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ABSTRACT   

 

In this paper, a double-population thermal lattice 

Boltzmann was applied to solve two dimensional, 

incompressible, thermal fluid flow problems. The 

simplest lattice BGK D2Q4 model was applied to 

determine the temperature field while D2Q9 for the 

density and velocity fields. The simulation of natural 

convection from a concentrically and eccentrically 

placed inner heated cylinder inside cold outer cylinder 

with Prandtl number 0.71 and Rayleigh number 5 



  

10
5
 were carried out and discussed quantitatively. It 

was observed that the combination of D2Q4 and D2Q9 

was able to reproduce the effect of buoyancy force in 

the system. We also found that the flow pattern 

including the boundary layers and vortices with heat 

transfer mechanisms is significantly influenced by the 

position of heated cylinder in the enclosure and 

excellent comparisons with previous studies. 

 

Keywords: Double population, Lattice Boltzmann, 

distribution function, BGK collision, natural 

convection.  

1. INTRODUCTION 

The interaction between the fluid flow behavior and 

heat transfer mechanism can be seen not only in almost 

all industrial processes such as metal furnace, power 

plants, jet engine, etc, but also in everyday situation 

such as ventilation, air conditioning, hair dryer and so 

on. In some applications, such as micro-electro 

mechanical systems (MEMS), the detail understanding 

of the fluid flow and heat transfer phenomenon is 

unrelentingly required in order to achieve the most 

effective method of microchips cooling. On the other 

hand, lack of understanding in this problem can result 

in huge cost lost and inefficiency repercussions. For 

instance, inaccurate prediction of heat transfer and fluid 

flow can also leads to loss of human lives in the reentry 

of space shuttle due to the great heat involved in this 

activity.  

 

Among the main three types of heat transfer 

mechanism, the convection type has a more 

pronounced effect on fluid flow. In fact, the convective 

heat transfer dominates the heat transfer mechanism in 

most cases when interact with surrounding fluid. This 

mechanism is very difficult to measure because the 

effect on fluid flow only appears when dealing at 

severe conditions such as high Rayleigh number or 

Grashof number. Furthermore, when the contact fluid 

is gas, it becomes difficult to visualize this flow 

configuration experimentally. For these reasons, a 

numerical approach is solely adopted herein. In this 

paper, we investigate the phenomenon of natural 

convection heat transfer from a heated cylinder placed 

concentrically and eccentrically in a cold outer 

cylinder. The problem of heated cylinder cylinders in 

an enclosure plays a significant role in many 

engineering applications, such as solar collector-

receivers, insulation and flooding protection for buried 

pipes, cooling system in nuclear reactors, etc. 

Therefore, the purpose of this paper is to give a deeper 

understanding and qualitative analysis for numerically 

observed plume behaviour for the case in hand. 

 

The natural convection heat transfer for concentric and 

eccentric cases between two circular cylinders, the 

basic and fundamental configuration, the flow and 

thermal fields have been studied by few researchers. 

For example, Date (1986) used a modified finite 

volume SIMPLE procedure to investigate the 

convergence rate of the numerical scheme. Young et al. 

(2009) applied the finite difference based lattice 

Boltzmann scheme to test their method for various 

conditions. Warrington and Powe (1985) reported 

some experimental results of natural convective heat 

transfer between concentrically mounted bodies at low 

Rayleigh numbers. Hasanuzzaman et al. (2007, 2009) 

investigated natural convection heat transfer. For 

eccentric cases, Shu et al. (2001) studied numerically 

natural convective heat transfer from a horizontal 

cylinder placed eccentrically inside a square enclosure. 

The vorticity-stream function formulations are solved 

using differential quadrature method. Sasaguchi et al. 

(1998) numerically investigated the effect of the 

position of cooled cylinder on the cooling process of 

liquid. 

 

The rest of this paper is consisted of six sections. The 

physical domain of interest and the boundary 

conditions are described in the next section. The 

mathematical formulation and computational 

methodology are then presented, which are followed by 
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a detailed presentation and discussion of the numerical 

results. Some concluding remarks are finally drawn 

based on the foregoing analysis. 

2. PROBLEM FORMULATIONS 

The physical domain of the problem is represented in 

Figure 1. The flow is induced by the buoyancy force 

resulting from the constant heating of the inner 

cylinder. In present study, the diameter ratio between 

the inner and outer cylinder is fixed at 4/15. The 

dynamical similarity depends on two dimensionless 

parameters: The Prandtl number and the Rayleigh 

number defined as follow 

 



Pr 




Ra 
g0TL

3

         (1) 

 

 
Fig. 1 Configuration of an eccentric annulus 

 

Here, we fix the Pr at 0.71 to represent the circulation 

of air in the system and Ra at 5 × 10
5
. At this value of 

Rayliegh number, the flow begins to demonstrate the 

complex structure in the system and often considered 

in real engineering applications. Through grid 

dependence study, the uniform square grid with the 

size of 300
2
 is suitable for the current condition. Seven 

values of 



 , defined as the distance of the center of 

inner cylinder from the center of outer cylinder over 

the radius of the outer cylinder, are chosen in current 

simulation to demonstrate the effect of eccentricity on 

the plume, heat transfer and fluid flow behavior. They 

are 0, 2/15, 4/15, 6/15, 8/15,10/15 and 12/15. In current 

research, we only investigate the position of inner 

heated cylinder located at   = 90
0
. Position of inner 

cylinder at other values of   will be carried out in near 

future. 

 

The air in the gap between the two cylinders is treated 

as incompressible. Only the density is allowed to vary 

as a function on temperature, while all other terms are 

fixed. This is equivalent to Boussinesq approximation 

and the buoyancy force term can be expressed as 

follow (Shan 1997) 



G  g0 T Tm j                      (2) 

3. LATTICE BOLTZMANN NUMERICAL 

METHOD 

Recently, there are a lot of researches applying the 

lattice Boltzmann method (LBM) to study isothermal 

and thermal systems (Nor Azwadi and Syahrullail 

2009, Hou et al. 1994, Nor Azwadi and Tanahashi 

2006, Chen and Doolen 1998). They have 

demonstrated that the LBM is a powerful numerical 

tool in solving velocity and temperature distributions. 

The lattice Boltzmann method originating from the 

kinetic Boltzmann equation derived by Ludwig 

Boltzmann (1844-1906) in 1988. It considers a fluid as 

an ensemble of artificial particles and explores the 

mesoscopic features of the fluid by using the 

propagation and collision effects among these particles. 

LBM discretizes the whole flow region into a number 

of grids and numerically solves the simplified 

Boltzmann equation on the regular lattices (Peng et al. 

2003). The solution to the lattice Boltzmann equation 

converged to the Navier-Stokes solution in continuum 

limit up to second order accuracy in space and time 

(Qian et al. 1992). This method bridges the gap 

between the mesoscopic world and the macroscopic 

phenomena. LBM has emerged as a versatile numerical 

method for simulating various types of fluid flow 

problem including turbulent (Jonas et al. 2006), 

multiphase (Alapati et al. 2008), 

magnetohydrodynamics (Breyiannis and Valongeorgis 

2004), flow in porous media (Guo 2002), microchannel 

flow (Zhang et al. 2005), etc. 

4. THERMAL LATTICE BOLTZMANN MODEL 

In present study, the thermal lattice Boltzmann model 

is based on the work of He et al. (1998), which 

involves two evolution equations of density 

distribution function f and temperature distribution 

function g and can be written as  

 



f i x  cit, t  t  f i x, t  
f i  f i

eq

 f
 F             (3) 



gi x  cit, t t  gi x, t 
gi  gi

eq

 g
                (4) 

 

where 



fi
eq  and 



gi
eq  are the density and temperature 

equilibrium distribution functions, respectively. 



ci  is 

the lattice velocity and i is the lattice direction,  t is 

the time interval, f and g are the relaxation times of 

the density and temperature distribution functions, 

respectively. In LBM, the magnitude of 



ci  is set up so 

that in each time step  t, the distribution function 

propagates in a distance of lattice nodes spacing  x. 

This will ensure that the distribution function arrives 

exactly at the lattice nodes after t and collides 

simultaneously. The macroscopic variables such as the 
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density, fluid velocity u and temperature T can be 

computed in terms of the particle distribution functions 

as 

 



  fdc
u  cfdc
T  gdc             (5) 

 

To simulate the flow and thermal processes of the fluid 

in a system, one uses the D2Q9 model (He and Luo 

1997) with nine velocities assigned on a two-

dimensional square lattice. These velocities include 

eight moving velocities along the links connecting the 

lattice nodes of the square lattice and a zero velocity 

for the rest particle. The rest of the particles is defined 

by the distribution functions f0, the particles moving in 

the orthogonal direction by the function fi (i = 1,2,3,4) 

and the particles moving in the diagonal directions by 

the function fi (i = 5,6,7,8). The equilibrium 

distribution functions 



fi
eq  and 



gi
eq  are given as 

 



fi
eq  i 1 3ci u 4.5 ci u 

2
1.5u2               (6) 

 



gi
eq 

T

4
1 3ci u                                               (7) 

 

where ω is the weight function and depends on the 

direction of the lattice velocity. 

 

Through the multiscaling expansion, the mass and 

momentum equations can be derived for the D2Q9 

model of the evolution equation of the density 

distribution function. Details derivation can be found in 

(Cercignani 1988). 

 

It is well known that for the prediction at low and 

moderate Rayleigh numbers, the viscous heat 

dissipation and compression work carried out by the 

pressure are negligible. The temperature field is then 

passively advected by the fluid flow and obeys a 

simpler passive-scalar equation 

 



T

t
 uT  2T                                          (8) 

The detailed derivation of (8) from the D2Q9 model of 

the temperature distribution function can be seen in 

Azwadi and Tanahashi (2008). The time relaxations f 

and g in mesoscopic world can be related to the 

viscosity  and diffusivity  in the macroscopic world as 

follow 

 



 f  3  0.5

 g    0.5           (9) 

 

5. RESULTS AND DISCUSSION 

In the previous section, we have discussed a numerical 

approach to predict the phenomenon of the natural 

convection between two differentially heated cylinders. 

In this section, we will demonstrate the predicted 

results in terms of streamlines, isotherms and contour 

plots. The obtained results are presented in 

dimensionless form from the heated to the cooled 

walls.  

 

For the sake of code validation, we firstly carried out 

numerical investigation for the natural convection 

phenomenon between two concentric cylinders at 

aspect ratio of 2.6 for the conditions shown in Tab. 1. 

These conditions are set according to the published 

results by Shi et al. (2006). 

 

Table 1. Values of Pr and Ra for code validation test 

 

Case Prandtl Nu. Rayleigh Nu. 

1 0.716 2.38  10
3
 

2 0.717 9.50  10
3
 

3 0.717 3.20  10
4
 

4 0.718 6.19  10
4
 

5 0.718 1.02  10
5
 

 

 
(a) 

 
(b) 

 
(c) 

 
 

(d) 

 
 

(e) 

 

 

Fig. 2 Streamline plots for (a) Case 1 (b) Case 2 (c) 

Case 3 (d) Case 4 and (e) Case 5 using LBM 

 




















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(a) 

 
 

(b) 

 
(c) 

 
 

(d) 

 
 

(e) 

 

Fig. 3 Streamline plots for (a) Case 1 (b) Case 2 (c) 

Case 3 (d) Case 4  and (e) Case 5 from Shi et al. 

(2006). 

 

Figure 2 shows the plots of isotherms for every case 

obtained from LBM simulation while Figure 3 

represents the same numerical results obtained Shi et 

al. (2006). As can be seen from the figures, the results 

are almost identical and qualitatively good agreement 

with each other. 

 

Figure 4 shows the plots of streamline for every 

simulated case in present study. For the case of the 

heated cylinder placed on the vertical symmetrical axis 

(δ=0), the vortex splits into two with the same size 

indicates the equal strength of recirculation on the left 

and right area of the system. They show that the hot 

fluid rises near to the hot heated inner cylinder wall 

until it reaches the most top wall, then moves 

downwards along the outer cylinder wall under the 

effect of cooling. 

 

When the heated inner cylinder is shifted to the right 

(δ>0), the flow dominates at the region of larger gap 

spacing between the inner and outer cylinders for every 

case. This phenomenon can be clearly seen when the 

heated inner cylinder is located δ=4/15. The vortex in 

the larger gap spacing shows a bigger size than in the 

smaller area and elongates to the lower area of the 

systems. This indicates that the flow drags the fresh 

cold air upwards and the replaced by the hot air heated 

by the inner cylinder. The center of the vortices mainly 

located at the upper half of the system demonstrating 

the most active air flow activity in this area. 

 
 

δ=0 

 
 

δ=2/15 

 
 

δ=4/15 

 
 

δ=6/15 

 
 

δ=8/15 

 
 

δ=10/15 

 
 

δ=12/15 

 

Fig. 4 Streamlines plots for concentrically and 

eccentrically heated cylinders. 

 

Figure 5 shows the isotherms plot for every simulation 

condition. The isotherms line in all figures shows that 

the steep temperature gradient occurs around the 

heated cylinder. This can be seen from the density of 

the lines where it is denser near the inner cylinder. 
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δ=0 

 
 

δ=2/15 

 
δ=4/15 

 
 

δ=6/15 

 
 

δ=8/15 

 
δ=10/15 

 
δ=12/15 

 

 

Fig. 5 Isotherms plots for concentrically and 

eccentrically heated cylinders. 

 

Very thin temperature boundary layer also can be seen 

from all the figures. The isotherms lines show 

distortion almost everywhere in the system indicates 

the main heat transfer mechanism at this condition is 

by convection.  

 

 

 
 

δ=0 

 
 

δ=2/15 

 
 

δ=4/15 

 
 

δ=6/15 

 
 

δ=8/15 

 
 

δ=10/15 

 
 

δ=12/15 

 

 

Fig. 6 Isotherms plots for concentrically and 

eccentrically heated cylinders. 

 

The temperature distribution in the system can be 

clearly seen from the plots of temperature contour 

shown in Fig. 6. The heated fluid concentrated at the 

upper part of the system is understood. This is due to 

the strong buoyancy force is applied to the system at 
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this value of Rayleigh numbers. All of the predicted 

phenomena are in good agreement with results 

presented in previous researches (Nor Azwadi and 

Osman 2009, Shu and Wu 2002, Kim et al. 2008) 

 

6. CONCLUSION 

Two-dimensional thermal lattice Boltzmann 

formulation were applied and tested on the prediction 

of natural convection from a heated inner cylinder 

placed concentrically and eccentrically in a cold outer 

cylinder. We found that the combination of D2Q4 with 

D2Q9 correctly predicted the flow features for 

different eccentricity and gives excellent agreement 

with the results of previous studies.  

 

From Fig. 4 to Fig. 5, the boundary layers for the 

velocities and temperature can be observed clearly. As 

expected, the flow pattern including the boundary 

layers and vortices with heat transfer mechanisms are 

significantly influenced by the position of heated 

cylinder in the enclosure. These demonstrate the lattice 

Boltzmann numerical scheme the passive-scalar 

thermal lattice Boltzmann model is a very efficient 

numerical method to study flow and heat transfer in a 

differentially heated cubic enclosure. 
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