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ABSTRACT 

 

 

 

 

The performance of a gasoline-fueled internal combustion engines can be 

increased with the use of a turbocharger. However, the amount of performance 

increment for a particular engine should be studied so that the advantages and 

drawbacks of turbocharging will be clarified. This study is mainly concerned on the 

suitable turbocharger unit selection, engine conversions required and guidelines for 

testing a Proton 4G92 SOHC 1.6-litre naturally aspirated gasoline engine. The engine 

is tested under its stock naturally aspirated condition and after been converted to 

turbocharged condition. The effect of inter cooled turbocharged condition is also 

been tested. Boost pressure is the main parameter in comparing the performance in 

different conditions as it influences the engine torque, power, efficiency and exhaust 

emissions. The use of a turbocharger on this test engine has clearly increased its 

performance compared to its stock naturally aspirated form. The incorporation of an 

intercooler to the turbocharger system increases the performance even further. With 

the worldwide effort towards environmental-friendly engines and fossil fuel 

shortage, the turbocharger can help to create engines with enhanced performance, 

minimum exhaust emissions and maximum fuel economy. 
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.0       Introduction 

 

The performance and power level from a particular engine can be improved by 

increasing its displacement. However, this increased displacement is normally associated 

with decreased fuel economy during part throttle driving. Therefore, this approach is not 

a desirable solution. One alternative to increase power output while maintaining the 

displacement is to turbo charge the engine.  

  

A turbocharger is an exhaust driven device that utilizes exhaust gas energy 

(normally dissipated in the form of heat and pressure) to compress air to increase its 

density and consequently the total mass delivered to the engine. This increased air and 

fuel flow, when burned during combustion, is then realized as additional power output. 

Turbocharger consists of three major sections; the turbine, compressor and center 

housing assembly. The turbine and compressor section are mechanically connected. The 

center housing contains the bearing, seals and fittings necessary for the operation of the 

turbocharger. Turbo charging differs from other supercharging method by eliminating 

the mechanical connection between the compressor and the crankshaft, therefore 
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reducing the continual power drain. This is essential to maintain fuel economy during 

part-throttle or low speed driving. Therefore, by using energy that is normally expelled 

through the exhaust system, the turbocharged engine can increase wide-open throttle 

power while maintaining fuel consumption at part-load of the smaller displacement 

engine.   

 

 

 

1.1 OBJECTIVE  

 

To study the performance of Proton 4G92 engine at steady state, wide-open 

throttle (WOT) condition, in terms of: 

i) Power 

ii) Torque 

iii) Specific fuel consumption (sfc) 

iv) Emissions  

v) Volumetric efficiency 

vi) Brake thermal efficiency 

 

 

 

1.2 SCOPE 

 

• A non turbo gasoline engine will be used for testing 

• Separate turbo-charging unit will be used for testing 

• Testing will be conducted with and without intercooler 

• Emission analysis will be based on CO, CO2, O2 and HC. 

• Engine performance analysis will be based on volumetric efficiency, brake 

horsepower, torque, fuel consumption, brake thermal efficiency and emission 

quality. 

 



 

 3

 

 

 

 

CHAPTER II 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 `    Internal Combustion Engines 

 

The internal combustion engine (ICE) is a heat engine that converts chemical 

energy in a fuel into mechanical energy, usually made available on a rotating output 

shaft. Burning or oxidizing the fuel inside the engine releases this energy. The 

reciprocating type is the most common form of engine used as an automotive power 

source. W.W. Pulkrabek (1997) and Richard Stone (1999) discussed further on this 

topic. 

 

There are two types of the internal combustion engines, classified based on the 

combustion system; spark-ignition (SI) and compression-ignition (CI). Because of their 

simplicity, ruggedness and high power to weight ratio, these two types of engine have 

found wide application in transportation (land, sea and air) and power generation 

(Heywood, 1988). The combustion process of the SI engine is initiated by the use of a 

spark plug (often called gasoline engine). The combustion process in the CI engine starts 

when the air-fuel mixture self-ignites due to high temperature in the combustion 

chamber caused by high compression (often called diesel engine). 
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However, only gasoline engine will be the studied on this project.  

 

 

 

2.2      Combustion Process In Gasoline Engines 

 

Gasoline engines have components quite identical to that of diesel engines. The 

principal difference is between the combustion systems. The gasoline engines use a 

carburettor or fuel injection system to mix air and fuel in the intake manifold so that a 

homogeneous mixture is compressed in the cylinder whereas in diesel engines, air alone 

is compressed in the cylinder.  

 

A spark is used to control the initiation of combustion, which then spreads 

throughout the mixture. The mixture temperature during compression must be kept 

below the self-ignition temperature of the gasoline. Once combustion has started, it takes 

time for the flame front to move across the combustion chamber burning the fuel. 

During this time, the unburnt ‘end-gas’ (furthest from the spark plug, Figure 2.1) is 

heated by further compression and radiation from the flame front. If it reaches the self-

ignition temperature before the flame front arrives, a large quantity of mixture may burn 

rapidly, producing severe pressure waves in the combustion chamber. This situation is 

commonly referred to as ‘knock’ or detonation and if this process continues for more 

than a few seconds, it will result in severe cylinder head and piston damage. Therefore 

the maximum compression ratio of the gasoline engines is limited by the ignition 

properties of the fuel. The minimum compression ratio is limited by the resulting low 

efficiency. 
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Figure 2.1: Flame propagation in a gasoline engine. 

 

 

 

2.3       Turbocharger 

 

As the turbocharger is not mechanically connected to the crankshaft, the turbine 

will not instantaneously respond to the throttle position. It takes several engine 

revolutions to change the exhaust flow rate and to speed-up the turbine. Figure 2.2 

shows the principle of operation of a turbocharger with intercooler installed between the 

compressor outlet and the intake manifold. Figure 2.3 illustrates the typical arrangement 

of a turbocharged engine with the presence of the intercooler and the associated 

pressures and temperatures are shown. Figure 2.4 shows the cut-away view of a 

turbocharger. 
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Figure 2.2: Turbocharger principle of operation. 

 

 

 

 

Figure 2.3: Typical arrangement of a turbocharged engine. 

 



 

 7

 
Figure 2.4: Cut-away view of a turbocharger 

 

 

 

2.4       Turbo charging the Gasoline Engines 

 

Figure 2.5 compares the naturally aspirated (NA) and turbocharged ideal engine 

cycles. The turbocharged cycle starts at a higher pressure (and density) at point 1’. Extra 

fuel can be burned between 2’- 4’ because more air is available (the same volume, but 

higher density). The area inside the diagram, area 1-2-3-4-5-1, gives net power output. 

Two things are clear; the turbocharged engine has a greater power output (area under the 

diagram) and a much higher maximum pressure. 

 

The high maximum pressure may not be acceptable unless the engine is designed 

to be turbocharged – the engine may not withstand the stresses involved. By reducing 

the compression ratio, the clearance volume (Vcl) is increased and maximum pressure 

will be reduced.  If the compression ratio is suitable, the maximum pressure in the 

turbocharged engine can equal to that of the naturally aspirated one (Figure 2.6). The 

power output of the turbocharged engine remains greater than of the naturally aspirated 

engine. 

 

Compress
or side 

Turbin
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Figure 2.5: Comparison of turbocharged and NA air standard Otto cycle having 

the same compression ratio. 

 

 

  
 

Figure 2.6: Comparison of turbocharged and NA air standard Otto cycle 

 having the same maximum pressure but different compression ratios. 

Turbocharged 
Naturally Aspirated 

Turbocharged 

Naturally Aspirated 
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 Turbo charging results in not only a higher boost pressure, but also a higher 

temperature. Unless the compression ratio of a gasoline engine is reduced, the 

temperature at the end of the compression stroke will be too high and the engine will 

experience detonation. Thus, the potential power output of a turbocharged gasoline 

engine is limited by its fuel properties. To control engine pressures, stresses and 

temperatures, the maximum allowable boost pressure must be controlled. Discussions on 

the important aspects of turbo charging the gasoline engines are on the following 

sections.   

 

 

 

2.4.1 Compression Ratio 

 

 A turbocharged engine has effect with a variable compression ratio. At low 

engine revolutions when boost pressure is not being applied to the engine, the effective 

compression ratio will be the basic geometric compression ratio, but as the engine speed 

and load is increased, the cylinder will be subjected to increasing boost pressure with a 

result increase in effective compression ratio. 

  

 A reduction in geometric compression ratio from a similar naturally aspirated 

engine is an essential feature of a turbocharged engine. A turbocharger compresses air 

and thus, raises the temperature of the air induced into the engine. The effect is to 

increase the peak cylinder temperature and approaches the temperature at which 

detonation commences. The Otto cycle efficiency is largely governed by the 

compression ratio. By reducing the geometric compression ratio to avoid knock; the Otto 

cycle efficiency is also reduced and probably the overall engine efficiency will suffer. 

 

 Figure 2.7 shows the relationship between the geometric compression ratio of 

the engine and the overall effective compression ratio by increasing boost pressure. For 

example, a compression ratio of 9:1 for a naturally aspirated engine must be reduced to 
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6.7:1 if a boost of 0.5 bar is to be used, with no change in other knock-controlling 

parameters. 

 

 The most important fact is that the charge temperature should be kept as low as 

possible so that the geometric compression ratio can be maintained as high as possible 

(below the knock margin). 

 

 
Figure 2.7: Relationship between boost, geometric compression ratio and effective 

compression ratio. 

 

 

2.4.2 Ignition System 

 

 Because a turbocharged engine has effect on variable compression ratio as 

stated in previous section, it requires a different ignition advance curve from that of a 

naturally aspirated engine. Generally, a reduction in geometric compression ratio of an 

engine will require increased advance of the ignition timing, due to the slower burn rate 



 

 11

of the fuel at lower cylinder pressures. As the boost rises and the mixture becomes 

denser and more turbulent, some retard may be necessary. Allard (1986) states that 

ignition retard increasing in step with rising boost at 1-2° per 1psi boost increase may be 

necessary.  

 

 Boost pressure in a cylinder increases the peak cylinder pressure and 

temperature. In addition, the boost pressure produces a denser, more rapidly burning 

mixture, which needs less ignition advance. These two factors mean that over-advanced 

timing can destroy a turbocharged engine by detonation or pre-ignition or both. 

Reducing the amount of ignition advance (retarding) at near or full load will reduce the 

tendency of the mixture to detonate by reducing the peak cylinder pressure and 

temperature. To avoid unnecessary fuel consumption with retarded timing, the technique 

should only be used when high boost pressure produced. Thus, at low speed and part 

load, conventional timing of the particular engine is retained. 

 

One undesirable feature of retarded timing is an increase in heat rejection to the 

exhaust system, since the complete combustion and expansion process is delayed. Thus 

the turbine inlet temperature rises (Figure 2.8). Although the increase is small, very high 

temperature of SI engine exhaust gas (up to 1000°C) is a problem for the turbine 

manufacturer and can cause oxidation of the lubricating oil. Furthermore, the potential 

power increase obtainable by turbo charging with retarded timing alone is limited. 

Higher boost pressures can be used if compression ratio is also reduced. A change to a 

one or two range cooler than the same naturally aspirated engine spark plug specification 

will usually be required to hold the tip temperature to normal limits.  
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Figure 2.8: Exhaust gas temperature depended on spark timing and charge air 

pressure. 

 

 

2.4.3 Inter cooling 

 

The intercooler is a heat exchanger – positioned between the turbocharger and 

the intake manifold. Its purpose is to reduce the increased temperature of the intake 

charge due to compressive heating (Figure 2.2). The intake charge may be cooled by the 

use of ambient air, engine jacket water, iced water or some other low-temperature liquid 

as a cooling medium.  

 

A perfect (100% efficient) intercooler could reduce the intake charge 

temperature by the cooling medium without any drop in pressure. This is not possible in 

actual world because there will be a pressure drop through the intercooler and it is not 

possible to lower the charge temperature to that of the cooling medium temperature. Of 

the cooling medium and intercooler design generally available, 70% to 75% efficiency is 

common.  

 



 

 13

Removing heat from the intake charge has two huge areas of merit. First, 

temperature reduction of the intake charge makes it denser. Higher charge density means 

more mass of air per volume per minute to flow through the engine at any given intake 

manifold pressure. This means more fuel can be burned to produce more power output. 

Second, reduced intake charge resulting in the overall temperature reduction of the 

remaining phase of the cycle. Therefore the engine will be operating under the 

detonation-safe margin. In addition, as the overall operating temperatures of the engine 

are reduced, thermal loading on valves and pistons and heat-rejection requirement of the 

engine are also reduced.  

 

 

 

2.4.4 Boost Controls 

 

The need for effective boost controls in a turbocharger system is because the 

turbocharger’s characteristic of increasing its rate of airflow faster than the ability of the 

engine to accept that flow. If unchecked, the turbocharger can quickly produce 

damagingly high boost pressures that lead to engine detonation. There are various boost-

control devices such as intake restrictor, exhaust restrictor, vent valve and waste gate. Of 

all boost-control devices commercially available, the waste gate is the best in terms of 

effectiveness and control. 

 

A waste gate is used to control the exhaust gas flow rate to the turbine. On the 

turbine side of the turbocharger, exhaust gases can pass through two different openings. 

The normal opening routes the exhaust through the turbine wheel and the other opening 

bypasses the turbine wheel and sends the exhaust gasses directly to the exhaust system 

or directly to the atmosphere (Figure 2.9). By wasting or bypassing a portion of the 

exhaust gas energy around the turbine, the actual speed of the turbine (therefore the 

boost produces by the compressor) can be controlled. The two types of waste gates are 

integral and external. Integral waste gate is built into the turbocharger itself as shown in 
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Figure 2.9. The external waste gate is placed at any appropriate location at the exhaust 

manifold where the pulses from all cylinders have been collected (Figure 2.10). 

 

The waste gate opening may be operated by boost pressure, manually or by a 

servomotor. A common method practiced in the real world is by using the boost 

pressure. Boost pressure applied to the waste gate is referred to as the actuator signal. 

Whenever the boost reaches the waste gate’s diaphragm setting, it actuates the actuator 

that opens the bypass opening, which directs the exhaust gases directly to the exhaust 

system or atmosphere without passing through the turbine wheel.   

 
 

Figure 2.9: Turbocharger with integral waste gate, shown with the exhaust gas and 

intake air flow routes. 

 

 

 

 

Key 1 Exhaust gases to turbine. 2 Exhaust 
gas outlet. 3 Turbine wheel. 4 Compressor 
wheel. 5 Intake air to compressor. 6 
Compressed air to engine. 7 Waste gate. 
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Figure 2.10: External waste gate placed prior to exhaust gas entering the 

turbocharger, where all pulses have been collected. 

 

 

 

2.4.5 Blow-off Valve  

 

When the throttle valve suddenly closed, such as during gear shifting, the 

compressed air from the turbocharger, which was rushing into the engine has no place to 

go. At the same time, the compressor continues to spin trying to compress air and make 

boost. . Because the throttle body is closed, the charged air is pushed back on to itself 

(backpressure), which slows down the turbo. This condition is known as ‘surge’. When 

the engine start to accelerate again, the turbo has to re-spool up to develop boost again.  

 

Blow-off valve is a pressure-relief valve and it is installed between the 

compressor outlet and the throttle body. It detects the vacuum on the intake manifold, 

which opens the valve to dump excess pressure between the throttle body and the 

turbocharger. This reduces the restriction and allows the turbo to almost spin freely, 

which reduces the lag. This backpressure is can also be very damaging to the bushings 

or bearings and seals in the turbocharger’s center section.   

 

 

 

Turbin

Waste gate 

Exhaust from all 
cylinders 

Main exhaust 
flow  

By-passed 
exhaust 

Turbo 
manifold 
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2.4.6 Electronic Fuel Injection System 

 

The atomization of fuel into the intake charge is extremely significant to the 

functioning of the internal combustion engine. The purpose of a carburettor or electronic 

fuel injection (EFI) system is to add fuel to the air entering in engine at the correct ratio 

so it will burn efficiently in the combustion chamber and at the same time, not to create 

hot fire that would cause early destruction of the engine. The duty is the same for a 

naturally aspirated and turbocharged engine except the intake manifold pressure is 

higher than ambient in a turbocharged condition. As the majority of automotive engines 

today utilize EFI system instead of the carburettor, only EFI system will be the subject 

of this discussion. Further discussions on carburetion of the turbocharged engine can be 

found in Allard (1986), Setright (1976), MacInnes (1976) and Bell (1997). 

 

 Electronic fuel injection is the most accurate method of fuel metering, mixing 

and distribution system, resulting in the best economy and lowest emissions. The fuel 

delivery system must be able to compensate for the additional airflow generated and add 

a corresponding amount of fuel under boost. Correct size of the injectors and fuel pumps 

must be selected properly for the vehicles’ application. Incorrect fuel delivery may lead 

to harmful knocking problem. Bell (1997) discussed detail on EFI requirements and 

modifications of the turbocharged engine.  

 A fuel injection system is designed for a given engine. So, to turbo charge a 

naturally aspirated engine, alterations must be done to the stock fuel injection system to 

permit increasing fuel flow as the boost pressure rises.   
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2.4.7 Turbocharger Lubrication  

 

A turbocharger requires a continuous and adequate supply of clean oil to 

lubricate and cool the bearings that support the turbine and compressor shaft and wheel 

assembly. According to Allard (1986), even the most lightly loaded turbocharger will be 

spinning at a speed of not less than 25,000rpm for most of its working life, with a 

turbine temperature excess of 500°C. It can be readily realized therefore, if the oil 

supply is inadequate, rapid wear or the destruction of the whole turbocharger unit can be 

the result.  

 

There are two types of lubricants; synthetic-based and mineral-based. Synthetic 

lubes are manufactured fluids (not necessary from oil) in which the basic molecular 

structure is uniform, very consistent and with high-temperature stability. Mineral-based 

lubes are less expensive and have an inadequate high-temperature stability, which makes 

they lose their lubrication properties. The turbocharger survives with low oil pressure 

and flow. It is virtually certain that all engines in production today have enough excess 

oil-pumping capacity to adequately take on the additional requirement of lubricating the 

turbocharger. Too much oil pressure may give rise to the problems with the turbocharger 

oil seals. The turbocharger needs no special filtering requirements, as far as good, stock 

filtration equipments are concern. 

 

The oil lines feeding the turbocharger must meet the requirements of pressure 

and temperature (usually twice the maximum oil temperature allowable) and be 

hydrocarbon-proof. It is usually safe to draw oil from the opening where the low-oil-

pressure light is normally connected. Oil that has passed through the turbocharger 

bearings must be free to drain out quickly by gravity and without any serious restriction. 

Ideally, the drain line should swoop smoothly downward and arc gently above the oil 

level in the oil pan without sharp bends (Figure 2.11). The oil cooler is not necessary for 

street engine if synthetic oil is used.  
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Figure 2.11: Typical turbocharger lubrication system. 

 

 

 

2.5 Engine Performance Parameters  

 

According to Heywood (1988) in his book, Internal Combustion Engines 

Fundamentals, engine performance is more precisely defined by; the maximum power 

(or maximum torque) available at each speed within the useful engine operating range 

and the range of speed and power over which engine operation is satisfactory. In order to 

study and obtain the performance of an engine, such as power and fuel consumption by 

experiment, there are associated formulas to be utilized. Heywood (1988) and Pulkrabek 

(1997) discussed detail on the engine geometrical and operating characteristics. Some 

Key 
A  Oil feed tee piece 
B  Oil feed to turbocharger 
C  Oil drain from turbocharger 
D  Oil cooler 
E  Oil filter  
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basic geometrical and the parameters commonly used to characterize engine operation 

are discussed in the following sections.  

 

 

2.5.1 Engine Geometrical Properties 

 

Displacement volume is the volume that displaced by the reciprocating 

movement of the piston. Displacement volume: 

 

( ) SBVd
24/π=    for one cylinder                    (1) 

( ) SBnV cd
24/π=    for entire engine                    (2) 

 

Compression ratio is the ratio of the cylinder’s clearance volume (or the 

volume of the combustion chamber) to the displacement volume. Compression ratio: 

 

rc = VBDC / VTDC = (Vcl + Vd) / Vcl                       (3) 

 

where: B   =  cylinder bore [cm] 

   S   =  stroke [cm] 

   nc  =  number of engine cylinders 

   Vcl  = clearance volume [cm3] 
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2.5.2 Mean Effective Pressure 

 

Pressure inside the cylinder of an engine is continuously changing during the 

cycle. An average or mean effective pressure (mep) is defined by; 

 

mep = W / Vd                          (4) 

 

where: mep = mean effective pressure [N/m2] 

W    = work of one cycle [Nm] 

 

Work generated inside the combustion chamber is called indicated work; Wi. 

Thus, indicated mean effective pressure (imep): 

 

imep = Wi / Vd                          (5) 

 

Actual work delivered at the crankshaft is called brake work, Wb. It is less than 

indicated work due to mechanical friction and parasitic loads of the engine. Thus, brake 

means effective pressure (bmep); 

 

bmep = Wb / Vd                          (6) 

 

 

2.5.3 Mechanical Efficiency 

 

ηm = bmep / imep                          (7)  

Mechanical efficiency will be on the order of 75% to 95% at wide-open throttle. 

It then decreases with engine speed to zero at idle, when no work is taken off from the 

crankshaft. 
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2.5.4 Volumetric Efficiency 

 

NVmn daav ρη /&=                           (8)  

 

where: am&  = steady state air flow into the engine [kg/s] 

ρa  = air density at atmospheric conditions 

         outside the engine [kg/m3] 

N   = engine speed [rpm] 

n   = number of revolutions per cycle 

 

Typically, volumetric efficiency for an engine at wide-open throttle is in the 

range of 75% to 90%, going down much lower as the throttle is closed. Closing the 

throttle is the primary means of power control for a gasoline engine. 

 

 

 

2.5.5 Thermal Efficiency 

 

cHVft Qmp ηη &/=                (9) 

 

where: QHV  = heating value of fuel [kJ/kg] 

 ηc    = combustion efficiency (usually 95% ~ 98%) 

 

ηm = (ηt)b / (ηt)i                (10) 

 

where: (ηt)b = brake thermal efficiency 

 (ηt)I = indicated thermal efficiency 
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2.5.6 Engine Torque 

 

 Torque is a good indicator of an engine’s ability to do work. It is a turning-

effort about the crankshaft’s axis of rotation and is equal to the product of the force 

acting along the connecting rod and the perpendicular distance between this force and 

the center of the crankshaft rotation. It is expressed in N-m or lbf-ft. 

 

 T = Fr                (11)  

 

 where: T  = engine torque [Nm] 

   F = force applied to crank [N] 

   r  = effective crank-arm radius [m]  

 

 Torque is related to work by: 

 

 nVbmepWT db /)(2 ==π               (12) 

    

 where: Wb = brake work of one revolution [Nm]   

   Vd = displacement volume [m3] 

     n  = number of revolutions per cycle  

 

For a four-stroke cycle engine which takes two revolutions per cycle: 

 

 π4/)( dVbmepT =   four-stroke cycle           (13) 

 

 In these equations, bmep and brake work Wb are used because torque is measured 

off the output crankshaft.  
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 The point of maximum torque is called maximum brake torque speed (MBT).  A 

major goal in the design of a modern automobile engine is to flatten the torque-versus-

speed curve and to have high torque at both high and low speed. 

 

 

 

2.5.7 Engine Power 

 

 Power is defined as the rate of work of the engine. The actual power developed 

inside the cylinder, is called indicated power (i.p): 

 

 i.p = [(imep) S A N nc] / 60             (14) 

 

 where: i.p = indicated power [W] 

   A  = cross-sectional area of piston [m2] 

   N  = engine speed [rpm]  

 

 The output power measured at the crankshaft is called brake power (b.p): 

 

 b.p = 2π T N / 60               (15) 

 

 Both torque and power are functions of engine speed.  At low speed, torque 

increases as engine speed increases.  As engine speed increases further, torque reaches a 

maximum and then decreases because the engine is unable to ingest a full charge of air 

at higher speeds.  Indicated power increases with speed, while brake power increases to 

a maximum and then decreases at higher speeds. This is because friction losses increase 

with speed and become the dominant factor at very high speeds.    
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2.5.8 Specific Fuel Consumption 

 

 Specific fuel consumption is defined by: 

 

 pmsfc f /&=                 (16) 

 

 where: fm&  = rate of fuel flow into engine [gm/hr] 

   p     = engine power [kW] 

 

 

 Brake power gives brake specific fuel consumption: 

 

 pbmbsfc f ./&=                (17) 

 

 Brakes specific fuel consumption decreases as engines speed increases, reaches a 

minimum, and then increases at high speeds. Fuel consumption increases at high speed 

because of greater friction losses. At low engine speed, the longer time per cycle allows 

more heat loss and fuel consumption goes up. It decreases with higher compression ratio 

due to higher thermal efficiency.  It is lowest when combustion occurs in a mixture with 

a fuel equivalence ratio near one, (φ = 1). The further from stoichiometric combustion, 

either rich or lean, the higher will be the fuel consumption. Sfc is generally given in 

units of gm/kW-hr or lbm/hp-hr.    
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2.5.9 Air/Fuel Ratio 

 

For combustion reaction to occur, the proper relative amounts of air (oxygen) 

and fuel must be present. Air/fuel ratio (AF) and fuel/air ratio (FA) are parameters used 

to describe the mixture ratio: 

fafa mmmmAF && // ==               (18) 

AFFA /1=                 (19) 

 

where: ma = mass of air 

 mf = mass of fuel 

 am& = mass flow rate of air 

 fm& = mass flow rate of fuel 

  

The ideal or stoichiometric AF for gasoline is about 15:1 with combustion 

possible in the range of 6:1 to 19:1.  

 

Equivalence ratio φ is defined as the ratio of actual AF to stoichiometric AF: 

 

φ = (AF)stoich / (AF)actual = (FA)actual / (FA)stoich           (20) 

 

when: φ < 1 engine running lean, O2 in the exhaust  

 φ > 1 engine running rich, CO and fuel in exhaust 

  φ = 1 stoichiometric, maximum energy released from fuel 

 

 

 

2.6 Emissions 

 

The three main gasoline engine exhaust emissions that must be controlled are 

oxides of nitrogen (NOx), carbon monoxide (CO) and hydrocarbons (HC). 
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2.6.1 Oxides of Nitrogen (NOx) 

 

 Nitrogen oxides (NOx) are formed throughout the combustion chamber during 

the combustion process due to the reaction of atomic oxygen and nitrogen. The reactions 

forming NOx are very temperature dependent, so the NOx emissions from an engine 

scale proportionally to the engine load, and are relatively low during engine start and 

warm-up. In spark ignition (SI) engines, the dominant component of NOx is nitric oxide 

(NO). Some experimental results are presented to illustrate how nitric oxides in the 

exhaust depend on various engine parameters. Although not universal, for homogenous-

charge, SI engines lead to the following observations: 

• For lean mixtures, NOx emissions are strongly depends on spark timing and inlet   

            pressure. 

• NO are maximum for slightly lean mixtures. 

• Increased coolant temperature or the presence of deposits reduce heat transfer   

            efficiency thus increases the NO. 

• Dilution of the intake charge by exhaust gas recirculation (EGR) or by moisture   

in the inlet air, reduces the NO. Released NOX reacts in the atmosphere to form 

ozone and is one of the major causes of photochemical smog. 

 

 

 

2.6.2 Carbon Monoxide (CO) 

 

 Carbon monoxide, a colourless, odourless, poisonous gas, is generated in an 

engine when it is operated with a fuel-rich equivalence ratio.  When there is not enough 

oxygen to convert all carbon to CO2, some fuel does not get burned and some carbon 

ends up as CO.  Typically the exhaust of an SI engine will be about 0.2% to 5% carbon 

monoxide.  Not only CO is considered an undesirable emission, but it also represents 

lost chemical energy that was not fully utilized is the engine.  CO is a fuel that can be  

combusted to supply additional thermal energy . Maximum CO is generated when an 

engine runs rich, such as when starting or when accelerating under load.  Even when the 
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intake air-fuel mixture is stoichiometric or lean, some CO will be generated in the 

engine.  Poor mixing, local rich regions, and incomplete combustion will create some 

CO. A well-designed SI engine operating under ideal conditions can have an exhaust 

mole fraction of CO as low as 10-3.   

 

 

 

2.6.3 Hydrocarbons (HC) 

 

 Exhaust gas leaving the combustion chamber of an SI engine contain up to 6000 

ppm of hydrocarbon components, the equivalent of 1-1.5% of the fuel.  About 40% of 

this is unburned gasoline fuel components.  The other 60% consists of partially reacted 

components that were not present in the original fuel.  These consist of small non-

equilibrium molecules, which are formed when large fuel molecules break up (thermal 

cracking) during the combustion reaction. HC emissions are greatest during engine start 

and warm-up, due to decreased fuel vaporization and oxidation. The makeup of HC 

emissions will be different for each gasoline blend, depending on the original fuel 

components.  Combustion chamber geometry such as the crevices in the combustion 

chamber, and engine operating parameters also influence the HC component spectrum. 

When hydrocarbon emissions get into the atmosphere, they act irritants and odorants; 

some are carcinogenic.  All components except CH4 react with atmospheric gases to 

form photochemical smog. 

 

 

 

2.7 Engine Performance Test 

 

 To study the performance of an engine, one must control the speed of the engine 

and the load applied to it. One also needs to instrument the engine to determine the value 

of parameters such as the engine torque, engine speed, fuel flow rate, airflow rate, 

emissions, cylinder pressure, coolant temperature, oil temperature and spark or fuel 
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injection timing. Some measurements are rather straightforward and some of the 

measurements require analysis to obtain the desired result. The general instrumentation 

required to perform engine performance or combustion studies are discussed below: 

 

 

 

2.7.1 Dynamometers 

 

 The dynamometer is a device used to resist the rotation of the engine shaft, thus 

provides an external load to the engine. It also absorbs the power produced by the 

engine. Figure 2.12 illustrates the engine-dynamometer installation.   

 
Figure 2.12. Engine-dynamometer arrangements. 

 

 The classification of dynamometers and their brief explanations are as below: 

 

Friction brake dynamometer – the earliest type of dynamometer that used mechanical 

friction to absorb the engine power, hence the power absorbed was called the “brake 

horsepower”. 

 

Electrical dynamometer – the rotation of the dynamometer shaft drives the electrical 

generator (electromagnetic field principle). The strength of the electromagnetic field can 

be adjusted almost instantly in order to increase or decrease the resistance offered to the 
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engine rotation. With electrical dynamometers, the engine power is converted to 

electrical energy that can be transferred away by cables to power another system. 

Alternatively, the electrical energy can be dissipated within the dynamometer as heat 

and carried away by the cooling water. Electrical dynamometer includes direct current, 

regenerative alternating current and eddy-current types. 

 

Hydraulic dynamometer – the commonly used dynamometer, also known as “water 

brake”. It is constructed of a vaned rotor mounted in a casing.  The rotor shaft then 

coupled to the rotating engine shaft. A continuous flow of water is maintained through 

the casing. The power absorbed by the rotor is dissipated in fluid friction as the rotor 

shears through the water. Adjusting the water level in the casing varies the torque 

absorbed by the dynamometer. 

 

 The method most commonly used to measure torque is shown in Figure 2.13. 

The dynamometer is supported by trunnion bearings and restrained from rotation only 

by a strut connected to a load cell. When the dynamometer is absorbing power, a 

reaction torque is applied to it. Hence, if the force applied by the strut is F and RO as 

defined in Figure 2.13, then the torque applied to the engine is; T = FRO 

 

 
Figure 2.13. Torque measurement using cradle mounted dynamometer. 

 

Most research engines are tested under one or a combination of the three dynamometer 

operating modes; 
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Constant engine speed mode – In this mode, the objective is to always keep the engine 

speed constant while the engine is being tested at different torque output levels. 

 

Constant torque mode – In this mode, the objective is to keep the torque developed by 

the engine always constant, while the engine is being tested at different throttle 

openings. 

 

Constant throttle opening mode – In this mode, the objective is to keep the engine 

throttle opening constant while the engine is tested at different combinations of torque 

and speed. This test mode is useful for obtaining full-throttle torque/speed curves for an 

engine (also called maximum power curves). 

 

 

 

2.7.2 Engine Speed 

 

 The engine speed is measured with optical or electrical techniques. One optical 

technique uses a disk with holes mounted on the revolving engine shaft. A light emitting 

diode is mounted on one side of the disk and a phototransistor mounted on the other 

side. Each time a hole on the disk passes by the optical sensor, a pulse of light impinges 

on the phototransistor, which generates a periodic signal, the frequency of which is 

proportional to engine speed. Another method used to determine the engine speed is by 

using a notch in the flywheel and an electromagnetic sensor which induced voltage 

where it varies with the change in the magnetic flux as the notch passes the sensor. 

 

 

 

2.7.3 Air Flow Measurement 

 

 Often, researchers are interested in the average air flow rate (quasi-steady)  

over the entire engine cycle rather than instantaneous air flow rate. The  
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simplest method in quasi-steady air flow rate measurement is the air box, as shown in 

Figure 2.14 . The air drawn from the box by the engine is replenished by atmospheric air 

which enters the box through a calibrated sharp-edged orifice plate or a venturi. The 

volume of the air box must be sufficiently large to damp out the air pulsation generated 

by the engine, so that the air flow through the orifice plate is as steady as possible. 

Designs of suitable orifice plates and the required volume of air box can be obtained in 

BS 1042 (1964) and in Hua Zhao (2001) respectively. 

 

 

 

 

 

 

 

 

 

Figure 2.14. Air flow measurement device. 

 

 

 

2.7.4 Fuel Flow Measurement 

 

 There are a number of methods to measure fuel consumption rate. Different 

methods may be used to measure the average fuel consumption and the instantaneous 

flow rate. The common and simple measuring system of average fuel consumption is to 

record the time taken (usually 2 to 3 minutes) for the engine to consume a certain 

volume of fuel. To convert this volumetric measurement to a gravimetric rate, the fuel 

density must be known. There are also methods that measure the fuel mass consumption 

(gravimetric fuel consumption) directly rather than the volume consumption as shown in 

Figure 2.14. These methods can be automated using electronic controlled force 

transducer or optoelectronic liquid-level sensor, valves and timer. The suitable methods 
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for instantaneous flow rate measurement are the “Flowtron” meter and Coriolis flow 

meter. The “Flowtron” meter is the hydraulic equivalent of the Wheatstone bridge circuit 

that consists of four orifices and a recirculation pump. The Coriolis meter measures the 

magnitude of the twist of  a vibrating U-tube (as a result of fuel flow through it), which 

is proportional to the flow rate.   

 

 

 

2.7.5 Intake Air Pressure 

 

 The intake air static pressure can be measured by U-tube or inclined manometer. 

The measurement shall be carried out downstream the air filter at a distance as specified 

by whatever test standard used in the testing. The intake manifold pressure may be 

obtained by tapping a pressure gauge at the engine’s vacuum line.  

 

 

 

2.7.6 Temperatures 

 

 The simplest method to acquire the temperature value is by the use of the 

thermocouples. When two different types of conductors wound together, they form a 

closed-loop electrical circuit that permits current flow if there is any temperature 

difference between the junctions. The voltage generated then was converted to the 

temperature values and displayed by the thermocouple scanner.  
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2.7.7 Exhaust Gas Analyzer 

 

 Measurements of exhaust gas emissions are needed not only because of 

legislation, but also because of the insight that they provide into the combustion 

processes. The exhaust gases that are currently legislated for gasoline engines include 

CO, HCs and NOx. In addition, O2 and CO2 are also measured to determine the air/fuel 

ratio. In most engine research laboratories, exhaust emissions measurements are often 

carried out on an engine test bench. Exhaust gas is sampled directly from the exhaust 

systems and analyzed without dilution. 

    

CO and CO2 analyzer – Infrared analyzers are used for measuring concentrations of CO 

and CO2. Their principle of operation is based on the absorption of infra red radiation by 

these gases. 

 

NOx analyzer – NOx is measured by the chemiluminescence’s technique. 

Chemiluminescence’s is the light emission from an atom or molecule that is 

electronically excited by a chemical reaction. 

 

Unburned HCs – Infra red analyzers can also be used to measure the unburned HCs in 

the exhaust but with certain limitation. The preferred technique for the total unburned 

HC measurement is the flame ionization detector (FID). 

 

O2 sensor – Measurement of O2 concentration in the exhaust is used to evaluate the 

air/fuel ratio of the in-cylinder charge. Devices commonly used are the Galvanic Oxygen 

sensor, lambda sensor, Lambda scan Air/Fuel Ratio Analyzer, Universal Exhaust Gas 

Oxygen sensor and Paramagnetic Oxygen Analyzer. 

 

 

 

 

 



 

 34

2.7.8  Engine Performance Test Standards 

 

 There are a number of engine power test codes or standards that may be followed 

in performing engine performance tests; 

 

BS 5514  Reciprocating internal combustion engines 

 

ISO 3046  Reciprocating internal combustion engines 

 

ISO 1585  Road vehicles – Engine test code – Net power 

 

ISO 2534  Road vehicles – Engine test code – Gross power 

 

SAE J1995  Engine power test code – Spark ignition and compression ignition 

– Gross power rating 

 

SAE J1349  Engine power test code – Spark ignition and compression ignition 

– Net power rating 

 

JIS D1001 (1982) Engine power test code for Road Vehicles 
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CHAPTER III 

 

 

 

 

METHODOLOGY 

 

 

 

 

3.1 Apparatus and Instrumentation 

 

 Complete apparatus with instrumentations installed to the gasoline engine that 

was coupled to the hydraulic dynamometer were utilized in this experiment. The 

specifications of the engine, the dynamometer and all the instrumentations are as below: 

 

a) Engine 

 Model:     Proton 4G92 

 Valve train:    16V SOHC 

 No. of cylinders :   4 

 Bore x Stroke (mm):   81 x 77.5 

 Total displacement (cc):  1597 

 Compression ratio:   10:1 

 Fuel system:    Multi-point injection (MPI) 

 Cycle type:    4-stroke 
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b) Dynamometer 

 Type:     Hydraulic Brake 

 Model:     SAJ AWM50 (80kW) 

 Coupling:    Direct coupling through universal joint 

 Controller:    SAJ Electrical 

 Arm length:    29cm 

 

c) Gas Analyzer 

 Make:     Techno test 

 Model:     481 Multigas 

 Type:     Nondispersive infra red 

 

d) Fuel Flow rate Meter 

 Make:     Ono Sokki 

 Model:     DF-2420 

 Sensors:    Pressure, Temperature, Flow 

 

e) Thermocouple Scanner 

 Make:     Cole-Parmer 

 Channels:    12-channel 

 Thermocouple:   Type K (-190 ~ 1260°C) 

 

f) Pressure Gauge 

 Make:     Auto Gauge 

 Type:     Bourdon Tube 

 Pressure range:   -30 ~ 20psi 

 

g) Air Tank 

 Type:     Air box with sharp-edged orifice plate and        

                                                                        manometer 
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h) Fuel 

 Type:     Gasoline 

 Density:    718.96 kg/m3 

 Low Heating Value:   43 000 kJ/kg 

 

 

 

3.2       Test Bed Setup 

 

 The engine was coupled to the dynamometer to absorb the engine power and at 

the same time, to measure the torque produced by the engine or to apply loads to the 

engine. Temperature measurements at several points such as engine coolant outlet and 

inlet, intake manifold, exhaust and lubrication oil were done by plugging in the K-type 

thermocouple to the thermocouple scanner. In order to determine the fuel consumptions 

of the engine tested, the digital fuel flow meter was utilized. Pressure difference between 

the air tank and ambient air pressure was measured using U-tube manometer while the 

gas analyzer was used to measure the exhaust gas emissions. Figure 3.1 shows the 

engine test bed photograph and Figure 3.2 illustrates the schematic diagram of the test 

bed setup. 

 

 
Figure 3.1. Engine test bed 
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1.  Test engine 7.   Fuel flow meter controller 13. Gas analyzer 
2.  Hydraulic dynamometer 8.   Fuel pressure regulator 14. Exhaust tailpipe 
3.  Dynamometer controller 9.   Fuel filter 15. Air filter 
4.  Radiator 10. Fuel tank 16. Air tank 
5.  Fan 11. Pressure gauge 17. U-tube manometer 
6.  Fuel flow meter 12. Thermocouple scanner 18. Vacuum line 

 
Figure 3.2: Schematic arrangement of the naturally aspirated engine test bed setup. 
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1.  Test engine 9.   Fuel filter 17. U-tube manometer 
2.  Hydraulic dynamometer 10. Fuel tank 18. Turbine 
3.  Dynamometer controller 11. Pressure gauge 19. Bearing housing 
4.  Radiator 12. Thermocouple scanner 20. Compressor 
5.  Fan 13. Gas analyzer 21. Oil feed line 
6.  Fuel flow meter 14. Exhaust tailpipe 22. Oil return line 
7.  Fuel flow meter controller 15. Air filter 23. Intercooler 
8.  Fuel pressure regulator 16. Air tank 24. Valve 

 
Figure 3.3: Schematic arrangement of the turbocharged engine test bed setup. 

 
 
 
 
3.2.1 General inspections before start-up. 

 

1.0 Engine/dynamometer alignment is within the set limits and shaft bolts are 

tightened to correct torque. 

1.0 Shaft guard in place and centred so that no contact with shaft is possible. 

2.0 Rock the engine mounts to see the rigging system, including exhaust tubing, is  

            secure and flexes correctly. 

3.0 All loose bolts, tools, etc removed from the test bed. 

4.0 Engine support system tightened down. 

5.0 Fuel systems are connected and leak proof. 
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6.0 Engine oil at the correct level and engine coolant fluid are sufficient. 

7.0 Dynamometer water and exhaust fan are on. 

 

 

 

3.2.2 Instruments preparation. 

 
1. The exhaust fan and cooling tower controller switches were turned on. 

2. The isolator, cooling tower pump and the AWM50 dynamometer switch  

 at the control panel were turned on. 

3. The Dynamometer Controller, thermocouple scanner and fuel flow rate meter 

were turned on. 

4. The gas analyzer was turned on to let it warm-up for 10 minutes. 

 

 

 

3.2.3. Engine warm-up 

 
1. The engine was started and allowed to warm-up in idle condition for about 15 

minutes. The dynamometer was checked to assure that no load is applied to the 

engine. 

2. Engine fuel, oil leaks, cable or pipes chafing or being blown against the exhaust 

system were looked for and abnormal noises were listened to. 

 

 

 

3.2.4 Engine Testing – Constant speed, WOT 

 

1.0 The throttle opening increased until the engine speed reaches 1500 rpm. 

2.0 The engine is allowed to stabilize before loading it by pushing the ‘load’ button 

at the dynamometer controller. 
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3.0       To maintain the engine speed at 1500 rpm after the brake load applied, the        

            throttle opening was increased further. 

4.0 Procedure (1) – (3) are repeated until the throttle is fully open. 

5.0 The brake load applied to the engine was stopped when the throttle is fully open. 

6.0 Measurement of torque, temperature, exhaust emissions and fuel consumption 

were recorded in Table 4.1 after allowing stable running of the engine at this 

condition for 1 minute (JIS Standard – Engine Power Test Code). 

7.0 Procedures (1) – (6) were repeated for the engine speeds of up to 5000 rpm with 

500-rpm intervals. 

 

 

 

3.2.5. Checks immediately after shut-down 

 

1.0 The exhaust fans were left on to allow for engine cooling period. 

2.0 The load applied by the dynamometer was checked at zero (fully unload).  

3.0 The dynamometer water was left running for cooling period. 

4.0 The external fuel system was shut off. 

5.0 Data saving and checking was carried out. 

 

 

 

3.3 Conversion of Proton 4G92 1.6L Natural Aspirated To Turbo Charged 

Operation 

 
In order to prepare this engine to be turbocharged, there were some modifications 

done. The turbo manifold (Fig. 3.4) directs the exhaust gases from all four cylinders to 

the turbine inlet port and supports the turbo itself. A cast iron turbo manifold was 

installed rather than a fabricated one because it is comparatively stronger and retains 

heat, which is good for the turbine performance.  
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The turbocharger fitted to the engine is the Mitsubishi Heavy Industries (MHI) 

TD05H-16G with internal waste gate (Fig. 3.4). The waste gate is an exhaust gas bypass 

valve built into the turbocharger assembly that allows only enough exhaust gas flow to 

the turbine to produce the desired boost. It is because the turbo’s characteristic is to 

increase its airflow rate faster than the engine’s ability to accept that flow, and if 

unchecked, the turbo can quickly produce damaging high boost pressures that lead to 

engine knock. A manual waste gate controller was added as a means to gain more 

control of the boost pressure during the engine-testing period (Fig. 3.6). The expanded 

exhaust gas then was routed to the exhaust tailpipe via the cast iron turbine discharge 

pipe (Fig. 3.4). 

 

An air-to-air intercooler was installed between the turbo and the intake manifold 

(Fig. 3.7). The intercooler is a heat exchanger used to reduce the increased temperature 

of the charge air due to compressive heating. The use of an intercooler is important for 

three reasons. First, the reduction of temperature makes the intake charge denser. Higher 

charge density will allow more mass flow of air into the engine at any given intake-

manifold pressure, hence greater quantity of air/fuel mixture can be combusted to 

produce more power. Second, it reduces the thermal loading on the engine for given 

boost and power output, as a result of the proportional drop of the exhaust temperature 

to the intake charge temperature drop. This contributes to a reduction in thermal loading 

on valves and pistons and reduces the amount of heat that has to be dissipated by the 

engine. Lastly, the benefit of inter cooling is to the combustion process where detonation 

is reduced by reduction in the intake temperature.        

 

An air filter was connected to the compressor inlet by a flexible hose (Fig. 3.8). 

The stock intake manifold (Fig. 3.9) was retained, as this engine is equipped with the 

multipoint fuel injection system, where the manifold inlet can be connected to the 

intercooler outlet by a pipe and a flexible hose without any modifications.  

 

The most important aspect to take into account in turbo charging a gasoline 

engine is its compression ratio. A reduction in compression ratio from that of a similar 
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naturally aspirated engine is an essential feature of a turbocharged engine. A 

turbocharger compresses air and thus, raises the temperature of the air induced into the 

engine. The effect is to increase the peak cylinder temperature and approaches the 

temperature at which detonation commences. Detonation is the uncontrolled burning of 

the air/fuel mixture, leading to a further rapid increase in cylinder temperature, that will 

results in a blown cylinder head gasket or piston failure if the process continues for more 

than a few seconds. A set of low-compression pistons with a dish in the center (Fig. 

3.10) was installed in order to reduce the original compression ratio of 10:1 to 7:1. The 

new pistons were installed complete with new rings and connecting rod bearings. A new 

metal head gasket (Fig. 3.5) replaced the stock asbestos-based cylinder head gasket. The 

metal gasket was coated with copper layers, sprayed at both sides.  

 

The turbocharger, which operate at high speeds and temperatures require a 

continuous and adequate supply of clean lubricating oil to give reliable long-term 

service. The oil is required to lubricate and cool the bearings, which support the turbine 

and compressor shaft and wheel assembly. To provide lubrication for the turbocharger 

on this engine, the oil feed line was screwed into the oil pressure switch tapping in the 

cylinder head (Fig. 3.11). A metal-braid-protected line was chosen due to its high-

pressure stand ability, chafing, abrasion and vibration resistance characteristics. Oil that 

has passed through the turbo bearings must be free to drain out quickly without any 

serious restriction. The drain hose installed was larger than the feed line because the 

high-speed rotation of the turbine shaft causes the oil to pick up air that causes the hot 

oil to foam. As the oil return is by gravity, the flexible drain hose was routed smoothly 

downward and arc gently into the oil sump with no kinks, sharp bends or rises. The oil 

returned to the sump above the oil level in the sump. If not, the foamy oil will build up 

in the hose and back up into the bearing housing, causing leakage through the oil seals. 

The method used to attach the oil drain fitting to the oil sump is by brazing a segment of 

tube into a drilled hole at the sump (Fig. 3.11). 

 

To monitor the intake manifold pressure, a boost gauge was tapped using a tee 

piece at the vacuum line on the intake manifold. All other engine components were 
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retained including the fuel injectors and the fuel pump. The engine control unit (ECU) 

was also not reprogrammed and no other additional electronic control system was 

utilized in this engine. Other components that did not mentioned above were completely 

retained in stock configurations. Fig. 3.12 shows the engine with the completed installed 

turbo kit and Fig. 3.13 illustrates the engine coupled to the dynamometer with complete 

instrumentations on, ready to be tested. 

 

  
Fig. 3.4: TD05H-16G turbocharger unit 
with internal waste gate, turbo manifold 
and turbine discharge pipe. 

Fig. 3.5: Turbocharger kit complete with 
metal cylinder head and exhaust gasket. 

  
Fig. 3.6: Manual waste gate controller and 

oil feed line to turbo bearing housing. 
Fig. 3.7: Air-to-air intercooler positioned 

between compressor outlet and intake 
manifold. 
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Fig. 3.8: Air filter and flexible hose with 

mass flow sensor. 
Fig. 3.9: Stock intake manifold shown with 

stock 4G92 ECU. 

  
Fig. 3.10: Stock high-compression piston 

(left) and new low-compression turbo piston 
(right). 

Fig. 3.11: Lube oil drain hose from turbo 
bearing housing to oil sump. 

  
Fig. 3.12: 4G92 engine with complete turbo 

kit installed. 
Fig. 3.13: Engine coupled to dynamometer 

on test bed complete with instrumentations. 
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CHAPTER IV 

 

 

 

 

RESULTS 

 

 

 

 

4.1      Test data 

 

 The testing done on the engine was to determine the maximum torque produced 

by the engine, fuel consumption rate, temperatures and emissions of the exhaust  

gas at the specified speed. This was achieved by setting the throttle valve at fully  

opened position while applying the dynamometer load. Maximum torque  

generated by the engine at specified rpm is achieved when the engine was unable  

to maintain the speed as the load applied further. This type of test is known as the  

steady-state, full load testing because the data will be acquired after allowing a  

stable running of the engine for 1 minute.  

 

 After the engine operation parameter data were recorded in Table 4.1, the next 

step is to analyze the performance of the engine. The analysis done based on the 

performance parameters formulae described previously in section 2.5. The results of the 

analysis are shown in Table 4.2 and the calculation sample in the analysis also shown 

below as a reference. 
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Sample calculation 

 

Performance analysis at 5000rpm: 

 

Data; Speed = 5000rpm 

Torque = 111.37 Nm 

Fuel consumption = 150.30mL / 25sec 

Analysis; 

 

1) Brake power (b.p) 

 

kWNTpb 31.58
60

37.11150002
60

2. =
××

==
ππ    

 

 

2) Brake mean effective pressure (bmep) 

 

kPa
V

Tbmep
d

34.876
101597

37.11144
6 =

×
×

== −

ππ  

 

 

3) Indicated mean effective pressure (imep) 

 

kPabmepimep
m

99.1030
85.0
34.876

===
η

 

 

 

4) Mass flow rate of fuel ( fm& ) 

hrkg
L

m
m
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s
s

Lm f /56.15
1000
1

1
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1
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skg
hrgm

/00432.0
/60.15560

=
=

  

 

5) Brake specific fuel consumption (bsfc) 

 

hrkWgm
pb

m
bsfc f −=== /85.266

31.58
60.15560

.
&

 

 

6) Indicated specific fuel consumption (isfc) 

 

hrkWgmbsfcisfc
m

−=== /94.313
85.0

85.266
η

 

 

7) Brake thermal efficiency (ηt)b 

 

32.0
97.04300000432.0

31.58.)( =
××

==
cHVf

bt Qm
pb
η

η
&

 

 

8) Indicated thermal efficiency (ηt)b 

38.0
85.0
32.0)(

)( ===
m

bt
it η

η
η  

 

 

 

4.2       Data analysis 

 

The data were recorded in Table 4.1 for the naturally aspirated and Table 4.3 for 

the turbocharged engine. The analysis results are best presented in a graph form for the 

ease of comparisons, explanations, evaluations and understanding of the engine 

performance as a function of the engine speed. The data for the turbocharged engine 
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were plotted at maximum boost condition for each speed. The graphs plotted are shown 

in Fig. 4.1 to Fig. 4.8. 

 

 

 

4.2.1 Comparison tables 

 

After the engine operation parameter data were recorded in Table 4.1, the next 

step is to analyze the performance of the engine. The results of the analysis are shown in 

Table 4.2 for the naturally aspirated and Table 4.4 for the turbocharged engine. Table 

4.7, Table 4.8 and Table 4.9 shows the comparisons made between the naturally 

aspirated and the turbocharged engine on engine performance, engine efficiencies and 

exhaust emissions respectively.  
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Table 4.1 : Engine Testing Data Table for Natural Aspirated Engine 

Title: 4G92 N/A Performance Test - Data (Full load)         
Date: 25-Jun-03             
Time: 2.30pm - 4.30pm            
Test person: Ismail, Regis          
                

Speed Torque    Fuel cons Manifold            Temperature [deg C]                 Emissions   

[rpm] [Nm] [ml] [sec] press[psi] Exhaust Lube oil Engine in Engine out Inlet mnfld O2 (% vol) CO[%vol] CO2[%vol] HC[ppm] 
                            

1500 87.07 43.45 25 0 578.03 94.70 57.50 87.90 47.10 2.50 1.80 14.10 120 
                            

2000 100.07 58.04 25 0 700.8 102.90 77.10 89.20 52.70 2.10 2.08 14.80 90 
                            

2500 104.00 73.11 25 0 713.17 109.90 84.30 90.60 50.40 5.30 1.49 12.00 70 
                            

3000 105.40 86.21 25 0 755.27 117.20 91.80 96.90 50.40 8.70 1.19 13.90 60 
                            

3500 106.70 98.81 25 0 789.85 120.00 94.15 99.10 57.70 5.10 1.50 14.60 50 
                            

4000 110.80 113.23 25 0 782.95 113.70 83.00 89.80 50.30 4.20 1.54 15.50 40 
                            

4500 111.07 136.27 25 0 833.6 120.20 86.20 93.00 50.00 6.00 1.30 16.40 30 
                            

5000 111.37 150.30 25 0 901.45 125.00 87.70 94.50 55.10 4.20 1.73 18.00 20 
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Table 4.2 : Analysis Results Table for Natural Aspirated Engine 

Title: 4G92 N/A Performance Test - Analysis (Full load)        

Additional data used in analysis;             
Vd, Displacement volume = 1597 cc          

�fuel, Fuel density = 718.96 kg/m^3          

�c, Combustion efficiency = 97%          

�m, Mechanical efficiency = 85%          

QHV, Fuel heating value = 43 000 kJ/kg          
          

Speed, N Torque, T  Fuel cons.  b.p i.p bmep imep 
 
 bsfc isfc 

 
 

 
 

 
 

[rpm] [Nm] [mL] [sec]  [kW] [kW] [kPa] [kPa] [gm/hr] [gm/kW-hr] [gm/kW-hr] [kg/s]     

1500 87.07 43.45 25  13.68 32.18 685.13 806.04 4498.39 328.90 139.78 0.00125 0.26 0.62 

2000 100.07 58.04 25  20.96 49.31 787.42 926.38 6008.90 286.70 121.85 0.00167 0.30 0.71 

2500 104.00 73.11 25  27.23 64.06 818.35 962.76 7569.10 278.00 118.15 0.00210 0.31 0.73 

3000 105.40 86.21 25  33.11 77.91 829.36 975.72 8925.34 269.55 114.56 0.00248 0.32 0.75 

3500 106.70 98.81 25  39.11 92.02 839.59 987.76 10229.82 261.58 111.17 0.00284 0.33 0.78 

4000 110.80 113.23 25  46.41 109.20 871.86 1025.71 11722.73 252.58 107.35 0.00326 0.34 0.80 

4500 111.07 136.27 25  52.34 123.15 873.98 1028.21 14108.07 269.54 114.56 0.00392 0.32 0.75 

5000 111.37 150.30 25  58.31 137.21 876.34 1030.99 15560.60 266.85 113.41 0.00432 0.32 0.76 

 

fm& it)(ηbt )(η
fm&
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Table 4.3 : Engine Testing Data Table for Turbo charged Engine 

Title:  4G92 Turbocharged Performance Test – Non-intercooled Data (Full load)      
Date:  30-Jul-03            
Time:  10.00am - 4.30pm           
Test person: Ismail, Regis, Subki           

Speed Boost Torque    Fuel cons            Temperature [deg C]              Emissions   
[rpm] [psi] [Nm] [ml] [sec] Water jacket Lube oil Intake air Engine out Engine in O2[%vol] CO[%vol] CO2[%vol] HC[ppm] 

1500 1 87.70 45.00 25 87.0 92.0 40.9 90.7 82.3 4.7 0.76 12.9 100 

2000 1 98.80 62.50 25 90.5 103.8 44.1 91.3 89.9 2.4 0.67 15.3   

  1.5 100.20 62.50 25 85.4 95.2 46.2 87.2 85.8 2.4 0.93 15.1 60 

2500 1 92.50 73.60 25 95.7 108.5 48.7 97.4 95.4 1.7 0.27 15.5   

  2 110.00 81.90 25 87.5 101.2 50.5 89.5 87.9 2.1 0.66 15.3 40 

3000 1 105.80 94.90 25 88.7 122.1 50.9 88.8 86.3 1.3 0.38 15.6   

  2 111.30 97.26 25 88.5 111.3 52.2 86.2 84.0 1.5 0.46 15.5   

  3 118.00 104.17 25 84.1 110.1 56.8 85.1 83.1 1.6 0.65 15.7 30 

3500 1 110.50 115.70 25 93.0 126.2 51.3 95.3 93.1 1.0 0.15 15.3   

  2 116.00 116.13 25 92.7 124.7 55.9 93.0 91.1 1.2 0.34 15.6   

  3 120.00 116.68 25 92.0 120.9 60.4 92.8 90.7 1.7 0.72 15.9   

  4 123.50 116.99 25 92.0 116.1 64.1 91.3 89.3 1.9 1.14 16.3 20 
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Table 4.4 : Analysis Results Table for Turbocharged Engine 

Title: 4G92 Turbocharged Test – Non-intercooled Analysis (Full load)        

Additional data used in analysis;             
Vd, Displacement volume = 1597 cc          

�fuel, Fuel density = 718.96 kg/m^3          
�c, Combustion efficiency = 97%          
�m, Mechanical efficiency = 85%           

QHV, Fuel heating value = 43 000 kJ/kg           

Speed,N Boost Torque,T  Fuel cons.  b.p i.p bmep imep  bsfc isfc    

[rpm] [psi] [Nm] [mL] [sec]  [kW] [kW] [kPa] [kPa] [gm/hr] [gm/kW-hr] [gm/kW-hr] [kg/s]     

1500 1 87.70 45.00 25  13.78 32.41 690.09 811.87 4658.86 338.19 143.73 0.00129 0.26 0.60 

2000 1 98.80 62.50 25  20.69 48.69 777.43 914.62 6470.64 312.70 132.90 0.00180 0.28 0.65 

  1.5 100.20 62.50 25  20.99 49.38 788.45 927.59 6470.64 308.33 131.04 0.00180 0.28 0.66 

2500 1 92.50 73.60 25  24.22 56.98 727.86 856.30 7619.83 314.66 133.73 0.00212 0.27 0.65 

  2 110.00 81.90 25  28.80 67.76 865.56 1018.31 8479.13 294.44 125.13 0.00236 0.29 0.69 

3000 1 105.80 94.90 25  33.24 78.21 832.51 979.43 9825.02 295.60 125.63 0.00273 0.29 0.69 

  2 111.30 97.26 25  34.97 82.27 875.79 1030.34 10069.35 287.98 122.39 0.00280 0.30 0.71 

  3 118.00 104.17 25  37.07 87.23 928.51 1092.37 10784.75 290.92 123.64 0.00300 0.30 0.70 

3500 1 110.50 115.70 25  40.50 95.29 869.50 1022.94 11978.45 295.76 125.70 0.00333 0.29 0.69 

  2 116.00 116.13 25  42.52 100.04 912.77 1073.85 12022.97 282.79 120.18 0.00334 0.31 0.72 

  3 120.00 116.68 25  43.98 103.49 944.25 1110.88 12079.91 274.65 116.73 0.00336 0.31 0.74 

  4 123.50 116.99 25  45.27 106.51 971.79 1143.28 12112.00 267.58 113.72 0.00336 0.32 0.76 

 

fm& it)(ηbt)(ηfm&
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Table 4.5 : Engine Testing Data Table for Turbocharged Engine 

Title: 4G92 Turbocharged Test; Intercooled Data  (Full load)         
Date: 14.8.03              
Time: 11.00am - 4.30pm              
Test person: Ismail, Regis              
                  

Speed Boost Torque        Fuel cons 
                                             Temperature 
[deg C]     h            Emissions     

[rpm] [psi] [Nm] [ml] [sec] Water Jacket Lube oil
Engine 

out Engine in Intake air Exhaust 
[mm 
H2O] O2[%vol]

CO[%vo
l] 

CO2[%vol
] HC[ppm] 

                                
3000 1 109.2 93.52 25 86.9 116.4 89.1 81.3 39.6 - 24 2.7 0.78 14.5 90 

                                
  2 113.6 103.98 25 87.2 111.1 89.8 82.8 40.1 - 29 2.6 1.69 13.6 90 
                                
  2.5 116 105 25 85.2 107.9 90.3 83.6 42.7 - 34 2.6 1.26 14.1 80 

                                
                                

3500 1 112.8 106.9 25 88 119.1 91.7 85.4 42.2 754.3 32 2.5 1.05 14.5 60 
                                

  2 117.4 113.64 25 88.3 116.2 91.7 86.3 42.9 775.1 37 2.4 1.65 14 70 
                                
  3 122 115.63 25 89.2 114.2 92.3 86.4 43 788.7 45 2.5 1.63 13.5 70 
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Table 4.6 : Analysis Results Table for Turbocharged Engine 

Title: 4G92 Turbocharged Test; Intercooled Analysis - Full load         

Additional data used in analysis;            
Vd, Displacement volume = 1597 cc           

�fuel, Fuel density = 718.96 kg/m^3           
�c, Combustion efficiency = 97%             
�m, Mechanical efficiency = 85%             

QHV, Fuel heating value = 43 000 kJ/kg           

Speed,N Boost Torque,T  Fuel cons.    b.p i.p bmep imep   bsfc isfc     
[rpm] [psi] [Nm] [mL] [sec]  [kW] [kW] [kPa] [kPa] [gm/hr] [gm/kW-hr][gm/kW-hr] [kg/s]     

                               

3000 1 109.20 93.52 25  34.31 80.72 859.27 1010.90 9682.15 282.23 119.95 0.00269 0.31 0.72 

                               

  2 113.60 96.31 25  35.69 83.97 893.89 1051.63 9971.00 279.39 118.74 0.00277 0.31 0.73 

                               

  2.5 116.00 103.98 25  36.44 85.75 912.77 1073.85 10765.07 295.40 125.54 0.00299 0.29 0.69 
                               
                               

3500 1 112.80 106.90 25  41.34 97.28 887.59 1044.23 11067.38 267.69 113.77 0.00307 0.32 0.76 
                               
  2 117.40 113.64 25  43.03 101.25 923.79 1086.81 11765.18 273.42 116.20 0.00327 0.32 0.74 

                               
  3 122.00 115.63 25  44.72 105.21 959.99 1129.39 11971.20 267.72 113.78 0.00333 0.32 0.76 
                               
 

fm& it )(ηbt )(ηfm&



 

Table 4.7 : Performance Comparison of Naturally Aspirated and Turbocharged 

Proton 4G92 1.6L Engine 

 
Speed 
(rpm) 

Boost 
(psi) 

Brake Power, 
b.p  (kW) 

% b.p to NA 
(baseline) 

Bsfc 
(gm/kW-hr) 

% bsfc to NA 
(baseline) 

 
1500 (NA) 

 
0 

 
13.68 

 
- 

 
328.90 

 
- 

 
1500 (T) 

 
1 

 
13.78 

 
0.7 % ↑ 

 
338.19 

 
2.8 % ↑ 

 
2000 (NA) 

 
0 

 
20.96 

 
- 

 
286.70 

 
- 

 
2000 (T) 

 
1 

 
20.69 

 
1.3 % ↓ 

 
312.70 

 
9.0 % ↑ 

  
1.5 

 
20.99 

 
0.1 % ↑ 

 
308.33 

 
7.5 % ↑ 

 
2500 (NA) 

 
0 

 
27.23 

 
- 

 
278.00 

 
- 

 
2500 (T) 

 
1 

 
24.22 

 
11.1 % ↓ 

 
314.66 

 
13.2 % ↑ 

  
2 

 
28.80 

 
5.8 % ↑ 

 
294.44 

 
5.9 % ↑ 

 
3000 (NA) 

 
0 

 
33.11 

 
- 

 
261.58 

 
- 

 
3000 (T) 

 
1 

 
33.24 

 
0.4 % ↑ 

 
295.60 

 
9.7 % ↑ 

  
2 

 
34.97 

 
5.6 % ↑ 

 
287.98 

 
6.8 % ↑ 

  
3 

 
37.07 

 
12.0 % ↑ 

 
290.92 

 
7.9 % ↑ 

 
3500 [NA] 

 
0 

 
39.11 

 
- 

 
261.58 

 
- 

 
3500 [T] 

 
1 

 
40.50 

 
3.6 % ↑ 

 
295.76 

 
13.0 % ↑ 

  
2 

 
42.52 

 
8.7 % ↑ 

 
282.79 

 
8.1 % ↑ 

  
3 

 
43.98 

 
12.5 % ↑ 

 
274.65 

 
5.0 % ↑ 

  
4 

 
45.27 

 
15.8 % ↑ 

 
267.58 

 
2.3 % ↑ 
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Table 4.8 : Engine Efficiencies Comparison of Naturally Aspirated and 

Turbocharged Proton 4G92 1.6L Engine @ maximum boost for each speed 

 

Speed 
(rpm) 

Boost 
(psi) 

Volumetric 
efficiency, ηv 

% Increase in 
ηv 

Brake 
thermal eff., 

(ηt)b 

% Decrease in 
(ηt)b 

 
1500 (NA) 

 
0 

 
0.768 

 
- 

 
0.262 

 
- 

 
1500 (T) 

 
1 

 
0.841 

 
9.5 % ↑ 

 
0.255 

 
2.7 % ↓ 

 
2000 (NA) 

 
0 

 
0.773 

 
- 

 
0.301 

 
- 

 
2000 (T) 

 
1.5 

 
0.892 

 
15.4 % ↑ 

 
0.280 

 
7.0 % ↓ 

 
2500 (NA) 

 
0 

 
0.798 

 
- 

 
0.310 

 
- 

 
2500 (T) 

 
2 

 
0.944 

 
18.3 % ↑ 

 
0.293 

 
5.5 % ↓ 

 
3000 (NA) 

 
0 

 
0.787 

 
- 

 
0.320 

 
- 

 
3000 (T) 

 
3 

 
1.016 

 
29.1 % ↑ 

 
0.297 

 
7.2 % ↓ 

 
3500 (NA) 

 
0 

 
0.793 

 
- 

 
0.330 

 
- 

 
3500 (T) 

 
4 

 
1.009 

 
27.2 % ↑ 

 
0.323 

 
2.1 % ↓ 
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Table 4.9 : Exhaust Emissions Comparison of Naturally Aspirated and 
Turbocharged Proton 4G92 1.6L Engine @ maximum boost for each speed 

 
Speed 
(rpm) 

Boost 
(psi) O2 (% vol) CO2 (% vol) CO (%vol) HC (ppm) 

 
1500 (NA) 

 
0 

 
2.5 

 
14.1 

 
1.80 

 
120 

 
1500 (T) 

 
1 

 
4.7 

 
12.9 

 
0.76 

 
100 

 
2000 (NA) 

 
0 

 
2.1 

 
14.8 

 
2.08 

 
90 

 
2000 (T) 

 
1.5 

 
2.4 

 
15.1 

 
0.93 

 
60 

 
2500 (NA) 

 
0 

 
5.3 

 
12.0 

 
1.49 

 
70 

 
2500 (T) 

 
2 

 
2.1 

 
15.3 

 
0.66 

 
40 

 
3000 (NA) 

 
0 

 
8.7 

 
13.9 

 
1.19 

 
60 

 
3000 (T) 

 
3 

 
1.6 

 
15.7 

 
0.65 

 
30 

 
3500 (NA) 

 
0 

 
5.1 

 
14.6 

 
1.50 

 
50 

 
3500 (T) 

 
4 

 
1.9 

 
16.3 

 
1.14 

 
20 
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4.3     Graph plotting 

 

 The analysis results are best presented in a graph form for the ease of 

explanations, evaluations and understanding of the engine performance as a function of 

the engine speed. The graphs plotted are as below: 

 

 

 

4.3.1 Effect of the engine speed to the engine torque 
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Figure 4.1. Engine torque as a function of engine speed. 

 

Fig. 4.1 clearly illustrates that by the addition of the turbocharger, the same 

engine was capable of increasing its torque compared to the lower torque curve 

generated when it is naturally aspirated. Table 4.7 shows that at 3500 rpm, the torque 

increment is up to approximately 16% at 4 psi of boost pressure. It is 4 psi above the 

atmospheric pressure. The increased intake pressure, therefore the density of the induced 

air into the engine results in the increment of mean effective pressure on the pistons and 

the volumetric efficiency. This increases the engine’s ability for doing work; that is the 
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turning effort about the crankshaft’s rotation axis compared to the naturally aspirated 

condition where the maximum pressure at WOT is atmospheric pressure. Fig. 4.1 also 

illustrates that turbocharger offsets the speed at which maximum torque generated to a 

higher speed. In naturally aspirated condition, the engine produces peak torque of 

approximately 105Nm at 3000rpm, whereas by adding the turbocharger the same torque 

value can be achieved at 2400rpm. 

 

 

 

4.3.2 Effect of the engine speed to the brake power 
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Figure 4.2. Engine brake power as a function of engine speed. 

 

Fig. 4.2 illustrates the difference of brake power between the naturally aspirated 

and turbocharged condition. The brake power for all the speeds tested shows a direct 

proportional increment to engine speeds. Power is the product of torque and engine 

speed. Power keeps increasing although the torque reached maximum due to the higher 

engine speed. However, the brake power will reach its maximum value and starts to 

decrease, as the engine torque will be much lower at high speeds. The turbocharger 
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starts producing noticeable power increase at 2000rpm upwards, with higher increments 

as the engine speed increase. By referring to Table 4.7, the power increase at 2000rpm is 

0.1% at maximum boost of 1.5psi and achieved approximately 16% increments at 

3500rpm at maximum boost of 4psi. Below 2000rpm, the engine behaves as the 

naturally aspirated condition as the turbocharger was in an idling condition due to 

insufficient exhaust gas energy to spin the turbine, hence the compressor fast enough to 

starts producing a noticeable boost. The turbocharger increases the power without the 

need to raise the engine speed. For example, from Fig. 4.2, the turbocharged version of 

the engine produces 37kW at 3000rpm whereas in naturally aspirated condition, this 

power output can only be generated when the engine is revved to 3400rpm. This results 

from the fact that the pressurized induction done by the turbocharger did not increase the 

in-cylinder peak pressure substantially, but fattens the overall cylinder pressure indicated 

curve. The fatter curve increased the mean effective pressure and therefore the power 

output for a particular speed.    
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4.3.3 Effect of the engine speed to brake mean effective pressure (bmep) 
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Figure 4.3. Brake mean effective pressure as a function of engine speed. 

 

Fig. 4.3 shows the comparison of bmep between the naturally aspirated and 

turbocharged condition. The bmep is a measure of the work output for a given swept 

volume or cylinder capacity. Brake power and torque is the product of the bmep. The 

trend of the curve in Fig. 4.3 is of similar to the torque curve in Fig. 4.1 because torque 

is directly proportional to bmep. For the speeds below 2000rpm, the bmep of the 

turbocharged engine is about the same with the naturally aspirated engine. This is due to 

the fact that the turbocharger is spinning with inadequate speed of producing a 

noticeable boost. At 2000rpm, an increase of 0.1% in bmep and it raised to 

approximately 16% as the boost of 4psi produced at 3500rpm as compared to the 

naturally aspirated bmep. The intake pressure higher than atmospheric pressure increases 

all pressures through the cycle and increased air-fuel mixture give greater energy output 

during the combustion process. In naturally aspirated condition, the engine produces 

peak pressure of approximately 830kPa at 3000rpm, whereas by adding the turbocharger 

the same pressure can be achieved at 2400rpm. By using turbocharger, the peak pressure 

of non-turbocharged condition is achieved at 0.8 times the speed. At 3000rpm, the 
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turbocharged engine produces about 930kPa, which is 1.12 times greater and yet the 

pressure still increases and does not reached its maximum value even at 3500rpm. Turbo 

charging increases mep rather than the need to rev the engine higher or increase the 

engine displacement to produce higher power output.          

 

 

 

4.3.4 Effect of the engine speed to the brake specific fuel consumption (bsfc) 
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Figure 4.4. Brake specific fuel consumption as a function of engine speed. 

 

Fig. 4.4 compares the bsfc of the naturally aspirated and turbocharged engine as 

a function of speed. Both conditions illustrate the same trend; the bsfc decreases as the 

engine speed increases. This is due to the longer time per cycle at low speeds allows 

more heat loss to occur. As can be seen in Fig. 4.4, the bsfc of turbocharged engine is 

higher compared to the naturally aspirated engine. This results from the substantial 

reduction in the compression ratio from 10.0 to 7.0:1 of this particular engine. Allard 

(1986) states that, tests indicate that for a reduction of one ratio in compression, there is 

four to five percent increase in fuel consumption at low and medium speeds. Table 4.7 
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shows the percentage increase of fuel consumption at 1500rpm to 3500rpm, with 

different boost pressures for each speed. For this engine, the reduction of three ratios in 

the compression ratio may leads to about 12 to 15% increase in fuel consumption. As 

can be seen in Table 4.7, the percentage increment in bsfc is within the range. He also 

states that too large a reduction in compression ratio will make the engine thermally very 

inefficient at lower rpm with poor fuel consumption. By referring to Table 4.7, for a 

given speed, say 3500rpm, as boost raised, the percentage increment of fuel 

consumption is reduced and correspondingly, the percentage gain in brake power is 

increased higher. This can be explained by the increased mass of air ingested into the 

cylinders caused the effective compression ratio (that depends on intake charge pressure, 

therefore the real-time amount of mass air-fuel mixture) at higher boost to increase, thus 

increasing the thermal efficiency that leads to the lower fuel consumptions and higher 

energy released during combustion.     
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4.3.5 Effect of engine speed to the mass flow rate of air and air-fuel (AF) ratio 
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Figure 4.5. Mass flow rate of air and AF ratio as a function of engine speed. 

 

Fig. 4.5 shows the comparisons of mass air flow rate and AF ratio between the 

naturally aspirated and turbocharged engine. The turbocharger increases the intake 

pressure, thus increases the air density. Higher air density contains more air molecules 

per volume. That explained the higher mass flow rate of air of the turbocharged engine 

as compared to the naturally aspirated one. Higher boost pressures induced higher air 

mass flow rate into the cylinders in the available time as the intake valves opened per 

cycle.  

 

  Correct AF ratio means the engine is getting all the fuel it can efficiently burn in 

every cycle. The fuel injection system must be able to regulate the proper amount of fuel 

for any given air flow. Pulkrabek (1997) states that gasoline-fueled engines usually have 

AF ratio in the range of 12 to 18 depending on the operating conditions at the time (e.g. 

accelerating, cruising, starting). Fig. 4.5 also shows the AF ratio of the naturally 

aspirated and turbocharged engine at full load, wide-open throttle (WOT) condition. For 

the naturally aspirated engine, the AF ratio at 1500rpm to 3500rpm is in the range of 
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14.5 to 15.3. The AF ratio of the turbocharged engine is in 15.3 to 16.5 ranges. These 

results confirms with Pulkrabek. Higher AF ratio of the turbocharged engine is due to 

more quantity of air forced into the cylinders compared to the naturally aspirated. The 

electronic fuel injection (EFI) system components such as fuel injectors, fuel pump, 

engine control unit, fuel pressure regulator and the associated sensors of this engine 

were retained as the stock configuration even after the turbo conversion. According to 

Corky Bell (1997), the full-throttle AF ratio of a turbocharged engine (when under 

boost) should be close to 12.5 or 13.0 to 1 and according to Setright (1976), the 

enrichment of a petrol/air mixture beyond 1:12 leads to substantial loss in power due to 

the optimum combustion temperatures. Charge air under pressure is hot. The 

introduction of fuel can cool it. The cooling effect of the fuel lowers the charge 

temperature and increases its density before it reaches the cylinders. This leads to lower 

temperatures throughout the cycle and more efficient combustion due to a reduction in 

temperature of piston crown, combustion chamber walls, exhaust valves and spark 

plugs. The slightly rich mixture needed when the engine is under boost for the purpose 

to reduce the compressed charge air temperature. As can be seen in the case of this 

engine, the AF ratio in the turbocharged condition is leaner. This is due to, as mentioned 

earlier, there was no modifications done to the EFI equipment to deliver extra fuel flow 

in proportions to the boost pressure to maintain proper fuel delivery relative to air mass 

flow rate.    

 

 

 

 

 

 

 

 

 

 

 



 

 67

4.3.6 Effect of the engine speed to the engine volumetric efficiency 
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Figure 4.6. Volumetric efficiency as a function of engine speed. 

 

Fig. 4.6 illustrates the volumetric efficiency as a function of the engine speed for 

the naturally aspirated and turbocharged engine at wide-open throttle. Table 4.7 shows 

the percentage increase of the turbocharged engine’s volumetric efficiency at maximum 

boost for each speed from the naturally aspirated. As can be seen in Fig. 4.6, the 

volumetric efficiency of naturally aspirated engine falls around 75% to 80%. However, 

with the use of turbocharger, the increment of up to 29% can be achieved. At any given 

speed, the ratio of the mass of new charge in the cylinder to the mass of charge that 

would fill the displacement volume at atmospheric pressure is a measure of the 

volumetric efficiency of the engine. The turbocharged engine, by pumping in extra air 

into the combustion chamber, is clearly superior to the normally aspirated one. The 

volumetric efficiency may exceed 100% as shown in the table 4.8, at 3000rpm and 

3500rpm with boost pressures of 3psi and 4psi respectively. This is due to the 

pressurized intake manifold had raised the effective compression ratio higher than the 

geometric compression ratio (determined by the displacement and clearance volume), 
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making the mass of new charge greater than the mass of charge that would fill the 

displacement volume at atmospheric pressure. 

 

 

 

4.3.7 Effect of the engine speed to the engine thermal efficiency 
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Figure 4.7. Engine brake thermal efficiency as a function of engine speed 

 

If the strength of the turbocharged engine is in its volumetric efficiency, its 

weakness is in thermal efficiency. As shown in Fig. 4.7, the thermal efficiency of the 

naturally aspirated engine is higher compared to the turbocharged one. Setright (1976) 

states that the thermal efficiency of the naturally aspirated petrol engine seldom exceeds 

33%. By referring to Table 4.8, the thermal efficiency of this engine in naturally 

aspirated condition is within the range. The table also shows the percentage decrease of 

the turbocharged condition compared to the naturally aspirated. About 35% of the total 

chemical energy that enters an engine in the fuel is converted to useful crankshaft work, 

about 30% is carried away in the exhaust flow and the remainder is dissipated to the 

engine surroundings by heat transfer processes. As the piston descends during the 
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working stroke (expansion stroke), it causes the volume of the cylinder to increase, and 

by expanding the heated gas, they are cooled, the heat loss being converted into useful 

work. As previously discussed, the volumetric efficiency of the turbocharged engine is 

higher than 100% due to the effective compression ratio. However, during the expansion 

stroke, the expansion ratio remains unchanged for the same engine either it is naturally 

aspirated or turbocharged. So, there is no possibility of recovering during the expansion 

phase the potential energy was created during the increased compression phase. It is 

because this imbalance between the effective compression ratio and the expansion ratio 

that the thermal efficiency of the turbocharged engine is lower than that of the naturally 

aspirated one.   

 

 

 

4.3.8 Effect of the engine speed to the exhaust emission products 
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Figure 4.8. Exhaust emissions as a function of engine speed. 

 

Mac Innes (1976) states that tests have shown that a turbocharger applied to a 

gasoline engine in good running condition will not significantly increase any of the 
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measured exhaust emissions and in almost every case will decrease them. An emission 

test for this particular engine was run before and after the turbocharger was installed. 

The results of these tests are shown in Table 4.9 and Fig. 4.8. It can clearly be seen that 

by adding a turbocharger, the emissions at WOT are low as compared to the naturally 

aspirated. Because of the added turbulence due to the compressor impeller and because 

the combustion temperature will not be any higher, exhaust emissions will be about the 

same or a little less with turbocharged engine. AT WOT, intake manifold pressure will 

be higher than the exhaust manifold pressure. This will remove the clearance gases and 

reduce the combustion temperature of the turbocharged engine even further.   
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CHAPTER V 

 

 

 

 

CONCLUSIONS 

 

 

 

 

A 1.6-litre gasoline engine was converted from the naturally aspirated condition to a 

turbocharged engine. Testing was done on both the naturally aspirated and turbocharged 

condition. Data gathered from the dynamometer and instrumentations coupled to the 

engine. The purpose of the testing is to study the effects of turbocharger on engine 

performance. The following conclusions have been reached from the comparative 

analysis: 

1. The addition of the turbocharger increased the maximum output of the engine at 

the speeds above 2000rpm. 

 

2. Below 2000rpm, the turbocharger is not supplied with enough exhaust energy to 

spin fast enough to produce above-atmospheric pressures in the intake manifold. 

 

3. If full-throttle (WOT) is not used, the turbo makes no contribution to the torque 

curve and the engine behaves like a naturally aspirated engine. 

 



 

 72

4. Turbocharger offsets the speed at which maximum torque generated to a higher 

speed and produces a given torque at a speed lower than naturally aspirated 

engine. 

 

5. The intake pressure higher than atmospheric pressure increases all pressures 

through the cycle, include the mean effective pressure inside the cylinders. 

 

6. The turbocharger increases the power without the need to raise the engine speed. 

Turbo charging increases mean effective pressures rather than the need to rev the 

engine higher or increase the engine displacement to produce higher power 

output. 

 

7. The reduction in the compression ratio from 10.0 to 7.0:1 of this particular 

engine leads to about 2 to 8% increase in fuel consumption. 

 

8. A slightly rich mixture needed when the engine is under boost for the purpose to 

reduce the compressed charge air temperature. This leads to lower temperatures 

throughout the cycle and more efficient combustion due to a reduction in 

temperature of piston crown, combustion chamber walls, exhaust valves and 

spark plugs. 

 

9. The turbocharged engine, by pumping in extra air into the combustion chamber, 

may achieve volumetric efficiency of over 100%. Instead of being wasted, the 

exhaust gases were expanded through the turbine that converts it into useful 

work to drive a compressor that supply the engine extra air. As the load and the 

volumetric efficiency and the effective compression ratio are increased, so is the 

expansion ratio. Therefore the turbocharged engine can achieve thermal 

efficiency almost too naturally aspirated engine. 

 

10. HC and CO emissions are reduced considerably when the engine is turbocharged 

compared to its stock naturally aspirated condition. 
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RECOMMENDATION 

 

In order to improve the engine performance and the experimental setup for better 

results to be achieved, there are several suggestions for future works: 

 
1. A computerized data acquisition system that comprises of a computer that 

gathers, manipulate and displays data through a signal conditioning device, 

pressure transducer, crank angle encoder and thermocouples may be utilized to 

obtain better accuracy of the results and control. By utilizing this data acquisition 

system, the indicated pressure inside the cylinder as a function of the crank angle 

can be obtained. 

 

2. Full-scale testing in the test cell is needed to run the engine at higher speed and 

the maximum torque and power can be obtained. It is dangerous to run higher 

speed than 3500rpm in the present open test bed area. 

 

3. In order to supply the turbocharged engine with adequate air-fuel ratio in all 

condition, a modification to the stock EFI system to increase the fuel flow is 

needed. A boost-pressure-powered fuel pressure regulator can be made to drive 

the fuel pressure up rapidly to keep pace with rising boost pressure. The stock 

injectors may be retained but the fuel pump needs to be substituted with high-

pressure pump. 

 

4. The turbocharged engine ignition curve needs a small retard as boost rises and 

the mixture becomes denser and more turbulent. The correct ignition timing 

under all circumstances is achieve only if the timing curve can be designed right 

along with the fuel curve. This can be accomplished with aftermarket engine 

management systems such as Motec, Microtek and Haltech fully programmable 

engine management systems that can control both ignition and fuel curves. 

 

5. Smaller size turbocharger unit such as TD04H may substitute the TD05H unit 

presently used to enable faster response to provide boost at lower speeds. 
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6. The use of fully synthetic engine oil is reasonable because of its high-

temperature stability and toughness of the molecular structure. The semi-

synthetic oil currently used is less stable at very high temperature in turbocharger 

bearing section caused by the heat in the turbine side.  

 

7. The engine coolant feed and return lines, connecting the water jacket around the 

turbocharger’s bearing housing with the engine cooling system capable of 

carrying away most of the heat that migrates from the turbine side, is necessary.  

 

8. The installation of spark plugs that is one or two range colder from the stock 

plugs, which conduct lots of heat away from the electrode should also be 

considered. 
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