COMPARATIVE ANALYSIS OF LEVEL OF SERVICE (LOS) UNDER VARYING LIGHTENING CONDITIONS

SEYED HOSSEIN HOSSEINI

A project report submitted in the partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil-Transportation and Highway)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > July 2011

To my beloved mother and father

ACKNOWLEDGMENT

First and foremost, I would like to thank the many people who have made my master project possible. In particular I wish to express my sincere appreciation to my supervisors Dr. Anil Minhans, for their encouragement, guidance, critics and friendship.

I would never have been able to make accomplishment without the loving support of my family.

I would like to thank my colleagues especially Iman Abbasszadeh fallah, Payam Paydar and Nima Zalfi, for all their help and support.

My sincere appreciation extends to all of my friends and others who have provided assistance. Their views and tips were useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful having all of you beside me. Thank you very much.

ABSTRACT

Delay estimation at a traffic signal is required in assessing signal performance and operating conditions of an intersection. Delay indicates the amount of time spent at a traffic signal in waiting until the discharge of traffic. Previous studies have accounted for delay estimation (of a minor arm) under the day light conditions only. However, this study attempts to study the delay and subsequently level of service (LOS) in both natural light (day light) and artificial light (road light) condition. This study was carried out to perform comparative analysis of level-of-service (LOS) under varying lightening conditions at a signalized intersection located at Lebuhraya Skudai-Pontian (principal road) and Jalan Seri Pulai (collector road). Traffic Volume, Cycle Time, Intersection Geometric Elements and Headway Data were collected during off-peak periods of day light and road light. The collected data were further analyzed and chi-square test was conducted to differentiate the results of survey under varying lightening conditions. The results showed lighting conditions do not have distinctive differences in the level-of-service (LOS) and the effect of road light on level-of-service (LOS) is insignificant.

Key words: Traffic signal, road lighting, delay, level of service (LOS)

ABSTRAK

Anggaran kelewatan pada isyarat lalu lintas adalah diperlukan dalam menilai prestasi isyarat dan beroperasi dengan syarat satu persimpangan. Kelewatan menunjukkan jumlah masa yang dihabiskan pada isyarat lalu lintas di menunggu sehingga menunaikan lalu lintas. Kajian sebelum ini telah diambil kira untuk anggaran kelewatan (lengan kanak-kanak) di bawah keadaan cahaya hari sahaja. Walau bagaimanapun, kajian ini cuba mengkaji kelewatan dan kemudiannya tahap perkhidmatan (LOS) di kedua-dua cahaya semula jadi (hari cahaya) dan cahaya buatan (lampu jalan) keadaan. Kajian ini telah dijalankan untuk melaksanakan analisis perbandingan tahap perkhidmatan (LOS) di bawah yang berbeza-beza mencerahkan syarat-syarat di persimpangan signalized yang terletak di Lebuhraya Skudai-Pontian (jalan utama) dan Jalan Seri Pulai (pemungut jalan). Volum trafik, Masa Kitaran, Elements Intersection Geometric dan Data Headway dikumpulkan semasa tempoh puncak cahaya hari dan cahaya jalan. Data yang dikumpul terus dianalisis dan ujian khi-kuasa dua telah dijalankan untuk membezakan hasil kaji selidik di bawah mencerahkan syarat-syarat yang berbeza-beza. Hasil kajian menunjukkan keadaan pencahayaan tidak mempunyai perbezaan yang tersendiri dalam peringkat-perkhidmatan (LOS) dan kesan cahaya jalan raya pada tahap perkhidmatan (LOS) adalah kecil.

TABLE OF CONTENT

CHAPTER		TITLE	PAGE
DECLARATION		CLARATION	iv
	DE	DICATION	V
	AC	KNOWLEDGEMENTS	vi
	ABS	STRACT	vii
	ABS	STRAK	viii
	TAI	BLE OF CONTENTS	ix
	LIS	T OF TABLE	xiii
	LIS	T OF FIGURE	XV
	LIS	T OF ABBREVIATION	xvi
	LIS	T OF SYMBOLS	xvii
	LIS	T OF EQUATIONS	xix
	LIS	T OF DEFINITIONS	XX
	LIS	T OF APPENDICES	xxii
1	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Statement of problem	2
	1.3	Hypotheses or research questions	2
	1.4	Aims and objectives	3
	1.5	Scope of the study	3
	1.6	Important of the study	4
	1.7	General outline of research methodology	4

2	LIT	ERATURE REVIEW	6
	2.1	Introduction	6
	2.2	Saturation headway	7
	2.3	Saturation flow rate	9
	2.4	Lost time	16
		2.4.1 Start-up lost time	17
		2.4.2 Clearance lost time	18
		2.4.3 Total lost time and the concept of effective green	
		time	18
	2.5	Cycle time	19
	2.6	Capacity	20
	2.7	Delay	21
	2.8	Level of service (LOS)	25
3	ME	THODOLOGY	27
	3.1	Introduction	27
	3.2	Project design	28
	3.3	Traffic volume	29
	3.4	Technique of data collection, and processing	29
	3.5	Comparison between the delay based on observed data and	
	e	estimated delay	32
	3.6	Methodology for delay calculation	33
4	DAT	FA COLLECTION AND ANALYSIS	39
	4.1	Introduction	39
	4.2	Study area characteristics	40
	4.3	Data collection	42
	4.4	Data collection equipment	43
	4.5	Observed data	44
		4.5.1 Actual green and amber time for all stages in day	y
		and road light	45

х

	4.5.2 Cycle time, actual green time and amber time for	
	critical stage in day and road light	47
	4.5.3 Saturation headway	48
4.6	Analysis of saturation headway, saturation flow rate	
an	d lost time	49
4.7	All-red time calculation for day light and road light	52
4.8	Standard deviation for saturation headway in day light and	
ro	ad light	54
4.9	Standard deviation for lost time in day light and road light	56
4.10	Saturation deviation for amber time in day light and in road	
lig	ht	58
4.11	Standard deviation for cycle time in day light and road	50
lig	ht	60
4.12	Standard deviations for all red in day light and road light	63
4.13	Timing diagram for observed cycle time in day light and	
ro	ad light	65
4.14	Estimated cycle time	66
	4.14.1 Estimated cycle time for day light	67
	4.14.2 Timing diagram for estimated cycle time in day	
	light	68
	4.14.3 Estimated cycle time for road light	69
	4.14.4 Timing diagram for estimated cycle time in road	
	light	70
4.15	Delay based on observed data	71
	4.15.1 Day light delay based on observed data	71
	4.15.2 Road light delay based on observed data	73
4.16	Estimated delay	74
	4.16.1 Estimated day light delay	74
	4.16.2 Estimated road light delay	75

RESULT AND DISCUSSION

xi

	5.1	Evaluation of delay based on observed data and estimated	
		delay	76
	5.2	Chi-square for degree of saturation (DOS)	78
	5.3	Level of service (LOS)	78
6	CONC	CLUSION	85
	REFR	ENCES	88
	APPE	NDICES	90

xii

LIST OF TABLES

TABLE NO.

TITLE

2.1	Estimated saturation flow in terms of lane width less than 5.5 m	13
2.2	Correction factors for saturation flow in terms of slope	14
2.3	Correction factors for saturation flow in terms of turning radius	14
2.4	Correction factor saturation flow in terms of turning movement	15
2.5	Conversion factors to PCU	16
2.6	Level of service (LOS) in terms of delay	26
3.1	Conversion factors to PCU	29
3.2	Methodology for delay calculation	33
3.3	Level of service (LOS) in terms of delay	38
4.1	Actual green time and amber time for all stages in day light	45
4.2	Actual green time and amber time for all stages in road light	46
4.3	Cycle, actual green and amber time for critical stage in day and	
	road light	47
4.4	Headway data in day light and road light	48
4.5	Analysis of saturation headway, saturation flow and lost time for	
	day light	49
4.6	Analysis of saturation headway, saturation flow and lost time for	
	road light	51
4.7	Calculated all-red during day light	52
4.8	Calculated all-red during road light	53

4.9	Standard deviation for saturation headway in day light and road	51
	light	54
4.10	Standard deviation for lost time at day light and road light	56
4.11	Saturation deviation for amber time in day light and in road light	58
4.12	Standard deviation for cycle time in day light and road light	61
4.13	Standard divisions for all red in day light and road light	63
4.14	Day light Y ratio per arm	67
4.15	Actual and effective green per arm	68
4.16	Road light Y ratio per arm	69
4.17	Actual and effective green per arm	70
4.18	Actual and effective green per arm at day light	72
4.19	Actual and effective green per arm at road light	73
4.20	Actual and effective green per arm in day light	74
4.21	Actual and effective green per arm in road light	75
5.1	Calculated control delay per vehicle for the lane at arm 1 at	
	signalized intersection and chi-square test and correlation for off	77
	peak hour	
5.2	Calculated V/c, chi-square test and correlation for day light and	78
	road light	10
5.3	Level of service (LOS) and delay at signalized intersection	79
5.4	Summary of delay based on observed data	79
5.5	Summary of estimated delay	80
5.6	Traffic volumes in day and night	82
5.7	Delays comparison	84

xiv

LIST OF FIGURES

FIGURE	NO.
--------	-----

TITLE

1.1	Study area	4
2.1	Measurement of saturation flow rate	8
2.2	The flow traffic during green period from a saturated approach	10
3.1	Methodology of the work	28
3.2	Measurement of saturation flow rate	30
3.3	Headway determination	31
4.1	Study area	40
4.2	Sketch of study area	41
4.3	Sketch of direction study area	41
4.4	Timing diagram for observed cycle time in day light	65
4.5	Timing diagram for observed cycle time in road light	66
4.6	Timing diagram for estimated cycle time in day light	68
4.7	Timing diagram for estimated cycle time in road light	71

LIST OF ABBREVIATIONS

LOS	-	Level of service
PCE	-	Passenger car equivalents
PCU	-	Passenger car unit
HCM	-	Highway Capacity Manual
DOS	-	Degree of saturation
V/c	-	Flow rate of capacity ratio or volume to the capacity ratio
g/C	-	Rate of green effective to cycle time

LIST OF SYMBOLS

SYMBOLS	UNIT	ITEM
q	pcu	Flow
Н	sec	Headway
S	pcu/hr	Saturation flow rate
L	sec	Loss time
Co	sec	Optimum cycle time
с	pcu/hr	Capacity
d	sec/veh	Delay
0	sec/veh	Observed delay
E	sec/veh	Estimated delay
W	m	Lane width
l_{sl}	s/phase	Start-up lost time
$\Delta_{ m i}$	sec	Incremental headway
T_n	sec	Green time required to move queue of "n" vehicles
		through a signalized intersection
T_3	sec	Time for first 3 cars to clear the stop bar, including
		headway for each
T_{13}	sec	Time for first 13 cars to clear the stop bar, including
		headway for each
n	veh	Number of vehicles in queue
t_L	sec	Total lost time per phase
Y	-	Ratio of flow to saturation flow

gn	sec	Effective green time of the nth signal phase
Yn	-	Calculated Y-value of the same signal phase
g	sec	Average effective green time
d	sec/veh	Average stopped delay per vehicle for the lane or
		lane group of interest
G	sec	Displayed green time

LIST OF EQUATION

EQUATION NO.

[2.1]	8
[2.2]	9
[2.3]	12
[2.4]	13
[2.5]	15
[2.6]	17
[2.7]	17
[2.8]	18
[2.9]	19
[2.10]	19
[2.11]	20
[2.12]	21
[2.13]	22
[2.14]	22
[2.15]	22
[2.16]	22
[2.17]	25
[3.1]	32
[3.2]	35
[3.3]	36
[3.4]	36

LIST OF DEFINITIONS

TITLE

The green interval	96
The yellow or amber interval	96
Effective green time	96
The all-red interval	96
The intergreen interval	96
Level of service (LOS)	96
Actual flow rate	98
All-red interval	98
Approach	98
Capacity	98
Change interval	98
Clarence interval	98
Critical flow ratio	98
Critical movement or lane	98
Critical volume	99
Cycle	99
Cycle length	99
Delay	99
Design flow rate	99
Flow rate	99
Flow ratio	99

Green interval	99
Green time	99
Hourly volume	100
Intergreen	100
Intersection flow rate	100
Lane group	100
Legs (intersection)	100
Passenger car units	100
Peak hour	100
Peak hour factor	100
Phase	100
Phase sequence	101
Queue	101
Roadway conditions	101
Signalization condition	101
Split	101
Traffic conditions	101
Signal timing	101
Speed limit	101
Geometric condition	101
Number of lanes	102
Traffic volume	102
Lost time	102
Clearance lost time	102
Start-up lost time	102
Total lost time	102

LIST OF APPENDICES

APPENDIX

TITLE

(A)	Peak traffic volume (pcu)	90
(B)	Off peak traffic volume during day (pcu)	92
(C)	Off peak traffic volume during night (pcu)	94
(B)	Definitions	96

CHAPTER 1

INTERODUCTION

1.1 Introduction

The aim of this study is to compare the delay and level of service (LOS) of a signalized intersection located at Lebuhraya Skudai-Pontian (principal road) and Jalan Seri Pulai (collector road) under varying lightening conditions. The intersection has 3 stages that the vehicles move through it. For evaluating the quality of the intersection, the performance of it in day light and in road light conditions should be considered. Delay and level of service (LOS) which are some comparative indicators using to assess the performance of signalized intersection. Road lighting is one of the environmental conditions influencing on these indicators are that so way conducted during the day light and road light conditions. Road lighting itself means whether in the night (artificial light), it has any impact on the delay and level of service (LOS).

Many researchers have studied the effect of road lightening on motorways. (Al-Kaisy& F. L. Hall, 2000) testified that generally there is a slight decline in the capacity of one of motorways in Canada during road light condition. Any research, which indicates the relationships between day light and road light conditions; particularly at a

signalized intersection, was not found. In our study, based on logical attitudes towards understanding these relationships, due to varying lightening condition it is expected that there must be a variation in headways and saturation flows. In terms of delay and level of service (LOS), which will be found subsequently in the bearer intersection, the relationships can be established.

1.2 Statement of the problem

The varying lightening conditions during day light (natural light) and road light (artificial light) affect on the delay and consequently, the level of service (LOS) at traffic signal. Therefore, the relationship between the lightening conditions at the different time in day and its effect on delay needs to be further investigated.

1.3 Hypotheses

The hypothesis of this study is there will be differences in delay and consequently, in level of service (LOS) under day light and road light conditions at the study intersection.

1.4 Aims and objectives

The aim of study is to compare and analyze the level of service (LOS) under varying lightening conditions. In order to achieve the aim the following objectives are desired:

- To determine delay under varying conditions of lightening- daylight and road lighting conditions.
- To determine level of service (LOS) under daylight and road light conditions.
- To compare the delay and level of service (LOS) for both road lightening conditions.

1.5 Scope and limitation of the project

In this study, the microscopic level of observations and analysis are conducted. This study is limited to:

- The urban area
- The study intersection
- The prevailing road condition
- The prevailing environmental condition
- The day light (natural light) and road light (artificial light)
- The off peak periods only

The area of this study is a signalized intersection at Jalan Seri Pulai and Lebuhraya Skudai-Pontian as it has shown in the Figure below.

Figure 1.1: Study area

1.6 Importance of the study

There is no previous studies have been able to establish the relationship between day light and road light conditions, consider the delay and level of service (LOS). The outcome of this study shows that whether the performance of the intersection is similar the road light condition. The same effect on level of service (LOS) would depict that there is no variation due to varying lightening conditions. Furthermore, it would suggest several solutions to solve these problems. For example, improving the geometrics of the intersection, operating the signal based on new signal timings which signal timing is different during the day and finally changing power of the light that is related to the electric engineer and out of scope of traffic engineering.

1.7 General outline of research methodology

Methodology of study describes the steps to conduct this study in order to achieve its aims and objectives. This study starts with the identification of the current issue (problem statement) concerning the traffic. After the problem statement has been identified, the objectives and scope of study are determined. Subsequently, based on the objectives of study, literature review is collected from variance data sources. Study method is formulated based on requirement and scope of the study. This study continued with site collection data. Demand flow was collected through equipments studies also cycle time, actual green length, and saturation headway collected. Moreover, after all data analyzed, the actual delay and estimated delays compared and evaluated. Finally, the comment and conclusion made based on the result and analysis obtained.

REFERENCES

- Al-Kaisy, A. F., & Hall, F. L. (2000). Effect of darkness on the capacity of long-term freeway reconstruction zones. *Transportation Research Circular E- C*, 164–175. Retrieved June 22, 2011, from http://gulliver.trb.org/publications/circulars/EC018/15_53.pdf.
- ArahanTeknic(Jalan)13/87. (2004). Jabatan kerja raya (pp. 1-107).
- Ben-edigbe, J. (2010). Static signal settings compared. Traffic, 5(1), 42-48.
- C.Cavette. (2007). Traffic signal. Retrieved from http://www.madehow.com/Volume-2/Traffic-Signal.html.
- C.R.Hao, C. R. (2010). University of Technology Malaysia declaration of thesis / undergraduate project paper and copyright quality for the award of the degree of Bachelor of Civil Engineering "Signature. Notes.
- Hadiuzzaman, D. (2008). Development of saturation flow and delay models for signalised intersection in dhaka city. Department of Civil Engineering. Civil Engineering.
- HCM.Transportation Research Board. Washington D.C. (2000). *Highway Capacity Manual. Simulation*.
- Henke, B., & Gullikson, E. (1993). X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z= 1-92. Atomic data and nuclear data tables, (I). Retrieved June 29, 2011, from http://linkinghub.elsevier.com/retrieve/pii/S0092640X83710132.
- I.A.Fallah, I. A. (2010). Design consideration for motorists at urban four-arm signalize intersection.
- J.Joseph. (2005). Saturation Flow Rates and Maximum Critical Lane Volumes for Planning Applications in Maryland. *Journal of Transportation Engineering*, 66(12), 26. doi: 10.1061/(ASCE)0733-947X(2005)131:12(946).
- N.Nurikhwani, I. B. Z., with Nabidin. (2007). Evaluating signalized intersection capacity based on.
- O. H. Chye. (2010). *Delay at unsignalised junction. Notes.* University of Technology Malaysia.
- Viti, F., & D, P. (2007). A probabilistic model for actuated traffic signals. *Traffic*.

- W.McShane, W., & R.Roess, R. (1998). *Traffic engineering. Journal of the Electrochemical Society* (Vol. 129, p. 2865). Retrieved July 7, 2011, from http://www.best-seller-books.com/traffic-engineering.pdf.
- Yusria Darma. (2005). Control delay variability at signalized intersection based on *HCM method. Transportation* (Vol. 5, pp. 945 958).