
Setting the context for variability integration in software product line 

Abstract 

The need for a faster, better and cheaper production of software has motivated the intention to 

use again and again the repetitive structure from the previous software development project in a 

new but similar context. However, routinely practical and realistic problem which occurs in 

software development force software developers towards producing fast and ad hoc solutions to 

solve the problem. This scenario hinders the payoffs of productivity and quality that can be 

reaped from software reuse. Thus the problem of software reuse has been highlighted in (Prieto-

Diaz, 1993) as lack of widespread, formalize and systematic reuse. In (Frakes & Isoda, 1994) the 

success factors of systematic software reuse lies on its repeatable process, domain specific focus 

and the reuse itself primarily concentrates on higher level lifecycle artefacts such as requirement, 

design and subsystems. 

One of the notable approaches for systematic software reuse is Software Product Line (SPL) 

(Paul Clements & Northrop, 2002; Pohl, Böckle, & van der Linden, 2005). SPL fulfils the 

criteria of systematic reuse where it focuses on domain specific approaches and enables the reuse 

of higher and lower level artefacts in software development. In SPL reuse happens with the use 

of core assets (Paul Clements & Northrop, 2002; McGregor, Northrop, Jarrad, & Pohl, 2002). 

With core assets, overlaps among members of the family can be leverage by merging common 

parts (known as commonality) and at the same time managing its variabilities. Thus, systematic 

reuse and automation in producing products from SPL depends on how well its core asset is 

designed. The more generic the core assets the more products can be generated. This generality 

requires postponing the design decisions with variation points to represent variabilities. Due to 

the numerous feature interactions and variation points to represent the variability in different 

level of abstractions in software development the amount of variability that has to be supported 

in software artefacts is growing considerably and also variability among individual products in 

the software product line also increases. As in (Berg, Bishop, & Muthig, 2005) managing 

variations at different levels of abstraction and across all generic development artefacts is an 

overwhelming task. Thus a central issue in SPL is the systematic management of variability 

where it has been the key difference with conventional software and also has been a major 

challenge in SPL development (Jan Bosch, 2004; Krueger, 2002). This chapter focuses on the 



variability between requirements and architectural levels of SPL development phase. The explicit 

integration between the different phases is hoped to have a significant benefit in the variability 

representation between different abstraction levels and also leads towards a more efficient 

product derivation in SPL. 


