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Fabrication of Pt-Circular Schottky Diode on Undoped AlGaN/GaN HEMT
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Abstract: In this study, Pt-circular Schottky diode is successfully fabricated for gas sensor application. The
fabricated Schottky diode shows good rectification characteristics. The device which shows improvement in
term of wiring connection for electrical characterization 1s fabricated. The DC I-V curves of fabricated Schottky
diodes show low series resistance of 210 Q and 330 Q. The Schottky barrier height (SBH) in the range of
0.458-0.708 eV are experimentally obtained and the discrepancy with the calculated SBH is discussed. A
measurement setup that has a capability to allow measurement at high temperature, lugh hydrogen gas density

and low vacuum pressure 13 also presented. The fabricated device 1s expected to be suitable for gas sensing

application.
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INTRODUCTION

Recent trends toward the so-called ubiquitous
network era combined with the progress of
nanotechnology are rapidly opening up a new horizon for
application areas of TII-V nanoelectronics, combining
information technology, nanotechnology and
biotechnology. III-V materials such as GaAs, InP, GaN
and their heterostructures are good platforms for such
applications, since they are industrially proven materials
for constructing high performance commumnication devices
and high speed signal processing integrated circuits.
Additionally, their superb transport properties are surface
sensitive for sensing physical, chemical and biochemical
information (Hasegawa and Akazawa, 2007).

In view of increased use of fuel cells as a new clean
and viable energy source to replace petroleum, hydrogen
sensors are strongly demanded to avoid hazardous
explosion. Since, the so-called sensor networks are
making a rapid progress, the sensor material from
semiconductor group 1s preferable since on-chip
integration with other micro and nanoelectronic devices
can be easily realized (Usami and Ohki, 2003). There have
been many reports on chemicals sensors using
metal-oxide compound semiconductors, such as SnC, and
ZnO (Yamazoe and Miura, 1992; Morrison, 1982).

However, the sensing mechanism of these compound
semiconductors is related to various defects such as
oxygen vacancy and metal vacancy. Tn addition, these
materials are also not suitable for high temperature
operation.

There is a strong interest in GaN-based material gas
sensor for applications including fuel leak detection in
automobiles and aircraft, fire detectors, exhaust diagnosis
and emissions from industrial processes (Luther ef al,
1999). This material is capable of operating at much higher
temperatures  than many of the conventional
semiconductors such as Si because of its large bandgap.
It was also reported that sensor with  Schottky diode
structures or field-effect transistor (FET) structures
fabricated on GaN and SiC (Casady et al, 1998) are
sensitive to a number of gases, including hydrogen and
hydrocarbons (Kim et al., 2003).

This study presents the fabrication of a Pt-circular
Schottky diode on undoped-AlGaN/GaN high-electron
mobility-transistor (HEMT) structure for hydrogen gas
sensor applications. The fabricated Schottky diede shows
good rectification characteristics. A measurement setup
that has a capability to allow measurement at high
temperature, lgh hydrogen gas density and low vacuum
pressure 1s also presented. The sensing response 1s
presented elsewhere (Mohamad et al., 2010).
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MATERIAL AND DEVICE STRUCTURES

AlGaN/GaN heterojunction has been shown to form
a potential well and a two-diumensional electron gas
(2DEG) at the lower heterointerface. These structures are
well known for possessing high electron mobility in the
2DEG channel, highest sheet carrier concentration among
II-V material system, high saturation velocity, high
breakdown voltage and good thermal stability.

A schematic of undoped AlGaN/GaN HEMT
structure 18 shown m Fig. 1. The undoped-AlGaN/GalN
substrates are grown by metal organic chemical vapor
deposition (MOCVD) on 430 um c-plane sapphire
substrates. The epitaxial structure consists of a 25 nm
undoped-AlGaN, a 2 um thick undoped-GaN and a buffer
layer. A sheet carrier concentration and mobility of this
epitaxial substrate determined by Hall measurement at
room temperature are 6.61 10" cm™ and 1860 cm*/V sec,
respectively. The mobility for undoped-AlGaN/GaN
material used in this study 1s two times higher than the
Si-doped AlGaN/GaN reported by Matsuo et al. (2005).
Therefore, it is expected that this material structure can
produce faster response which can be determmed from
current-time transient (I-t) measurement.

Si0, layer is applied as a mask for the dry etching
process. Before the deposition of Si0), film on the surface
of undoped-AlGaN/GaN, the native oxide 1s removed
using BHF solution. Next, 100 nm of Si0, layer 1s
deposited using Plasma-Enhanced Chemical Vapor
Deposition (PECVD). Then, the unwanted SiO, layer is
etched out using buffered hydrofluoric acid (BHF)
solution. The mesa patterns 15 formed by applying dry
etching process for 30 sec using an inductively-coupled
plasma reactive 1on etching (ICP-RIE) system with gas
mixture of BCL, (20 Sc¢ em) and C1, (10 Sc em). The etching
parameter and depth for the samples 13 shown in
Table 1. The impact of DC bias voltage on the
undoped-AlGaN/GaN etch depth is shown in Fig. 2. Tt can

Undoped-AlGaN (25 nm)
2 DEG
A WA
\/l\ Undoped-GaN (2000 nm) \lf\
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% Sapphire (430 pm) \{\
I

Fig. 1: The material structure

be clearly seen that lower DC bias shows deeper etch
depth.

After ICP-RIE, the 310, mask 1s removed using BHF
solution and organic solvent treatment to clean the
samples before being proceeded to ohmic formation.
Ohmic contacts are formed by e-beam deposition and
lift-off process. The metals and thicknesses of ohmic
contact are TrAVTYAu and 20/50/20/150 nm,
respectively. Following that, rapid thermal annealing
process at 850°C for 30 sec is carried out. Figure 3 shows
the I-V charactenstics of ohmic contact of sample B and

Table 1: The condition of etching and etched depth

Pressure Power of Power of DCbias  Etch depth
Sample  (mTorr) RIE (W) ICP (W) [4%)] (nm)
A 5 200 500 220 142.75
B 5 200 500 219 15242
C 5 200 500 216 154.68
D 5 200 500 215 162.98
165
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Fig. 2: Undoped-AlGaN/GaN etches depth as a function
of bias voltage
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Fig. 3: The current-voltage for ohmic characteristic
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Fig. 4: Fabricated device and cross sectional of circular Pt/AlGaN/GaN Schottky diode

sample C after annealing process. The series resistance
for sample B, R, 1s estimated to be 1.67 k() and sample C,
R, is 8.33 k.

Finally, the Schottky contact is formed by
evaporating a 5 nm thick catalytic Pt metal. The transient
time of current 1s expected to be faster if the thickness of
Schottky contact decreases (Hudeish et al, 2005).
Figure 4 shows a fabricated device and cross sectional of
circular PYAIGaN/GaN Schottky diode.

In this preliminary study, the devices with Schottky
contact diameter, d of 400 and 600 pm are fabricated. The
device with diameter, d of 400 pm 1s named Schottky diode
S1 and the device with diameter, d of 600 um is named
Schottky diede S2. Schottky diode S1 and Schottky diode
32 are the fabricated devices on the sample B.

RESULTS AND DISCUSSION

DCI-V characteristics of circular Schottky diode: Tn this
study, the Pt-undoped-AlGaN/GaN Schottky diode is
successfully fabricated. The DC I-V characteristics are
measured using Agilent Parameter Analyzer Model 4145B
and Micromanipulator Probe Station. As shown in Fig. 5,
the DC I-V curve of a fabricated Schottlky diode 51 and
Schottky diode S2 shows a diode I-V curve with a 210 Q
and 330 ( series resistance, respectively, defined at the
slope between 2 and 4 V.

The trend in the variation of current with applied bias
appears to follow the thermiomc emission (Sharma, 1984).
Measurements of the reverse saturation currents of the

devices are used to calculate the Schottky barrier heights
(SBHs) from the Richardsen-Dushman equation for the
thermionic current. T, given by:

b=V, ]r{%’k’rg} (1)

3

InEq. 1, @ ¢ is the barrier height in volts, T, is the reverse
saturation current, V, is the thermal voltage, A* is the
effective Richardson constant, A 1s the area of the metal-
semiconductor contact and T is the absolute temperature.
The reverse leakage current for device S1 18 69.99 pA and
SBH is calculated to be 0.458 eV, while the reverse leakage
current for device S2 i1s 9.9 nA and barrier height 1s
calculated to be 0.708 eV. These SBH values are much
lower than the ideal calculated value which is 1.55 eV.

The discrepancy of Schottly barrier height is may
due to the fabrication process, 1.e., annealing process,
where it can result in the decrease in barrier height as
suggested by Zhang (1999). They have reported Schottlky
contacts of different metals to the n-type AlGaAs/GaAs
structures and proposed a model, which involves quality
of the contact and defect formation at the semiconductor
surface due to mterdiffusion and/or penetration of metal
to the semiconductor. This model can qualitatively explain
the difference in barrier heights and degradation of barrier
due to certain process.

In addition, it was also reported by Mustafa ef al.
(2010) where the work functions of the metal and the
semiconductor are determined by the process. The actual
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Fig. 5. DC I-V curve of fabricated Schottky diode S1 and 52
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Fig. 6: (a) Schematic and (b) photo of measurement system
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nature of the metal-semiconductor contact is not
controllable and in fact may vary substantially from one
process to another.

Sensing measurement system: A schematic and photo of
sensing measurement system is shown in Fig. 6a and b,
respectively. The system can be used for measurement at
low vacuum pressures, high temperatures and also high
hydrogen gas density. With the capability to vacuum the
chamber down to 107 Torr, high concentration of
hydrogen gas can be introduced mto the vacuum chamber
without any possibility of explosion during high
temperature measurement. The results of current-voltage
(I-V) characteristics and time transients of current (I-t) of
the Schottky diodes exposed to hydrogen gas 1s reported
elsewhere (Mohamad ef ai., 2010).

CONCLUSION

Pt-circular  Schottky diode was successfully
fabricated for gas sensor application. The fabricated
Schottky diode showed good rectification characteristics.
The DC I-V curves of fabricated Schottky diodes showed
low series resistance of 210 and 330 Q. The SBH in the
range of 0.458-0.708 eV were experimentally obtained and
the discrepancy with the calculated SBH was discussed.
A measurement setup that has a capability to allow
measurement at high temperature, lugh hydrogen gas
density and low vacuum pressure was also presented.
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