125 0.7111 0.2899 -184422 
20 0.5398 0.1420 690220 200 0.6793 0.2729 -472915 

        
At temperature 70 ºC (µ = 0.024 Pa.s)     

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.4308 0.0925 195724 35 0.9941 0.2410 48028 
40 0.4451 0.1355 167536 75 0.7103 0.1833 47263 
30 0.4453 0.1012 366838 125 0.6453 0.1830 -143094 
20 0.5357 0.1983 101063 200 0.6242 0.2988 -859199 
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Volumetric Efficiency vs p/uw at 40 ºC (speed)
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Volumetric Efficiency vs p/uw at 50 ºC (speed)
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Volumetric Efficiency vs p/uw at 60 ºC (speed)
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Volumetric Efficiency vs p/uw at 70 ºC (speed)
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Loss Coefficients Value for 300 hour. 
 

At temperature 40 ºC (µ = 0.080 Pa.s)     

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.6251 0.0837 230230 35 3.2096 0.6306 70083 
40 0.5837 0.1051 260972 75 1.8271 0.3570 63146 
30 0.4823 0.1092 324466 125 1.1185 0.2981 19413 
20 0.4963 0.1339 411010 200 0.9145 0.2728 -83695 

        
At temperature 50 ºC (µ = 0.053 Pa.s)     

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.5282 0.0843 177824 35 1.8627 0.4359 46612 
40 0.4875 0.1031 215333 75 1.0267 0.2405 54917 
30 0.4537 0.1127 224803 125 0.7451 0.1901 40729 
20 0.4836 0.1272 348590 200 0.6759 0.2530 -228865 

        
At temperature 60 ºC (µ = 0.032 Pa.s)     

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.4265 0.0750 296467 35 1.2141 0.4113 91029 
40 0.4565 0.1010 364592 75 0.6639 0.2471 114614 
30 0.4191 0.1514 252718 125 0.6461 0.2440 -77246 
20 0.4875 0.1840 283836 200 0.5630 0.2137 -134865 

        
At temperature 70 ºC (µ = 0.024 Pa.s)     

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.4889 0.0870 239357 35 0.9220 0.2423 140068 
40 0.4379 0.1293 254147 75 0.6293 0.1795 138221 
30 0.4365 0.1344 231882 125 0.6410 0.2307 -207271 
20 0.5449 0.1894 211802 200 0.6502 0.2710 -582735 
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Volumetric Efficiency vs p/uw at 40 ºC (speed)
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Volumetric Efficiency vs p/uw at 50 ºC (speed)
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Volumetric Efficiency vs p/uw at 60 ºC (speed)
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Volumetric Efficiency vs p/uw at 70 ºC (speed)
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Loss Coefficients Value for 400 hour 
 

At temperature 70 ºC (µ = 0.033 Pa.s)     

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.4009 0.0672 416755 35 1.3258 0.5270 72287 
40 0.4373 0.1031 457057 75 0.7337 0.2949 98213 
30 0.4502 0.1253 509958 125 0.7433 0.2669 -77722 
20 0.5750 0.1471 726828 200 0.7490 0.3035 -479625 
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Volumetric Efficiency vs p/uw at 70 ºC (speed)
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Loss Coefficients Value for 900 hour. 
 

At temperature 40ºC ( µ = 0.137 Pa.s)       

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.6351 0.0888 158417 30 6.2183 0.8570 48775 
40 0.7380 0.1200 189550 50 4.2181 0.6138 64913 
30 0.8225 0.0859 241416 100 2.4919 0.3829 17348 
20 0.7988 0.1591 302254 150 1.9592 0.3556 -32328 

    200 1.6658 0.3114 -37605 
        
At temperature 50ºC ( µ = 0.086 Pa.s)       

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.7298 0.1091 233968 30 3.4502 0.8271 81537 
40 0.7009 0.1232 293923 50 2.4407 0.5985 86579 
30 0.6523 0.1475 313873 100 1.5724 0.3827 28429 
20 0.7108 0.1905 430068 150 1.2480 0.3703 -75151 

    200 1.0899 0.3289 -102030 
        
At temperature 60ºC ( µ = 0.059 Pa.s)       

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.6337 0.1050 231722 30 2.2173 0.5873 87073 
40 0.5944 0.1467 287682 50 1.6203 0.3929 105672 
30 0.5807 0.1226 348098 100 1.0825 0.3175 18559 
20 0.5819 0.1781 427460 150 0.8896 0.3250 -129908 

    200 0.7750 0.3183 -201251 
        
At temperature 70ºC ( µ = 0.043 Pa.s)       

Speed (Hz) Cs (x 10-7) Cc  Cv  Pressure (bar) Cs (x 10-7) Cc  Cv  
48 0.5227 0.1046 289161 30 1.5911 0.4938 116539 
40 0.5073 0.1548 329483 50 1.2075 0.3590 110418 
30 0.5186 0.1386 384121 100 0.8616 0.2495 80229 
20 0.5490 0.2070 435348 150 0.7497 0.3172 -168366 

    200 0.6924 0.3325 -301731 
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Volumetric Efficiency vs p/uw at 40 ºC (speed)
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Volumetric Efficiency vs p/uw at 50 ºC (speed)
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Volumetric Efficiency vs p/uw at 60 ºC (speed)
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Volumetric Efficiency vs p/uw at 70 ºC (speed)

y = -0.549x + 0.9567

y = -0.5186x + 0.9913

y = -0.5073x + 1.012

y = -0.5527x + 1.0247

0.500

0.600

0.700

0.800

0.900

1.000

1.100

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000

Dimensionless Value (p/uw )

Vo
lu

m
et

ric
 E

ffi
ci

en
cy

48 Hz

40 Hz

30 Hz

20 Hz

Linear (20 Hz)

Linear (30 Hz)

Linear (40 Hz)

Linear (48 Hz)

Volumetric Efficiency vs p/uw at 70 ºC (pressure)

y = -1.5911x + 1.0751

y = -1.2075x + 1.0735

y = -0.8616x + 1.0712

y = -0.7497x + 1.0768

y = -0.6924x + 1.083

0.500

0.600

0.700

0.800

0.900

1.000

1.100

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000

Dimensionless Value (p/uw )

Vo
lu

m
et

ric
 E

ffi
ci

en
cy

30 bar

50 bar

100 bar

150 bar

200 bar

Linear (30 bar)

Linear (50 bar)

Linear (100 bar)

Linear (150 bar)

Linear (200 bar)

1/nmp vs uw/p at 70 ºC (constant speed)

y = 289161x + 1.1046

y = 329483x + 1.1548

y = 384121x + 1.1386

y = 435348x + 1.207

1.000

1.200

1.400

1.600

1.800

2.000

2.200

0.000E+00 5.000E-07 1.000E-06 1.500E-06 2.000E-06 2.500E-06 3.000E-06 3.500E-06

Dimensionless Value (uw /p)

1/
n m

p

48 Hz

40 Hz

30 Hz

20 Hz

Linear (48 Hz)

Linear (40 Hz)

Linear (30 Hz)

Linear (20 Hz)

1/nmp vs uw/p at 70 ºC (constant pressure)

y = 116539x + 1.4938

y = 110418x + 1.359

y = 80229x + 1.2495

y = -168366x + 1.3172

y = -301731x + 1.3325

1.000

1.100

1.200

1.300

1.400

1.500

1.600

1.700

1.800

1.900

0.000E+00 5.000E-07 1.000E-06 1.500E-06 2.000E-06 2.500E-06

Dimensionless Value (uw /p)

1/
n m

p

30 bar

50 bar

100 bar

150 bar

200 bar

Linear (30 bar)

Linear (50 bar)

Linear (100 bar)

Linear (150 bar)

Linear (200 bar)



 

 

93 

 



 1

                                                                                                                                                                                       
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UTM/RMC/F/0014 (1998) 

 

UNIVERSITI TEKNOLOGI MALAYSIA 
Research Management Centre 

 
PRELIMINARY IP SCREENING & TECHNOLOGY ASSESSMENT FORM 

(To be completed by Project Leader submission of Final Report to RMC or whenever IP protection arrangement is required) 
 
1. PROJECT TITLE IDENTIFICATION : 

Performance Investigation of Energy Transport Media as Influenced by Crop Based Properties.   

 

2. PROJECT LEADER : 
Name  :  Prof Dr Farid Nasir Ani 

Address :   
Jabatan Termo-Bendalir, Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia, 81310 Skudai, 

Johor Darul Takzim. 

Tel : 607-5534650   Fax : 607-5566159    e-mail : farid@fkm.utm.my 

 

3. DIRECT OUTPUT OF PROJECT (Please tick where applicable) 

 

 

 

 

 

 

 

 

 

 

 

 
4. INTELLECTUAL PROPERTY (Please tick where applicable)  

Not patentable      Technology protected by patents 

Patent search required     Patent pending 

Patent search completed and clean   Monograph available 

Invention remains confidential    Inventor technology champion  

No publications pending     Inventor team player   

No prior claims to the technology   Industrial partner identified 

 

Scientific Research     Applied Research  Product/Process Development 
 
         Algorithm        Method/Technique      Product / Component  
 
         Structure        Demonstration /       Process  
          Prototype  
         Data           Software  
          
         Other, please specify      Other, please specify      Other, please specify 
 
       ___________________       __________________      ___________________________ 
 
       ___________________      __________________      ___________________________ 
 
       ___________________      __________________      ___________________________
  

74033 

                                Lampiran 13 

Vote No:



 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UTM/RMC/F/0014 (1998) 

 
5. LIST OF EQUIPMENT BOUGHT USING THIS VOT 

_____________________________________________________________________________

_____________________________________________________________________________

 _____________________________________________________________________________ 

 _____________________________________________________________________________ 

 _____________________________________________________________________________ 
 

 _____________________________________________________________________________ 
 
 

  
 
 
 
 
 
 
 
 
6. STATEMENT OF ACCOUNT 
 

a) APPROVED FUNDING   RM :  

b) TOTAL SPENDING    RM :  

c) BALANCE     RM :  
 
 
7. TECHNICAL DESCRIPTION AND PERSPECTIVE 
 

Please tick an executive summary of the new technology product, process, etc., describing how it 
works.  Include brief analysis that compares it with competitive technology and signals the one 
that it may replace.  Identify potential technology user group and the strategic means for 
exploitation. 
 
a) Technology Description 
  
Current energy transport fluid is of petroleum type. The oil is toxic, nonbiodegradable, and 
of limited source. It can not be assured in any application that the energy transport fluid does 
not leak, thus posing undesirable effect on the environment. Intensive researches in Europe 
and United States of America have produced energy transport fluids that pose less 
environmentally pollutant characteristics than conventional petroleum based oils. The 
development of the environmentally friendly fluid was resulted from coordinated efforts by 
universities, government bodies, product manufacturers and independent testing institutes. 
To date there are arrays of ester based hydraulic fluid products, an example of energy 
transport fluid, in the market (more than 20 different ester based oils). However, the studied 
crops are only the types available in the respective countries. Malaysia, to develop value 
added product from its natural resource, has to initiate its own basic research. At present, 
research in this area in Malaysia is minimal. Two engine oil brands in Malaysia are 
produced ‘on license’ and researched by foreign institutions. So, due to lack of 
comprehensive data and expertise in Malaysia, this project is crucial. Critical performance 
criteria such as power transmission, lubricating capability and base oil stability have to be 
investigated. Based fluid to be studied must come from local crop. 
 
 

    Unit  Price/unit Total Price (RM) 
1. 128MB Memory Card    1  190.00  190.00   
2. Battery NB-ILH    1  200.00  200.00 
3. Pen Drive Apacer USB    1  222.00  222.00 
4. Ammonia Unit Detector    1  850.00  850.00 
5. Power Backup Battery (UPS)   1  930.00  930.00 
6. Regulator Concoa     1  1,280.00  1,280.00 
7. Riello Diesel Feul Burner   1  1,885.00  1,885.00 
8. Canon IXUS Digital Camera   1  1,950.00  1,950.00 
9. Pv2Ri Pump     1  1,960.00  1,960.00 
10. Komputer Peribadi    1  2,752.00  2,752.00 
11. Electrical Control Equiupments   1  4,700.00  4,700.00 
12. Komputer Intel Pentium 4   1  5,888.00  5,888.00 
13. Perisian Lab View Fds    1  6,812.00  6,812.00 
14. Equipment for Pneumatic   1  8,350.00  8,350.00 
      and Liquid Line   
      Total              25,750.00 



 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
b)  Market Potential 
 
           The project still need further research especially the hydraulic palm oil need to run more 

than 3000 hours to meet the international standard requirements. 
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3. Participation in National and International Exhibition, such as INATEX Exhibition, ITEX 

Exhibition, and Geneva International Exhibition.  
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