

4
REAL-TIME TERRAIN RENDERING

AND VISUALIZATION BASED ON
HIERARCHICAL METHOD

Muhamad Najib Zamri

INTRODUCTION

istory of Geographic Information System (GIS) began
since early 20th century saw the development of
geographical data information visualization. GIS has

changed the people workflow from manual system into an
automation system that provides more effective and systematic
way. GIS is one of the important developments in the field of
information technology where it is a set of computer tools for
collecting, storing, retrieving at will, transforming and displaying
spatial data from the real world for a particular set of purposes or
application domains. Until recently, GIS contributed for many
sector and field, including agriculture, archaeology, environmental
monitoring, health, forestry, emergency services, marketing,
regional planning, site evaluation, tourism and infrastructure.

A complex nature of massive database caused the
functionality of traditional GIS (two-dimensional GIS) at its
boundary. This conventional system was unable to manage entire
information successfully. User interaction with the system only
restricted to the operation such as zooming, zoom to extent,
panning and picking for viewing and manipulating topographic
map. As an alternative, higher dimensional GISs have been
proposed to overcome the problem. Three-dimensional Virtual GIS
provides a new environment where it attempts to display virtual

H

46 Advances in Computer Graphics and Virtual Environment

scenarios in an appearance identical to the real world. Third
dimension facilitates in displaying complex spatial information for
visual analysis tasks.

Terrain management and visualization is subfield in 3D
Virtual GIS that has attracted a number of researchers to involve in
tackling the challenging issues in this research area. In order to
display terrain model, computer graphics elements are necessary.
Visualization of this 3D model involves large amount of spatial
data and imagery data. Thus, it is essential to employ an
appropriate optimization algorithm or method to reduce the
complexity of problem and at the same time to improve system
performance.

Spatial data retrieval technique is one of the solutions for
the above-mentioned problem. The objective of this technique is to
fetch data rapidly when dealing with real-time massive data. We
have designed and developed a terrain management scheme that is
based on this technique in order to test the performance of the real-
time terrain system.

RELATED WORKS

Tile Approach

Tile approach can be used for handling large geometry and
imagery data. There are two types: (i) naive approach and (ii)
overlapping tile approach. The difference between two of them is
the dimension of the data to be used. The dimension for the naive
approach is power-of-two (2n) while the overlapping tile approach
uses power-of-two plus one (2n+1) dimension. The drawback for
the naive approach is the seams or cracks can be occurred
automatically between the boundaries of the tiles. Frequently, most
of researchers have preferred to apply second above-mentioned
approach to their specific applications because the seams can be
reduced or prevented.

Real-Time Terrain Rendering and Visualization Based on Hierarchical 47
 Method

Pajarola (1998) divided the terrain data into several tiles for
an efficient scene management and integrated with the restricted
quadtree algorithm. Ulrich (2002) implemented the tile approach
for both textures and terrain elevation data in his Chunk LOD.

View Frustum Culling

In view frustum culling, there are two different approaches have
been applied: plane intersection test and projection intersection test.
First approach needs to compare between six planes of view
volume and surfaces of object’s bounding volume. Hoff (1997) has
produced rapid axis aligned bounding box (AABB)-view frustum
overlapping test in his system. Assarsson and Möller (1999,2000)
have presented basic intersection test with four optimization
techniques (plane-coherency test, octant test, masking and TR
coherency test) for culling AABB and oriented bounding box
(OBB).

For the second approach, the comparison merely being
made between the projection of view volume and projection of
bounding box in screen-space coordinate. Rabinovich and
Gotsman (1997) have introduced the concept of union set of
projection for bounding box. While Youbing et al. (2001) did not
take into account the near, top and bottom planes of view volume
in their terrain rendering system for fast determination of terrain
patches in each frame.

View-Dependent LOD

TIN-based terrain rendering system has been developed by Hoppe
(1998) using his principle of progressive meshes. Unfortunately,
this method consumes lot of memory for storing the terrain data.

Regular grid is usually being adopted and adapted in real-
time terrain rendering and visualization due to its simplicity.
Typically, hierarchical tree is exploited to represent and manage
terrain data. Binary tree-based LOD has been used by Duchaineau
et al. (1997) (ROAM system), Pajarola (1998) (Virtual Reality GIS)

48 Advances in Computer Graphics and Virtual Environment

and Lindstrom and Pascucci (2001) (out-of-core terrain
visualization system). Hierarchical quadtree data structure was
applied in Röttger et al. (1998) (continuous LOD for height fields)
and Ulrich (2002) (ChunkLOD). Hierarchical R-tree also can be
used to manage multiresolution terrain data. LOD R-tree has been
implemented by Kofler (1998) in his Vienna Walkthrough and
Styria Flyover system.

METHODOLOGY

Pre-Processing

Pre-processing step is crucial for storing and loading terrain data
efficiently as well as obtaining fast data retrieval in real-time
environment. In general, the purpose of this phase is to extract the
related information and split the terrain data into several patches.
Two steps are required: data extraction and data tiling.

Data extraction involves two sequential steps. The first one
is the extraction of general information, while the second step is
the extraction of elevation profiles. General information is
obtained by reading Record A in DEM data format which contains
header information about the related USGS DEM data (1992).
Certain information will be extracted for facilitating the next
process. These include ground coordinates for the corners,
minimum and maximum elevation values and column and row data.

Ground coordinates consist of four control points (NW, NE,
SW and SE) will work as the boundary of the data. Minimum and
maximum elevation values are the range of z coordinates to
represent the terrain height field. It is useful in normalizing the
elevation value in certain extent. Column and row data are
important for determining the terrain size in vertical and horizontal
directions respectively. All of this information will be stored in
output file (*.txt file).

Real-Time Terrain Rendering and Visualization Based on Hierarchical 49
 Method

Then, according to Record A, the elevation profiles will be
read column by column from left to right. The profiles and its
related index will be stored in another output file (*.txt file).

Data tiling is the core component of the pre-processing
phase. The overlapping tile approach will be used due to its
simplicity and seam elimination capability. Therefore, the terrain
data must be (2n+1) x (2n+1) in vertical and horizontal directions
(Pajarola 1998, Duchaineau et al. 1997, Lindstrom and Pascucci
2001, Röttger 1998, Kim and Wohn 2003).

Firstly, the terrain size needs to be determined in order to
ensure the size conform the above rule. There are two suggested
steps:

• Find the maximum number of terrain data for one
side.

• Assign an appropriate power-of-two plus one (2n+1)
value to the maximum number of terrain data for
one side.

The terrain data is stored in one-dimensional array which
means the index is in the range from 0 to [(2n+1) x (2n+1) - 1].
This approach is applied in order to reduce the memory usage.
After calculating and obtaining the terrain size, it is necessary to
specify manually the number of vertices per side for each patch.
Choosing a proper patch size is depends on data density, CPU
speed, available memory and other considerations. Hence, the size
must not too small or big for the efficiency purpose. The number
of vertices per side must also be in (2n+1) size. The terrain size and
number of vertices per side will be used to calculate the number of
generated patches for one side as illustrated below:

Then, the starting point for each patch will be determined by
computing the index of terrain data. At the same time, a test is
made to check the existing status for each patch. It is because when
the terrain size is expanded to the (2n+1) x (2n+1), the possibility to
generate non-existing patches is high. The purpose of this step is to

SidePerVerticesofNumber
SizeTerrain

PatchesGenerated
ofNumber

=

50 Advances in Computer Graphics and Virtual Environment

reduce the hard disk storage and memory utilization. The existing
patches will be assigned with flag 1 and non-existing patches will
be assigned with flag 0. Before that, the maximum sizes for
vertical (column) and horizontal (row) directions which following
the number of vertices per side are needed.

After gaining all basic requirements, the elevation values
will be read from the output file that has been created before by
searching and comparing the starting point for each existing
patches with the index from the output file. Subsequently,
normalization of elevation data will be made for each existing
patches. Thus, the elevation values will be in range 0 to 255 for
facilitating the computation for the run-time process. Minimum
and maximum elevation values are required for this computation.

Each patch’s elevation values will be stored in separated
output file (*.tile file). This approach is used in order to achieve
fast searching and retrieving of terrain patches rather than using
single output file with complicated searching process that will slow
down the system performance.

Run-Time Processing

Firstly, the view position is needed in order to determine the
patches to be processed. The current patch and eight adjacent
patches will be selected rather than process the whole terrain
patches.

Then, view frustum culling technique is inserted to remove
the unseen patches among the nine patches to be processed. Two
steps should be followed: plane extraction and intersection test.
View frustum comprises of six planes. These planes are left, right,
top, bottom, near and far. Each plane has its own plane equation.
General plane equation is:

0=+++ DCzByAx

Real-Time Terrain Rendering and Visualization Based on Hierarchical 51
 Method

The coefficient A, B, C, and D need to be defined in order
to complete frustum plane equation. This involves three major
steps:

i. Combine the projection and model view matrices.
ii. Extract the plane.

iii. Normalize the plane.
Next, the plane-sphere intersection test is made between

each view frustum’s planes and terrain patches (bounding sphere
representation). Only the terrain patch that has ALL-INSIDE or
INTERSECT flag will be taken for the next process. The algorithm
is listed below:

Figure 4.1 Pseudo code for plane-sphere intersection test

After that, the tessellations for visible terrain patches are
made by using view-dependent LOD algorithm. Röttger’s
algorithm (Röttger et al. 1998) has been chosen due to its memory-
efficient characterization. It is based hierarchical quadtree structure
and managed in top-down manner. In general, the flat and distant
objects are given fewer polygons than the close one. The important
operations in Röttger’s algorithm involve the distance calculation,
subdivision test and generation of triangle fans. All the process in
run-time phase are repeated, updated and rendered for each frame.

For i in [all view frustum planes] do
Distance = (Center of the sphere X

 Unit vector) + Coefficient(D)
If (Distance > Radius of the sphere) then
 Return ALL-OUTSIDE
If (Distance > -Radius of the sphere) then
 Return INTERSECT
End loop
Return ALL-INSIDE

52 Advances in Computer Graphics and Virtual Environment

RESULTS

The prototype has been implemented and run on high-end PC in
Windows XP operating system. The main specifications are AMD
AthlonXP 1800+ (1.53 GHz), 1 GB DDR-RAM and Gigabyte 128
MB ATI Radeon 9700. We have used Arizona data specifically
adams mesa area as shown in Figure 4.2 and the results can be seen
in Figure 4.3. After running this prototype, average frame rate
obtained is 80.53 frames per second (fps), average polygon count
is 22370 triangles for each frame and geometric throughput is
15614 triangles per second. For the data accuracy, this system can
preserve only 95.34 percent compared to the original full
resolution data.

Figure 4.2 USGS DEM data: elevation data and texture map

Real-Time Terrain Rendering and Visualization Based on Hierarchical 53
 Method

Figure 4.3 Textured and wireframe terrain model

CONCLUSION

We have presented our proposed technique for real-time terrain
management and visualization. Although the prototype is able to
decrease polygon generated for each frame and speed up the
rendering performance but actually, this system is depending on
hardware specification that runs this application. For future work,
we will try to expand the current system to the parallel computing
environment for achieving higher performance system in terms of
efficiency, accuracy and realism.

54 Advances in Computer Graphics and Virtual Environment

REFERENCES

Assarson U. and Möller T., 1999, “Optimized View Frustum
Culling Algorithms”, Technical Report:99-3, Chalmers
University of Technology, Sweden.

Assarson U., and Möller T., 2000, “Optimized View Frustum
Culling Algorithms for Bounding Boxes”, Journal of
Graphics Tools, vol. 5, no. 1, pp. 9-22.

Duchaineau M., Wolinsky M., Sigeti D.E., Miller M.C., Aldrich C.
and Mineev-Weinstein M.B., 1997, “ROAMing Terrain:
Real-time Optimally Adapting Meshes”, Proceedings of
IEEE Visualization, pp. 81 – 88.

Hoff K., 1997, Fast AABB/View-Frustum Overlap Test,
<http://www.cs.unc.edu/hoff/ research/index.html>.

Hoppe H., 1998, “Smooth View Dependant Level-of-Detail
Control and its Application to Terrain Rendering”,
Proceedings of IEEE Visualization, pp. 35-42.

Kim S.H. and Wohn K.Y., 2003, “TERRAN: out-of-core TErrain
Rendering for ReAl-time Navigation”, EUROGRAPHICS.

Kofler M., 1998, “R-trees for Visualizing and Organizing Large
3D GIS Databases”, Technischen Universität Graz, Ph.D.

Lindstrom P. and Pascucci V., 2001, “Visua-lization of large
terrains made easy”, Proceedings of IEEE Visualization, pp.
363–370.

Pajarola R., 1998, “Access to Large Scale Terrain and Image
Databases in Geoinformation Systems.” Swiss Federal
Institute of Technology (ETH) Zürich, Ph.D. Thesis.

Rabinovich B. and Gotsman C., 1997, “Visualization of Large
Terrains in Resource-Limited Computing Environments”,
Proceedings of IEEE Visualization, pp. 95-102.

Real-Time Terrain Rendering and Visualization Based on Hierarchical 55
 Method

Röttger S., Heidrich W., Slusallek P. and Seidel H.P., 1998, “Real-
Time Generation of Continuous Levels of Detail for Height
Fields”, Technical Report. University¨ Erlangen-N urnberg.

Thorsten S. and Anselmo L., 2003, “Simulation of Cloud
Dynamics on Graphics Hardware.”
SIGGRAPH/Eurographics Workshop on Graphics
Hardware.

Ulrich T., 2002, “Rendering Massive Terrains using Chunked
Level of Detail Control”, DRAFT, Oddworld Inhabitants.

USGS 1992, “Standards for Digital Elevation Models”. National
Mapping Program Technical Instructions, U.S. Department
of the Interior, U.S. Geological Survey, National Mapping
Division.

Youbing Z., Ji Z., Jiaoying S. and Zhigeng P., 2001, “A Fast
Algorithm for Large Scale Terrain Walkthrough”,
International Conference on CAD&Graphics. China.

