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Abstract - This paper discusses on the mathematical 

formulation in simulating the temperature behavior on a laser 

glass cutting. The mathematical simulation is solved by using 

three numerical methods, Alternating Group Explicit Method 

with Brian and Douglas variant, and Gauss Seidel Red Black 

method. This simulation is then being run on a parallel 

environment using the master and workers methodology where 

20 units of processors work simultaneously in solving and 

visualizing the data. Lastly, the results obtained from the 

simulation is compared by using the parallel performance 

measurement and also on a large sparse matrix size. 
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I.  INTRODUCTION 

Glass materials are now widely used in many sciences 
and engineering field such as optoelectronic, devices, 
bottles, micro fluidics and windshields [1-8]. The structure 
of the glass is brittle in such where the atomic structures are 
arranged closely and have strong force knitted between 
them [9-10]. Therefore, in order to break up these bonds 
created by these atomic structures, a high temperature is 
needed to separate the glass [8-10]. Furthermore, a high 
quality glass is a glass has a high refractive index, which 
enables light to penetrate through. This can be achieved by 
using the laser technique [1, 6, 11]. 

Past researchers that conducted simulation using the 
laser technology concluded that laser simulation is 
expensive, requires high security and expertise in 
monitoring and running it [1, 7, 10]. Due to this, the 
analytical method is used to substitute the simulation by 
using laser technology. A partial differential equation (PDE) 
is used to represent the problem of laser glass cutting. The 
PDE is then discretized and solved by using three numerical 
methods which are the alternating group explicit (AGE) 

method using two variants Brian and Douglas, while Gauss 
Seidel Red Black method is used as standard comparisons. 
The simulation is run in a parallel environment, which can 
support a simulation that requires complexity and iterations 
[2, 12-13]. 

The objective of this paper is to compare the parallel 
performance between these three numerical methods, AGE 
Brian, AGE Douglas and GSRB. Besides that, simulation 
results on the size of matrix used is also being compared. 

II. STATEMENT OF THE PROBLEM 

The case study in this paper will concentrate three 
dimensional cylindrical coordinates where the problem 
formulation on the laser glass interaction is represented as 
follows, 
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with initial condition: 

�(	, �, �, �)����� = �� (2) 

with ��  is initial temperature where temperature of glass 
cylinder before laser process and boundary conditions: 

�(	, �, �, �)����� = �� and  �(	, �, �, �)����� = �� (3) 

where, 

��,��� : Temperature (K) of inner and outer surface of 
glass cylinder ��,��� : Area of inner (m2) and other surface (m2) of 
glass cylinder 	,��,�� : Radius (m), angle (°), and length (m) of glass 
cylinder 
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 : Rate of heat flow (W/m2) � : Density (Kg/m3) and heat capacity (J) 

K : Thermal conductivity (W) 
t : Time (s) 

From (1), the equation need to be discretized to simplify 
it and this is done by using the Finite Difference Method 
(FDM). Then the equation will be solved by using three 
numerical methods, which are Alternating Group Explicit 
Method (AGE) that consists of two variants Douglas and 
Brian, while Gauss Seidel Red Black (GSRB) method is 
used as standard comparison purposes. The following 
section will be discussing on the numerical methods used to 
solve the PDE 

III. METHODS OF SOLUTIONS 

Numerical methods are used to solve the PDE equation 
that formulates the problem on laser glass cutting. The AGE 
Brian and AGE Douglas used matrix block to solve, and 
GSRB is used as standard comparison between those two 
methods. In this section, the GSRB method is discussed first 
followed by AGE Brian and AGE Douglas. 

A. Gauss-Seidel Red Black (GSRB) method 

The GSRB method normally used as a control scheme in 
solving three dimensional cylindrical glass interaction. The 
GSRB method uses two sub domains which are the odd sub 

domain, Ω� and even subdomain, Ω�. As mentioned, the (1) 
will be discretized using FDM while the GSRB method is 
used to solve the equation as follows, 

� ,!,"(#$�) = %&
&&
&'
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(4) 

where :, ;�and�� will be represented as odd or even numbers 
depending on the type of subdomains. 

B. AGE Brian Method 

AGE Brian method uses Brian variant and acceleration 
parameter, r based on linear polar interpolation. The 
formula is given as below [14], 

 

(?� + �	@)�/AB1
C"$�DE = � (rI�– ?� −�?I −�?J −�?K −�?L) 

                                          �/AB1(") + �4, 
(5) 

(?� + �	@)�/AB1
("$�D) = 	�/AB1

C"$�DE +�?��/AB1"  
(6) 

(?I + �	@)�/AB1
("$ID) = 	�/AB1

C"$�DE +�?I�/AB1"  
(7) 

(?J + �	@)�/AB1
("$JD) = 	�/AB1

C"$IDE +�?J�/AB1"  
(8) 

(?K + �	@)�/AB1
("$KD) = 	�/AB1

C"$JDE +�?K�/AB1"  
(9) 

(?L + �	@)�/AB1
("$LD) = 	�/AB1

C"$KDE +�?L�/AB1"  
(10) 

�/AB1("$�) = �/AB1(") + �2(�/AB1
C"$LDE −��/AB1(")

 
(11) 

Based on (5) to (11), the equations are being simplified into 

2×2 matrix block form. The calculation is as follows, 

��/AB1
C#$�DE = N2�, )�(O�, ��/AB1(#) + P�, ��/AB1(#) + Q�, ��/AB1/01

 

               +R�, ��/AB1/01 + -�/AB1) 
(12) 

�"/AB1
C#$�DE = N2�, )�(P.�, �")�/AB1(#) + P�, �"$�/AB1(#) + O�, �"/AB1(#)

 

               +�RS�, C�")�/AB1/01 +�R�, �"$�/AB1/01 E +
�����������������Q�, �"/AB1/01 + -"/AB1 

(13) 

�"/AB1
C#$�DE = N2�, )�(P.�, �")�/AB1(#) + P�, �"$�/AB1(#) + O�, �"/AB1(#)

 

�����������������+�RS�, C�")�/AB1/01 +�R�, �"$�/AB1/01 E +�Q�, �"/AB1/01
 

�����������������+-"/AB1 

(14) 

�T/AB1
C#$�DE = N2�, )�(P.�, �T)�/AB1(#) + O�, + RS�, �T)�/AB1/01

 

������������������+RS�, �T)�/AB1/01 +�Q�, �T/AB1/01 +�-T/AB1 

(15) 

Based from (12) to (15), it can be simplified that every 

calculation can be represented as (5 + 1), 
�/A,B1(#$�) = �/AB1(#) + 2(�/AB1

C#$LDE − �/AB1(#) ) (16) 

C. AGE Douglas Method 

The AGE Douglas method uses the Douglas-Rachford 
formula that splits a matrix system of linear equations by 
using fractional scheme [15]. It follows the same steps as 
Brian variant. However, Douglas only consists of six groups 

of matrices and being simplified by using 2×2 block 
matrices results and the solutions are as follows, 

��/AB1
C#$�LE = N2�)�(O���/AB1(#) + P���/AB1(#) + Q���/AB1/01

 

 +Q���/AB1/01 + 2-�/AB1) 
(17) 

�"/AB1
C#$�LE = N2�)�(P�(�")�/AB1(#) + �"$�/AB1(#) + O��"/AB1(#)

 

               +Q�C�")�/AB1/01 + �"$�/AB1/01 E + Q��"/AB1/01
 

               +2-"/AB1 

(18) 

�"/AB1
C#$�LE = N2�)� CP� C�")�/AB1(#) + �"$�/AB1(#) E + O��"/AB1(#)

 

�����������������+Q�C�")�/AB1/01 + �"$�/AB1/01 E + Q��"/AB1/01
 

               +2-"/AB1U 

(19) 
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�T/AB1
C#$�LE = N2�)� CP� C�T)�/AB1(#) + O��T/AB1(#) E 

�����������������+Q��T/AB1/01 +Q��T)�/AB1/01 + 2-T/AB1E 
(20) 

 
From (17) to (20), the derivation of AGE Douglas can be 

represented as (5 + 1) as following, 
u/W,X1(Y$�) = (G� + rI))�/G�u/WX1(Y) + ru/WX1

(Y$KL)
 

(21) 

IV. METHODOLOGY 

The methodology used to run the simulation of laser 
glass cutting is the master and workers methodology. The 
master will be one unit of computer monitoring a number of 
computers, which will be the workers in simulating the 
mathematical simulation. The master has its own distinctive 
responsibilities based on Fig. 1, the initial boundary 
memory is set together with initiating workers and 
decompose data. Then, the master will send and distribute 
data between itself and the workers. The workers will 
receive these data and will start on the numerical simulation. 
The algorithm for the numerical simulation by using the 
AGE Brian is shown in Fig. 2. During the numerical 
calculation is conducted, a global communication is 
established between the processors. The purpose of this 
communication is to send the recent value to the 
neighboring processors by checking the position of each 
neighboring processors. This is done by following Fig. 3  

              Figure 1.   Master and worker flowchart methodology 

Then, a local communication is established to ensure 
solution is accurate. The numerical calculation will undergo 
a loop until the stopping criteria is met which is the time 

step, t and local convergence, [ is obtained (refer Fig. 4). 
When these two are met, the workers will collect and 

send the data to the master. Upon receiving, the master will 
conduct global convergence as the criteria before visualizing 
the data. The global convergence is run based on algorithm 
given in Fig. 5. If the global convergence is not met, then 
the simulation will start over in redistributing the data again 
to the workers. However, if the global convergence is met, 
then the solution obtained is ready for visualization. 

V. NUMERICAL RESULTS AND DISCUSSIONS 

The mathematical simulation is conducted on two matrix 

size which are 100 × 100 × 100 (A) and 140 × 140 × 140 
(B). The simulation results are compared between four 
characteristics of parallel performance measurement. The 
four parallel performance characteristics are, 

Speed up: \# = ��/�# (22) 

Efficiency: N# = \#/5 (23) 

Effectiveness: Q# = \#/�# (24) 

Temporal Performance: ^# = �#)� (25) 

 

 
Figure 2.   Numerical simulation algorithm for AGE-Brian 

	2 = 	� − 9 

�"/AB1
(#$�D) = N2�)� _Ǹ��"/AB1(#) + 	�"/AB1

C#$�DEa , � = 1,3,5… .f 

�"/AB1
(#$�D) = N2�)� _Ǹ��"/AB1(#) + 	�"/AB1

C#$�DEa , � = 2,4… .f − 1 

� /Bh1
(#$ID) = N2�)� _Ǹ�� /Bh1(#) + 	� /Bh1

C#$�DEa , : = 1,3,5… .f 

� /Bh1
(#$ID) = N2�)� _Ǹ�� /Bh1(#) + 	� /Bh1

C#$�DEa , : = 2,4… .f − 1 

� /Bh1
(#$JD) = N2�)� _Ǹ�� /Bh1(#) + 	� /Bh1

C#$IDEa , : = 1,3,5… .f 

� /Bh1
(#$JD) = N2�)� _Ǹ�� /Bh1(#) + 	� /Bh1

C#$IDEa , : = 2,4… .f − 1 

�!/Ah1
(#$KD) = N2�)� _Ǹ��!/Ah1(#) + 	�!/Ah1

C#$JDEa , : = 1,3,5… .f 

�!/Ah1
(#$KD) = N2�)� _Ǹ��!/Ah1(#) + 	�!/Ah1

C#$JDEa , : = 2,4… .f − 1 

�!/Ah1
(#$LD) = N2�)� _Ǹ��!/Ah1(#) + 	�!/Ah1

C#$KDEa , : = 1,3,5… . .f 

�!/Ah1
(#$LD) = N2�)� _Ǹ��!/Ah1(#) + 	�!/Ah1

C#$JDEa , : = 2,4… .f − 1 

�/AB1(#$�) = �/AB1(#) + 2i�/AB1
C#$LDE − �/AB1(#) j 

Declare memory, set loop variables 
{ 

Receive data from master,5, ∆�, ∆l, ∆m, ∆�, 	 
Receive data from subdomain,(f × f × f)(5 ) 
Count constant BRIAN, 	� = 	 + Co

LE , +3p�� = (	� − ��),�
Do while time step, t not reach 

{ 
Do while convergence not obtain 
{ 
Use equation (12)–(15) 
Communicate between processors (Fig. 2) 
Calculate 

Calculate 

 
Calculate 

 
Calculate 

 
Calculate 

 
Calculate 

} 
} 
Send data to master 
Pvm_exit 

} 
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 Figure 3. Flowchart on  communication between processors 

Figure 4. Algorithm for workers local convergence test 

Figure 5. Algorithm for master global convergence test 

The simulation is conducted on a number of 
homogenous computers, which comprises of 20 units of 
Intel Pentium processors. The software that is used to run 
the simulation is supported by Parallel Virtual Machine 
(PVM) and C programming. The results obtained are as 
follows. 

Table 1 shows that as the number of processors increases 
the execution time decrease thus proving that as more 
processors is used in a parallel environment, the results can 
be obtained much more faster. This is due to more processors 
which are working simultaneously to solve the problem 
resulting a smaller value of execution time. 

Table 1. Numerical results on execution time 

No of  

processors 

  

Brian Douglas GSRB 

A B A B A B 

1 116.45 248.62 122.89 259.92 154.64 275.89 

2 97.67 213.88 110.95 235.80 132.32 242.98 

4 76.30 177.50 87.27 198.53 109.50 210.56 

6 58.25 147.52 68.88 167.66 90.30 185.23 

8 47.32 120.00 53.98 137.43 79.35 159.89 

10 38.16 97.54 43.29 111.90 74.21 136.20 

12 31.33 83.55 36.58 96.22 71.48 127.43 

14 26.67 72.16 30.62 83.70 69.55 122.75 

16 24.22 63.56 27.55 76.56 67.43 118.54 

18 22.95 59.58 25.24 71.22 65.22 113.83 

20 22.10 57.83 24.09 68.38 63.99 110.70 

Legend:  A – Matrix 100 × 100 × 100  B – Matrix 140 × 140 × 140 

However, the results differ in the types of numerical 
methods used. Out of the three methods, AGE Brian shows 
the smallest value of execution time followed by AGE 
Douglas and GSRB. This proves that in simulating laser 
glass cutting, the AGE Brian method is the fastest in solving 
the problem followed by AGE Douglas and GSRB. This is 
because AGE Brian uses more matrix block points compared 
to other methods. 

In the 140 x 140 x140 matrix, the trend is still the same 
where AGE Brian, AGE Douglas and GSRB execution time 
gets smaller as more processors are used. However, the 
execution time is quite slow compared to the 100 x 100 x 
100 size of matrix due to more data points being used. When 
this is the case where more input is inserted, the simulation 
will therefore executed in a slower execution time but the 
simulation is still the fastest by using AGE Brian. 

Table 2 compiles the results of the numerical results on 
speed up measurement. Speed up is a measurement based on 
the speed of one single die processors over the total number 
of processors used. Therefore, mathematically the speed of 
the simulation will increase when the total number of 
processors increases as well. This is supported by the results 

3 ,!,"(5)(") ← r� ,!,"("$�)(5) −�� ,!,"" (5)r 
{ 
Local convergence test, 

If maks r3 ,!,"(5)(")r�<�[(5) 
Then send maks r3(")(5)r to master 
{ 

Change � ,!,"(") (5) ← � ,!,"("$�)(5) 
Receive 3 ,!,"(-ps,�p)(")��from master 
Loop++ 

} 

Else 
Convergence obtain 

} 

Declare memory, looping variables 
{ 

Initiate workers processors, 5 ≤ u 
Send data ∆t, ∆x, ∆y, ∆z, r to all workers, p  
{ 
Do if time step,t not reach 

Time step, t�< �� 
{ 
Do  if convergenve not obtain  

Convergence maks r3 ,!,"(") r < � [2 
     { 

Receive 3 ,!,"(") (5) from workers 
Global convergence test maks�{3:,;,�(�) { < [. 
Send maks r3 ,!,"(") rto workers 
Loop++ 

} 
} 
Receive data from workers 
Pvm_kill_processor 
Pvm_exit; 

} 
} 
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obtained in Table 2 where the speed up measurement 
increases in both types of sizes of matrix. 

However, there is a difference in the numerical methods 
used. Based on the results, AGE Brian shows the fastest 
speed up measurement followed by AGE Douglas and 
GSRB. This is because by having the fastest execution time, 
Brian able to maximize the speed of the processors. The 
results for 140 x 140 x 140 size of matrix shows that a much 
slower speed up is obtained. This is due to the reason that the 
execution time is slow and more data scale is inserted as 
input therefore, there is memory burden. However, when 
dealing with large size of data, the AGE Brian still proves to 
be the fastest compared to others. 

Table 2. Numerical results on speed up measurement 

No of processors 
Brian  Douglas GSRB 

A B A B A B 

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2 1.1922 1.1625 1.1076 1.1023 1.1687 1.1354 

4 1.5262 1.4007 1.4081 1.3092 1.4123 1.3103 

6 1.9991 1.6854 1.7840 1.5503 1.7125 1.4894 

8 2.4608 2.0719 2.2765 1.8913 1.9489 1.7255 

10 3.0515 2.5489 2.8386 2.3228 2.0838 2.0256 

12 3.7167 2.9757 3.3593 2.7013 2.1634 2.1650 

14 4.3661 3.4454 4.0132 3.1054 2.2235 2.2476 

16 4.8078 3.9116 4.4604 3.3950 2.2934 2.3274 

18 5.0739 4.1729 4.8687 3.6495 2.3711 2.4237 

20 5.2690 4.2992 5.1011 3.8011 2.4167 2.4922 

Legend:  A – Matrix 100 × 100 × 100  B – Matrix 140 × 140 × 140 

Table 3 provides the results on the efficiency on the three 
different numerical methods. The efficiency decreases as the 
simulations runs. This is due to the fact that 100% efficiency 
could not be obtained due to environmental factor such as 
heat and power dissipation. Despite that, the numerical 
method for Brian shows the highest efficiency value 
compared to the others. This is because Brian is able to 
neutralize the speed and memory during the simulation.  

Table 3. Numerical results on efficiency performance 

No of processors 
Brian  Douglas GSRB 

A B A B A B 

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2 0.5961 1.1625 0.5538 1.1023 0.5843 1.1354 

4 0.3815 1.4007 0.3520 1.3092 0.3531 1.3103 

6 0.3332 1.6854 0.2973 1.5503 0.2854 1.4894 

8 0.3076 2.0719 0.2846 1.8913 0.2436 1.7255 

10 0.3051 2.5489 0.2837 2.3228 0.2082 2.0256 

12 0.3097 2.9757 0.2799 2.7013 0.1803 2.1650 

14 0.3119 3.4454 0.2867 3.1054 0.1588 2.2476 

16 0.3005 3.9116 0.2788 3.3950 0.1433 2.3274 

18 0.2819 4.1729 0.2703 3.6100 0.1317 2.4237 

20 0.2635 4.2992 0.2551 3.8011 0.1208 2.4922 

Legend:  A – Matrix 100 × 100 × 100  B – Matrix 140 × 140 × 140 

The case is still the same in a simulation using 140 x 140 
x 140 matrix where Brian shows the best efficiency 
compared to AGE Douglas and GSRB, however the 
comparison between the size of matrix used will change the 
efficiency value. Even though AGE Brian proves to be the 
best method compare to the rest of method in both sizes of 
matrix, the efficiency decreases when more data points are 
being dealt in the simulation as more power is needed to run 
the simulation. Therefore a balanced between data points and 
the efficiency needed to be set so that it serves the objective 
for one particular simulation. 

Table 4 shows the numerical results based on the 
effectiveness measurement. Again, the simulation is run on 
two types of matrix sizes. In both simulations, Brian proves 
to be best method in providing effectiveness during the 
simulation. This is followed by Douglas and GSRB method. 
However, the effectiveness decreases as a bigger matrix size 
is used. The effectiveness of the simulation decreases 
because the current speed obtained from the total processors 
is not effective enough to simulate a simulation which 
consist a large data points. 

Alternative methods such as increasing the number of 
processors used or the power of each processor might 
provide a better effectiveness but an increase in cost may 
occur. 

Table 4. Numerical results on effectiveness measurement 

Legend:  A – Matrix 100 × 100 × 100  B – Matrix 140 × 140 × 140 

Table 5 illustrates the results on numerical results on 
temporal performance measurement. Temporal performance 
measurement is a measurement that is conducted on the 
speed of a single die processor over microsecond. From the 
results, simulation using the Brian method proves to have the 
highest value of temporal performance as the simulation 
increases.  

The same results also been obtained from the simulation 
running on a 140 x 140 x 140 matrix size where AGE Brian 
proves to be the better method compared to the other 
methods. However, due to larger size of matrix used the 
temporal performance in the 100 x 100 x 100 matrix proves 
to be better.  

No of processors 
Brian  Douglas GSRB 

A B A B A B 

1 0.0086 0.0040 0.0081 0.0038 0.0065 0.0036 

2 0.0102 0.0047 0.0090 0.0042 0.0077 0.0041 

4 0.0131 0.0056 0.0115 0.0050 0.0091 0.0047 

6 0.0172 0.0068 0.0145 0.0060 0.0111 0.0052 

8 0.0211 0.0083 0.0185 0.0073 0.0126 0.0063 

10 0.0262 0.0102 0.0231 0.0089 0.0135 0.0073 

12 0.0319 0.0120 0.0273 0.0104 0.0120 0.0078 

14 0.0375 0.0139 0.0327 0.0119 0.0144 0.0081 

16 0.0413 0.0157 0.0363 0.0130 0.0148 0.0084 

18 0.0436 0.0168 0.0396 0.0140 0.0153 0.0088 

20 0.0452 0.0173 0.0415 0.0146 0.0156 0.0090 
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VI. CONCLUSION 

In conclusion, the AGE Brian method proves to be the 
best method in both simulation sizes of matrix. However, a 
few criteria need to be observed before running on a larger 
size matrix because it will slower down the whole 
simulation and decrease the effectiveness and the efficiency 
of the simulation. 

 

Table 5. Numerical results on temporal performance measurement 

Legend:  A – Matrix 100 × 100 × 100  B – Matrix 140 × 140 × 140 
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No of processors 
Brian  Douglas GSRB 

A B A B A B 

1 0.0086 0.0040 0.0081 0.0038 0.0065 0.0036 

2 0.0122 0.0054 0.0100 0.0047 0.0088 0.0047 

4 0.0200 0.0079 0.0161 0.0066 0.0129 0.0062 

6 0.0343 0.0114 0.0259 0.0092 0.0190 0.0080 

8 0.0520 0.0173 0.0422 0.0138 0.0246 0.0108 

10 0.0800 0.0261 0.0656 0.0208 0.0281 0.0149 

12 0.1186 0.0356 0.0918 0.0281 0.0303 0.0170 

14 0.1637 0.0477 0.1311 0.0371 0.0320 0.0183 

16 0.1985 0.0615 0.1619 0.0443 0.0340 0.0196 

18 0.2211 0.0700 0.1929 0.0512 0.0364 0.0213 

20 0.2384 0.0743 0.2116 0.0556 0.0378 0.0225 


